International Nuclear Information System (INIS)
Fujiki, Kazuo; Asaka, Hideaki; Ishida, Toshihisa
1986-01-01
Thermal-hydraulic behaviors in the reactor of Nuclear Ship ''Mutsu'' were investigated through safety evaluation of operational transients by using RETRAN and COBRA-IV codes. The results were compared to the transient behaviors of typical commercial PWR and the characteristics of transient thermal-hydraulic behaviors in ship-loaded reactor were figured out. ''Mutsu'' reactor has larger thermal margin than commercial PWR because it is designed to be used as ship-propulsion power source in the load-following operation mode. This margin makes transient behavior in general milder than in commercial PWR but high opening pressure set point of main-steam safety valves leads poor heat-sink condition after reactor trip. The effects of other small-sized components are also investigated. The findings in the paper will be helpful in the design of future advanced reactor for nuclear ship. (author)
HANARO thermal hydraulic accident analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-06-01
For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.
Investigation of Two-Phase Flow Regime Maps for Development of Thermal-Hydraulic Analysis Codes
International Nuclear Information System (INIS)
Kim, Kyung Doo; Kim, Byoung Jae; Lee, Seong Wook
2010-04-01
This reports is a literature survey on models and correlations for determining flow pattern that are used to simulate thermal-hydraulics in nuclear reactors. Determination of flow patterns are a basis for obtaining physical values of wall/interfacial friction, wall/interfacial heat transfer, and droplet entrainment/de-entrainment. Not only existing system codes, such as RELAP5-3D, TRAC-M, MARS, TRACE, CATHARE) but also up-to-date researches were reviewed to find models and correlations
Analysis of uncertainties of thermal hydraulic calculations
International Nuclear Information System (INIS)
Macek, J.; Vavrin, J.
2002-12-01
In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)
SBWR core thermal hydraulic analysis during startup
International Nuclear Information System (INIS)
Lin, J.H.; Huang, R.L.; Sawyer, C.D.
1993-01-01
This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided
Development of regulatory technology for thermal-hydraulic safety analysis
International Nuclear Information System (INIS)
Bang, Young Seok; Lee, S. H.; Ryu, Y. H.
2001-02-01
The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process
International Nuclear Information System (INIS)
Bera, S.; Pradhan, S.K.; Dubey, S.K.; Gupta, S.K.
2011-01-01
In general safety analyses of design basis accident of NPPs are being carried out using system thermal hydraulics code like RELAP. In RELAP, power is calculated based on point kinetics approximation, which virtually ignores the space and energy dependence of neutron flux. To include the space and energy dependence of neutron flux, three-dimensional neutronics code TRIHEXFA has been externally coupled with RELAP through interface program, TRIHEXFA-RELAP Interface Program (TRIP). Calculation methodology of TRIP program is based on adiabatic approximation. In the adiabatic approximation the neutron flux is being factored into spatial and amplitude part. Spatial part of flux is slowly varying with time whereas amplitude part is strongly varying function. The RELAP controls the transient time steps. Transient time is divided into several major and minor time steps. Minor time step is the sub-step of major time step. Thermal hydraulics and neutronics data are exchanged at each major time step. Spatial part of neutron flux has been updated at each major time step using TRIHEXFA code. But amplitude part of the neutron flux is calculated at each minor time step using RELAP code. Convergence of results of the coupled code, TRIP has been checked through coupling time step descritization study. This study determines the minimum coupling time step. Transient concerning VVER-1000 Main Steam Line Break, MSLB has been considered to investigate the space-time effect on point kinetics. MSLB occurs as a consequence of the rupture of one steam line upstream of main steam line isolation valves. Reference design and data from Kudankulam Nuclear Power Plant (KK-NPP) are used for the analysis. From this investigation it is found that TRIP significantly overestimates the maximum reactor power against uncoupled RELAP result. The time of scram also occur six seconds earlier in TRIP calculation compared to the RELAP. This exercise has also shown a proof of principle that coupling 3D
Thermal-hydraulic analysis of nuclear reactors
Zohuri, Bahman
2015-01-01
This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...
Thermal-hydraulic investigations of fuel elements
International Nuclear Information System (INIS)
Rehme, K.; Weinberg, D.
1983-01-01
Extensive fluid-dynamic examining of flow distribution and turbulent flow distribution was done to control and safeguard calculation methods allowing the determination of three-dimensional flow distribution in fuel elements. Results show that the flow distribution greatly depends on the frequency of pulse exchange between subchannels in narrow rod grids. The comparison of these measured values to VELASCO's results shows that the calculation methods need to be considerably improved. The subchannel analysis proved to be very suitable to calculate mean flow temperatures conforming with the subchannel analysis principle. However, this does not include statements on wall temperatures occurring in the structures. Mean wall temperatures can be determined by empirical interrelationships for Nusseltnumbers. On the other hand, the calculation of detailed wall temperature distributions is not possible with the subchannel analysis unless it can be further improved due to more detailed measurement results. (orig.) [de
Thermal Hydraulic Analysis on Containment Filtered Venting System
Energy Technology Data Exchange (ETDEWEB)
Bang, Young Suk; Park, Tong Kyu; Lee, Doo Yong; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Lee, Sang Won; Kim, Hyeong Taek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this study, the thermal hydraulic conditions (e. g. pressure and flow rate) at each component have been examined and the sensitivity analysis on CFVS design parameters (e. g. water inventory, volumetric flow rate). The purpose is to know the possible range of flow conditions at each component to determine the optimum size of filtration system. GOTHIC code has been used to simulate the thermal-hydraulic behavior inside of CFVS. The behavior of flows in the CFVS has been investigated. The vessel water level and the flow rates during the CFVS operation are examined. It was observed that the vessel water level would be changed significantly due to steam condensation/thermal expansion and steam evaporation. Therefore, the vessel size and the initial water inventory should be carefully determined to keep the minimum water level required for filtration components and not to flood the components in the upper side of the vessel. It has been also observed that the volumetric flow rate is maintained during the CFVS operation, which is beneficial for pool scrubbing units. However, regarding the significant variations at the orifice downstream, careful design would be necessary.
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Ubra, O. [Skoda Company, Prague (Switzerland); Doubek, M. [Czech Technical Univ., Prague (Switzerland)
1995-12-31
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
International Nuclear Information System (INIS)
Ubra, O.; Doubek, M.
1995-01-01
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.)
Horizontal steam generator PGV-1000 thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Ubra, O [Skoda Company, Prague (Switzerland); Doubek, M [Czech Technical Univ., Prague (Switzerland)
1996-12-31
A computer program for the steady state thermal-hydraulic analysis of horizontal steam generator PGV-1000 is presented. The program provides the capability to analyze steam generator PGV-1000 primary side flow and temperature distribution, primary side pressure drops, heat transfer between the primary and secondary sides and multidimensional heat flux distribution. A special attention is paid to the thermal-hydraulics of the secondary side. The code predicts 3-D distribution of the void fraction at the secondary side, mass redistribution under the submerged perforated sheet and the steam generator level profile. By means of developed computer program a detailed thermal-hydraulic study of the PGV-1000 has been carried out. A wide range of calculations has been performed and a set of important steam generator characteristics has been obtained. Some of them are presented in the paper. (orig.). 5 refs.
International Nuclear Information System (INIS)
AL-Yahia, Omar S.; Albati, Mohammad A.; Park, Jonghark; Chae, Heetaek; Jo, Daeseong
2013-01-01
Highlights: • Transient analyses of a slow and fast LOFA were investigated. • A reactor kinetic and thermal hydraulic coupled model was developed. • Based on force balance, the flow rate during flow inversion was determined. • Flow inversion in a hot channel occurred earlier than in an average channel. • Two temperature peaks were observed during both slow and fast LOFA. - Abstract: Transient analyses of the IAEA 10 MW MTR reactor are investigated during a fast and slow Loss of Flow Accident (LOFA) with a neutron kinetic and thermal hydraulic coupling model. A spatial-dependent thermal hydraulic technique is adopted for analyzing the local thermal hydraulic parameters and hotspot location during a flow inversion. The flow rate through the channel is determined in terms of a balance between driving and preventing forces. Friction and buoyancy forces act as resistance of the flow before a flow inversion while buoyancy force becomes the driving force after a flow inversion. By taking into account the buoyancy effect to determine the flow rate, the difference in the flow inversion time between hot and average channels is investigated: a flow inversion occurs earlier in the hot channel than in an average channel. Furthermore, the movement of the hotspot location before and after a flow inversion is investigated for a slow and fast LOFA. During a flow inversion, two temperature peaks are observed: (1) the first temperature peak is at the initiation of the LOFA, and (2) the second temperature peak is when a flow inversion occurs. The maximum temperature of the cladding is found at the second temperature peak for both LOFA analyses, and is lower than the saturation temperature
Thermal-hydraulic analysis for wire-wrapped PWR cores
Energy Technology Data Exchange (ETDEWEB)
Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2009-08-15
This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.
Status and subjects of thermal-hydraulic analysis for next-generation LWRs
International Nuclear Information System (INIS)
2000-03-01
The status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were surveyed through about 5 years until March 1999 by subcommittee on improvement of reactor thermal-hydraulic analysis codes under the nuclear code committee in Japan Atomic Energy Research Institute. Based on the survey results and discussion, the status and subjects on system analysis for various types of proposed reactor were summarized in 1998 and those on multidimensional two-phase flow analysis were also reviewed, since the multidimensional analysis was recognized as one of the most important subjects through the investigation on system analysis. In this report, the status and subjects for the following were summarized from the survey results and discussion in 1998 and 1999; (1) BWR neutronic/thermal-hydraulic coupled analysis, (2) Evaluation of passive safety system performance and (3) Gas-liquid two-phase flow analysis. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs including test results from several large-scale facilities. We expect that the contents can offer a guideline to improve reactor thermal-hydraulic analysis codes in future. (author)
The analysis of thermal-hydraulic models in MELCOR code
Energy Technology Data Exchange (ETDEWEB)
Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)
1996-07-15
The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.
Thermal hydraulic analysis of the JMTR improved LEU-core
Energy Technology Data Exchange (ETDEWEB)
Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)
2003-01-01
After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)
THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR
International Nuclear Information System (INIS)
C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER
2000-01-01
The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m 2 . A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m 2 . The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements
CFD thermal-hydraulic analysis of a CANDU fuel channel
International Nuclear Information System (INIS)
Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.
2009-01-01
This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)
Investigation of coupling scheme for neutronic and thermal-hydraulic codes
International Nuclear Information System (INIS)
Wang Guoli; Yu Jianfeng; Pen Muzhang; Zhang Yuman.
1988-01-01
Recently, a number of coupled neutronics/thermal-hydraulics codes have been used in reaction design and safty analysis, which have been obtained by coupling previous neutronic and thermal-hydraulic codes. The different coupling schemes affect computer time and accuracy of calculation results. Numberical experiments of several different coupling schemes and some heuristic results are described
Thermal-hydraulic analysis of PWR cores in transient condition
International Nuclear Information System (INIS)
Silva Galetti, M.R. da.
1984-01-01
A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)
2002-03-01
This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)
Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core
International Nuclear Information System (INIS)
Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar
2005-01-01
Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)
Thermal hydraulic analysis of BWR containment venting system
International Nuclear Information System (INIS)
Baburajan, P.K.; Sharma, Prashant; Paul, U.K.; Gaikwad, Avinash
2015-01-01
Installation of additional containment filtered venting system (CFVS) is necessary to depressurize the containment to maintain its mechanical integrity due to over pressurization during severe accident condition. A typical venting system for BWR is modelled using RELAP5 and analysed to investigate the effect of various thermal hydraulic parameters on the operational parameters of the venting system. The venting system consists of piping from the containment to the scrubber tank and exit line from the scrubber tank. The scrubber tank is partially filled with water to enable the scrubbing action to remove the particulate radionuclides from the incoming containment air. The pipe line from the containment is connected to the venturi inlet and the throat of the venturi is open to the scrubber tank water inventory at designed submergence level. The exit of the venturi is open to scrubber tank water. Filters are used in the upper air space of the scrubber tank as mist separator before venting out the air into the atmosphere through the exit vent line. The effect of thermal hydraulic parameters such as inlet fluid temperature, inlet steam content and venturi submergence in the scrubber tank on the venting flow rate, exit steam content, scrubber tank inventory, overflow line and siphon breaker flow rate is analysed. Results show that inlet steam content and the venturi nozzle submergence influence the venting system parameters. (author)
Thermal hydraulics analysis of LIBRA-SP target chamber
International Nuclear Information System (INIS)
Mogahed, E.A.
1996-01-01
LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PEr-forated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625 degree C to avoid drastic deterioration of the metal's mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370 degree C, and the heat exchanger inlet coolant bulk temperature is 502 degree C. 4 refs., 6 figs., 2 tabs
Analysis of molten salt thermal-hydraulics using computational fluid dynamics
International Nuclear Information System (INIS)
Yamaji, B.; Csom, G.; Aszodi, A.
2003-01-01
To give a good solution for the problem of high level radioactive waste partitioning and transmutation is expected to be a pro missing option. Application of this technology also could extend the possibilities of nuclear energy. Large number of liquid-fuelled reactor concepts or accelerator driven subcritical systems was proposed as transmutors. Several of these consider fluoride based molten salts as the liquid fuel and coolant medium. The thermal-hydraulic behaviour of these systems is expected to be fundamentally different than the behaviour of widely used water-cooled reactors with solid fuel. Considering large flow domains three-dimensional thermal-hydraulic analysis is the method seeming to be applicable. Since the fuel is the coolant medium as well, one can expect a strong coupling between neutronics and thermal-hydraulics too. In the present paper the application of Computational Fluid Dynamics for three-dimensional thermal-hydraulics simulations of molten salt reactor concepts is introduced. In our past and recent works several calculations were carried out to investigate the capabilities of Computational Fluid Dynamics through the analysis of different molten salt reactor concepts. Homogenous single region molten salt reactor concept is studied and optimised. Another single region reactor concept is introduced also. This concept has internal heat exchanges in the flow domain and the molten salt is circulated by natural convection. The analysis of the MSRE experiment is also a part of our work since it may form a good background from the validation point of view. In the paper the results of the Computational Fluid Dynamics calculations with these concepts are presented. In the further work our objective is to investigate the thermal-hydraulics of the multi-region molten salt reactor (Authors)
Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Jee Won; Chae, Kyung Myung; Choi, Hang Bok
2000-07-01
Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel.
Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Directory of Open Access Journals (Sweden)
Reza Akbari
2017-08-01
Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.
Spent nuclear fuel storage pool thermal-hydraulic analysis
International Nuclear Information System (INIS)
Gay, R.R.
1984-01-01
Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code
Thermal hydraulic analysis of the encapsulated nuclear heat source
Energy Technology Data Exchange (ETDEWEB)
Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)
2001-07-01
An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)
Validation of the TEXSAN thermal-hydraulic analysis program
International Nuclear Information System (INIS)
Burns, S.P.; Klein, D.E.
1992-01-01
The TEXSAN thermal-hydraulic analysis program has been developed by the University of Texas at Austin (UT) to simulate buoyancy driven fluid flow and heat transfer in spent fuel and high level nuclear waste (HLW) shipping applications. As part of the TEXSAN software quality assurance program, the software has been subjected to a series of test cases intended to validate its capabilities. The validation tests include many physical phenomena which arise in spent fuel and HLW shipping applications. This paper describes some of the principal results of the TEXSAN validation tests and compares them to solutions available in the open literature. The TEXSAN validation effort has shown that the TEXSAN program is stable and consistent under a range of operating conditions and provides accuracy comparable with other heat transfer programs and evaluation techniques. The modeling capabilities and the interactive user interface employed by the TEXSAN program should make it a useful tool in HLW transportation analysis
Thermal hydraulic feasibility analysis of the IBED PHTS for ITER
Energy Technology Data Exchange (ETDEWEB)
Carloni, Dario, E-mail: dacarloni@gmail.com [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Pisa University, Via Diotisalvi 2, 56126 Pisa (Italy); Dell’Orco, Giovanni; Babulal, Gopalapillai; Somboli, Fabio; Serio, Luigi [ITER Organisation, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Paci, Sandro [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Pisa University, Via Diotisalvi 2, 56126 Pisa (Italy)
2013-10-15
One of the main challenges of the ITER fusion reactor is to effectively remove large amount of heat deposited to the surface of the plasma facing components. The tokamak cooling water system (TCWS) will accomplish the objective of removing about 1 GW of peak heat load from in-vessel components while maintaining pressures and temperatures of the coolant within acceptable and safe limits during different operational scenarios. A study of feasibility has been launched for the IBED PHTS (Integrated Blanket, Edge localized mode coils (ELMs) and Divertor Primary Heat Transfer System; it consists of five independent cooling trains (four operational and one in stand-by), one steam pressurizer, supply and return headers, ring manifolds and connections to the all in-vessel components (i.e. First Wall Blanket, Divertor, ELM, Diagnostics and other Ports clients). The dynamic behaviour of the IBED PHTS has been investigated by means of RELAP5{sup ®} code to simulate the response of the system during plasma pulse and baking operations. Due to the plasma heat deposition on the surfaces of the in-vessel components and subsequent increase in hot leg temperature, a large amount of water volume is transferred from the hot legs of the circuit to the surge-line of the pressurizer during each burn cycle. This causes rapid increase of pressure and temperature of the system and the following actions are proposed to counteract these variations: spray injection in the upper dome of the pressurizer from the Chemical and Volume Control System (CVCS) to reduce the pressure and active control of flow rates through heat exchangers and their bypass loops to regulate the heat transfer from the primary system to the environment via secondary and tertiary loops. This paper focuses on the prediction of the thermal hydraulic behaviour of the IBED PHTS during plasma pulses and baking scenarios, describing the various activity of the analysis, the geometrical assessment of the circuit and the modelling
Thermal-hydraulics investigations for the Liquid Lead-Bismuth Target of the SINQ spallation source
International Nuclear Information System (INIS)
Sigg, B.; Dury, T.; Hudina, M.; Smith, B.
1991-01-01
The paper contains a discussion of the thermal-hydraulic problems of the target which require detailed analysis by means of a two- or three-dimensional space- and in part also time-dependent fluid dynamics code. There follows a short description of the general-purpose code ASTEC, which is being used for these investigations, and examples of the target modelling, including results. The final part of the paper is devoted to a short discussion of experiments against which this application of the code has to be validated. (author)
Development of realistic thermal hydraulic system analysis code
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, B. D; Kim, K. D. [and others
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.
Development of realistic thermal hydraulic system analysis code
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, B. D; Kim, K. D.
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others
Development of best estimate auditing code for CANDU thermal hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-04-15
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is first step of the whole project, thus focus to the establishment of improvement area. The study was performed by reconsideration of the previous code assessment works and investigation of AECL design analysis tools. In order to identify the thermal hydraulic phenomena for events, the whole system of CANDU plant was divided into main functional systems and subcomponents. Each phenomena was addressed to the each subcomponent. FinaIly improvement areas of model development for auditing tool were established based on the identified phenomena.
The Phebus FP thermal-hydraulic analysis with Melcor
International Nuclear Information System (INIS)
Akgane, Kikuo; Kiso, Yoshihiro; Fukahori, Takanori; Yoshino, Mamoru
1995-01-01
The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L'Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700 degrees C and 150 degrees C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment
The Phebus FP thermal-hydraulic analysis with Melcor
Energy Technology Data Exchange (ETDEWEB)
Akgane, Kikuo; Kiso, Yoshihiro [Nuclear Power Engineering Corporation, Tokyo (Japan); Fukahori, Takanori [Hitachi Engineering Company, Ltd., Hitachi-shi Ibaraki-ken (Japan); Yoshino, Mamoru [Nuclear Engineering Ltd., Tosabori Nishi-ku (Japan)
1995-09-01
The severe accident analysis code MELCOR, version 1.8.2, has been applied for thermal-hydraulic pre-test analysis of the first test of the Phebus FP program (test FPT-0) to study the best test parameters and the applicability of the code. The Phebus FP program is an in-pile test program which has been planned by the French Commissariate a L`Energie Atomique and the Commission of the European Union. The experiments are being conducted by an international collaboration to study the release and transport of fission products (FPs) under conditions assumed to be the most representative of those that would occur in a severe accident. The Phebus FP test apparatus simulates a test bundle of an in-pile section, the circuit including the steam generator U-tubes and the containment. The FPT-0 test was designed to simulate the heat-up and subsequent fuel bundle degradation after a loss of coolant severe accident, using fresh fuel. Two options for fuel degradation models in MELCOR have been applied to fuel degradation behavior. the first model assumes that fuel debris will be formed immediately after the fuel support fails by cladding relocation due to the candling process. The other is the uncollapsed bare fuel pellets option, in which the fuel pellets remain standing in a columnar shape until the fuel reaches its melting point, even if the cladding has been relocated by candling. The thermal-hydraulic behaviors in the circuit and containment of Phebus FP are discussed herein. Flow velocities in the Phebus FP circuit are high in order to produce turbulent flow in a small diameter test pipe. The MELCOR calculation has shown that the length of the hot leg and steam generator are adequate to attain steam temperatures or 700{degrees}C and 150{degrees}C in the respective outlets. The containment atmosphere temperature and humidity derived by once through integral system calculation show that objective test conditions would be satisfied in the Phebus FP experiment.
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-03-01
The present status and subjects on thermal-hydraulic analysis for next-generation light water reactors (LWRs) with passive safety systems were summarized based on survey results and discussion by subcommittee on improvement of reactor thermal-hydraulic analysis codes under nuclear code committee in Japan Atomic Energy Research Institute. This survey was performed to promote the research of improvement of reactor thermal-hydraulic analysis codes in future. In the first part of this report, the status and subjects on system analysis and those on evaluation of passive safety system performance are summarized for various types of reactor proposed before. In the second part, the status and subjects on multidimensional two-phase flow analysis are reviewed, since the multidimensional analysis was recognized as one of most important subjects through the investigation in the first part. Besides, databases for bubbly flow and annular dispersed flow were explored, those are needed to assess and verify each multidimensional analytical method. The contents in this report are the forefront of thermal-hydraulic analysis for LWRs and those include current findings for the development of multidimensional two-phase flow analytical method. Thus, we expect that the contents can offer various useful information against the improvement of reactor thermal-hydraulic analysis codes in future. (author)
Nuclear reactor thermal hydraulics safety analysis and thoughts on FUKUSHIMA
International Nuclear Information System (INIS)
Ninokata, Hisashi
2012-01-01
The first part of this article is to show my thoughts on the accident at Fukushima Daiichi Nuclear Power Station. It is cited from a summary of my lecture talk in Indonesia, in the beginning of the last December, 2011. This talk was based on my previous lecture and seminar talks including those delivered at MIT, June 16, at the ANS Annual Meeting in Hollywood, Florida, June 28 at NURETH-13 in Toronto, September 27, and others. The content is based on the open and latest information available to date in Japan. It may contain some erroneous or uncertain information. I tried to minimize it to my best capability. Also I tried to eliminate any critical issues or opinions that may jeopardize some people who were involved in. The latter half of this article will be excerpts of my recent R and D activities related to the safety-by-design for sodium cooled fast reactors and light water reactors, thermal hydraulics analysis focusing on the simulation-based technology, in particular subchannel analysis and computational fluid dynamics. (J.P.N.)
Thermal hydraulics analysis of the Advanced High Temperature Reactor
Energy Technology Data Exchange (ETDEWEB)
Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)
2015-12-01
Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.
Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR
International Nuclear Information System (INIS)
Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan
2014-01-01
Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)
Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Choi, Hang Bok
2005-03-01
Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.
E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations
Energy Technology Data Exchange (ETDEWEB)
Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)
2015-08-15
Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)
2000-10-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu
2000-01-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Energy Technology Data Exchange (ETDEWEB)
Falikov, A A; Vakhrushev, V V; Kuul, V S; Samoilov, O B; Tarasov, G I [OKBM, Nizhny Novgorod (Russian Federation)
1997-09-01
The paper briefly reviews the specific thermal-hydraulic problems for AST-type NHRs, the experimental investigations that have been carried out in the RF, and the design procedures and computer codes used for AST-500 thermohydraulic characteristics and safety validation. (author). 13 refs, 10 figs, 1 tab.
VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling
International Nuclear Information System (INIS)
Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail
Neutronics and thermal-hydraulics analysis of KUHFR
Energy Technology Data Exchange (ETDEWEB)
Woodruff, W L [Argonne National Laboratory, Argonne, IL (United States); Mishima, K [KURRI, Osaka (Japan)
1983-08-01
control rod worth with reduced enrichment has not yet determined, but only a small decrease in worth is expected. These BOL boron poisoned fuels are also used as the fresh fuel feed for the equilibrium fuel cycle studies contained in this report. The first three cases shown have matching cycle lengths in the equilibrium cycle, while the last case has a considerably longer cycle length. These results are similarly reflected in the 'Maximum Cycle Lengths' shown for unpoisoned BOL cores. Thus, the first three case can be considered comparable. The last case might be considered as an option for an extended cycle length design. The cycle length for this case is increased by about 21%. Obviously, by decreasing the uranium density in the fuel meat (to 2.7 g/cm{sup 3}), the cycle length for this design could be reduced to match that of the other cases. Thermal-hydraulic calculations have been carried out in order to study the safety aspects of the use of reduced enrichment uranium fuel for the KUHFR. The calculations were based on what is outlined in the Safety Analysis Report for the KUHFR and also the IAEA Guidebook for the RERTR program. Only a few combinations of hydraulic parameters have been tested because the reactor safety cannot be discussed without any nuclear physics considerations. For example, any variations in fuel coolant channels may change not only flow velocities but also power peaking factors which may affect the assessment of reactor safety. For this reason, the thermal-hydraulic calculations were carried out only for those specific cases on which neutronics analysis has been already performed. Low enriched uranium (LEU) cases are also included in this study as initial feasibility studies for potential conversion. The computer code PLTEMP has been developed to calculate the flow distribution in the core, fuel plate temperatures and DNB heat fluxes.
Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)
2015-05-15
Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.
Sensitivity analysis of thermal hydraulic response in containment at core meltdown accident
International Nuclear Information System (INIS)
Kobayashi, Kensuke; Ishigami, Tsutomu; Horii, Hideo; Chiba, Takemi.
1985-01-01
A sensitivity analysis of thermal hydraulic response in a containment during a 'station blackout' (the loss of all AC power) accident at Browns Ferry unit one plant was performed with the computer code MARCH 1.0. In the analysis, the plant station batteries were assumed to be available for 4h after the initiation of the accident. The thermal hydraulic response in the containment was calculated by varying several input data for MARCH 1.0 independently and the deviation among calculated results were investigated. The sensitivity analysis showed that (a) the containment would fail due to the overtemperature without any operator actions for plant recovery, which would be strongly dependent on the model of the debris-concrete interaction and the input parameters for specifying the containment failure modes in MARCH 1.0, (b) a core melting temperature and an amount of water left in a primary system at the end of the meltdown were identified as important parameters which influenced the time of the containment failure, and (c) experimental works regarding the parameters mentioned above could be recommended. (author)
Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control
Directory of Open Access Journals (Sweden)
L. Batet
2007-11-01
Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the AsociaciÃƒÂ³n Nuclear AscÃƒÂ³-VandellÃƒÂ²s (ANAV. ANAV is the consortium that runs the AscÃƒÂ³ power plants (2 units and the VandellÃƒÂ²s-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000Ã¢Â€Â‰MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.
Development of best estimate auditing code for CANDU thermal hydraulic safety analysis
International Nuclear Information System (INIS)
Hwnag, M.
2001-04-01
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a fourth step of the whole project, applying the RELAP5/MOD3/CANDU+ version for the real CANDU plant LOCA Analysis and D2O leakage incident. There are three main models under investigation, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs, especially when CANDU LOCA is tested. Also, for Wolsung unit 1 D2O leakage incident analysis, the plant behavior is predicited with the newly developed version for the first 1000 seconds after onset of the incident, with the main interest aiming for system pressure, level control system, and thermal hydraulic transient behavior of the secondary system. The model applided for this particular application includes heat transfer model of nuclear fuel assembly, decay heat model, and MOV (Motor Operated Valve) model. Finally, the code maintenance work, mainly correcting the known errors, is presented
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
International Nuclear Information System (INIS)
Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah
2016-01-01
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah
2016-01-01
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.
Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor
Energy Technology Data Exchange (ETDEWEB)
Hashim, Zaredah, E-mail: zaredah@nm.gov.my; Lanyau, Tonny Anak, E-mail: tonny@nm.gov.my; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi [Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, Ministry of Science, Technology and Innovation, Bangi, 43000, Kajang, Selangor Darul Ehsan (Malaysia); Azhar, Noraishah Syahirah [Universiti Teknologi Malaysia, 80350, Johor Bahru, Johor Darul Takzim (Malaysia)
2016-01-22
The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.
Comparison for the interfacial and wall friction models in thermal-hydraulic system analysis codes
International Nuclear Information System (INIS)
Hwang, Moon Kyu; Park, Jee Won; Chung, Bub Dong; Kim, Soo Hyung; Kim, See Dal
2007-07-01
The average equations employed in the current thermal hydraulic analysis codes need to be closed with the appropriate models and correlations to specify the interphase phenomena along with fluid/structure interactions. This includes both thermal and mechanical interactions. Among the closure laws, an interfacial and wall frictions, which are included in the momentum equations, not only affect pressure drops along the fluid flow, but also have great effects for the numerical stability of the codes. In this study, the interfacial and wall frictions are reviewed for the commonly applied thermal-hydraulic system analysis codes, i.e. RELAP5-3D, MARS-3D, TRAC-M, and CATHARE
Energy Technology Data Exchange (ETDEWEB)
Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)
2008-02-15
Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.
Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies
Energy Technology Data Exchange (ETDEWEB)
Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)
2008-07-01
Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)
Energy Technology Data Exchange (ETDEWEB)
Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.
TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor
International Nuclear Information System (INIS)
Martin, R.P.
1993-05-01
Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary
International Nuclear Information System (INIS)
Borges, R.C.
1980-10-01
A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
Sahu, M. K.; Pandey, K. M.; Chatterjee, S.
2018-05-01
In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.
Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model
International Nuclear Information System (INIS)
Kim, Dong Eok; Kim, Moo Hwan; Cha, Jae Eun; Kim, Seong O.
2008-01-01
Three-dimensional numerical analysis was performed to investigate heat transfer and pressure drop characteristics of supercritical CO 2 flow in new Printed Circuit Heat Exchanger (PCHE) model using commercial CFD code, Fluent 6.3. First, numerical analysis for conventional zigzag channel PCHE model was performed and compared with previous experimental data. Maximum deviation of in-outlet temperature difference and pressure drop from experimental data is about 10%. A new PCHE model has been designed to optimize thermal-hydraulic performance of PCHE. The new PCHE model has several airfoil shape fins (NACA 0020 model), which are designed to streamlined shape. Simulation results showed that in the airfoil shape fin PCHE, total heat transfer rate per unit volume was almost same with zigzag channel PCHE and the pressure drop was reduced to one-twentieth of that in zigzag channel PCHE. In airfoil shape fin PCHE model, the enhancement of heat transfer area and the uniform flow configuration contributed to obtain the same heat transfer performance with zigzag channel PCHE model. And the reduction of pressure drop in airfoil shape fin PCHE model was caused by suppressing generation of separated flow owing to streamlined shape of airfoil fins
Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core
Energy Technology Data Exchange (ETDEWEB)
Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques
2017-09-15
In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.
Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety
International Nuclear Information System (INIS)
Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.
1993-01-01
This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized
Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section
Energy Technology Data Exchange (ETDEWEB)
Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.
2003-10-01
On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements
Optimised design and thermal-hydraulic analysis of the IFMIF/HFTM test section
International Nuclear Information System (INIS)
Gordeev, S.; Heinzel, V.; Lang, K.H.; Moeslang, A.; Schleisiek, K.; Slobodtchouk, V.; Stratmanns, E.
2003-10-01
On the basis of previous concepts, analyses and experiments, the high flux test module (HFTM) for the International Fusion Materials Irradiation Facility (IFMIF) was further optimised. The work focused on the design and the thermal hydraulic analysis of the HFTM section containing the material specimens to be irradiated, the ''test section'', with the main objective to improve the concept with respect to the optimum use of the available irradiation volume and to the temperature of the specimens. Particular emphasis was laid on the application of design principles which assure stable and reproducible thermal conditions. The present work has confirmed the feasibility and suitability of the optimised design of the HFTM test section with chocolate plate like shaped rigs. In particular it has been shown that the envisaged irradiation temperatures can be reached with acceptable temperature differences inside the specimen stack. The latter can be achieved only by additional electrical heating of the axial ends of the capsules. Division of the heater in three sections with separate power supply and control units is necessary. Maintaining of the temperatures during beam-off periods likewise requires electrical heating. The required electrical heaters - mineral isolated wires - are commercially available. The potential of the CFD code STAR-CD for the thermal hydraulic analysis of complex systems like the HFTM was confirmed. Nevertheless, experimental confirmation is desirable. Suitable experiments are under preparation. To verify the assumptions made on the thermal conductivity of the contact faces and layers between the two shells of the rig, dedicated experiments are suggested. The present work must be complemented by a thermal mechanical analysis of the module. Most critical component in this respect seems to be the rig wall. Furthermore, it will be necessary to investigate the response of the HFTM to power transients, and to determine the requirements on the electrical
Preliminary thermal-hydraulic and safety analysis of China DFLL-TBM system
Energy Technology Data Exchange (ETDEWEB)
Li, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Qiu, Suizheng; Su, Guanghui; Jiao, Hong [School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shanxi 710049 (China); Bai, Yunqing; Chen, Hongli [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Yican, E-mail: yican.Wu@Fds.Org.Cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2013-06-15
Highlights: • Thermal-hydraulic and safety analysis on DFLL-TBM system is performed. • The TBM FW maximum temperature is 541 °C under steady state condition. • The TBM FW maximum temperature does not exceed the melt point of CLAM steel 1500 °C. • Neither the VV pressurization nor vault pressure build-up goes beyond 0.2 MPa. -- Abstract: China has proposed the dual-functional lithium-lead (DFLL) tritium breeding blanket concept for testing in ITER as a test blanket module (TBM), to demonstrate the technologies of tritium self-sufficiency, high-grade heat extraction and efficient electricity production which are needed for DEMO and fusion power plant. Safety assessment of the TBM and its auxiliary system should be conducted to deal with ITER safety issues directly caused by the TBM system failure during the design process. In this work, three potential initial events (PIEs) – in-vessel loss of helium (He) coolant and ex-vessel loss of He coolant and loss of flow without scram (LOFWS) – were analyzed for the TBM system with a modified version of the RELAP5/MOD3 code containing liquid lithium-lead eutectic (LiPb). The code also comprised an empirical expression for MHD pressure drop relevant to three-dimensional (3D) effect, the Lubarsky–Kaufman convective heat transfer correlation for LiPb flow and the Gnielinski convective heat transfer correlation for He flow. Since both LiPb and He serve as TBM coolants, the LiPb and He ancillary cooling systems were modeled to investigate the thermal-hydraulic characteristic of the TBM system and its influence on ITER safety under those accident conditions. The TBM components and the coolants flow within the TBM were simulated with one-dimensional heat structures and their associated hydrodynamic components. ITER enclosures including vacuum vessel (VV), port cell and TCWS vault were also covered in the model for accident analyses. Through this best estimate approach, the calculation indicated that the current
International Nuclear Information System (INIS)
Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji
2011-01-01
In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code
Quantification of LOCA core damage frequency based on thermal-hydraulics analysis
International Nuclear Information System (INIS)
Cho, Jaehyun; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon
2017-01-01
Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety
Quantification of LOCA core damage frequency based on thermal-hydraulics analysis
Energy Technology Data Exchange (ETDEWEB)
Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon
2017-04-15
Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety
Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code
International Nuclear Information System (INIS)
Kim, Hee-Kyung; Kim, Soo Hyoung; Chung, Young-Jong; Kim, Hyeon-Soo
2013-01-01
Highlights: ► The analysis was performed from the viewpoint of primary coolant leakage. ► The thermal hydraulic responses and the maximum leakage have been identified. ► There is no direct release into the atmosphere caused by an SGTR accident. ► SMART safety system works well against an SGTR accident. - Abstract: A steam generator tube rupture (SGTR) accident analysis for SMART was performed using the TASS/SMR-S code. SMART with a rated thermal power of 330 MWt has been developed at the Korea Atomic Energy Research Institute. The TASS/SMR-S code can analyze the thermal hydraulic phenomena of SMART in a full range of reactor operating conditions. An SGTR is one of the most important accidents from a thermal hydraulic and radiological viewpoint. A conservative analysis against a SMART SGTR was performed. The major concern of this analysis is to find the thermal hydraulic responses and maximum leakage amount from a primary to a secondary side caused by an SGTR accident. A sensitivity study searching for the conservative thermal hydraulic conditions, break locations, reactivity and other conditions was performed. The dominant parameters related with the integral leak are the high RCS pressure, low core inlet coolant temperature and low break location of the SG cassette. The largest integral leak comes to 28 tons in the most conservative case during 1 h. But there is no direct release into the atmosphere because the secondary system pressure is maintained with a sufficient margin for the design pressure. All leaks go to the condenser. The analysis results show that the primary and secondary system pressures are maintained below the design pressure and the SMART safety system is working well against an SGTR accident
Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core
International Nuclear Information System (INIS)
Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park
2000-01-01
This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)
Trend analysis of troubles caused by thermal-hydraulic phenomena at nuclear power plants
International Nuclear Information System (INIS)
Komatsu, Teruo
2010-01-01
The Institute of Nuclear Safety System (INSS) is promoting researches to improve the safety and reliability of nuclear power plants. In the present study, our attention was focused on troubles attributed to thermal-hydraulic phenomena in particular, trend analysis were carried out to learn lessons from these troubles and to prevent their recurrence. Through our survey, we found the following two points. First, many thermal-hydraulics related troubles can be attributed to design faults, since we found some events in foreign countries took place after inadequate facility renovation. To ensure appropriate design verification, it is important to take account of state-of-the-art science and technology and at the same time to pay attention to the compatibility with the initial design concept. Second point, thermal-hydraulic related troubles are common and recurrent to nuclear power plants worldwide. Japanese utilities are planning to introduce some of overseas experiences to their plants, such as power uprate and renovations of aged facilities. It is important to learn lessons from experiences paying close attention continuously to overseas trouble events, including thermal-hydraulics related events, and to use them to improve safety and reliability of nuclear power plants. (author)
International Nuclear Information System (INIS)
Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.
2012-01-01
The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)
Transient analysis and thermal hydraulic margins of GHARR-1 using the PARET/NAL code
International Nuclear Information System (INIS)
Adoo, N.A.
2009-06-01
The PARET code has been adapted by the IAEA for testing transient behaviour in research reactors. The PARET code provides a coupled thermal hydrodynamic and point kinetics capability with a continuous reactivity feedback and an optional voiding model that estimates the voiding produced by the subcooled boiling. The present version of the PARET/ANL 73 code provides a convenient means of assessing the various models and correlations proposed for the use in the analysis of research reactor behaviour. The Monte Carlo N-Particle code (MCNP) has been used to obtain power peaking profile for a two channel PARET/ANL model. A PARET model with the corresponding neutronics and thermal hydraulic characteristics for the miniature neutron source reactor (MNSR) has been used to simulate reactivity accidents for the Ghana Research Reactor - 1(GHARR-1) under the MNSR operation conditions of natural circulation, normal operation and reactivity insertion accidents. The simulation results via the insertion of large reactivity demonstrated the high inherent safety features of the MNSR for which the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The hot channel peaking factors for both radial and axial were found to be 1.17 and 1.44 respectively. Thermal hydraulic performance characteristics were investigated and the safety margins determined. The peak clad and coolant temperatures ranged from 59.18 0 C to 106.75 0 C and 42.95 0 C to 178.44 0 C respectively at which nucleate boiling will occur within the flow channels of the core. (au)
International Nuclear Information System (INIS)
Dibben, M.J.; Tuttle, R.F.
1993-01-01
The low pressure nuclear thermal propulsion (LPNTP) concept offers significant improvements in rocket engine specific impulse over rockets employment chemical propulsion. This study investigated a parametric thermal-hydraulic analysis of an annular fueld element, also referred to as a fuel pipe, using the computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer). The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through the element. In this study, the outlet temperature of the hydrogen is parametrically related to key effects, including the reactor power at two different pressure drops, the effect of power coupling for in-core testing, and the effect of hydrogen flow rates. Results show that the temperature is linearly related to the reactor power, but not to pressure drop, and that cross flow inside the fuelpipe occurs at approximately 0.3 percent of the radial flow rates
Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant
International Nuclear Information System (INIS)
Davis, C.B.; Shieh, A. S.
2000-01-01
The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work
Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant
Energy Technology Data Exchange (ETDEWEB)
Davis, Cliff Bybee; Shieh, Arthur Shan Luk
2000-04-01
The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.
Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model
International Nuclear Information System (INIS)
Costa, Antonella L.; Reis, Patricia Amelia L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Mesquita, Amir Z.; Soares, Humberto V.
2010-01-01
The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.
Energy Technology Data Exchange (ETDEWEB)
Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)
2002-03-01
A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)
Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models
Directory of Open Access Journals (Sweden)
Lewandowska Monika
2017-03-01
Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.
Single-channel model for steady thermal-hydraulic analysis in nuclear reactor
International Nuclear Information System (INIS)
Zhang Xiaoying; Huang Yuanyuan
2010-01-01
This article established a single-channel model for steady analysis in the reactor and an example of thermal-hydraulic analysis was made by using this model, including the Maximum heat flux density of fuel element, enthalpy, Coolant flow, various kinds of pressure drop, enthalpy increase in average tube and thermal tube. I also got the Coolant temperature distribution and the fuel element temperature distribution and analysis of the final result. The results show that some relevant parameters which we got in this paper are well coincide with the actual operating parameters. It is also show that the single-channel model can be used to the steady thermal-hydraulic analysis. (authors)
Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)
1998-01-01
Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)
Thermal hydraulic analysis of Pb-Bi cooled HYPER fuel assemblies using SLTHEN code
International Nuclear Information System (INIS)
Tak, Nam Il; Song, Tae Y.; Park, Won S.; Kim, Chang Hyun
2002-12-01
In the present work, the existing SLTHEN code, which had been originally developed for subchannel analysis of sodium cooled fast reactors, was modified and applied to the Pb-Bi cooled HYPER core which consists of 237 fuel assemblies (TRU assemblies). In the analysis of single fuel assembly having chopped cosine power profile, the validation and the assessment of usefulness of the modified SLTHEN were focused. In the quantitative comparison, the results of the modified SLTHEN agreed well with those of analytical calculations and of MATRA. For the qualitative approaches, the sensitivity calculations for intra-assembly gap flow and turbulent mixing parameter were used. The sensitivity analysis results showed that the modified SLTHEN can provide reasonable simulations of subchannel thermal hydraulics. In particular, turbulent mixing parameter which is known as the most uncertain parameter in subchannel analyses did not affect largely the maximum cladding temperature. Therefore, it can be said that the results of single assembly show the usefulness of the modified SLTHEN code for thermal hydraulic analysis and design of HYPER under the conceptual design stage. In order to assess intra-assembly heat transfer, subchannel analyses were implemented for two types of 7 assemblies; 1) artificial 7 fuel assemblies to maximize intra-assembly heat transfer, 2) central 7 fuel assemblies in the HYPER reference core. The results showed that the modified SLTHEN can reasonably simulate intra-heat transfer and the amount of intra-assembly heat transfer is not so large in HYPER conditions. Particularly, intra-heat transfer did not affect the maximum coolant and the maximum cladding temperatures which are major parameters in conceptual core designs. The capability of full core thermal hydraulic analysis was confirmed by the analysis of 45 fuel assemblies in 1/6 HYPER core at the first cycle. The SLTHEN predicted that the reference design parameters are acceptable in terms of thermal
Thermal-hydraulic analysis and design improvement for coolant channel of ITER shield block
International Nuclear Information System (INIS)
Zhao Ling; Li Huaqi; Zheng Jiantao; Yi Jingwei; Kang Weishan; Chen Jiming
2013-01-01
As an important part for ITER, shield block is used to shield the neutron heat. The structure design of shield block, especially the inner coolant channel design will influence its cooling effect and safety significantly. In this study, the thermal-hydraulic analysis for shield block has been performed by the computational fluid dynamics software, some optimization suggestions have been proposed and thermal-hydraulic characteristics of the improved model has been analyzed again. The analysis results for improved model show that pressure drop through flow path near the inlet and outlet region of the shield block has been reduced, and the total pressure drop in cooling path has been reduced too; the uniformity of the mass flowrate distribution and the velocity distribution have been improved in main cooling branches; the local highest temperature of solid domain reduced considerably, which could avoid thermal stress becoming too large because of coolant effect unevenly. (authors)
Development of steady thermal-hydraulic analysis code for China advanced research reactor
International Nuclear Information System (INIS)
Tian Wenxi; Qiu Suizheng; Guo Yun; Su Guanghui; Jia Dounan; Liu Tiancai; Zhang Jianwei
2006-01-01
A multi-channel model steady-state thermal-hydraulic analysis code was developed for China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed flow distribution in the core was obtained. The result shows that the structure size plays the most important role in flow distribution and the influence of core power could be neglected under single-phase flow. The temperature field of fuel element under unsymmetrical cooling condition was also obtained, which is necessary for the further study such as stress analysis etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of hot channel was carried out and it is proved that all thermal-hydraulic parameters accord with the Safety Regulation of CARR. (authors)
Thermal-hydraulic software development for nuclear waste transportation cask design and analysis
International Nuclear Information System (INIS)
Brown, N.N.; Burns, S.P.; Gianoulakis, S.E.; Klein, D.E.
1991-01-01
This paper describes the development of a state-of-the-art thermal-hydraulic software package intended for spent fuel and high-level nuclear waste transportation cask design and analysis. The objectives of this software development effort are threefold: (1) to take advantage of advancements in computer hardware and software to provide a more efficient user interface, (2) to provide a tool for reducing inefficient conservatism in spent fuel and high-level waste shipping cask design by including convection as well as conduction and radiation heat transfer modeling capabilities, and (3) to provide a thermal-hydraulic analysis package which is developed under a rigorous quality assurance program established at Sandia National Laboratories. 20 refs., 5 figs., 2 tabs
Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System
International Nuclear Information System (INIS)
O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.
2011-01-01
Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.
Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Ustun, G.; Durmayaz, A.
2002-01-01
Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor
ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation
International Nuclear Information System (INIS)
Parzer, I.; Kljenak, I.
2005-01-01
The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)
International Nuclear Information System (INIS)
Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.
2017-01-01
Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant
Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux
International Nuclear Information System (INIS)
Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng
2012-01-01
Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.
Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor
International Nuclear Information System (INIS)
Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.
1994-05-01
The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan
Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors
International Nuclear Information System (INIS)
Umbehaun, Pedro Ernesto
2000-01-01
This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)
Development of thermal hydraulic analysis code for IHX of FBR
International Nuclear Information System (INIS)
Kumagai, Hiromichi; Naohara, Nobuyuki
1991-01-01
In order to obtain flow resistance correlations for thermal-hydrauric analysis code concerned with an intermediate heat exchanger (IHX) of FBR, the hydraulic experiment by air was carried out through a bundle of tubes arranged in an in-line and staggard fashion. The main results are summarized as follows. (1) On pressure loss per unit length of a tube bundle, which is densely a regular triangle arrangement, the in-line fashion is almost the same as the staggard one. (2) In case of 30deg sector model for IHX tube bundle, pressure loss is 1/3 in comparison with the in-line or staggard arrangement. (3) By this experimental data, flow resistance correlations for thermalhydrauric analysis code are obtained. (author)
Development of Regulatory Thermal-Hydraulic Analysis System (RETAS)
Energy Technology Data Exchange (ETDEWEB)
Ahn, Seung-Hoon; Kim, In-Goo; Kim, Hho-Jung; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2007-10-15
A review is provided of the reasons why the Korea Institute of Nuclear Safety needs improvement of the existing codes employed for a regulatory audit. The proposed new organization of the codes, developed or to be developed, is presented together with illustrative applications. Inspection of the quality assurance activities is planned to ensure the robustness of MARS (Multi-dimensional Analysis for Reactor Safety) code, served as a pivot of the organization.
Development of Regulatory Thermal-Hydraulic Analysis System (RETAS)
International Nuclear Information System (INIS)
Ahn, Seung-Hoon; Kim, In-Goo; Kim, Hho-Jung; Cho, Yong Jin
2007-01-01
A review is provided of the reasons why the Korea Institute of Nuclear Safety needs improvement of the existing codes employed for a regulatory audit. The proposed new organization of the codes, developed or to be developed, is presented together with illustrative applications. Inspection of the quality assurance activities is planned to ensure the robustness of MARS (Multi-dimensional Analysis for Reactor Safety) code, served as a pivot of the organization
PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements
International Nuclear Information System (INIS)
Ganzmann, I.; Hille, D.; Staude, U.
2009-01-01
The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.
Development of local TDC model in core thermal hydraulic analysis
International Nuclear Information System (INIS)
Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.
2004-01-01
The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)
Momentum integral network method for thermal-hydraulic transient analysis
International Nuclear Information System (INIS)
Van Tuyle, G.J.
1983-01-01
A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion
CFD analysis of thermal-hydraulic behavior in SCWR typical flow channels
International Nuclear Information System (INIS)
Gu, H.Y.; Cheng, X.; Yang, Y.H.
2008-01-01
Investigations on thermal-hydraulic behavior in SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical water. In this paper, CFD analysis is carried out to study the flow and heat transfer behavior of supercritical water in sub-channels of both square and triangular rod bundles. Effect of various parameters, e.g. thermal boundary conditions and pitch-to-diameter ratio on the thermal-hydraulic behavior is investigated. Two boundary conditions, i.e., constant heat flux at the outer surface of cladding and constant heat density in the fuel pin are applied. The results show that the structure of the secondary flow mainly depends on the rod bundle configuration as well as the pitch-to-diameter ratio, whereas, the amplitude of the secondary flow is affected by the thermal boundary conditions, as well. The secondary flow is much stronger in a square lattice than that in a triangular lattice. The turbulence behavior is similar in both square and triangular lattices. The dependence of the amplitude of the turbulent velocity fluctuation across the gap on Reynolds number becomes prominent in both lattices as the pitch-to-diameter ratio increases. The effect of thermal boundary conditions on turbulent velocity fluctuation is negligibly small. For both lattices with small pitch-to-diameter ratios (P/D < 1.3), the mixing coefficient is about 0.022. Both secondary flow and turbulent mixing show unusual behavior in the vicinity of the pseudo-critical point. Further investigation is needed. A strong circumferential non-uniformity of wall temperature and heat transfer is observed in tight lattices at constant heat flux boundary conditions, especially in square lattices. In the case with constant heat density of fuel pin, the circumferential conductive heat transfer significantly reduces the non-uniformity of circumferential
Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2017-07-01
The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)
Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel
International Nuclear Information System (INIS)
Yoo, Seung Hun
2011-02-01
The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical
Thermal-hydraulic analysis of spent fuel storage systems
International Nuclear Information System (INIS)
Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.
1987-01-01
This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs
Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate
Energy Technology Data Exchange (ETDEWEB)
Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)
2012-01-15
The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.
The analysis of thermal-hydraulic performances of nuclear ship reactor
International Nuclear Information System (INIS)
Wakabayashi, Shinshichi; Hamada, Masao
1975-01-01
Thermal-hydraulic performances in the core of nuclear ship reactor was analysed by thermal-hydraulic analyser codes, AMRTC and COBRA-11+DNBCAL. This reactor is of a pressurized water type and incorporates the steam generator within the reactor vessel with the rated power of 330 MWt, which is developed by Nuclear Ship Research Panel Seven (NSR-7) in The Shipbuilding Research Association of Japan. Fuel temperature distributions, coolant temperature distributions, void fractions in coolant and minimum burn out ratio etc. were calculated. Results are as follows; a) The maximum temperature of fuel center is 1,472 0 C that corresponds to 53% as small as the melting point (2,800 0 C). b) Subcooled boiling exists in the core and the maximum void fraction is less than 4%. c) The minimum burn out ratio is not less than the minimum allowable limit of 1.25. It was found from the results of analysis that this reactor was able to be operated wide margin with respect to thermal-hydraulic design limits at the rated power. (auth.)
Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop
International Nuclear Information System (INIS)
Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.
2017-01-01
A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)
Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop
Energy Technology Data Exchange (ETDEWEB)
Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)
2017-07-01
A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)
Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR
Energy Technology Data Exchange (ETDEWEB)
Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)
2016-11-15
Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)
2015-12-31
A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.
Thermal Hydraulics Analysis for the 3MW TRIGA MARK-II Research Reactor Under Transient Condition
International Nuclear Information System (INIS)
Huda, M.Q.; Bhuiyan, S.I.; Mondal, M.A.W.
1996-12-01
Some important thermal hydraulic parameters of the 3 MW TRIGA MARK-II research reactor operating under transient condition were investigated using two computer codes PULTRI and TEMPUL. Major transient parameters, such as, peak power and prompt energy released after pulse, maximum fuel and coolant temperature, surface heat flux, time and radial distribution of temperature within fuel element after pulse, fuel, fuel-cladding gap width variation, etc. were computer and compared with the experimental and operational values as reported in the safety Analysis Report (SAR). It was observed that pulsing of the reactor inserting an excess reactivity of $2.00 shoots the reactor power level to 854.353 MW compared to an experimental value of 852 MW; the maximum fuel temperature corresponding to this peak power was found to be 846.76 o C which is much less than the limiting maximum value of fuel temperature of 1150 0 C as reported in SAR. During a pulse if the film boiling occurs for a peak adiabatic fuel temperature of 1000 o C, the calculated outer cladding wall temperature was observed to be 702.39 0 C compared to a value of 760 o C reported in SAR under the same condition. The investigated other results were also found to be in good agreement with the values reported in the SAR. 16 refs., 22 figs. (author)
Energy Technology Data Exchange (ETDEWEB)
Pinheiro, Larissa Cunha; Su, Jian, E-mail: larissa@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenhraria Nuclear; Cotta, Renato Machado, E-mail: cotta@mecanica.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (POLI/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2015-07-01
Single phase natural circulation circuits composed of two convective heat exchangers and connecting tubes are important for the passive heat removal from spent fuel pools (SFP). To keep the structural integrity of the stored spent fuel assemblies, continuously cooling has to be provided in order to avoid increase at the pool temperature and subsequent uncovering of the fuel and enhanced reaction between water and metal releasing hydrogen. Decay heat can achieve considerably high amounts of energy e.g. in the AP1000, considering the emergency fuel assemblies, the maximum heat decay will reach 13 MW in the 15th day (Westinghouse Electric Company, 2010). A highly efficient alternative to do so is by means of natural circulation, which is cost-effective compared to active cooling systems and is inherently safer since presents less associated devices and no external work is required. Many researchers have investigated safety and stability aspects of natural circulation loops (NCL). However, there is a lack of literature concerning the improvement of NCL through a standard unified methodology, especially for natural circulation circuits with two heat exchangers. In the present study, a simplified thermal-hydraulic analysis of single phase natural circulation circuit with two heat exchanges is presented. Relevant dimensionless key groups were proposed to for the design and safety analysis of a scaled NCL for the cooling of spent fuel storage pool with convective cooling and heating. (author)
Techniques for the thermal/hydraulic analysis of LMFBR check valves
International Nuclear Information System (INIS)
Cho, S.M.; Kane, R.S.
1979-01-01
A thermal/hydraulic analysis of the check valves in liquid sodium service for LMFBR plants is required to provide temperature data for thermal stress analysis of the valves for specified transient conditions. Because of the complex three-dimensional flow pattern within the valve, the heat transfer analysis techniques for less complicated shapes could not be used. This paper discusses the thermal analysis techniques used to assure that the valve stress analysis is conservative. These techniques include a method for evaluating the recirculating flow patterns and for selecting appropriately conservative heat transfer correlations in various regions of the valve
COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests
International Nuclear Information System (INIS)
Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi
1987-01-01
The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)
International Nuclear Information System (INIS)
Lanore, J.M.; Caron, J.L.
1987-11-01
For probabilistic analysis of accident sequences, thermal/hydraulics, human factors and systems operation problems are frequently closely interrelated. This presentation will discuss a typical example which illustrates this interrelation: total loss of feedwater flow. It will present thermal/hydraulic analysises performed, how the T/H analysises are related to human factors and systems operation, and how, based on this, the failure probability of the feed and bleed cooling mode was evaluated
International Nuclear Information System (INIS)
Suk, H.C; Lee, J.C.; Suh, K.S.; Yuk, K.E.; Whang, W.; Park, J.S.; Eim, J.S.; Bang, K.H.; Eim, M.S.; Rim, C.S.
1982-01-01
The main objective of the present thermal hydraulic analysis is to determine the thermal hydraulic characteristics of Wolsung-1 600 MWe CANDU-PHW reactor under normal operation. This is to verify and expedite the development of the nuclear fuel design and fabrication as well as the management. The computer program package developed for the stated objective are DOD81, CANREPP, PLOC81 and COBRA-CANDU. (Author)
Energy Technology Data Exchange (ETDEWEB)
Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2016-05-15
To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.
Thermal hydraulic analysis of the IPR-R1 TRIGA reactor
International Nuclear Information System (INIS)
Veloso, Marcelo Antonio; Fortini, Maria Auxiliadora
2002-01-01
The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)
Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor
International Nuclear Information System (INIS)
Guo, Zhangpeng; Zhou, Jianjun; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng
2013-01-01
Highlights: ► A multiple-channel analysis code (MAC) is developed to be coupled with MCNP. ► 1/8 of core is simulated in MCNP and thermal-hydraulic code. ► The coupling calculation can achieve stable state after a few iterations. ► The coupling calculation results are in reasonable agreement with the analytic solutions of the ORNL. ► Parametric studies of MSR are performed to provide valuable information for future design MSR. -- Abstract: The Generation IV International Forum (GIF) selected molten salt reactor (MSR) among six advanced reactor types. It is characterized by a liquid circulating fuel that also serves as coolant. In this study, a multiple-channel analysis code (MAC) is developed and it is coupled with MCNP4c to analyze the neutronics/thermal-hydraulics behavior of molten salt reactor experiment (MSRE). The MAC calculates thermal-hydraulic parameters, such as temperature distribution, flow distribution and pressure drop. MCNP4c performs the analysis of effective multiplication factor, neutron flux and power distribution. A linkage code is developed to exchange data between MAC and MCNP to implement coupling iteration process until the power convergence is achieved. The coupling calculation can achieve converged solution after a few iterations. The results are in reasonable agreement with the analytic solutions from the ORNL. For further design analysis, parametric studies are performed to provide valuable information for new design of MSR. The effect of inlet temperature, graphite to molten salt volume ratio (G/Ms) from varying channel diameter and different power levels on the effective multiplication factor, neutron flux, graphite lifetime and temperature distribution are discussed in detail
International Nuclear Information System (INIS)
Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong
2016-01-01
In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy
Energy Technology Data Exchange (ETDEWEB)
Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.
Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type
International Nuclear Information System (INIS)
Alva N, J.
2010-01-01
In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)
VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual
International Nuclear Information System (INIS)
Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code
ANTEO: An optimised PC computer code for the steady state thermal hydraulic analysis of rod bundles
International Nuclear Information System (INIS)
Cevolani, S.
1996-07-01
The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of a such code was made possible by two facts: first, the increase the computing power of the desk machines; secondly, the fact several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes
International Nuclear Information System (INIS)
Chvetsov, I.; Volkov, A.
2000-01-01
For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)
International Nuclear Information System (INIS)
Jareteg, K.; Vinai, P.; Demaziere, C.
2013-01-01
The development of a fine-mesh coupled neutronic/thermal-hydraulic solver is touched upon in this paper. The reported work investigates the feasibility of using finite volume techniques to discretize a set of conservation equations modeling neutron transport, fluid dynamics, and heat transfer within a single numerical tool. With the long-term objective of developing fine-mesh computing capabilities for a few selected fuel assemblies in a nuclear core, this preliminary study considers an infinite array of a single fuel assembly having a finite height. Thermal-hydraulic conditions close to the ones existing in PWRs are taken as a first test case. The neutronic modeling relies on the diffusion approximation in a multi-energy group formalism, with cross-sections pre-calculated and tabulated at the sub-pin level using a Monte Carlo technique. The thermal-hydraulics is based on the Navier-Stokes equations, complemented by an energy conservation equation. The non-linear coupling terms between the different conservation equations are fully resolved using classical iteration techniques. Early tests demonstrate that the numerical tool provides an unprecedented level of details of the coupled solution estimated within the same numerical tool and thus avoiding any external data transfer, using fully consistent models between the neutronics and the thermal-hydraulics. (authors)
International Nuclear Information System (INIS)
Ferng, Y.M.; Lin, K.Y.
2014-01-01
Highlights: • It is important to study thermal-hydraulic characteristics in a PBR for a HTGR. • A CFD model is proposed to simulate flow and heat transfer in a segment of pebbles. • Area and point contact treatments for adjacent pebbles are adopted in this study. • Predicted dependences of Nu and friction factor agree with the correlations. - Abstract: A high temperature gas cooled reactor (HTGR) with a pebble bed core (PBR) can be considered as one of the possible energy generation sources in the incoming future due to its inherently safe performance, lower power density, and higher conversion efficiency, etc. It is important to study the thermal-hydraulic characteristics in a PBR for optimum design and safe operation of a HTGR. In this paper, a computational fluid dynamics (CFD) methodology is proposed to investigate the thermal-hydraulic behavior in a segment of pebbles representing the central region of a PBR. Two kinds of contact modeling between adjacent pebbles are adopted, namely area and point contact treatments. The former contact treatment is a geometric approximation modeling. Based on the comparisons of thermal-hydraulic characteristics in the pebbles predicted by both contact treatments, no significant difference is revealed except for the near-wall secondary flow pattern. In addition, compared with the calculated results from the well-known correlations, the present predicted dependence of Nu number and friction factor on the particle Reynolds number shows good agreement qualitatively and quantitatively
3D thermal-hydraulic analysis on core of PWR nuclear power station
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
Thermal hydraulic analysis of core is of great importance in reactor safety analysis. A computer code, thermal hydraulic analysis porous medium analysis (THAPMA), has been developed to simulate the flow and heat transfer characteristics of reactor components. It has been proved reliable by several numerical tests. In the THAPMA code, a new difference scheme and solution method have been studied in developing the computer software. For the difference scheme, a second order accurate, high resolution scheme, called WSUC scheme, has been proposed. This scheme is total variation bounded and unconditionally stable in convective numeral stability. Numerical tests show that the WSUC is better in accuracy and resolution than the 1-st order upwind, 2-nd order upwind, SOUCUP by Zhu and Rodi. In solution method, a modified PISO algorithm is used, which is not only simpler but also more accurate and more rapid in convergence than the original PISO algorithm. Moreover, the modified PISO algorithm can effectively solve steady and transient state problem. Besides, with the THAPMA code, the flow and heat transfer phenomena in reactor core have been numerically simulated in the light of the design condition of Qinshan PWR nuclear power station (the second-term project). The simulation results supply a theoretical basis for the core design
Thermal-Hydraulic Analysis of SWAMUP Facility Using ATHLET-SC Code
Energy Technology Data Exchange (ETDEWEB)
Wang, Zidi; Cao, Zhen; Liu, Xiaojing, E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai (China)
2015-03-16
During the loss of coolant accident (LOCA) of supercritical water-cooled reactor (SCWR), the pressure in the reactor system will undergo a rapid decrease from the supercritical pressure to the subcritical condition. This process is called trans-critical transients, which is of crucial importance for the LOCA analysis of SCWR. In order to simulate the trans-critical transient, a number of system codes for SCWR have been developed up to date. However, the validation work for the trans-critical models in these codes is still missing. The test facility Supercritical WAter MUltiPurpose loop (SWAMUP) with 2 × 2 rod bundle in Shanghai Jiao Tong University (SJTU) will be applied to provide test data for code validation. Some pre-test calculations are important and necessary to show the feasibility of the experiment. In this study, trans-critical transient analysis is performed for the SWAMUP facility with the system code ATHLET-SC, which is modified in SJTU, for supercritical water system. This paper presents the system behavior, e.g., system pressure, coolant mass flow, cladding temperature during the depressurization. The effects of some important parameters such as heating power, depressurization rate on the system characteristics are also investigated in this paper. Additionally, some sensitivities study of the code models, e.g., heat transfer coefficient, critical heat flux correlation are analyzed and discussed. The results indicate that the revised system code ATHLET-SC is capable of simulating thermal-hydraulic behavior during the trans-critical transient. According to the results, the cladding temperature during the transient is kept at a low value. However, the pressure difference of the heat exchanger after depressurization could reach 6 MPa, which should be considered in the experiment.
Development of numerical simulation technology for high resolution thermal hydraulic analysis
International Nuclear Information System (INIS)
Yoon, Han Young; Kim, K. D.; Kim, B. J.; Kim, J. T.; Park, I. K.; Bae, S. W.; Song, C. H.; Lee, S. W.; Lee, S. J.; Lee, J. R.; Chung, S. K.; Chung, B. D.; Cho, H. K.; Choi, S. K.; Ha, K. S.; Hwang, M. K.; Yun, B. J.; Jeong, J. J.; Sul, A. S.; Lee, H. D.; Kim, J. W.
2012-04-01
A realistic simulation of two phase flows is essential for the advanced design and safe operation of a nuclear reactor system. The need for a multi dimensional analysis of thermal hydraulics in nuclear reactor components is further increasing with advanced design features, such as a direct vessel injection system, a gravity driven safety injection system, and a passive secondary cooling system. These features require more detailed analysis with enhanced accuracy. In this regard, KAERI has developed a three dimensional thermal hydraulics code, CUPID, for the analysis of transient, multi dimensional, two phase flows in nuclear reactor components. The code was designed for use as a component scale code, and/or a three dimensional component, which can be coupled with a system code. This report presents an overview of the CUPID code development and preliminary assessment, mainly focusing on the numerical solution method and its verification and validation. It was shown that the CUPID code was successfully verified. The results of the validation calculations show that the CUPID code is very promising, but a systematic approach for the validation and improvement of the physical models is still needed
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
International Nuclear Information System (INIS)
Maruyama, Soh; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Murakami, Tomoyuki.
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T 1-M ) with simulated fuel rods and fuel blocks. (author)
Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP
Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio
1988-09-01
This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.
International Nuclear Information System (INIS)
Batta, A.; Class, A.
2015-01-01
The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load
Energy Technology Data Exchange (ETDEWEB)
Mays, Brian [AREVA Federal Services, Lynchburg, VA (United States); Jackson, R. Brian [TerraPower, Bellevue, WA (United States)
2017-03-08
The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services. The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.
Development of subchannel analysis code MATRA-LMR for KALIMER subassembly thermal-hydraulics
International Nuclear Information System (INIS)
Won-Seok Kim; Young-Gyun Kim
2000-01-01
In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)
Thermal-hydraulic codes validation for safety analysis of NPPs with RBMK
International Nuclear Information System (INIS)
Brus, N.A.; Ioussoupov, O.E.
2000-01-01
This work is devoted to validation of western thermal-hydraulic codes (RELAP5/MOD3 .2 and ATHLET 1.1 Cycle C) in application to Russian designed light water reactors. Such validation is needed due to features of RBMK reactor design and thermal-hydraulics in comparison with PWR and BWR reactors, for which these codes were developed and validated. These validation studies are concluded with a comparison of calculation results of modeling with the thermal-hydraulics codes with the experiments performed earlier using the thermal-hydraulics test facilities with the experimental data. (authors)
International Nuclear Information System (INIS)
Bestion, D.
2010-01-01
A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given
Local chemical and thermal-hydraulic analysis of U-tube steam generators
International Nuclear Information System (INIS)
Lee, J.Y.; No, H.C.
1990-01-01
In order to know how pH distribution affects corrosion in a U-tube steam generator, a study of the combination of water chemistry and thermal-hydraulic conditions is suggested. A two-fluid (unequal velocity and unequal temperature) formulation is proposed to describe the convective transport of volatile species in each phase, and a spherical bubble model is developed on the basis of the penetration theory to describe the interfacial mass transfer. The thermal-hydraulic local conditions are obtained by the U-tube steam generator design analysis code FAUST which is based on the three-dimensional two-fluid model. The results of the present study are compared with dynamic equilibrium model calculations. This study shows that, in contrast with dynamic equilibrium calculations, the pH is lower in the cold-leg side than in the hot-leg side because of liquid recirculation. Just above the tube sheet, however, the lower void fraction in this region than that in the hot-leg region results in higher pH, which agrees with the prediction of the dynamic equilibrium model. (orig.)
Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C
2001-09-01
The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper.
Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak
International Nuclear Information System (INIS)
Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.
2001-01-01
The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper
Coupled neutronic/thermal-hydraulic analysis of the HPLWR three pass core
International Nuclear Information System (INIS)
Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas
2008-01-01
The High Performance Light Water Reactor is an innovative Gen-IV reactor cooled and moderated with water at supercritical pressure. The three pass core concept has been proposed to reduce peaking factors, i.e. hot-channel effects, and it further increases the core heterogeneity, which is mainly due to pronounced water density reduction. For this kind of nuclear reactor, the significant feedbacks - which exist between the properties of the components and the power generation rate - can not be neglected and require a coupled Neutronic/Thermal-Hydraulic analysis even for steady state conditions. The main goal of this paper is to present the developed tool for coupled analyses of the HPLWR. Two state-of-the-art codes have been chosen for Thermal-Hydraulic and Neutronic core analyses, namely TRACE and ERANOS, and they have been coupled with in an iterative procedure in which they are run in series until a steady state condition has been reached. In the simplifying assumptions of uniform enrichment distribution, zero burn-up and ignoring the effect of the control rods, the obtained steady state condition will be discussed and a core power map, flow rate redistribution as well as water and fuel temperature variations will be presented. (author)
Thermal-hydraulic analysis of the Three Mile Island Unit 2 reactor accident with THALES code
International Nuclear Information System (INIS)
Hashimoto, Kazuichiro; Soda, Kunihisa
1991-10-01
The OECD Nuclear Energy Agency (NEA) has established a Task Group in the Committee on the Safety of Nuclear Installations (CSNI) to perform an analysis of Three Mile Island Unit 2 (TMI-2) accident as a standard problem to benchmark severe accident computer codes and to assess the capability of the codes. The TMI-2 Analysis Exercise was performed at the Japan Atomic Energy Research Institute (JAERI) using the THALES (Thermal-Hydraulic Analysis of Loss-of-Coolant, Emergency Core Cooling and Severe Core Damage) - PM1/TMI code. The purpose of the analysis is to verify the capability of THALES-PM1/TMI code to describe accident progression in the actual plant. The present paper describes the final result of the TMI-2 Analysis Exercise performed at JAERI. (author)
Thermal-Hydraulic Analysis for SBLOCA in OPR1000 and Evaluation of Uncertainty for PSA
International Nuclear Information System (INIS)
Kim, Tae Jin; Park, Goon Cherl
2012-01-01
Probabilistic Safety assessment (PSA) is a mathematical tool to evaluate numerical estimates of risk for nuclear power plants (NPPs). But PSA has the problems about quality and reliability since the quantification of uncertainties from thermal hydraulic (TH) analysis has not been included in the quantification of overall uncertainties in PSA. From the former research, it is proved that the quantification of uncertainties from best-estimate LBLOCA analysis can improve the PSA quality by modifying the core damage frequency (CDF) from the existing PSA report. Basing on the similar concept, this study considers the quantification of SBLOCA analysis results. In this study, however, operator error parameters are also included in addition to the phenomenon parameters which are considered in LBLOCA analysis
International Nuclear Information System (INIS)
Pegonen, R.; Bourdon, S.; Gonnier, C.; Anglart, H.
2014-01-01
Highlights: • CEA methodology for thermal-hydraulic calculations in the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during LOFA using CATHARE and FLICA4. • Safety criteria, important modeling parameters and correlations are presented. • Possible improvements of the current methodology are discussed and proposed. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support existing and future nuclear reactor designs. The reactor is under construction at CEA Cadarache research center in France and is expected to start operation at the end of this decade. R and D and analytical works have already been performed to set-up the methodology for thermal-hydraulic calculations of the reactor. This paper presents the off-line coupled thermal-hydraulic modeling of the reactor using the CATHARE system code and the FLICA4 core analysis code. The main objective of the present work is to analyze the thermal-hydraulic calculations of the reactor during the loss of flow accident using CEA methodology. Possible improvements of the current methodology are shortly discussed and suggested
International Nuclear Information System (INIS)
Winter, Dominik
2014-01-01
The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX
Feasibility study for objective oriented design of system thermal hydraulic analysis program
International Nuclear Information System (INIS)
Chung, Bub Dong; Jeong, Jae Jun; Hwang, Moon Kyu
2008-01-01
The system safety analysis code, such as RELAP5, TRAC, CATHARE etc. have been developed based on Fortran language during the past few decades. Refactoring of conventional codes has been also performed to improve code readability and maintenance. However the programming paradigm in software technology has been changed to use objects oriented programming (OOP), which is based on several techniques, including encapsulation, modularity, polymorphism, and inheritance. In this work, objective oriented program for system safety analysis code has been tried utilizing modernized C language. The analysis, design, implementation and verification steps for OOP system code development are described with some implementation examples. The system code SYSTF based on three-fluid thermal hydraulic solver has been developed by OOP design. The verifications of feasibility are performed with simple fundamental problems and plant models. (author)
Development of best estimate auditing code for CANDU thermal hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2000-03-15
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.
Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-03-01
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)
International Nuclear Information System (INIS)
Dokhane, A.; Henning, D.; Chawla, R.; Rizwan-Uddin
2003-01-01
BWR stability analysis at PSI, as at other research centres, is usually carried out employing complex system codes. However, these do not allow a detailed investigation of the complete manifold of all possible solutions of the associated nonlinear differential equation set. A novel analytical, reduced order model for BWR stability has been developed at PSI, in several successive steps. In the first step, the thermal-hydraulic model was used for studying the thermal-hydraulic instabilities. A study was then conducted of the one-channel nuclear-coupled thermal-hydraulic dynamics in a BWR by adding a simple point kinetic model for neutron kinetics and a model for the fuel heat conduction dynamics. In this paper, a two-channel nuclear-coupled thermal-hydraulic model is introduced to simulate the out-of phase oscillations in a BWR. This model comprises three parts: spatial mode neutron kinetics with the fundamental and fist azimuthal modes; fuel heat conduction dynamics; and thermal-hydraulics model. This present model is an extension of the Karve et al. model i.e., a drift flux model is used instead of the homogeneous equilibrium model for two-phase flow, and lambda modes are used instead of the omega modes for the neutron kinetics. This two-channel model is employed in stability and bifurcation analyses, carried out using the bifurcation code BIFDD. The stability boundary (SB) and the nature of the Poincare-Andronov-Hopf bifurcation (PAF-B) are determined and visualized in a suitable two-dimensional parameter/state space. A comparative study of the homogeneous equilibrium model (HEM) and the drift flux model (DFM) is carried out to investigate the effects of the DFM parameters the void distribution parameter C 0 and the drift velocity V gi -on the SB, the nature of PAH bifurcation, and on the type of oscillation mode (in-phase or out-of-phase). (author)
Energy Technology Data Exchange (ETDEWEB)
Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)
2015-08-15
Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.
Transient thermal-hydraulic characteristics analysis software for PWR nuclear power systems
International Nuclear Information System (INIS)
Wu Yingwei; Zhuang Chengjun; Su Guanghui; Qiu Suizheng
2010-01-01
A point reactor neutron kinetics model, a two-phase drift-flow U-tube steam generator model, an advanced non-equilibrium three regions pressurizer model, and a passive emergency core decay heat-removed system model are adopted in the paper to develop the computerized analysis code for PWR transient thermal-hydraulic characteristics, by Compaq Visual Fortran 6.0 language. Visual input, real-time processing and dynamic visualization output are achieved by Microsoft Visual Studio. NET language. The reliability verification of the soft has been conducted by RELAP 5, and the verification results show that the software is with high calculation precision, high calculation speed, modern interface, luxuriant functions and strong operability. The software was applied to calculate the transient accident conditions for QSNP, and the analysis results are significant to the practical engineering applications. (authors)
Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor
Institute of Scientific and Technical Information of China (English)
TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei
2007-01-01
A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".
High fidelity thermal-hydraulic analysis using CFD and massively parallel computers
International Nuclear Information System (INIS)
Weber, D.P.; Wei, T.Y.C.; Brewster, R.A.; Rock, Daniel T.; Rizwan-uddin
2000-01-01
Thermal-hydraulic analyses play an important role in design and reload analysis of nuclear power plants. These analyses have historically relied on early generation computational fluid dynamics capabilities, originally developed in the 1960s and 1970s. Over the last twenty years, however, dramatic improvements in both computational fluid dynamics codes in the commercial sector and in computing power have taken place. These developments offer the possibility of performing large scale, high fidelity, core thermal hydraulics analysis. Such analyses will allow a determination of the conservatism employed in traditional design approaches and possibly justify the operation of nuclear power systems at higher powers without compromising safety margins. The objective of this work is to demonstrate such a large scale analysis approach using a state of the art CFD code, STAR-CD, and the computing power of massively parallel computers, provided by IBM. A high fidelity representation of a current generation PWR was analyzed with the STAR-CD CFD code and the results were compared to traditional analyses based on the VIPRE code. Current design methodology typically involves a simplified representation of the assemblies, where a single average pin is used in each assembly to determine the hot assembly from a whole core analysis. After determining this assembly, increased refinement is used in the hot assembly, and possibly some of its neighbors, to refine the analysis for purposes of calculating DNBR. This latter calculation is performed with sub-channel codes such as VIPRE. The modeling simplifications that are used involve the approximate treatment of surrounding assemblies and coarse representation of the hot assembly, where the subchannel is the lowest level of discretization. In the high fidelity analysis performed in this study, both restrictions have been removed. Within the hot assembly, several hundred thousand to several million computational zones have been used, to
Analysis of the Phebus FPT0 containment thermal hydraulics with the Jericho and Trio-VF codes
International Nuclear Information System (INIS)
Layly, V.D.; Spitz, P.; Mailliat, A.
1994-01-01
This paper presents the analysis of the thermal hydraulic behavior of the containment, during the Phebus FPT0 test performed on December 2, 1993, with the Jericho code which deals with the thermal hydraulics of containment in the severe accident field. This code is part of Escadre which is the French system of codes in charge of predicting PWR severe accidents. After summarizing the relevant Jericho code characteristics and the preliminary assessment work for the Phebus conditions, we briefly describe the REPF 502 test facility and report the thermal hydraulic FPT0 experimental protocol. Then, the experiment / Jericho calculation comparisons are analysed. Because the Jericho code assumes a well-mixed atmosphere, some additional 3-D calculations have been carried out in order to get further insight on the convection flow patterns and qualify the well-mixed atmosphere assumption in the Phebus containment. (author). 9 refs., 12 figs
International Nuclear Information System (INIS)
Shamasundar, B.I.; Fehrenbach, M.E.
1981-05-01
The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations
Energy Technology Data Exchange (ETDEWEB)
Moon, Sung Bo; Lim, Soo Min; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)
2016-10-15
K-DEMO (Korean fusion demonstration reactor) is future reactor for the commercializing the fusion power generation. The Design of K-DEMO is similar to that of ITER but the fusion energy generation is much bigger because ITER is experimental reactor. For this reason, K-DEMO uses more fusion reaction with bigger amount of tritium. Higher fusion power means more neutron generation that can irradiate the structure around fusion plasma. Fusion reactor can produce many kinds of radioactive material in the accident. Because of this hazard, preliminary safety analysis is mandatory before its construction. Concern for safety problem of accident of fusion/fission reactor has been growing after Fukushima accident which is severe accident from unexpected disaster. To model the primary heat transfer system, in this study, MARS-KS thermal hydraulic analysis is referred. Lee et al. and Kim et al. conducted thermal hydraulic analysis using MARS-KS and multiple module simulation to deal with the phenomena of first wall corrosion for each plasma pulse. This study shows the relationship between vacuum vessel rupture area and source term leakage after hydrogen explosion. For the conservative study, first wall heating is not terminated because the heating inside the vacuum vessel increase the pressure inside VV. Pressurizer, steam generator and turbine is not damaged. 6.69 kg of tritiated water (HTO) and 1 ton of dust is modeled which is ITER guideline. The entire system of K-DEMO is smaller than that of ITER. For this reason, lots of aerosol is release into environment although the safety system like DS is maintained. This result shows that the safety system of K-DEMO should use much more safety system.
International Nuclear Information System (INIS)
Sudo, Yukio; Ikawa, Hiromasa; Kaminaga, Masanori
1985-01-01
A heat transfer package was developed for the core thermal-hydraulic design and analysis of the Japan Research Reactor-3 (JRR-3) which is to be remodeled to a 20 MWt pool-type, light water-cooled reactor with 20 % low enriched uranium (LEU) plate-type fuel. This paper presents the constitution of the developed heat transfer package and the applicability of the heat transfer correlations adopted in it, based on the heat transfer experiments in which thermal-hydraulic features of the new JRR-3 core were properly reflected. (author)
Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1
Directory of Open Access Journals (Sweden)
Muhammad Atta
2011-01-01
Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.
High heat flux thermal-hydraulic analysis of ITER divertor and blanket systems
International Nuclear Information System (INIS)
Raffray, A.R.; Chiocchio, S.; Ioki, K.; Tivey, R.; Krassovski, D.; Kubik, D.
1998-01-01
Three separate cooling systems are used for the divertor and blanket components, based mainly on flow routing access and on grouping together components with the highest heat load levels and uncertainties: divertor, limiter/outboard baffle, and primary first wall/inboard baffle. The coolant parameters for these systems are set to accommodate peak heat load conditions with a reasonable critical heat flux (CHF) margin. Material temperature constraints and heat transport system space and cost requirements are also taken into consideration. This paper summarises the three cooling system designs and highlights the high heat flux thermal-hydraulic analysis carried out in converging on the design values for the coolant operating parameters. Application of results from on-going high heat flux R and D and a brief description of future R and D effort to address remaining issues are also included. (orig.)
International Nuclear Information System (INIS)
Plas, Roger.
1975-05-01
This computer program describes the flow and heat transfer in steady and transient state in two-phase flows. It is the present stage of the evolution about FLICA, FLICA II and FLICA II B codes which have been used and developed at CEA for the thermal-hydraulic analysis of reactors and experimental loops with heating rod bundles. In the mathematical model all the significant terms of the fundamental hydrodynamic equations are taken into account with the approximations of turbulent viscosity and conductivity. The two-phase flow is calculated by the homogeneous model with slip. In the flow direction an implicit resolution scheme is available, which make possible to study partial or total flow blockage, with upstream and downstream effects. A special model represents the helical wire effects in out-of pile experimental rod bundles [fr
Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket
International Nuclear Information System (INIS)
Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.
1994-01-01
The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab
Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10
International Nuclear Information System (INIS)
Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.
2010-10-01
Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)
Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-10-15
Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)
International Nuclear Information System (INIS)
Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas
2011-01-01
Highlights: → Advanced analysis and design techniques for innovative reactors are addressed. → Detailed investigation of a 3 pass core design with a multi-physics-scales tool. → Coupled 40-group neutron transport/equivalent channels TH core analyses methods. → Multi-scale capabilities: from equivalent channels to sub-channel pin-by-pin study. → High fidelity approach: reduction of conservatism involved in core simulations. - Abstract: The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper. The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces. Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the
Horizontal steam generator thermal-hydraulics
Energy Technology Data Exchange (ETDEWEB)
Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.
Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis
International Nuclear Information System (INIS)
Ivanov, Kostadin; Avramova, Maria
2007-01-01
The simulation of nuclear power plant accident conditions requires three-dimensional (3D) modeling of the reactor core to ensure a realistic description of physical phenomena. The operational flexibility of Light Water Reactor (LWR) plants can be improved by utilizing accurate 3D coupled neutronics/thermal-hydraulics calculations for safety margins evaluations. There are certain requirements to the coupling of thermal-hydraulic system codes and neutron-kinetics codes that ought to be considered. The objective of these requirements is to provide accurate solutions in a reasonable amount of CPU time in coupled simulations of detailed operational transient and accident scenarios. These requirements are met by the development and implementation of six basic components of the coupling methodologies: ways of coupling (internal or external coupling); coupling approach (integration algorithm or parallel processing); spatial mesh overlays; coupled time-step algorithms; coupling numerics (explicit, semi-implicit and implicit schemes); and coupled convergence schemes. These principles of the coupled simulations are discussed in details along with the scientific issues associated with the development of appropriate neutron cross-section libraries for coupled code transient modeling. The current trends in LWR nuclear power generation and regulation as well as the design of next generation LWR reactor concepts along with the continuing computer technology progress stimulate further development of these coupled code systems. These efforts have been focused towards extending the analysis capabilities as well as refining the scale and level of detail of the coupling. This article analyses the coupled phenomena and modeling challenges on both global (assembly-wise) and local (pin-wise) levels. The issues related to the consistent qualification of coupled code systems as well as their application to different types of LWR transients are presented. Finally, the advances in numerical
International Nuclear Information System (INIS)
Ohtaka, Masahiko; Ohshima, Hiroyuki
1998-10-01
A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)
Energy Technology Data Exchange (ETDEWEB)
Matuck, Vinicius; Ramos, Mario C.; Faria, Rochkhudson B.; Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: matuck747@gmail.com, E-mail: patricialire@yahoo.com.br, E-mail: marc5663@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear
2017-11-01
A detailed thermal-hydraulic reactor model using as reference data from the Angra 2 Final Safety Analysis Report (FSAR) has been developed and SiC reinforced with Hi-Nicalon type S fibers (SiC HNS) was used as fuel cladding. The goal is to compare its behavior from the thermal viewpoint with the Zircaloy, at the steady- state and transient conditions. The RELAP-3D was used to perform the thermal-hydraulic analysis and a blockage transient has been investigated at full power operation. The transient considered is related to total obstruction of a core cooling channel of one fuel assembly. The calculations were performed using a point kinetic model. The reactor behavior after this transient was analyzed and the time evolution of cladding and coolant temperatures mass flow and void fraction are presented. (author)
International Nuclear Information System (INIS)
Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin
2011-01-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)
Development of best estimate auditing code for CANDU thermal-hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, Bub Dong; Lee, Won Jae; Hwang, Moon Kyu; Lim, Hong Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)
2002-04-01
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3.The study was performed by reconsideration of the previous code assessment works and phenomena identification for essential accident scenario. Improvement areas of model development for auditing tool were identified based on the code comparison and PIRT results. Nine models have been improved significantly for the analysis of LOCA and Mon LOCA event. Conceptual problem or separate effect assessment have been performed to verify the model improvement. The linking calculation with CONTAIN 2.0 has been also enabled to establish the unified auditing code system. Analysis for the CANDU plant real transient and hypothetical LOCA bas been performed using the improved version. It has been concluded that the developed version can be utilized for the auditing analysis of LOCA and non-LOCA event for the CANDU reactor. 25 refs., 84 figs., 36 tabs. (Author)
Thermal-hydraulic analysis of loss-of-coolant accident in the JMTR
International Nuclear Information System (INIS)
Sakurai, Fumio; Oyamada, Rokuro
1985-02-01
The reevaluation of the Loss-of-Coolant Accident (LOCA) was required through the process of a safety review for the Japan Materials Testing Reactor (JMTR) core conversion from the high-enriched uranium fuel (Enrichment : 93%) to the medium-enriched uranium fuel (Enrichment : 45%). The following were concluded by thermal-hydraulic analysis of a LOCA caused by a double-ended pipe break in the JMTR primary cooling system. (1) The fuel in the core does not burn-out as long as it is covered with water. (2) A larger siphon break valve (larger than phi60mm) should be installed instead of the present one (phi25mm) on the primary cooling system in order to prevent the core from being uncovered with water in case of a LOCA caused by a double-ended pipe break. The present siphon break valve was installed to keep the core covered with water in case of a LOCA caused by a small pipe rupture. In this analysis, the Siphon Breaker Analysis Code (SBAC) was written in order to analyse the size of the siphon break valve and its accuracy was confirmed to be within 5% through a verification experiment. (author)
Thermal-hydraulic analysis of total loss of steam generator feed water in WWER-440
International Nuclear Information System (INIS)
Sabotinov, L.; Cadet-Mercier, S.
2001-01-01
The analysis is carried out for a WWER-440/V270 with upgraded primary safety valves (replacement of the existing PRZ safety valves with Pilot Operated Relief Valves (PORV) of the type SEBIM (France)) The current analysis is focused on the scenario 'Total Loss of SGs Feed Water' with application of the operator action of primary system 'Feed and Bleed' in order to check the effectiveness of the installed pressurizer SEBIM valves and to verify that the operator can cool down the reactor system and cope with this accident. The calculations have been performed at the Institute of Protection and Nuclear Safety (IPSN) in Fontenay-aux-Roses with the computer code CATHARE 2 Version 1.3L1. CATHARE is a French best estimate thermal-hydraulic program for accident analysis in the light water nuclear reactors, developed with the participation of the IPSN (Institut de Protection et Surete Nucleaire), CEA (Commissariat a l'Energie Atomique), Framatome and EdF (Electricite de France). (author)
Steady state thermal hydraulic analysis of LMR core using COBRA-K code
Energy Technology Data Exchange (ETDEWEB)
Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol
1997-02-01
A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.
CCP Sensitivity Analysis by Variation of Thermal-Hydraulic Parameters of Wolsong-3, 4
Energy Technology Data Exchange (ETDEWEB)
You, Sung Chang [KHNP, Daejeon (Korea, Republic of)
2016-10-15
The PHWRs are tendency that ROPT(Regional Overpower Protection Trip) setpoint is decreased with reduction of CCP(Critical Channel Power) due to aging effects. For this reason, Wolsong unit 3 and 4 has been operated less than 100% power due to the result of ROPT setpoint evaluation. Typically CCP for ROPT evaluation is derived at 100% PHTS(Primary Heat Transport System) boundary conditions - inlet header temperature, header to header different pressure and outlet header pressure. Therefore boundary conditions at 100% power were estimated to calculate the thermal-hydraulic model at 100% power condition. Actually thermal-hydraulic boundary condition data for Wolsong-3 and 4 cannot be taken at 100% power condition at aged reactor condition. Therefore, to create a single-phase thermal-hydraulic model with 80% data, the validity of the model was confirmed at 93.8%(W3), 94.2%(W4, in the two-phase). And thermal-hydraulic boundary conditions at 100% power were calculated to use this model. For this reason, the sensitivities by varying thermal-hydraulic parameters for CCP calculation were evaluated for Wolsong unit 3 and 4. For confirming the uncertainties by variation PHTS model, sensitivity calculations were performed by varying of pressure tube roughness, orifice degradation factor and SG fouling factor, etc. In conclusion, sensitivity calculation results were very similar and the linearity was constant.
Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok
1998-09-01
The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.
Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok
1998-09-01
The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs
International Nuclear Information System (INIS)
Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim
2003-01-01
Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)
Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design
International Nuclear Information System (INIS)
Cramer, E.R.
1994-01-01
The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits
Full vessel CFD analysis on thermal-hydraulic characteristics of CPR1000 PWR
International Nuclear Information System (INIS)
Chao Yanmeng; Yang Lixin; Zhang Mingqian
2014-01-01
To obtain flow distributions and thermal-hydraulic properties in a full vessel PWR under limited computation ability and time, a full vessel simulation model of CPR1000 was built based on two simplification methods. One simplified the inner geometry of the control rod guide tubes using equivalent flow area. Another substituted the core by a porous domain to maintain the pressure drop and temperature rise. After the computation, global and localized flow distributions, hydraulic loads of some main assemblies were obtained, as well as other thermal-hydraulic properties. The results indicate the flow distribution in the full vessel is asymmetrical. Therefore it is essential to use the full vessel model to simulate. The calculated thermal-hydraulic characteristics agree well with the operation statistics, providing the reference data for the reactor safety operation. (authors)
Thermal-hydraulic analysis of PWR small assembly for irradiation test of CARR
International Nuclear Information System (INIS)
Yin Hao; Zou Yao; Liu Xingmin
2015-01-01
The thermal-hydraulic behaviors of the PWR 4 × 4 small assembly tested in the high temperature and high pressure loop of China Advanced Research Reactor were analyzed. The CFD method was used to carry out 3D simulation of the model, thus detailed thermal-hydraulic parameters were obtained. Firstly, the simplified model was simulated to give the 3D temperature and velocity distributions and analyze the heat transfer process. Then the whole scale small assembly model was simulated and the simulation results were compared with those of simplified rod bundle model. Its flow behavior was studied and flow mixing characteristics of the grids were analyzed, and the mixing factor of the grid was calculated and can be used for further thermal-hydraulic study. It is shown that the highest temperature of the fuel rod meets the design limit and the mixing effect of the grid is obvious. (authors)
International Nuclear Information System (INIS)
Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.; Hughes, E.D.; Solbrig, C.W.
1975-11-01
A mathematical model and a numerical solution scheme for thermal-hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media
Thermal-hydraulic calculation and water hammer analysis on CEFR loop system
International Nuclear Information System (INIS)
Hao Pengfei; Zhang Xiwen; Cai Weidong; Wang Xuefang
1997-01-01
China Experimental Fast Reactor (CEFR) is one of the '863' High-technical Projects. It is necessary to study the hydraulic and thermal Characteristic of CEFR loop system in order to guarantee the safety of operation. The results of the thermal-hydraulic calculation have been given. The main points are as follows: 1. The simplified model is built according to the loop system of CEFR, and the calculation method which is called 'NODE'-'BRANCH' is applied. This method includes two aspects, one is the theoretical analysis that is based on fluid mechanics and heat transfer theory. The other is the engineering calculation. These two aspects are connected in the computation. On the basis of the work mentioned above, the stable state computation is presented. In order to prevent serious damage caused by power failure accident, the courses of surplus reactor heat removing through two different systems have been simulated in the computation. 2. By using the fluid dynamics theory, the simplified model and the equipment boundary conditions of loop system are given. The water hammer computation is processed during the valve closing and pump stopping accidents. Some pictures of water hammer wave are presented, and the most dangerous state in the accident is also given
Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool
International Nuclear Information System (INIS)
Madni, I.K.; Eltawila, F.
1994-01-01
MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC called ''MELCOR Verification, Benchmarking, and Applications,'' whose aim is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both BWRs and PWRs. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review, and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). This paper presents a summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR
International Nuclear Information System (INIS)
Bianchi, F.; Ferri, R.; Moreau, V.
2004-01-01
A main concern related to the peaceful use of nuclear energy is the safe management of nuclear wastes, with particular attention to long-lived fission products. An increasing attention has recently been addressed to transmutation systems (Accelerator Driven System: ADS) able to 'burn' the actinides and some of the long-lived fission products (High-Level Waste: HLW), transforming them in short or medium-lived wastes that may be easier managed and stored in the geological disposal, with the consequent easier acceptability by population. An ADS consists of a subcritical-core coupled with an accelerator by means of a target. This paper deals with the thermal-hydraulic analysis, performed with STAR-CD and RELAP5 codes for the windowless target unit of Lead-Bismuth Eutectic (LBE) cooled experimental ADS (XADS), both to assess its behaviour during operational and accident sequences and to provide input data for the thermal-mechanical analyses. It also reports a description of modifications properly implemented in the codes used for the assessment of this kind of plants. (author)
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
International Nuclear Information System (INIS)
Mur, J.; Meignin, J.C.
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
Energy Technology Data Exchange (ETDEWEB)
Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.
International Nuclear Information System (INIS)
Urbonavicius, E.
2000-01-01
The Accident Localisation System (ALS) of Ignalina NPP is a containment of pressure suppression type designed to protect the environment from the dangerous impact of the radioactivity. The failure of ALS could lead to contamination of the environment and prescribed public radiation doses could be exceeded. The purpose of the presented analysis is to perform long term thermal-hydraulic analysis of compartments response to Group Distribution Header rupture and verify if design pressure values are not exceeded. (authors)
International Nuclear Information System (INIS)
Ohshima, Hiroyuki
2001-10-01
A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)
Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements
International Nuclear Information System (INIS)
Walton, J.T.
1992-11-01
This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code
Thermal-hydraulic calculation and analysis for QNPP (Qinshan Nuclear Power Plant) containment
International Nuclear Information System (INIS)
Xie Hui; Zhou Jie; He Yingchao
1993-01-01
Three containment thermal-hydraulic codes CONTEMPT-LT/028, CONTEMPT-4/MOD3 and COMPARE are used to compute and analyse the Qinshan Nuclear Power Plant (QNPP) containment response under LOCA or MSLB conditions. An evaluation of the capability of containment of QNPP is given
International Nuclear Information System (INIS)
Kaminaga, Masanori
1997-03-01
JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)
Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology
Energy Technology Data Exchange (ETDEWEB)
Fuller, R.; Harrell, J.
1996-12-01
The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.
Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology
International Nuclear Information System (INIS)
Fuller, R.; Harrell, J.
1996-01-01
The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves
International Nuclear Information System (INIS)
Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.
1983-05-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces
International Nuclear Information System (INIS)
Ohshima, Hiroyuki
2003-03-01
The thermal-hydraulic analysis computer program ACT is under development for the evaluation of detailed flow and temperature fields in a core region of fast breeder reactors under various operation conditions. The purpose of this program development is to contribute not only to clarifying thermal hydraulic characteristics that cannot be revealed by experiments due to measurement difficulty but also to performing rational safety design and assessment. This report describes the incorporation of a three-dimensional upper plenum model to ACT and its verification study as part of the program development. To treat the influence of three-dimensional thermal-hydraulic behavior in a upper plenum on the in-core temperature field, the multi-dimensional general purpose thermal-hydraulic analysis program AQUA, which was developed and validated at JNC, was applied as the base of the upper plenum analysis module of ACT. AQUA enables to model the upper plenum configuration including immersed heat exchangers of the direct reactor auxiliary cooling system (DRACS). In coupling core analysis module that consists of the fuel-assembly and the inter-wrapper gap calculation parts with the upper plenum module, different types of computation mesh systems were jointed using the staggered quarter assembly mesh scheme. A coupling algorithm among core, upper plenum and heat transport system modules, which can keep mass, momentum and energy conservation, was developed and optimized in consideration of parallel computing. ACT was applied to analyzing a sodium experiment (PLANDTL-DHX) performed at JNC, which simulated the natural circulation decay heat removal under DRACS operation conditions for the program verification. From the calculation result, the validity of the improved program was confirmed. (author)
Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA
International Nuclear Information System (INIS)
Kisohara, Naoyuki; Yamaguchi, Akira
1997-12-01
The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)
International Nuclear Information System (INIS)
Griggs, D.P.; Kazimi, M.S.; Henry, A.F.
1982-01-01
The initial development of TITAN, a three-dimensional coupled neutronics/thermal-hydraulics code for LWR safety analysis, has been completed. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code THERMIT with the appropriate feedback mechanisms modeled. A detailed steady-state and transient coupling scheme based on the tandem technique was implemented in accordance with the important structural and operational characteristics of QUANDRY and THERMIT. A two channel sample problem formed the basis for steady-state and transient analyses performed with TITAN. TITAN steady-state results were compared with those obtained with MEKIN and showed good agreement. Null transients, simulated turbine trip transients, and a rod withdrawal transient were analyzed with TITAN and reasonable results were obtained
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
International Nuclear Information System (INIS)
Peng Muzhang; Zhang Quan; Wang Guoli; Zhang Yuman
1988-01-01
TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory
Energy Technology Data Exchange (ETDEWEB)
Muzhang, Peng; Quan, Zhang; Guoli, Wang; Yuman, Zhang
1988-03-01
TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory.
Modelling and thermal hydraulic analysis of the Angra-2 nuclear reactor using RELAP5-3D code
International Nuclear Information System (INIS)
González Mantecón, Javier
2015-01-01
The evaluation of Nuclear Power Plants (NPPs) performance during steady-state and accident conditions has been one of the main research subjects in the nuclear field. In order to simulate the behavior of water-cooled reactors, several complex thermal-hydraulic codes systems have been developed. Particularly, the RELAP5 code, developed by the Idaho National Laboratory, is a best-estimate thermal-hydraulic analysis tool and one of the most used in nuclear industry. The RELAP5-3D 3.0.0 code was used to develop a detailed model of Angra 2 nuclear reactor using reference data from the Final Safety Analysis Report. Angra 2 is the second Brazilian NPP, which began commercial operation in 2001. The plant is equipped with a Pressurized Water Reactor (PWR) type with 3771.0 MWt. Simulations of the reactor behavior during normal operation conditions and postulated accident conditions were performed. Results achieved in the reactor steady-state simulation were compared with nominal parameters of the NPP. These results proved to be in good agreement, with relative errors less than 1%. In the transient simulation, the obtained results were coherent and satisfactory. This study demonstrates that the RELAP5-3D model is capable to reproduce the thermal-hydraulic behavior of the Angra-2 PWR during diverse operation conditions and it can contribute for the process of the plant safety analysis. (author)
Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.
2016-10-15
Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.
Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Catana, Alexandru [RAAN, Institute for Nuclear Research, Str. Campului Nr. 1, Pitesti, Arges (Romania); Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel [University POLITEHNICA of Bucharest (Romania)
2008-07-01
Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D{sub 2}O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D{sub 2}O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)
Thermal-hydraulics analysis for advanced fuel to be used in Candu 600 nuclear reactors
International Nuclear Information System (INIS)
Catana, Alexandru; Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel
2008-01-01
Two Candu 600 pressure tube nuclear reactors cover about 17% of Romania's electricity demand. These nuclear reactors are moderated/cooled with D 2 O, fuelled on-power with Natural Uranium (NU) dioxide encapsulated in a standard (STD37) fuel bundle. High neutron economy is achieved using D 2 O as moderator and coolant in separated systems. To reduce fuel cycle costs, programs were initiated in Canada, S.Korea, Argentina and Romania for the design and build new fuel bundles able to accommodate different fuel compositions. Candu core structure and modular fuel bundles, permits flexible fuel cycles. The main expected achievements are: reduced fuel cycle costs, increased discharge burn-up, plutonium and minor actinides management, thorium cycle, use of recycled PWR and in the same time waste minimization and operating cost reduction. These new fuel bundles are to be used in already operated Candu reactors. Advanced fuel bundle were proposed: CANFLEX bundle (Canada, S-Korea); the Romanian 'SEU43' bundle (Fig 1). In this paper thermal-hydraulic analysis in sub-channel approach is presented for SEU43. Comparisons with standard (STD37) fuel bundles are made using SEU-NU for NU fuel composition and SEU-0.96, for recycled uranium (RU) fuel with 0.96% U-235. Extended and comprehensive analysis must be made in order to assess the TH behaviour of SEU43. In this paper, considering STD37, SEU43-NU and SEU43-0.96 fuel bundles, main TH parameters were analysed: pressure drop, fuel highest temperatures, coolant density, critical heat flux. Differences between these fuel types are outlined. Benefits are: fuel costs reduction, spent fuel waste minimization, increase in competitiveness of nuclear power. Safety margins must be, at least, conserved. (authors)
Energy Technology Data Exchange (ETDEWEB)
Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)
2016-11-01
Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
ANTEO+: A subchannel code for thermal-hydraulic analysis of liquid metal cooled systems
Energy Technology Data Exchange (ETDEWEB)
Lodi, F., E-mail: francesco.lodi5@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy); Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sumini, M., E-mail: marco.sumini@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy)
2016-05-15
Highlights: • The code structure is presented in detail. • The performed validation is outlined. • Results are critically discussed assessing code accuracy. • Conclusions are drawn and ground for future work identified. - Abstract: Liquid metal cooled fast reactors are promising options for achieving the high degrees of safety and sustainability demanded by the Generation IV paradigm. Among the critical aspects to be addressed in the design process, thermal-hydraulics is one of the most challenging; in order to embed safety in the core conceptualization, these aspects are to be considered at the very beginning of the design process, and translated in a design perspective. For achieving these objectives the subchannel code ANTEO+ has been conceived, able to simulate pin bundle arrangements cooled by liquid metals. The main purposes of ANTEO+ are simplifying the problem description maintaining the required accuracy, enabling a more transparent interface with the user, and having a clear and identifiable application domain, in order to help the user interpreting the results and, mostly, defining their confidence. Since ANTEO+ relies on empirical correlations, the validation phase is of paramount importance along with a clear discussion on the simplifications adopted in modeling the conservation equations. In the present work a detailed description of ANTEO+ structure is given along with a thorough validation of the main models implemented for flow split, pressure drops and subchannel temperatures. The analysis confirmed the ability of ANTEO+ in reproducing experimental data in its anticipated validity domain, with a relatively high degree of accuracy when compared to other classical subchannel tools like ENERGY-II, COBRA-IV-I-MIT and BRS-TVS.
International Nuclear Information System (INIS)
Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.
2005-01-01
The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)
International Nuclear Information System (INIS)
Soeren Kliem; Siegfried Mittag; Siegfried Langenbuch
2005-01-01
Full text of publication follows: The transition from the application of conservative models to the use of best-estimate models raises the question about the uncertainty of the obtained results. This question becomes especially important, if the best-estimate models should be used for safety analyses in the field of nuclear engineering. Different methodologies were developed to assess the uncertainty of the calculation results of computer simulation codes. One of them is the methodology developed by Gesellschaft fuer Anlagenund Reaktorsicherheit (GRS) which uses the statistical code package SUSA. In the past, this methodology was applied to the calculation results of the advanced thermal hydraulic system code ATHLET. In the frame of the recently finished EU FP5 funded research project VALCO, that methodology was extended and successfully applied to different coupled code systems, including the uncertainty analysis for neutronics. These code systems consist of a thermal hydraulic system code and a 3D neutron kinetic core model. One of the code systems applied was ATHLET coupled with the Rossendorf kinetics code DYN3D. Two real transients at NPPs with VVER-type reactors documented within the VALCO project were selected for analyses. One was the load drop of one of two turbines to house load level at the Loviisa-1 NPP (VVER-440), the second was a test with the switching-off of one of two main feed water pumps at the VVER-1000 Balakovo-4 NPP. The current paper is dedicated to the different steps of the use and implementation of the GRS methodology to coupled code systems and to the assessment of the results obtained by the DYN3D/ATHLET code. Based on the relevant physical processes in both transients, lists of possible sources of uncertainties were compiled. They are specific for the two transients. Besides control parameters like control rod movement and thermal hydraulic parameters like secondary side pressure, mass flow rates, pressurizer sprayer and heater
International Nuclear Information System (INIS)
Weinberg, D.; Hoffmann, H.; Rust, K.; Frey, H.H.; Hain, K.; Leiling, W.; Hayafune, H.
1995-12-01
The results corroborate the findings of tests with the RAMONA model. With the core power reduction at scram and the start of the decay heat exchangers operation cold fluid is delivered into the prevailing upper plenum. A temperature stratification develops with distinct large temperature gradients. The onset of natural convection is mainly influenced by two effects, namely, the temperature increase on the intermediate heat exchangers primary sides as a result of which the downward pressures are reduced, and the startup of the decay heat exchangers which leads to a decrease of the buoyancy forces in the core. The temperatures of the upper plenum are systematically reduced as soon as the decay heat exchangers are in operation. Then mixed fluid in the hot plenum reaches the intermediate heat exchangers inlet windows and causes an increase in the core flow rate. The primary pump coastdown curve influences the primary system thermal hydraulics only during the first thousand seconds after scram. The longer the pumps operate the more cold fluid is delivered via the core to the upper plenum. The delay of the start of the decay heat exchangers operation separates the two effects which influence the core mass flow, namely the heatup of the intermediate heat exchangers as well as the formation of the stratification in the upper plenum. Increasing the power as well as the operation of only half of the available decay heat exchangers increase the system temperatures. A permeable above core structure produces a temperature stratification along the total upper plenum, and therefore a lower temperature gradient in the region between core outlet and lower edge of the above core structure, in comparison to the impermeable design. A complete flow path blockage of the primary fluid through the intermediate heat exchangers leads to an enhanced cooling effect of the interstitial flow and gives rise to a thermosiphon effect inside the core elements. (orig./GL) [de
International Nuclear Information System (INIS)
Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook
2007-08-01
This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the modeling
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)
2007-08-15
This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the
Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers
International Nuclear Information System (INIS)
Woodruff, W.L.
1990-01-01
Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-06-01
A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other
Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation
Energy Technology Data Exchange (ETDEWEB)
Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate.
Thermal-Hydraulic Analysis of a Once-Through Steam Generator Considering Performance Degradation
International Nuclear Information System (INIS)
Han, Hun Sik; Kang, Han Ok; Yoon, Ju Hyeon; Kim, Young In; Song, Jae Seung; Kim, Keung Koo
2016-01-01
Several countries have entered into a global race for the commercialization of SMRs, and considerable research and development have been implemented. Among the various reactor designs, many SMRs have adopted an integral type pressurized water reactor (PWR) to enhance the nuclear safety and system reliability. In the integral reactor design, a single reactor pressure vessel contains primary system components such as fuel and core, steam generators, pumps, and a pressurizer. For the component integration into a reactor vessel, it is important to design each component as small as possible. Thus, it is a common practice to employ a once-through steam generator in the integral reactor design due to its advantages in compactness. In general, gradual degradation in thermal-hydraulic performance of the steam generator occurs with time, and it changes slowly the operating point of the steam generator during plant lifetime. Numerical solutions are acquired to evaluate the thermal-hydraulic performance of the steam generator at various AUFs. The design results obtained show that the average tube length of the steam generator is augmented with the increase of design margin to compensate for the design uncertainties and heat transfer area reduction by plugging, fouling, etc. A helically coiled tube once-through steam generator with 30% design margin is considered for comparison of thermal-hydraulic performances according to the degradation rate
Energy Technology Data Exchange (ETDEWEB)
Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on
International Nuclear Information System (INIS)
Waata, C.L.
2006-07-01
The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence
International Nuclear Information System (INIS)
Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L.
2002-01-01
The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)
International Nuclear Information System (INIS)
Hernandez-Solis, Augusto
2010-04-01
This work has two main objectives. The first one is to enhance the validation process of the thermal-hydraulic features of the Westinghouse code POLCA-T. This is achieved by computing a quantitative validation limit based on statistical uncertainty analysis. This validation theory is applied to some of the benchmark cases of the following macroscopic BFBT exercises: 1) Single and two phase bundle pressure drops, 2) Steady-state cross-sectional averaged void fraction, 3) Transient cross-sectional averaged void fraction and 4) Steady-state critical power tests. Sensitivity analysis is also performed to identify the most important uncertain parameters for each exercise. The second objective consists in showing the clear advantages of using the quasi-random Latin Hypercube Sampling (LHS) strategy over simple random sampling (SRS). LHS allows a much better coverage of the input uncertainties than SRS because it densely stratifies across the range of each input probability distribution. The aim here is to compare both uncertainty analyses on the BWR assembly void axial profile prediction in steady-state, and on the transient void fraction prediction at a certain axial level coming from a simulated re-circulation pump trip scenario. It is shown that the replicated void fraction mean (either in steady-state or transient conditions) has less variability when using LHS than SRS for the same number of calculations (i.e. same input space sample size) even if the resulting void fraction axial profiles are non-monotonic. It is also shown that the void fraction uncertainty limits achieved with SRS by running 458 calculations (sample size required to cover 95% of 8 uncertain input parameters with a 95% confidence), result in the same uncertainty limits achieved by LHS with only 100 calculations. These are thus clear indications on the advantages of using LHS. Finally, the present study contributes to a realistic analysis of nuclear reactors, in the sense that the uncertainties of
Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion
International Nuclear Information System (INIS)
El-Genk, M.S.; Morley, N.J.; Yang, J.Y.
1992-01-01
The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core
International Nuclear Information System (INIS)
Maki, Akira; Mori, Michitsugu; Kanemoto, Shigeru; Konishi, Hideo
1997-01-01
A study has been conducted to evaluate how process parameters will exhibit the change in the event of the troubles related to reactor internal by using transient thermal-hydraulic analysis codes (RETRAN3D-MOD002, etc.). In the present study, the following six events are analytically investigated: 1) a leak from the upper plenum; 2) a leak from the middle part of a shroud; 3) a leak from the lower plenum; 4) a leak from the riser pipe for the jet-pump; 5) the blockage of the jet-pump nozzle; and 6) a leak from the jet-pump diffuser. The results by analyses indicated that the leak from the upper plenum resulted in increasing in the inlet temperature of primary loop recirculation (PLR) and in the differential pressure at the core support plate, and decreasing in the neutron flux (reactor power). Similar analyses were made for the five other events to identify the pattern of relevant process parameter variation in each event. (author)
Energy Technology Data Exchange (ETDEWEB)
No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
2002-03-15
The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The
Energy Technology Data Exchange (ETDEWEB)
No, Hee Cheon; Park, Hyun Sik; Kim, Hyoung Tae; Moon, Young Min; Choi, Sung Won; Hwang, Do Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
2000-03-15
The direct-contact condensation hear transfer coefficients are experimentally obtained in the following conditions : pure steam/steam in the presence of noncondensible gas, horizontal/slightly inclined pipe, cocurrent/countercurrent stratified flow with water. The empirical correlation for liquid Nusselt number is developed in conditions of the slightly inclined pipe and the cocurrent stratified flow. The several models - the wall friction coefficient, the interfacial friction coefficient, the correlation of direct-contact condensation with noncondensible gases, and the correlation of wall film condensation - in the RELAP5/MOD3.2 code are modified, As results, RELAP5/MOD3.2 is improved. The present experimental data is used for evaluating the improved code. The standard RELAP5/MOD3.2 code is modified using the non-iterative modeling, which is a mechanistic model and does not require any interfacial information such as the interfacial temperature, The modified RELAP5/MOD3.2 code os used to simulate the horizontally stratified in-tube condensation experiment which represents the direct-contact condensation phenomena in a hot leg of a nuclear reactor. The modeling capabilities of the modified code as well as the standard code are assessed using several hot-leg condensation experiments. The modified code gives better prediction over local experimental data of liquid void fraction and interfacial heat transfer coefficient than the standard code. For the separate effect test of the thermal-hydraulic phenomena in the pressurizer, the scaling analysis is performed to obtain a similarity of the phenomena between the Korea Standard Nuclear Power Plant(KSNPP) and the present experimental facility. The diameters and lengths of the hot-leg, the surge line and the pressurizer are scaled down with the similitude of CCFL and velocity. The ratio of gas flow rate is 1/25. The experimental facility is composed of the air-water supply tank, the horizontal pipe, the surge line and the
International Nuclear Information System (INIS)
Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki
1999-09-01
A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)
International Nuclear Information System (INIS)
Lee, J. C.; Bang, K. S.; Shin, H. S.; Joo, J. S.; Su, K. S.; Kim, H. D.
2003-01-01
Conceptual assessment and thermal hydraulic analysis of MVDS storage system have been carried out for application of reduced metal fuel. The storage concept was established considering the optimum weight, storage volume and thermal efficiency. The capacity of MVDS system for loading the reduced metal fuel has four times as compared with existing PWR fuel storage system. In the results of thermal analysis, the maximum temperature of metal fuel was estimated to be 110 .deg. C which is lower than the allowable value under normal operation condition. Therefore, it is shown that the MVDS system can feasibly accomodate the reduced metal fuel in aspect of thermal safety
Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems
International Nuclear Information System (INIS)
EL Khatib, H.H.A.
2013-01-01
The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.
Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants
International Nuclear Information System (INIS)
Haapalehto, T.
1995-01-01
The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)
Thermal-hydraulic analysis of the semiscale Mod-1 blowdown heat transfer test series
International Nuclear Information System (INIS)
Cozzuol, J.M.
1976-06-01
Selected experimental thermal-hydraulic data from the recent Semiscale Mod-1 blowdown heat transfer test series are analyzed from an experimental viewpoint with emphasis on explaining those phenomena which influence core fluid behavior. Comparisons are made between the trends measured by the system instrumentation and the trends predicted by the RELAP4 computer code to aid in obtaining an understanding of the interactions between phenomena occurring in different parts of the system. The analyses presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict the system response of a pressurized water reactor during a postulated loss-of-coolant accident
Applications of the thermit code to 3D thermal hydraulic analysis of LWR cores
International Nuclear Information System (INIS)
Reed, W.H.
1979-01-01
The THERMIT code calculates the three-dimensional transient thermal hydraulic behavior of light water reactor cores. Its two-fluid dynamics equations for two-phase flow offer improved physical modelling capability needed in the context of calculation coupled to neutron kinetics for feedback. The numerical fluid dynamics method was chosen for reliability over a wider range of transients. An improved heat transfer numerical method is presented which gives better numerical stability and accuracy. A number of example calculations are discussed which give an idea of the power and flexibility of the code
Energy Technology Data Exchange (ETDEWEB)
Park, Youngjae; Kim, Iljin; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
Diverse integral/small-modular reactors (SMRs) have been developed. Once-through steam generator (OTSG) which generates superheated steam without steam separator and dryer was used in the SMRs to reduce volume of steam generator. It would be possible to design a new steam generator with best estimate thermal-hydraulic codes such as RELAP and MARS. However, it is not convenience to use the general purpose thermal-hydraulic analysis code to design a specific component of nuclear power plants. A widely used simulation tool for thermal-hydraulic analysis of drum-type steam generators is ATHOS, which allows 3D analysis. On the other hand, a simple 1D thermal-hydraulic analysis code might be accurate enough for the conceptual design of OTSG. In this study, thermal-hydraulic analysis code for conceptual design of OTSG was developed using 1D homogeneous equilibrium model (HEM). A benchmark calculation was also conducted to verify and validate the prediction accuracy of the developed code by comparing with the analysis results with MARS. Finally, conceptual design of OTSG was conducted by the developed code. A simple 1D thermal-hydraulic analysis code was developed for the purpose of conceptual design OTSG for SMRs. A set of benchmark calculations was conducted to verify and validate the analysis accuracy of the developed code by comparing results obtained with a best-estimated thermal-hydraulic analysis code, MARS. Finally, analysis of two different OTSG design concepts with superheating and recirculation was demonstrated using the developed code.
Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors
International Nuclear Information System (INIS)
Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco
2016-01-01
Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.
Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors
Energy Technology Data Exchange (ETDEWEB)
Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it
2016-08-15
Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.
Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility
Energy Technology Data Exchange (ETDEWEB)
Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT.
Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5
Energy Technology Data Exchange (ETDEWEB)
El-Sahlamy, Neama M. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt)
2017-11-15
In the current work, comparisons between the core performances when using different LEU fuels are done. The fuels tested are UA1{sub X}-A1, U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al fuels with 19.7 % enrichment. Calculations are done using RELAP5 code to evaluate the thermal-hydraulic performance of the IAEA benchmark 10 MW reactor. First, a reassessment of the slow reactivity insertion transient with UA1{sub X}-A1 LEU fuel to compare the results with those reported in the IAEA TECDOC [1]. Then, comparisons between the thermal-hydraulic core performances when using the three LEU fuels are done. The assessment is performed at initial power of 1.0 W. The reactor power is calculated using the RELAP5 point kinetic model. The reactivity feedback, from changes in water density and fuel temperature, is considered for all cases. From the results it is noticed that U{sub 3}Si{sub 2}-Al fuel gives the best fuel performance since it has the minimum value of peak fuel temperature and the minimum peak clad surface temperature, as operating parameters. Also, it gives the maximum value of the Critical Heat Flux Ratio and the lowest tendency to flow instability occurrence.
Analysis of Thermal-Hydraulic Behavior of CMT in the SMART-ITL Facility
International Nuclear Information System (INIS)
Jeon, Byong Guk; Bae, Hwang; Ryu, Sung-Uk; Ryu, Hyobong; Byun, Sun-Joon; Yi, Sung-Jae; Park, Hyun-Sik
2015-01-01
SMART, an integral small modular reactor, received a standard design approval in 2012 and now extends its safety features through replacing active safety injection pumps by passive safety injection systems: core makeup tanks (CMT) and safety injection tanks (SIT). SMART-ITL has been built in a full height scale and 1/49 area and power scale. One train of CMT and SIT has been installed and their thermal-hydraulic behaviors have been identified through a series of tests. In this paper, initial condensation characteristics as well as force balance around the CMT will be discussed for a representative test. PSIS are added into SMART for better treatment of accidents with prolonged station blackout. In the SMART-ITL, the CMT and SIT are installed to evaluate their performance and a series of tests have been conducted. In this paper, the thermal-hydraulic behavior of CMT is addressed based on the experimental data, especially focusing on the issues of fierce condensation after opening of the isolation valve and driving force balance around the CMT
Proceedings of the third nuclear thermal hydraulics meeting
International Nuclear Information System (INIS)
Anon.
1987-01-01
This book contains the proceedings of the Thermal Hydraulics Division of the American Nuclear Society. The papers presented include: Simulator qualification using engineering codes and Development of thermal hydraulic analysis capabilities for Oyster Creek
Thermal hydraulic codes for LWR safety analysis - present status and future perspective
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H. [Commission of the European Union, Ispra (Italy)
1997-07-01
The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved.
Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores
International Nuclear Information System (INIS)
Stroh, K.R.
1979-03-01
The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases
2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL
Energy Technology Data Exchange (ETDEWEB)
Freels, James D [ORNL; Bodey, Isaac T [ORNL; Lowe, Kirk T [ORNL; Arimilli, Rao V [ORNL
2010-09-01
The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.
Thermal hydraulic codes for LWR safety analysis - present status and future perspective
International Nuclear Information System (INIS)
Staedtke, H.
1997-01-01
The aim of the present paper is to give a review on the current status and future perspective of present best-estimate Thermal Hydraulic codes. Reference is made to internationally well-established codes which have reached a certain state of maturity. The first part of the paper deals with the common basic code features with respect to the physical modelling and their numerical methods used to describe complex two-phase flow and heat transfer processes. The general predictive capabilities are summarized identifying some remaining code deficiencies and their underlying limitations. The second part discusses various areas including physical modelling, numerical techniques and informatic structure where the codes could be substantially improved
Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis
Energy Technology Data Exchange (ETDEWEB)
Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-04-01
The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a second step of the whole project, and focus to the implementation of CANDU models based on the previous study. FORTRAN 90 language have been used for the development of RELAP5.MOD3/CANDU PC version. For the convenience of the previous Workstation users, the FOTRAN 77 version has been coded also and implanted into the original RELAP5 source file. The verification of model implementation has been performed through the simple verification calculations using the CANDU version. 6 refs., 15 figs., 7 tabs. (Author)
Thermal-hydraulic Analysis of High-temperature Cover Gas Region in STELLA-2
Energy Technology Data Exchange (ETDEWEB)
Jo, Youngchul; Son, Seok-Kwon; Yoon, Jung; Eoh, Jaehyuk; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The first phase of the program was focused on the key sodium component tests, and the second one has been concentrated on the sodium thermal-hydraulic integral effect test (STELLA-2). Based on its platform, simulation of the PGSFR transient will be made to evaluate plant dynamic behaviors as well as to demonstrate decay heat removal performance. Therefore, most design features of PGSFR have been modeled in STELLA-2 as closely as possible. The similarities of temperature and pressure between the model (STELLA-2) and the prototype (PGSFR) have been well preserved to reflect thermal-hydraulic behavior with natural convection as well as heat transfer between structure and sodium coolant inside the model reactor vessel (RV). For this reason, structural integrity of the entire test section should be confirmed as in the prototype. In particular, since the model reactor head in STELLA-2 supports key components and internal structures, its structural integrity exposed to high-temperature cover gas region should be confirmed. In order to reduce thermal radiation heat transfer from the hot sodium pool during normal operation, a dedicated insulation layer has been installed at the downward surface of the model reactor head to prevent direct heat flux from the sodium free surface at 545 .deg. C. Three-dimensional conjugate heat transfer analyses for the full-shape geometry of the upper part of the model reactor vessel in STELLA-2 have been carried out. Based on the results, steady-state temperature distributions in the cover gas region and the model reactor head itself have been obtained and the design requirement in temperature of the model reactor head has been newly proposed to be 350 .deg. C. For any elevated temperature conditions in STELLA-2, it was confirmed that the model reactor head generally satisfied the requirement. The CFD database constructed from this study will be used to optimize geometric parameters such as thicknesses and/or types of the insulator.
Thermal-hydraulic unreliability of passive systems
International Nuclear Information System (INIS)
Tzanos, C.P.; Saltos, N.T.
1995-01-01
Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed
International Nuclear Information System (INIS)
Peterson, C.E.; Gose, G.C.; McFadden, J.H.
1983-01-01
RETRAN-02 represents a significant achievement in the development of a versatile and reliable computer program for use in best estimate transient thermal-hydraulic analysis of light water reactor systems. The RETRAN-02 computer program is an extension of the RETRAN-01 program designed to provide analysis capabilities for 1) BWR and PWR transients, 2) small break loss of coolant accidents, 3) balance of plant modeling, and 4) anticipated transients without scram, while maintaining the analysis capabilities of the predecessor code. The RETRAN-02 computer code is constructed in a semimodular and dynamic dimensioned form where additions to the code can be easily carried out as new and improved models are developed. This report (the fourth of a five volume computer code manual) describes the verification and validation of RETRAN-02
Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira
2016-01-01
Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...
TRANTHAC-1: transient thermal-hydraulic analysis code for HTGR core of multi-channel model
International Nuclear Information System (INIS)
Sato, Sadao; Miyamoto, Yoshiaki
1980-08-01
The computer program TRANTHAC-1 is for predicting thermal-hydraulic transient behavior in HTGR's core of pin-in-block type fuel elements, taking into consideration of the core flow distribution. The program treats a multi-channel model, each single channel representing the respective column composed of fuel elements. The fuel columns are grouped in flow control regions; each region is provided with an orifice assembly. In the region, all channels are of the same shape except one channel. Core heat is removed by downward flow of the control through the channel. In any transients, for given time-dependent power, total core flow, inlet coolant temperature and coolant pressure, the thermal response of the core can be determined. In the respective channels, the heat conduction in radial and axial direction are represented. And the temperature distribution in each channel with the components is calculated. The model and usage of the program are described. The program is written in FORTRAN-IV for computer FACOM 230-75 and it is composed of about 4,000 cards. The required core memory is about 75 kilowords. (author)
Thermal-hydraulic and neutronic analysis of pressurized water reactor cores
International Nuclear Information System (INIS)
Alves, C.H.
1982-01-01
A computational code, named CANAL2, was developed for the simulation of the steady-state and transient behaviour of a Pressurized Water Reactor core. The conservation equations for the control volumes are obtained by area-averaging of the two-fluid model conservation equations and reducing them to the drift-flux model formulation. The resulting equations are aproximated by finite differences and solved by a marching-type numerical scheme. The model takes into account the exchange of mass, momentum and energy between adjacent subchannels of a fuel bundle. Turbulent mixing and diversion crossflow are considered. Correlations are provided for several heat trans and flow regimes and selected according to the local conditons. During transients core power can be evaluated by a point-Kinetics model. Fuel and coolant temperatures are feedback to the neutronics. The heat conduction equation is solved in the fuel using the Crank-Nicolson scheme. Temperature-dependent correlations are provided for the fuel and cladding thermal conductivities. Several runs were made with the code CANAL2 using the available experimental and calculated data in the open literature. Results indicate that CANAL2 is a good calculational tool for the thermal-hydraulics of PWR cores. A few refinements will make the code useful for design. (Author) [pt
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
International Nuclear Information System (INIS)
El-Morshedy, Salah El-Din; Hassanein, Ahmed
2009-01-01
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m 2 plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Transient thermal hydraulic modeling and analysis of ITER divertor plate system
Energy Technology Data Exchange (ETDEWEB)
El-Morshedy, Salah El-Din [Argonne National Laboratory, Argonne, IL (United States); Atomic Energy Authority, Cairo (Egypt)], E-mail: selmorshedy@etrr2-aea.org.eg; Hassanein, Ahmed [Purdue University, West Lafayette, IN (United States)], E-mail: hassanein@purdue.edu
2009-12-15
A mathematical model has been developed/updated to simulate the steady state and transient thermal-hydraulics of the International Thermonuclear Experimental Reactor (ITER) divertor module. The model predicts the thermal response of the armour coating, divertor plate structural materials and coolant channels. The selected heat transfer correlations cover all operating conditions of ITER under both normal and off-normal situations. The model also accounts for the melting, vaporization, and solidification of the armour material. The developed model is to provide a quick benchmark of the HEIGHTS multidimensional comprehensive simulation package. The present model divides the coolant channels into a specified axial regions and the divertor plate into a specified radial zones, then a two-dimensional heat conduction calculation is created to predict the temperature distribution for both steady and transient states. The model is benchmarked against experimental data performed at Sandia National Laboratory for both bare and swirl tape coolant channel mockups. The results show very good agreements with the data for steady and transient states. The model is then used to predict the thermal behavior of the ITER plasma facing and structural materials due to plasma instability event where 60 MJ/m{sup 2} plasma energy is deposited over 500 ms. The results for ITER divertor response is analyzed and compared with HEIGHTS results.
Thermal hydraulic and power cycle analysis of liquid lithium blanket designs
International Nuclear Information System (INIS)
Misra, B.; Stevens, H.C.; Maroni, V.A.
1977-01-01
Thermal hydraulic and power cycle analyses were performed for the first-wall and blanket systems of tokamak-type fusion reactors under a typical set of design and operating conditions. The analytical results for lithium-cooled blanket cells show that with stainless steel as construction material and with no divertor present, the maximum allowable neutron wall loading is approximately 2 MW/m 2 and is limited by thermal stress criteria. With vanadium alloy as construction material and no divertor present, the maximum allowable neutron wall loading is approximately 8 MW/m 2 and is limited by an interplay of constraints imposed on the maximum allowable structural temperature and the minimum allowable coolant inlet temperature. With a divertor these wall loadings can be increased by from 40 to 90 percent. The cost of the vanadium system is found to be competitive with the stainless steel system because of the higher allowable structural temperatures and concomitant higher thermal efficiencies afforded by the vanadium alloys
Assessment and Application of the ROSE Code for Reactor Outage Thermal-Hydraulic and Safety Analysis
International Nuclear Information System (INIS)
Liang, Thomas K.S.; Ko, F.-K.; Dai, L.-C.
2001-01-01
The currently available tools, such as RELAP5, RETRAN, and others, cannot easily and correctly perform the task of analyzing the system behavior during plant outages. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as midloop operation (MLO) with loss of residual heat removal (RHR), has been developed. Important thermal-hydraulic processes involved during MLO with loss of RHR can be properly simulated by the newly developed reactor outage simulation and evaluation (ROSE) code. The two-region approach with a modified two-fluid model has been adopted to be the theoretical basis of the ROSE code.To verify the analytical model in the first step, posttest calculations against the integral midloop experiments with loss of RHR have been performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility test data is demonstrated. To further mature the ROSE code in simulating a full-sized pressurized water reactor, assessment against the WGOTHIC code and the Maanshan momentary-loss-of-RHR event has been undertaken. The successfully assessed ROSE code is then applied to evaluate the abnormal operation procedure (AOP) with loss of RHR during MLO (AOP 537.4) for the Maanshan plant. The ROSE code also has been successfully transplanted into the Maanshan training simulator to support operator training. How the simulator was upgraded by the ROSE code for MLO will be presented in the future
International Nuclear Information System (INIS)
Salama, Amgad
2011-01-01
Highlights: → The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. → The different flow and heat transfer mechanisms involved in this process were elucidated. → The transition between these mechanisms during the course of FLOFA is discussed and investigated. → The interesting inversion process upon the transition from downward flow to upward flow is shown. → The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.
Energy Technology Data Exchange (ETDEWEB)
Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)
2016-02-15
Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.
Energy Technology Data Exchange (ETDEWEB)
Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)
2014-12-15
Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety
International Nuclear Information System (INIS)
Gilli, L.; Lathouwers, D.; Kloosterman, J.L.; Van der Hagen, T.H.J.J.
2011-01-01
In this paper a method to perform sensitivity analysis for a simplified multi-physics problem is presented. The method is based on the Adjoint Sensitivity Analysis Procedure which is used to apply first order perturbation theory to linear and nonlinear problems using adjoint techniques. The multi-physics problem considered includes a neutronic, a thermo-kinetics, and a thermal-hydraulics part and it is used to model the time dependent behavior of a sodium cooled fast reactor. The adjoint procedure is applied to calculate the sensitivity coefficients with respect to the kinetic parameters of the problem for two reference transients using two different model responses, the results obtained are then compared with the values given by a direct sampling of the forward nonlinear problem. Our first results show that, thanks to modern numerical techniques, the procedure is relatively easy to implement and provides good estimation for most perturbations, making the method appealing for more detailed problems. (author)
International Nuclear Information System (INIS)
Varacalle, D.J. Jr.; Chen, T.H.; Harvego, E.A.; Ollikkala, H.
1983-01-01
Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system. The initial conditions and scaled operating parameters for the experiments were representative of those expected in a commercial PWR. In both experiments, all four LOFT control rod assemblies were withdrawn at a reactor power of 37.5 MW and a system pressure of 14.8 MPa
COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 2, User's manual
International Nuclear Information System (INIS)
Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.
1986-11-01
COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code
International Nuclear Information System (INIS)
Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.
1986-11-01
COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods
International Nuclear Information System (INIS)
Chi Chenwei; Ferng Yuhming; Pei Baushei; Liang Jenqhorng
2011-01-01
In recent years, the molten salt reactor (MSR) has attracted increasing attention and become one of the most important 'Generation IV reactor' designs. In particular, the fact that molten fluoride salts are utilized as liquid fuel and coolant constitutes the main feature of the reactor. Furthermore, since the molten fluoride salt has a high Prandtl number and contains quite different behaviors to those of ordinary water and gas, an in-depth investigation of molten fluoride salt is thus highly demanded. Hence, it is the central objective of this study to examine the thermal-hydraulic characteristics of molten salt especially for the optimal design of reactor core and its safety operation. In this study, the dependence of pressure drop, Nusselt number and entrance length on the inlet Reynolds number for a molten fluoride salt (LiF(46.5)-NaF(11.5)-KF(42)) are computed using a comprehensive computational fluid dynamics (CFD) methodology. The methodology employs the continuity equation, momentum equation, energy equation, and standard k - ε turbulence model to conduct fluid dynamics simulation. For simplicity, the geometry employed in this study is a circular tube. The simulated results indicated that the pressure drop and Nusselt number and entrance length increase as the inlet Reynolds number increases. And the computed pressure drop corresponds well to theoretical value. It is also given a new correlation of computed entrance length in this paper. In addition, two well-known Nusselt number correlations such as, Hausen, Gnielinski, are employed to make comparisons with the computed results. It is also found that the computed Nusselt numbers overestimate the Hausen ones in the high Reynolds number region. However, the computed Nusselt numbers correspond well to the Gnielinski ones in all the Reynolds numbers region. Also notice that an experimental setup is currently in progress in order to validate the present CFD simulation. (author)
International Nuclear Information System (INIS)
Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.
1995-12-01
During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)
International Nuclear Information System (INIS)
Griggs, D.P.; Kazimi, M.S.; Henry, A.F.
1984-06-01
The three-dimensional nodal neutronics code QUANDRY and the three-dimensional two-fluid thermal-hydraulics code THERMIT are combined into TITAN. Steady-state and transient coupling methodologies based upon a tandem structure were devised and implemented. Additional models for nuclear feedback, equilibrium xenon and direct moderator heating were added. TITAN was tested using a boiling water two channel problem and the coupling methodologies were shown to be effective. Simulated turbine trip transients and several control rod withdrawal transients were analyzed with good results. Sensitivity studies indicated that the time-step size can affect transient results significantly. TITAN was also applied to a quarter core PWR problem based on a real reactor geometry. The steady-state results were compared to a solution produced by MEKIN-B and poor agreement between the horizontal power shapes was found. Calculations with various mesh spacings showed that the mesh spacings in the MEKIN-B analysis were too large to produce accurate results with a finite difference method. The TITAN results were shown to be reasonable. A pair of control rod ejection accidents were also analyzed with TITAN. A comparison of the TITAN PWR control rod ejection results with results from coupled point kinetics/thermal-hydraulics analyses showed that the point kinetics method used (adiabatic method for control rod reactivities, steady-state flux shape for core-averaged reactivity feedback) underpredicted the power excursion in one case and overpredicted it in the other. It was therefore concluded that point kinetics methods should be used with caution and that three-dimensional codes like TITAN are superior for analyzing PWR control rod ejection transients
International Nuclear Information System (INIS)
Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.
2011-01-01
Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a
International Nuclear Information System (INIS)
Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee
2004-01-01
SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)
International Nuclear Information System (INIS)
Yarlagadda, B.S.
1989-04-01
The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs
International Nuclear Information System (INIS)
Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.
2013-01-01
Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code
Introduction of thermal-hydraulic analysis code and system analysis code for HTGR
International Nuclear Information System (INIS)
Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi
1984-01-01
Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)
Loss of coolant accident analysis (thermal hydraulic analysis) - Japanese industries experience
International Nuclear Information System (INIS)
Okabe, K.
1995-01-01
An overview of LOCA analysis in Japanese industry is presented. The BASH-M code, developed for large scale LOCA reflooding analysis, is given as an example of verification and improvement of US computer programs are given. The code's application to the operational safety analysis concerns the following main areas: 1D drift flux model base computer program CANAC; CANAC-based advanced training simulator; emergency operating procedures. The author considers also the code application to the following new PWR safety design concepts: use of steam generators for decay heat removal at LOCA conditions; use of horizontal type steam generator for maintaining two-phase natural circulation under the reactor coolant system submerged. 9 figs
International Nuclear Information System (INIS)
Lightston, M.F.; Rock, R.
1996-01-01
This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)
Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO
Energy Technology Data Exchange (ETDEWEB)
Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)
2015-05-15
In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.
Directory of Open Access Journals (Sweden)
A. Rais
2015-01-01
Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.
International Nuclear Information System (INIS)
Iwasaki, Takashi; Sakai, Takaaki; Enuma, Yasuhiro; Mizuno, Tomoyasu
2002-03-01
Thermal-hydraulic analysis for the Lead-Bismuth eutectic (LBE)-cooled natural circulation reactor has been conducted by using a combined plant dynamics code (MSG-COPD). MSG-COPD has been developed to consider the multi-dimensional thermal-hydraulics effect on the plant dynamics during transients. Plant dynamics analyses for the LBE-cooled STAR-LM reactor, which has been designed by Argonne National Laboratory in U.S.A., have been performed to understand the basic thermal-hydraulic characteristics of the natural circulation reactor. As a result, it has been made clear that cold coolant remains in the lower plenum by the thermal stratification in case of the ULOHS condition with a severe temperature gradient at the stratified surface in the lower plenum. In addition, the flow-redistribution effect in a core channels by the buoyancy force has been evaluated for a candidate LBE-cooled FBR plant concept (LBE-FR), which has been designed by JNC. A linear evaluation method for the flow-redistribution coefficient is proposed for the LBE-FR, and compared with the multi-dimensional results by MSG-COPD. In conclusion, the method shows sufficient performance for the prediction of the flow-redistribution coefficient for typical lateral power distributions in the core. (author)
Energy Technology Data Exchange (ETDEWEB)
Son, Seong Min; Lee, You Ho; Cho, Jae Wan; Lee, Jeong Ik [KAERI, Daejeon (Korea, Republic of)
2016-05-15
This study suggested thermal hydraulic-mechanical integrated stress based methodology for analyzing the behavior of ATF type claddings by SiC-Duplex cladding LBLOCA simulation. Also, this paper showed that this methodology could predict real experimental result well. That concept for enhanced safety of LWR called Advanced Accident-Tolerance Fuel Cladding (ATF cladding, ATF) is researched actively. However, current nuclear fuel cladding design criteria for zircaloy cannot be apply to ATF directly because those criteria are mainly based on limiting their oxidation. So, the new methodology for ATF design criteria is necessary. In this study, stress based analysis methodology for ATF cladding design criteria is suggested. By simulating LBLOCA scenario of SiC cladding which is the one of the most promising candidate of ATF. Also we'll confirm our result briefly through comparing some facts from other experiments. This result is validating now. Some of results show good performance with 1-D failure analysis code for SiC fuel cladding that already developed and validated by Lee et al,. It will present in meeting. Furthermore, this simulation presented the possibility of understanding the behavior of cladding deeper. If designer can predict the dangerous region and the time precisely, it may be helpful for designing nuclear fuel cladding geometry and set safety criteria.
International Nuclear Information System (INIS)
Harling, O.K.; Lanning, D.D.; Bernard, J.A.; Meyer, J.E.; Henry, A.F.
1997-01-01
The 5 MW Massachusetts Institute of Technology Research Reactor (MITR-II) is expected to operate under a new license beginning in 1999. Among the options being considered is an upgrade in the heat removal system to allow operation at 10 MW. The purpose of this study is to predict the Limiting Safety System Settings and Safety Limits for the upgraded reactor (MITR-III). The MITR Multi-Channel Analysis Code was written to analyze the response of the MITR system to a series of anticipated transients in order to determine the Limiting Safety System Settings and Safety Limits under various operating conditions. The MIT Multi-Channel Analysis Code models the primary and secondary systems, with special emphasis placed on analyzing the thermal-hydraulic conditions in the core. The code models each MITR fuel element explicitly in order to predict the behavior of the system during flow instabilities. The results of the code are compared to experimental data from MITR-II and other sources. New definitions are suggested for the Limiting Safety System Settings and Safety Limits. MITR Limit Diagrams are included for three different heat removal system configurations. It is concluded that safe, year-round operating at 10 MW is possible, given that the primary and secondary flow rates are both increased by approximately 40%
International Nuclear Information System (INIS)
Kim, Hak Jae; Park, Goon Cherl
1996-01-01
Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)
Status and topics of thermal-hydraulic analysis for next-generation LWRs with passive safety systems
International Nuclear Information System (INIS)
Aritomi, Masanori; Ohnuki, Akira; Arai, Kenji; Kikuta, Michitaka; Yonomoto, Taisuke; Araya, Fumimasa; Akimoto, Hajime
1999-01-01
For increasing of electric power demand and reducing of carbon dioxide exhaust in the 21st century, studies of the next-generation light water reactor (LWR) with passive safety systems are developing in the world: AP-600 (by Westing House Co.); SBWR (by General Electric Co.); SWR1000 (by Siemens Co.); NP21 (by Mitsubishi Heavy Industry Co., et al.); JPSR (by JAERI). The passive equipment using natural circulation and natural convection are installed in the passive safety system, instead of active safety equipment, such as pumps, etc. It remains still as a important issue, however, to verify the reliability on the functions of the passive equipment, since that the driving forces of the passive equipment are small at comparison with the active safety equipment. The various subjects of thermal-hydraulic analysis for the next-generation light water reactors, such as temperature stratification in the passive safety systems, vapor condensation in the mixture of non-condensable gases and the interactions of the passive safety system with the primary cooling system, are illustrated and discussed in the paper. (M. Suetake)
Directory of Open Access Journals (Sweden)
Jian Song
2018-04-01
Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.
A two-fluid two-phase model for thermal-hydraulic analysis of a U-tube steam generator
International Nuclear Information System (INIS)
Hung, Huanjen; Chieng, Chingchang; Pei, Baushei; Wang, Songfeng
1993-01-01
The Advanced Thermal-Hydraulic Analysis Code for Nuclear Steam Generators (ATHANS) was developed on the basis of the THERMIT-UTSG computer code for U-tube steam generators. The main features of the ATHANS model are as follows: (a) the equations are solved in cylindrical coordinates, (b) the number and the arrangement of the control volumes inside the steam generator can be chosen by the user, (c) the virtual mass effect is incorporated, and (d) the conjugate gradient squared method is employed to accelerate and improve the numerical convergence. The performance of the model is successfully validated by comparison with the test data from a Westinghouse model F steam generator at the Maanshan nuclear power plant. Better agreement with the test data can be obtained by a finer grid system using a cylindrical coordinate system and the virtual mass effect. With these advanced features, ATHANS provides the basic framework for further studies on the problems of steam generators, such as analyses of secondary-side corrosion and tube ruptures
International Nuclear Information System (INIS)
Koshizuka, S.; Oka, Y.
1997-01-01
Moving Particle Semi-implicit (MPS) method is presented. Partial differential operators in the governing equations, such as gradient and Laplacian, are modeled as particle interactions without grids. A semi-implicit algorithm is used for incompressible flow analysis. In the present study, calculation models of moving solids, thin structures and phase change between liquid and gas are developed. Interaction between breaking waves and a floating solid is simulated using the model of moving solids. Calculations of collapsing water with a vertical thin plate show that water spills out over the plate which is largely deformed. Impingement of water jets on a molten metal pool is analyzed to investigate fundamental processes of vapor explosions. Water, vapor and molten metal are simultaneously calculated with evaporation. This calculation reveals that filaments of the molten metal emerge as the fragmentation process of vapor explosions. The MPS method is useful for complex problems involving moving interfaces even if topological deformations occur. (author)
CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle
International Nuclear Information System (INIS)
Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae
2009-01-01
This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)
International Nuclear Information System (INIS)
Ito, Masahiro; Imai, Yasutomo; Uwaba, Tomoyuki; Ohshima, Hiroyuki
2004-03-01
The bundle-duct interaction may occur in sodium cooled wire-wrapped FBR fuel subassemblies in high burn-up conditions. JNC has been developing a bundle deformation analysis code BAMBOO (Behavior Analysis code for Mechanical interaction of fuel Bundle under On-power Operation), a thermal hydraulics analysis code ASFRE-IV (Analysis of Sodium Flow in Reactor Elements - ver. IV) and their coupling method as a simulation system for the evaluation on the integrity of deformed FBR fuel pin bundles. In this study, the simulation system was applied to a coupling analysis of deformation and thermal-hydraulics in the fuel pin-bundle under a steady-state condition just after startup for the purpose of the verification of the simulation system. The iterative calculations of deformation and thermal-hydraulics employed in the coupling analysis provided numerically unstable solutions. From the result, it was found that improvement of the coupling algorithm of BAMBOO and ASFRE-IV is necessary to reduce numerical fluctuations and to obtain better convergence by introducing such computational technique as the optimized under-relaxation method. (author)
Directory of Open Access Journals (Sweden)
Itamar Iliuk
2016-01-01
Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.
International Nuclear Information System (INIS)
Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.
2004-01-01
An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect
International Nuclear Information System (INIS)
Venkat Raj, V.; Saha, D.
1976-01-01
The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)
International Nuclear Information System (INIS)
Barhen, J.; Bjerke, M.A.; Cacuci, D.G.; Mullins, C.B.; Wagschal, G.G.
1982-01-01
An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two ''off-line'' formalisms, with and without ''foresight'' characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The ''online'' formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems
International Nuclear Information System (INIS)
Mohd Faiz Salim; Ridha Roslan; Mohd Rizal Mamat
2013-01-01
Full-text: Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBIMOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges. (author)
International Nuclear Information System (INIS)
Salim, Mohd Faiz; Roslan, Ridha; Ibrahim, Mohd Rizal Mamat
2014-01-01
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges
Energy Technology Data Exchange (ETDEWEB)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)
2014-02-12
Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.
Energy Technology Data Exchange (ETDEWEB)
Stefanova, S; Panajotov, D; Ilieva, B; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1996-12-31
Safety analysis aimed at determination of thermal-hydraulic and thermal-mechanical margins of core and fuel rods has been carried out using computer codes COBSOFM and PIN-micro. Thermal-hydraulic calculations for the part of the core with maximum heat flux during steady-state regime show that the coolant, cladding and fuel temperatures are within the design limits. A severe accident with reactor blackout has been simulated. It is found that at 95% probability level there is no boiling crisis anywhere in the core. The thermal-mechanical parameters of working assembly fuel rod with maximum load have been calculated. The assembly linear power reached a maximum of 25 kW/m during the second fuel cycle, the fuel temperature remaining well below 1000{sup o} C. As the fuel assembly with typical power history has enough safety margins, it was proposed to use it for one more cycle. 4 refs., 12 figs.
Development of thermal hydraulic analysis frame work (preprocessor and post-processor)
International Nuclear Information System (INIS)
Moorthi, A.; Sai, K. Prem; Ravi, K.V.
2014-01-01
To make this process simplified a tailor-made software frame work is created to automate the process of input preparation for different operating conditions, execution of COBRA-IIIC code and output manipulation and graphical and tabular presentation for easy understanding. The output of COBRA-IIC is converted in the form of tables giving the available thermal margins on critical heat flux, critical power ratio, fuel center line temperature, fuel surface temperature etc. The hotspot and hot channel analysis are carried out to take care of the uncertainties involved in the input parameters. After performing the hot spot analysis, the results of the analysis are compiled and the automated report generation is performed. This report presents results in graphical and tabular form. With this validated frame work, manual processing of the input/output and report generation is reduced and at the same time, handling the minimal no of data during the analysis reduces the analysis down time and also providing the various diagnostics inside the code to reduce the error
International Nuclear Information System (INIS)
Paladino, Domenico
2014-01-01
This paper presents the multi purpose facility PANDA devised for the safety analysis of nuclear reactor containment. The passive safety systems for LWRs have been explained with details about the PAssive Nachzerfallswärmeabfuhr und Druck-Abbau Testanlage (PANDA)
ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant
International Nuclear Information System (INIS)
Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang
1987-12-01
The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc
International Nuclear Information System (INIS)
Allison, C.M.; Hohorst, J.K.; Perez, M.; Reventos, F.
2010-01-01
The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of the international SCDAP Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses publicly available RELAP5 and SCDAP models in combination with advanced programming and numerical techniques and other SDTP-member modeling/user options. One such member developed option is an integrated uncertainty analysis package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). This paper briefly summarizes the features of RELAP/SCDAPSIM/MOD4.0 and the integrated uncertainty analysis package, and then presents an example of how the integrated uncertainty package can be setup and used for a simple pipe flow problem. (author)
Thermal-hydraulic analysis code development and application to passive safety reactor at JAERI
International Nuclear Information System (INIS)
Araya, F.
1995-01-01
After a brief overview of safety assessment process, the author describes the LOCA analysis code system developed in JAERI. It comprises audit calculation code (WREM, WREM-J2, Japanese own code and BE codes (2D/3D, ICAP, ROSA). The codes are applied to development of Japanese passive safety reactor concept JPSR. Special attention is paid to the passive heat removal system and phenomena considered to occur under loss of heat sink event. Examples of LOCA analysis based on operation of JPSR for the cases of heat removal by upper RHR and heat removal from core to atmosphere are given. Experiments for multi-dimensional flow field in RPV and steam condensation in water pool are used for understanding the phenomena in passive safety reactors. The report is in a poster form only. 1 tab., 13 figs
Methodology of a PWR containment analysis during a thermal-hydraulic accident
Energy Technology Data Exchange (ETDEWEB)
Silva, Dayane F.; Sabundjian, Gaiane; Lima, Ana Cecilia S., E-mail: dayane.silva@usp.br, E-mail: gdjian@ipen.br, E-mail: aclima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
The aim of this work is to present the methodology of calculation to Angra 2 reactor containment during accidents of the type Loss of Coolant Accident (LOCA). This study will be possible to ensure the safety of the population of the surroundings upon the occurrence of accidents. One of the programs used to analyze containment of a nuclear plant is the CONTAIN. This computer code is an analysis tool used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor during an accident. The containment of the type PWR plant is a concrete building covered internally by metallic material and has limits of design pressure. The methodology of containment analysis must estimate the limits of pressure during a LOCA. The boundary conditions for the simulation are obtained from RELAP5 code. (author)
Methodology of a PWR containment analysis during a thermal-hydraulic accident
International Nuclear Information System (INIS)
Silva, Dayane F.; Sabundjian, Gaiane; Lima, Ana Cecilia S.
2015-01-01
The aim of this work is to present the methodology of calculation to Angra 2 reactor containment during accidents of the type Loss of Coolant Accident (LOCA). This study will be possible to ensure the safety of the population of the surroundings upon the occurrence of accidents. One of the programs used to analyze containment of a nuclear plant is the CONTAIN. This computer code is an analysis tool used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor during an accident. The containment of the type PWR plant is a concrete building covered internally by metallic material and has limits of design pressure. The methodology of containment analysis must estimate the limits of pressure during a LOCA. The boundary conditions for the simulation are obtained from RELAP5 code. (author)
Thermal hydraulic analysis of gas-cooled reactors with annular fuel rods
International Nuclear Information System (INIS)
Han, Kyu Hyun; Chang, Soon Heung
2005-01-01
More than half of the world's energy is used in industrial processes and for heating applications which have hardly been touched by the nuclear industry. Nuclear power could be brought into a wide range of applications for industrial processes, provided that gas outlet temperatures of gascooled reactors are sufficiently high. The most limiting core design requirement which controls the core outlet temperature is the maximum acceptable fuel compact temperature. An innovative fuel design is required for a significant decrease in the fuel temperature. This study investigated the possibilities of implementing internally and externally cooled annular fuel rods in a gas-cooled reactor
ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS
Walton, J. T.
1994-01-01
ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.
Using finite mixture models in thermal-hydraulics system code uncertainty analysis
Energy Technology Data Exchange (ETDEWEB)
Carlos, S., E-mail: scarlos@iqn.upv.es [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Sánchez, A. [Department d’Estadística Aplicada i Qualitat, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Ginestar, D. [Department de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Martorell, S. [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain)
2013-09-15
Highlights: • Best estimate codes simulation needs uncertainty quantification. • The output variables can present multimodal probability distributions. • The analysis of multimodal distribution is performed using finite mixture models. • Two methods to reconstruct output variable probability distribution are used. -- Abstract: Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty in input parameters and modeling, it is necessary to perform uncertainty assessment (UA), and eventually sensitivity analysis (SA), of the results obtained. These analyses are part of the appropriate treatment of uncertainties imposed by current regulation based on the adoption of the best estimate plus uncertainty (BEPU) approach. The most popular approach for uncertainty assessment, based on Wilks’ method, obtains a tolerance/confidence interval, but it does not completely characterize the output variable behavior, which is required for an extended UA and SA. However, the development of standard UA and SA impose high computational cost due to the large number of simulations needed. In order to obtain more information about the output variable and, at the same time, to keep computational cost as low as possible, there has been a recent shift toward developing metamodels (model of model), or surrogate models, that approximate or emulate complex computer codes. In this way, there exist different techniques to reconstruct the probability distribution using the information provided by a sample of values as, for example, the finite mixture models. In this paper, the Expectation Maximization and the k-means algorithms are used to obtain a finite mixture model that reconstructs the output variable probability distribution from data obtained with RELAP-5 simulations. Both methodologies have been applied to a separated
A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables
Bottura, L; Rosso, C
2000-01-01
In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency. We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand cable.
International Nuclear Information System (INIS)
Hanson, R.G.; Johnson, E.C.; Carlson, K.E.; Chou, C.Y.; Davis, C.B.; Martin, R.P.; Riemke, R.A.; Wagner, R.J.
1992-07-01
This report documents ten developmental assessment problems which were used to test the multidimensional component in RELAP5/MOD2.5, Version 3w. The problems chosen were a rigid body rotation problem, a pure radial symmetric flow problem, an r-θ symmetric flow problem, a fall problem, a rest problem, a basic one-dimensional flow test problem, a gravity wave problem, a tank draining problem, a flow through the center problem, and coverage analysis using PIXIE. The multidimensional code calculations are compared to analytical solutions and one-dimensional code calculations. The discussion section of each problem contains information relative to the code's ability to simulate these problems
Quality Assurance for Thermal Hydraulic Analysis Code, TASS/SMR-S
International Nuclear Information System (INIS)
Kim, Hee Kyung; Kim, Soo Hyoung; Chung, Young Jong; Kim, Hyeon Soo
2012-01-01
Safety analysis for a System-integrated Modular Advanced Reactor (SMART), a computer code called TASS/SMR-S has been developed by Korea Atomic Energy Research Institute (KAERI). To guarantee the quality of the software, a series of software Quality Assurance (QA) procedures has been developed for the TASS/SMR-S code. These procedures are described herein, from the requirement phase to the Verification and Validation (V and V) phase, and representative results of the TASS/SMR-S QA are presented
International Nuclear Information System (INIS)
Chung, Bub Dong; Jeong, Jae Jun; Hwang, Moon Kyu
2008-01-01
The system safety analysis code, such as RELAP5, TRAC, CATHARE etc. have been developed based on Fortran language during the past few decades. Refactoring of conventional codes has been also performed to improve code readability and maintenance. TRACE, RELAP5-3D and MARS codes are examples of these activities. The codes were redesigned to have modular structures utilizing Fortran 90 features. However the programming paradigm in software technology has been changed to use objects oriented programming (OOP), which is based on several techniques, including encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in mainstream software application development until the early 1990s. Many modern programming languages now support OOP. Although the recent Fortran language also support the OOP, it is considered to have limited functions compared to the modern software features. In this work, objective oriented program for system safety analysis code has been tried utilizing modern C language feature. The advantage of OOP has been discussed after verification of design feasibility
The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core
Energy Technology Data Exchange (ETDEWEB)
Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae
2006-07-15
This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a
An overview on rod-bundle thermal-hydraulic analyses
International Nuclear Information System (INIS)
Sha, W.T.
1980-01-01
Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) and, (3) bench-mark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system. Basic limitations and merits of each method are delineated. (orig.)
International Nuclear Information System (INIS)
Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.
2004-01-01
The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)
Review of best estimate plus uncertainty methods of thermal-hydraulic safety analysis
International Nuclear Information System (INIS)
Prosek, A.; Mavko, B.
2003-01-01
In 1988 United States Nuclear Regulatory Commission approved the revised rule on the acceptance of emergency core cooling system (ECCS) performance. Since that there has been significant interest in the development of codes and methodologies for best-estimate loss-of-coolant accident (LOCAs) analyses. Several new best estimate plus uncertainty methods (BEPUs) were developed in the world. The purpose of the paper is to review the developments in the direction of best estimate approaches with uncertainty quantification and to discuss the problems in practical applications of BEPU methods. In general, the licensee methods are following original methods. The study indicated that uncertainty analysis with random sampling of input parameters and the use of order statistics for desired tolerance limits of output parameters is today commonly accepted and mature approach. (author)
Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit
International Nuclear Information System (INIS)
Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel
2011-01-01
This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)
Frequency analysis for the thermal hydraulic characterization of a natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Torres, Walmir M.; Macedo, Luiz A.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro E.; Conti, Thadeu N.; Mesquita, Roberto N.; Masotti, Paulo H.; Angelo, Gabriel, E-mail: wmtorres@ipen.b, E-mail: lamacedo@ipen.b, E-mail: gdjian@ipen.b, E-mail: delvonei@ipen.b, E-mail: umbehaun@ipen.b, E-mail: tnconti@ipen.b, E-mail: , E-mail: rnavarro@ipen.b, E-mail: pmasotti@ipen.b, E-mail: gabriel.angelo@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
This paper presents the frequency analysis studies of the pressure signals from an experimental natural circulation circuit during a heating process. The main objective is to identify the characteristic frequencies of this process using fast Fourier transform. Video images are used to associate these frequencies to the observed phenomenology in the circuit during the process. Sub-cooled and saturated flow boiling, heaters vibrations, overall circuit vibrations, chugging and geysering were observed. Each phenomenon has its specific frequency associated. Some phenomena and their frequencies must be avoided or attenuated since they can cause damages to the natural circulation circuit and its components. Special operation procedures and devices can be developed to avoid these undesirable frequencies. (author)
CFD model development and data comparison for thermal-hydraulic analysis of HTO pilot scale reactor
International Nuclear Information System (INIS)
Kochan, R.J.; Oh, C.H.
1995-09-01
The DOE Hydrothermal Oxidation (HTO) program is validating computational methods for use in scaling up small HTO systems to production scale. As part of that effort, the computational fluid dynamics code FLUENT is being used to calculate the integrated fluid dynamics and chemical reactions in an HTO vessel reactor designed by MODAR, Inc. Previous validation of the code used data from a benchscale reactor. This reports presents the validation of the code using pilotscale (10 times greater throughput than benchscale) data. The model for the pilotscale reactor has been improved based upon the benchscale data by including better fluid thermal properties, a better solution algorithm, addition of external heat transfer, investigation of the effects of turbulent flow, and, although not built into the computer model, a technique for using the calculated adiabatic oxidation temperatures for selecting initial conditions. Thermal results from this model show very good agreement with the limited test data from MODAR Run 920. In addition to the reactor temperatures, flowfield details, including chemical reaction distribution, and simulated salt particle transport were obtained. This model will be very beneficial in designing and evaluating larger commercial scale units. The results of these calculations indicate that for model validation, more accurate boundary conditions need to be measured in future test runs
Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis
International Nuclear Information System (INIS)
Feldman, E.E.
2008-01-01
Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. (author)
International Nuclear Information System (INIS)
Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio
2012-01-01
The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)
HEATHYD, Steady-State Thermal Hydraulic Analysis of Low-Enriched U Fuel Reactor
International Nuclear Information System (INIS)
NABBI, R.
1989-01-01
1 - Description of program or function: HEATHYD is a code for the steady-state heat transfer calculation of research nuclear reactors with forced convection. It models heat transfer and coolant flow for assemblies of parallel fuel plates of MTR type with any axial power distribution. The thermodynamic model accounts for single phase cooling and sub- cooled boiling condition using the transition criterion of Bergeles-Rosenow. In addition to the calculation of the channel flow velocities and coolant pressure drops, HEATHYD calculates axial distribution of the coolant and clad-surface temperatures. Safety margins to the critical heat flux as a result of burnout condition or flow instability are determined. 2 - Method of solution: Applying the finite difference method, HEATHYD solves the equations of heat conduction and heat transfer to the coolant. For the physical properties of the coolant as a function of the coolant temperature polynomials of degree 6 are used. Depending on the coolant condition, different correlations for the heat transfer coefficient can be applied. The analysis of the critical cooling conditions resulting in burnout or flow instability, is performed according to the correlations developed by Mirshak/ Labuntsov and Forgan/Whittle
A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores
International Nuclear Information System (INIS)
Chen, Gary; Anghaie, Samim
1999-01-01
A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)
Energy Technology Data Exchange (ETDEWEB)
No, Hee Cheon; Park, Hyun Sik; Kim, Hyougn Tae; Moon, Young Min; Choi, Sung Won; Heo, Sun [Korea Advanced Institute Science and Technology, Taejon (Korea, Republic of)
1999-04-15
The loss-of-RHR accident during midloop operation has been important as results of the probabilistic safety analysis. The condensation models In RELAP5/MOD3 are not proper to analyze the midloop operation. To audit and improve the model in RELAP5/MOD3.2, several items of separate effect tests have been performed. The 29 sets of reflux condensation data is obtained and the correlation is developed with these heat transfer coefficient's data. In the experiment of the direct contact condensation in hot leg, the apparatus setting is finished and a few experimental data is obtained. Non-iterative model is used to predict the model in RELAP5/MOD3.2 with the results of reflux condensation and evaluates better than the present model. The results of the direct contact condensation in a hot leg represent to be similar with the present model. The study of the CCF and liquid entrainment in a surge line and pressurizer is selected as the third separate experiment and is on performance.
Multi scale analysis of thermal-hydraulics of nuclear reactors - the neptune project
International Nuclear Information System (INIS)
Bestion, D.
2004-01-01
Full text of publication follows:The NEPTUNE project aims at building a new two-phase thermalhydraulic platform for nuclear reactor simulation. It is jointly developed by CEA-DEN and EDF-DRD and also supported by IRSN and FRAMATOME-ANP. NEPTUNE is a new generation multi-scale platform. The system scale models the whole reactor circuit with 0D, 1D and 3D modules and is generally applied with a coarse meshing including about a thousand meshes. The component scale models components like the reactor Core or Steam Generators with a finer nodalization and is generally applied with 10 4 to 10 5 meshes. Since these components contain rod bundles or tube bundles the physical modelling uses a homogenization technique with a porosity. For some specific applications it was found necessary to add a two-phase CFD tool able to zoom on a portion of the circuit where small scale phenomena are of importance for design purpose or safety issues. Here the basic equations are still averaged like in RANS approach for single phase, but the space resolution is finer than in component codes and typical application may require 10 5 to 10 7 meshes. These three scales have to be coupled in order to simulate many reactor transients where both local effects and system effects play a role. In addition, two-phase Direct Numerical Simulation Tools with Interface Tracking Techniques can be used for even smaller scale investigations for a better understanding of basic physical processes and for developing closure relations for averaged models. The main challenges of this project are here presented and some first results are presented. (authors)
Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis
International Nuclear Information System (INIS)
Feldman, E.
2008-01-01
Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. Replacing the 2006 Groeneveld table with the Bernath CHF correlation (while using the RELAP5-3D code flow solution) causes the increase to be 23% instead of 67%. Additional RELAP5-3D flow-versus-power solutions obtained from Reference 1 and presented in Appendix B for four specific TRIGA reactors further demonstrates that the Bernath correlation predicts CHF to occur at considerably lower power levels than does the 2006 Groeneveld table. Because of the lack of measured CHF data in the region of interest to TRIGA reactors, none of the CHF correlations considered can be assumed to provide the definitive CHF power. It is recommended, however, to compare the power levels of the potential limiting rods with the power levels at which the Bernath and 2006 Groeneveld CHF correlations predict CHF to occur
Thermal-hydraulic analysis of the OSURR pool for power upgrade with natural convection core cooling
International Nuclear Information System (INIS)
Ha, J.J.; Aldemir, T.
1988-01-01
Natural convection mode core cooling will be maintained in the LEU conversion/power upgrade of The Ohio State University Research Reactor (OSURR) to 250-500 kW. The pool water will be cooled by a water-glycol-air and a water-water heat exchanger. A plume disperser will be installed in the pool to minimize evaporation from the pool top and to maintain the dose rate due to N-16 activity within allowable levels. The minimization of the pool heat removal system operation costs necessitates maximizing the inlet temperature to the water-glycol-air heat exchanger. For the maximization process, the change in the pool temperature and velocity fields have to be investigated as a function of: location and orientation of the heat removal system components and the plume disperser in the pool; mass flow rate through the plume disperser. The velocity and temperature fields in the pool are determined using COMMIX-1A. The computational system model accounts for the presence of all the pool components (i.e. core, thermal column, beam ports, ion chamber, guide tubes, rabbit, neutron source etc.). The results show that: (1) Both the heat removal system inlet point and the plume disperser have to be located close to the top of the core. (2) Using a disperser system consisting of several pipes may be more feasible than a single unit. (3) For high disperser flow, the disperser jet has to be almost parallel to the top of the core to prevent flow reversal in coolant channels. (4) More than one disperser system may be necessary to create an inversion layer in the pool
Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis
International Nuclear Information System (INIS)
Thyageswaran, Sridhar
2016-01-01
Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I = 0.455 with regeneration and η I = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.
International Nuclear Information System (INIS)
Bambang Teguh, P.; Turyana, I.
1997-01-01
In order to support the activities of LTMP and other Indonesia research institutions in the field of thermal-hydraulic, LTMP is equipped with several software, one of which is thermalhydraulic code TRIO-VF developed by CEA (commissariat a Energie Atomique), France. TRIO-VF is a computer code to solve general equations of thermal-hydraulic in 3D. The code can be used for numerical simulation of laminar or turbulent flow, with or without the presence of heat or mass transfer. these simulations or predictions are important step in the conception of thermalhydraulic equipment (vessels, heat and components of nuclear reactors). The fluid flow can be in the domain where internal obstacles (plate, tube bundel...etc.) are present
International Nuclear Information System (INIS)
Biaty, Patricia Andrea Paladino; Sabundjian, Gaiane
2005-01-01
The thermal hydraulic study in accidents and transients analyses in nuclear power plants is realized with some special tools. These programs use the best estimate analyses and have been developed to simulate accidents and transients in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code has been used as tool to licensing the nuclear facilities in our country, which is the objective of this study. The main problem when RELAP5 code is used is a lot of information necessary to simulate thermal hydraulic accidents. Moreover, there is the necessity of a reasonable amount of mathematical operations to calculation of the geometry of the components existents. Therefore, in order to facilitate the manipulation of this information, it is necessary the developing a friendly preprocessor for attainment of the mathematical calculations for RELAP5 code. One of the tools used for some of these calculations is the MS-EXCEL, which will be used in this work. (author)
International Nuclear Information System (INIS)
1980-01-01
Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base
International Nuclear Information System (INIS)
Corradin, Michael; Dominguez, A.; Tokuhiro, Akira; Hamman, K.
2014-01-01
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.
Energy Technology Data Exchange (ETDEWEB)
Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)
2014-10-15
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.
International Nuclear Information System (INIS)
Zio, E.; Apostolakis, G.E.; Pedroni, N.
2010-01-01
The estimation of the functional failure probability of a thermal-hydraulic (T-H) passive system can be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the system model and the numerical values of its parameters, followed by the computation of the system response by a mechanistic T-H code, for each sample. The computational effort associated to this approach can be prohibitive because a large number of lengthy T-H code simulations must be performed (one for each sample) for accurate quantification of the functional failure probability and the related statistics. In this paper, the computational burden is reduced by replacing the long-running, original T-H code by a fast-running, empirical regression model: in particular, an Artificial Neural Network (ANN) model is considered. It is constructed on the basis of a limited-size set of data representing examples of the input/output nonlinear relationships underlying the original T-H code; once the model is built, it is used for performing, in an acceptable computational time, the numerous system response calculations needed for an accurate failure probability estimation, uncertainty propagation and sensitivity analysis. The empirical approximation of the system response provided by the ANN model introduces an additional source of (model) uncertainty, which needs to be evaluated and accounted for. A bootstrapped ensemble of ANN regression models is here built for quantifying, in terms of confidence intervals, the (model) uncertainties associated with the estimates provided by the ANNs. For demonstration purposes, an application to the functional failure analysis of an emergency passive decay heat removal system in a simple steady-state model of a Gas-cooled Fast Reactor (GFR) is presented. The functional failure probability of the system is estimated together with global Sobol sensitivity indices. The bootstrapped ANN regression model built with low computational time on few (e.g., 100) data
Energy Technology Data Exchange (ETDEWEB)
Zio, E., E-mail: enrico.zio@polimi.i [Energy Department, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy); Apostolakis, G.E., E-mail: apostola@mit.ed [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Pedroni, N. [Energy Department, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy)
2010-05-15
The estimation of the functional failure probability of a thermal-hydraulic (T-H) passive system can be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the system model and the numerical values of its parameters, followed by the computation of the system response by a mechanistic T-H code, for each sample. The computational effort associated to this approach can be prohibitive because a large number of lengthy T-H code simulations must be performed (one for each sample) for accurate quantification of the functional failure probability and the related statistics. In this paper, the computational burden is reduced by replacing the long-running, original T-H code by a fast-running, empirical regression model: in particular, an Artificial Neural Network (ANN) model is considered. It is constructed on the basis of a limited-size set of data representing examples of the input/output nonlinear relationships underlying the original T-H code; once the model is built, it is used for performing, in an acceptable computational time, the numerous system response calculations needed for an accurate failure probability estimation, uncertainty propagation and sensitivity analysis. The empirical approximation of the system response provided by the ANN model introduces an additional source of (model) uncertainty, which needs to be evaluated and accounted for. A bootstrapped ensemble of ANN regression models is here built for quantifying, in terms of confidence intervals, the (model) uncertainties associated with the estimates provided by the ANNs. For demonstration purposes, an application to the functional failure analysis of an emergency passive decay heat removal system in a simple steady-state model of a Gas-cooled Fast Reactor (GFR) is presented. The functional failure probability of the system is estimated together with global Sobol sensitivity indices. The bootstrapped ANN regression model built with low computational time on few (e.g., 100) data
Energy Technology Data Exchange (ETDEWEB)
Bartzis, J G; Megaritou, A; Belessiotis, V
1987-09-01
THEAP-I is a computer code developed in NRCPS `DEMOCRITUS` with the aim to contribute to the safety analysis of the open pool research reactors. THEAP-I is designed for three dimensional, transient thermal/hydraulic analysis of a thermally interacting channel bundle totally immersed into water or air, such as the reactor core. In the present report the mathematical and physical models and methods of the solution are given as well as the code description and the input data. A sample problem is also included, refering to the Greek Research Reactor analysis, under an hypothetical severe loss of coolant accident.
Energy Technology Data Exchange (ETDEWEB)
Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear
2002-07-01
The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)
International Nuclear Information System (INIS)
Tyobeka, B.; Ivanov, K.; Pautz, A.
2007-01-01
In the advent of increased demand for safety and economics of nuclear power plants, nuclear engineers and designers are called upon to develop advanced computation tools. In these developments, space-time effects in the dynamics of nuclear reactors must be considered within the framework of a full 3-dimensional treatment of both neutron kinetics and thermal hydraulics. In a recent effort at the Pennsylvania State University, a time-dependent version of the discrete ordinates transport code DORT, DORT-TD was coupled to a 2-dimensional core thermal hydraulics code THERMIX-DIREKT. In the coupling process, a feedback model was developed to account for the feedback effects and was implemented into DORT-TD. During the calculation process for each spatial node of the DORT-TD core model, feedback parameters representative of this node are passed to the feedback module. Using these values, cross section tables are then interpolated for the appropriate macroscopic cross section values. The updated macroscopic cross sections are passed back to DORT-TD to perform transport core calculations, and the power distribution is transferred to THERMIX-DIREKT to obtain the relevant thermal-hydraulics data in turn, and this calculation loop continues. In this paper, DORT-TD/THERMIX is used to simulate transients of interest in the PBMR (Pebble Bed Modular Reactor) safety using established benchmark problems: load change from 100% to 40% power and fast control rod ejection (PBMR-268 benchmark problem). The results obtained are compared with those obtained using the diffusion-based module of the code. The results are only preliminary and so far show that diffusion theory is not such a bad approximation for PBMR for the prediction of integral parameters
International Nuclear Information System (INIS)
Hwang, Moon Kyu; Kim, Soo Hyung; Kim, Byung Jae; Chung, Bub Dong; Kim, Hee Cheol
2010-04-01
This reports is a literature survey on models and correlations for interfacial and wall friction models that are used to simulate thermal-hydraulics in nuclear reactors. The interfacial and wall frictions are needed to solve the momentum equations of gas, continuous liquid and droplet. Not only existing system codes, such as RELAP5-3D, TRAC-M, MARS, TRACE, CATHARE) but also up-to-date researches were reviewed. This report is a revised version of the previous technical report(KAERI/TR-3437/2007)
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Taniguchi, Wataru
1999-02-01
Geological disposal of high-level radioactive waste (HLW) in Japan is based on a multibarrier system composed of engineered and natural barriers. The engineered barriers are composed of vitrified waste confined within a canister, overpack and buffer material. Highly compacted bentonite clay is considered one of the most promising candidate buffer material mainly because of its low hydraulic conductivity and high adsorption capacity of radionuclides. In a repository for HLW, complex thermal, hydraulic and mechanical (T-H-M) phenomena will take place, involving the interactive processes between radioactive decay heat from the vitrified waste, infiltration of ground water and stress generation due to the earth pressure, the thermal loading and the swelling pressure of the buffer material. In order to evaluate the performance of the buffer material, the coupled T-H-M behaviors within the compacted bentonite have to be modelled. Before establishing a fully coupled T-H-M model, the mechanism of each single phenomenon or partially coupled phenomena should be identified and modelled physically and numerically. Under the unsaturated condition, the water movement within the buffer material has often been expressed as a simple diffusion model with the constant apparent water diffusivity. However, the water movement in the low permeable and unsaturated porous medium has been known as a transfer process in both vapor and liquid phases. Therefore, it is necessary to incorporate the two-phase contribution into the physical model. In this study, the water diffusivity of compacted bentonite is obtained as a function of water content and temperature. The proposed water movement model is constructed by applying the Philip and de Vries' model and Darcy's law. While the water retention curve is measured by the thermocouple psychrometer, van Genuchten model is applied as the water retention curve because the smooth derivative of the water potential with respect to water content is
Steam generator thermal-hydraulics
International Nuclear Information System (INIS)
Inch, W.W.; Scott, D.A.; Carver, M.B.
1980-01-01
This paper discusses a code for detailed numerical modelling of steam generator thermal-hydraulics, and describes related experimental programs designed to promote in-depth understanding of three-dimensional two-phase flow. (auth)
Energy Technology Data Exchange (ETDEWEB)
Alva N, J.
2010-07-01
In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)
Thermal-Hydraulic Tests for Reactor Core Safety
International Nuclear Information System (INIS)
Chun, Se Young; Chung, Moon Ki; Baek, Won Pil and others
2005-04-01
The reflood experiments for single rod annulus geometry have been performed to investigate the effect of spacer grid on thermal-hydraulics under reflood conditions. The reflood experimental loop for 6x6 rod bundle with a spacer grid developed in Korea has been provided. About 8000 data points for Post-CHF heat transfer have been obtained from the experiments About 1400 CHF data points for 3x3 Water and 5x5 Freon rod bundles have been obtained. The existing evaluation methodology for core safety under return-to-power conditions has been investigated using KAERI low flow CHF database. The hydraulic tests for turbulence mixing characteristics in subchannel of 5x5 rod bundle have been carried out using advanced measurement technique, LVD and the database for various spacer grids have been provided. In order to measure the turbulence mixing characteristics in details, the hydraulic loop with a magnified 5x5 rod bundle has been prepared. The database which was constructed through a systematic thermal hydraulic tests for the reflood phenomenon, CHF, Post-CHF is surely to be useful to the industry field, the regulation body and the development of thermal-hydraulic analysis code
Energy Technology Data Exchange (ETDEWEB)
Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Hsu, Keng-Hsien, E-mail: hardlycampus@iner.gov.tw; Lin, Chin-Tsu, E-mail: jtling@iner.gov.tw
2015-07-15
Highlights: • Calculate NSSS and containment transient response during extended SBO of 24 h. • RELAP5-3D and GOTHIC models are developed for Maanshan PWR plant. • Reactor coolant pump seal leakage is specifically modeled for each loop. • Analyses are performed with and without secondary-side depressurization, respectively. • Considering different total available time for turbine driven auxiliary feedwater system. - Abstract: A thermal-hydraulic analysis has been performed with respect to the response of the nuclear steam supply system (NSSS) and the containment during an extended station blackout (SBO) duration of 24 h in Maanshan PWR plant. Maanshan plant is a Westinghouse three-loop PWR design with rated core thermal power of 2822 MWt. The analyses in the NSSS and the containment are based on the RELAP5-3D and GOTHIC models, respectively. Important design features of the plant in response to SBO are considered in the respective models, e.g., the steam generator PORVs, turbine driven auxiliary feedwater system (TDAFWS), accumulators, reactor coolant pump (RCP) seal design, various heat structures in the containment, etc. In the analysis it is assumed that the shaft seal in each RCP failed due to loss of seal cooling and the RCS fluid flows to the containment directly. Some parameters calculated from the RELPA5-3D model are input to the containment GOTHIC model, including the RCS average temperature and the RCP seal leakage flow and enthalpy. The RCS average temperature is used to drive the sensible heat transfer to the containment. It is found that the severity of the event depends mainly on whether the secondary side is depressurized or not. If the secondary side is depressurized in time (within 1 h after SBO) and the TDAFWS is available greater than 19 h, then the reactor core will be covered with water throughout the SBO duration, which ensures the integrity of the reactor core. On the contrary, if the secondary side is not depressurized, then the RCS
Thermal hydraulic considerations in liquid-metal-cooled components of tokamak fusion reactors
International Nuclear Information System (INIS)
Picologlou, B.F.; Reed, C.B.; Hua, T.Q.
1989-01-01
The basic considerations of MHD thermal hydraulics for liquid-metal-cooled blankets and first walls of tokamak fusion reactors are discussed. The liquid-metal MHD program of Argonne National Laboratory (ANL) dedicated to analytical and experimental investigations of reactor relevant MHD flows and development of relevant thermal hydraulic design tools is presented. The status of the experimental program and examples of local velocity measurements are given. An account of the MHD codes developed to date at ANL is also presented as is an example of a 3-D thermal hydraulic analysis carried out with such codes. Finally, near term plans for experimental investigations and code development are outlined. 20 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
Wilson, G.E.
1992-01-01
The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented
Directory of Open Access Journals (Sweden)
Shixiong Song
2014-01-01
CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.
International Nuclear Information System (INIS)
Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon
2003-01-01
To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method
Virginia Power thermal-hydraulics methods
International Nuclear Information System (INIS)
Anderson, R.C.; Basehore, K.L.; Harrell, J.R.
1987-01-01
Virginia Power's nuclear safety analysis group is responsible for the safety analysis of reload cores for the Surry and North Anna power stations, including the area of core thermal-hydraulics. Postulated accidents are evaluated for potential departure from nucleate boiling violations. In support of these tasks, Virginia Power has employed the COBRA code and the W-3 and WRB-1 DNB correlations. A statistical DNBR methodology has also been developed. The code, correlations and statistical methodology are discussed
Liquid metal thermal-hydraulics
International Nuclear Information System (INIS)
Kottowski-Duemenil, H.M.
1994-01-01
This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of
International Nuclear Information System (INIS)
Agbodemegbe, V. Y.
2014-07-01
Enhancement of heat transfer for flow through rod bundles is linked to the extent and sustainability of mixing in the flow geometry. Spacer grids used as support for rod bundles in nuclear reactors, when attached with ditferent designs of mixing vanes promote turbulent mixing by inducing swirl or forced lateral convection that improves mixing within or between sub-channels. The improved turbulent mixing raises the margin of the onset of critical heat flux in light water reactors (LWR) and also ensures a higher fuel cycle economy. To optimize design of mixing vanes and performance of spacer grids with mixing vanes, computational fluid dynamic simulations arc carried out on new designs and validated experimentally prior to industrial application. In the present study, computational fluid dynamic simulation using STAR-CCM+ and sub-channel analysis with MATRA were performed for flow of water through a 5 X 5 rod bundle geometry for which the rod to rod pitch to diameter ratio was 1.33 and the wall to rod pitch to diameter ratio was 0.74. The two layer k-epsilon turbulence model with an all- y + automatic wall treatment function in STAR-CCM+ were adopted for an isothermal single phase flow through the geometry with imposed cyclic periodic and non-cyclic periodic interface boundary conditions. The objective was to primarily investigate the detail flow behavior in rod bundle in the presence of spacer grids with and without attached mixing vanes. Furthermore, the present study also investigated the extent of turbulent mixing and lateral mass flux induced by the mixing vanes through comparative analysis of parametric trends for spacer grid with and without mixing vanes. New models and empirical correlations for describing the mixing vanes effects were also developed. These semi-empirical correlations improved the prediction for lateral mass flux due to turbulence, fraction of flow diverted through gaps and cross-flow resistance coefficients. Validation of simulation results
International Nuclear Information System (INIS)
Geffray, Clotaire; Macian-Juan, Rafael
2014-01-01
In the context of the FP7 European THINS Project, complex thermal-hydraulic phenomena relevant for the Generation IV of nuclear reactors are investigated. KTH (Sweden) built the TALL-3D facility to investigate the transition from forced to natural circulation of the Lead-Bismuth Eutectic (LBE) in a pool connected to a 3-leg primary circuit with two heaters and a heat exchanger. The simulation of such 3D phenomena is a challenging task. GRS (Germany) developed the coupling between the Computational Fluid Dynamics (CFD) code ANSYS CFX and the System Analysis code ATHLET. Such coupled codes combine the advantages of CFD, which allow a fine resolution of 3D phenomena, and of System Analysis codes, which are fast running. TUM (Germany) is responsible for the Uncertainty and Sensitivity Analysis of the coupled ATHLET-CFX model in the THINS Project. The influence of modeling uncertainty on simulation results needs to be assessed to characterize and to improve the model and, eventually, to assess its performance against experimental data. TUM has developed a computational framework capable of propagating model input uncertainty through coupled codes. This framework can also be used to apply different approaches for the assessment of the influence of the uncertain input parameters on the model output (Sensitivity Analysis). The work reported in this paper focuses on three methods for the assessment of the sensitivity of the results to the modeling uncertainty. The first method (Morris) allows for the computation of the Elementary Effects resulting from the input parameters. This method is widely used to perform Screening Analysis. The second method (Spearman's rank correlation) relies on regression-based non-parametric measures. This method is suitable if the relation between the input and the output variables is at least monotonic, with the advantage of a low computational cost. The last method (Sobol') computes so-called total effect indices which account for
Moorthy, P.; Oumer, A. N.; Ishak, M.
2018-03-01
The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.
Urquiza, Eugenio
This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an
International Nuclear Information System (INIS)
Potter, R.C.; Venneri, F.; Trujillo, D.A.
1993-01-01
Accelerator transmutation of nuclear waste offers exciting possibilities for the disposal of nuclear waste by converting it into more benign Species. The non-aqueous system discussed here contains the materials to be transmuted within a lithium-fluoride salt. The system consists of bundles of graphite tubes containing the salt Solution. The tubes are cooled as lithium flows across their exterior. These circular graphite tubes have an inner circular passage and an outer annulus. Natural convection within the tubes causes the salt to circulate. This paper deals with the thermal-hydraulics of the system; it does not consider the neutronics in detail. Heat transfer and fluid flow were modeled using a custom computer program the system behavior of an graphite tube. Different geometries were tried, while keeping the system volume the same, to determine an optimize graphite tube geometry. I considered both the parallel flow and the counterflow of the lithium coolant, and allowed limited boiling to occur to facilitate circulation. I achieved power densities as high as 200 W/cm 3 for the overall blanket
International Nuclear Information System (INIS)
McAreavey, G.
1977-01-01
Azimuthal variations of clad temperature in fuel pin bundles leads to pin bowing by differential thermal expansion. During irradiation in a fast flux further possibly more severe bowing is caused by differential neutron induced voidage swelling, which, being temperature sensitive, will also vary azimuthally. The problem of pin bowing in a fuel element cluster involves consideration of the thermal/hydraulic behaviour, allowing for both inherent and induced clad temperature non-uniformities, coupled with the restrained bowing behaviour, including differential thermal expansion, differential swelling, and irradiation creep. All pins must be considered simultaneously. In the temperature and stress ranges of interest thermal creep may be neglected. An existing computer code, IAMBIC solves the zero time thermal bowing problem for a cluster of up to 61 pins on hexagonal pitch, with up to 21 supports at arbitrary axial spacing. The present paper describes the basis of TRIAMBIC, a time dependent code which analyses the irradiation induced effects in fuel pin bunbles due to fast neutrons. (Auth.)
Thermal hydraulic issues and challenges for current and new generation FBRs
Energy Technology Data Exchange (ETDEWEB)
Chellapandi, P.; Velusamy, K., E-mail: kvelu@igcar.gov.in
2015-12-01
Highlights: • We present challenges in thermal hydraulic design of sodium cooled fast reactors. • We present roadmap of Indian fast reactor program and innovative design concepts. • Analysis methodology for thermal striping and thermal stratification are highlighted. • Design solutions for gas entrainment are presented. • Experimental approaches for normal and post accident decay heat removal are highlighted. - Abstract: Pool type sodium cooled fast reactors pose several design challenges and among them, certain thermal hydraulics and structural mechanics issues are special. High frequency temperature fluctuations due to thermal striping, thermal stratifications and sodium free level fluctuations at the liquid–cover gas interfaces are to be investigated carefully to eliminate high cycle thermal fatigue of structures. Solutions to address the core thermal hydraulics call for high power computing. Innovative concepts and methods are developed to carry out plant dynamics and safety studies. Particularly, extensive numerical and experimental simulation techniques are needed for understanding and solving the gas entrainment mechanisms and its effects on core safety. Though decay heat removal through natural convection is achievable in a pool type SFR, demonstration of design solutions conceived in the reactor and performance of diverse systems under all operating conditions, especially over prolonged station blackout situations needs advanced CFD computations and should be validated by relatively large scale simulated experiments. These issues are addressed in this paper under five broad topics: special thermal hydraulic issues to be addressed in SFR, thermal hydraulic design and analysis, plant dynamics studies, safety studies and evolving thermal hydraulic studies for the future FBRs. The 500 MWe Prototype Fast Breeder Reactor (PFBR) is taken as the reference design for addressing the issues. Indian fast reactor programme is highlighted in the introduction
International Nuclear Information System (INIS)
Skala, K.; Spitzer, H.; Bauer, G.S.
1991-01-01
In order to be able to investigate the behaviour of the gas-liquid mixture in the rather complex vessel and pipe system of the cold D 2 -moderator with heat exchanger and ballast volume, a computational model of the system has been set up. The model was first benchmarked against experimental data from the cold moderator mockup for the second cold source at the ILL Grenoble. It was then used to predict operational parameters such as pressure, velocity, moisture content and others of the system under normal conditions with the anticipated distribution of heat influx. Finally, the case of total loss of insulating vacuum was investigated. (author)
International Nuclear Information System (INIS)
Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon
2003-03-01
Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the
Thermal-hydraulic characteristic of the PGV-1000 steam generator
International Nuclear Information System (INIS)
Ubra, O.; Doubek, M.
1995-01-01
Horizontal steam generators are typical parts of nuclear power plants with pressure water reactor type VVER. By means of this computer program, a detailed thermal-hydraulic study of the horizontal steam generator PGV-1000 has been carried out and a special attention has been paid to the thermal-hydraulics of the secondary side. A set of important steam generator characteristics has been obtained and analyzed. Some of the interesting results of the analysis are presented in the paper. (author)
Thermal hydraulic model validation for HOR mixed core fuel management
International Nuclear Information System (INIS)
Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de
1997-01-01
A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)
International Nuclear Information System (INIS)
Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.
2011-01-01
Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.
International Nuclear Information System (INIS)
D'Auria, Francesco; Moreno, Jose Luis Gago; Galassi, Giorgio Maria; Grgic, Davor; Spadoni, Antonino
2003-01-01
A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bauer, Pierre [ITER Organization, Cadarache (France); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)
2013-12-15
Highlights: • A global, predictive picture of the ITER HTS current lead is not yet available. • A predictive 1-D, steady state thermal-hydraulic analysis of the full length HTS current leads has been performed. • For the heat exchanger, correlations previously derived by the same authors have been used. • The results have been compared with the ITER relevant requirements. • According to our results, the ITER HTS current leads will fulfill the requirements. -- Abstract: The magnet system of ITER includes high temperature superconducting (HTS) current leads with a maximum current of 68 kA for the toroidal field (TF) coils, 55 kA for the poloidal field (PF)/central solenoid (CS) coils and 10 kA for the control coils (CC), respectively. Although different in terms of size and operative conditions, the ITER HTS current leads have been all designed on the basis of an established concept, which was successfully developed for the LHC at CERN and proven by the so-called 70 kA “demonstrator” lead made by KIT and by the ITER pre-prototypes made by ASIPP in China. A broad R and D campaign has been undertaken by ASIPP and CERN in order to find optimized designs for each component of the leads. Nevertheless, a comprehensive picture of the performance of the entire HTS current leads is not yet available. In this paper, a steady state, full length, thermal-hydraulic 1-D modeling is applied to the study of the three types (TF, PF/CS, CC) of ITER HTS current leads. The results of this predictive analysis are then compared with relevant ITER requirements. It was found that the present design of the HTS current leads will fulfill these specifications.
Analysis of MSGTR events for APR1400 by means of best estimate thermal-hydraulic system code
International Nuclear Information System (INIS)
Jeong, Ji Hwan; Kim, Sang Jae; Chang, Keun Sun; Lee, Jae Hun
2001-01-01
A multiple steam generator tube rupture (MSGTR) event has never occurred in the history of commercial nuclear reactor operation while single steam generator tube rupture (SGTR) event is reported to occur every two years. As there is no history of MSGTR event, the understandings of transients and consequences of this event are not so much. In this study, a postulated MSGTR event in advanced power reactor 1400 (APR1400) is analyzed using thermal-hydraulic system code. The APR 1400 is a two-loop, 1000 MWe, PWR supposed to be built in 2009. MARS1.4 is used in this study. The present study aims to understand the effects of rupture location in heat transfer tubes and selection of affected steam generator following a MSGTR event. The effects of five tube rupture locations are compared with each other. The comparison shows that the response of APR1400 is to allow shortest time for operator action following a tubes rupture in the vicinity of hot-leg side tube sheet and to allow longest time following a tube ruptures at the tube top. The MSSV lift time for rupture at tube-top is evaluated as 24.5% larger than that for rupture at hot-leg side tube sheet. Also, the MSSV lift time for four cases are compared in order to examine how long operator response time is allowed depending on which steam generator is affected. The comparison shows that the cases for both of two steam generators are affected allow longer time for operator action compared with the cases that a single steam generator is affected. Further more, the tube ruptures in the steam generator where a pressurizer is linked leads to the shortest operator response time
Energy Technology Data Exchange (ETDEWEB)
Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)
2016-10-15
The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.
International Nuclear Information System (INIS)
Roberts, J.S.; Woosley, S.L.; Lessor, D.L.; Strachan, C.
1992-07-01
This study investigates a possible cause of molten glass displacements that occurred during two recent in situ vitrification (ISV) tests. The study was conducted for the US Department of Energy by Pacific Northwest Laboratory. It is hypothesized that these glass displacements are caused by large gas bubbles rising up through the ISV melt and bursting at its surface. These bubbles cause the molten surface to upwell and possibly overflow. When the bubbles burst, molten glass is thrown from the melt surface and the volume of gas contained in the bubble is released into the hood. Both of these phenomena are undesirable because the molten soil ejected from the melt is dangerous to operating personnel and can damage equipment. The sudden gas release can cause a temporary pressurization of the hood, allowing potentially contaminated gas to escape to the atmosphere. This study attempts to explain the conditions necessary for formation of large gas bubbles in the melt so that future glass displacements can be avoided
Energy Technology Data Exchange (ETDEWEB)
Roberts, J.S.; Woosley, S.L.; Lessor, D.L.; Strachan, C.
1992-07-01
This study investigates a possible cause of molten glass displacements that occurred during two recent in situ vitrification (ISV) tests. The study was conducted for the US Department of Energy by Pacific Northwest Laboratory. It is hypothesized that these glass displacements are caused by large gas bubbles rising up through the ISV melt and bursting at its surface. These bubbles cause the molten surface to upwell and possibly overflow. When the bubbles burst, molten glass is thrown from the melt surface and the volume of gas contained in the bubble is released into the hood. Both of these phenomena are undesirable because the molten soil ejected from the melt is dangerous to operating personnel and can damage equipment. The sudden gas release can cause a temporary pressurization of the hood, allowing potentially contaminated gas to escape to the atmosphere. This study attempts to explain the conditions necessary for formation of large gas bubbles in the melt so that future glass displacements can be avoided.
International Nuclear Information System (INIS)
Nakamura, Hideo; Anoda, Yoshinari; Arai, Kenji; Kurita, Tomohisa
2000-01-01
JAERI and JAPC started a cooperative study to verify performance of a PCCS (Passive Containment Cooling System) using horizontal heat exchanger for next-generation BWR in 1998. A test facility with a horizontal single U-tube was constructed in JAERI in 1999 to investigate fundamental condensation behavior under influences of non-condensable gas. Preliminary pre-test analyses were performed using RELAP5/ MOD3.2.1.2 code to expect the experimental outcomes by incorporating a correlation for condensation degradation because of non-condensable gas by Ueno et al. for better prediction. Preliminary results from both experiments (shakedown) and pre-test analyses indicated that the PCCS using horizontal U-tube heat exchanger is promising. Steam generated under assumed severe accident conditions; steam generation rate approx. = 1% core power, non-condensable gas concentration of 1% and simulated containment vessel pressure of 0.7 MPa, was totally condensed with a small differential pressure across inlet and outlet plenum. Experimental data will be accumulated to develop models and correlations for a better prediction of responses of the PCCS using horizontal heat exchanger during postulated severe accidents. (author)
International Nuclear Information System (INIS)
Hossain, K.; Buck, M.; Bernnat, W.; Lohnert, G.
2008-01-01
The institute of nuclear engineering and energy systems (IKE), Univ. of Stuttgart (Germany)) has developed a new thermal hydraulic tool which can be used for three-dimensional thermal hydraulic analysis of pebble bed as well as block type HTRs. During nominal operation, the flow inside the gas-cooled High Temperature Reactor is essentially single-phase, impressible, and non-isothermal. So, at least one gas phase has to be considered beside the solid phase for thermal hydraulic analysis of HTRs. Each phase (e.g. solid, gas) is considered as a continuum which occupies only its respective fraction of. the control volume. Thermal non-equilibrium is considered between phases and time dependent energy conservation equations for solid and gas phases are solved. Simplified momentum conservation equation for gas obtained from porous media approximation is solved along with the time dependent mass conservation equation. Pro visions for simulating more than one gas component are available in this newly developed code TH3D which could be required for simulating some accident situations (e.g air / water ingress by pipes break). The interaction between phases is made by a set of constitutive equations which re/v on semi-empirical correlations obtained from different experiments. Finite volume method with a staggered grid approach is used for spatial discretization and a fully implicit, time adaptive, multi step method is used for time-dependent discretization. A benchmark calculation which is oriented to the pebble i fuel reactor PBMR-400 and a 3D calculation were presented in HTR -2006 conference and will also be published in Nuclear Engineering and Design (NED) journal. In order to demonstrate the capabilities of TH3D for simulating all block type HTRs. A benchmark calculation which is proposed by IAEA CRP-3 and oriented to the Gas Turbine Modular Helium Reactor (GT-MHR) is performed. calculations are performed for the steady state case (nominal operation) as well as for Loss
Energy Technology Data Exchange (ETDEWEB)
Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)
2017-03-15
Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also
International Nuclear Information System (INIS)
Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Shah, V.L.
1983-12-01
The COMMIX-1A computer program is an updated and improved version of COMMIX-1 designed to analyze steady-state/transient, single-phase, three-dimensional fluid flow with heat transfer in reactor components and multicomponent systems. A new porous-media formulation via local volume averaging has been derived and employed in the COMMIX code. The concepts of volume porosity, directional surface permeability, distributed resistance, and distributed heat source or sink is used in the new porous-media formulation to model a flow domain with stationary structures. The concept of directional surface permeability is new and greatly facilitates modeling of velocity and temperature fields in anisotropic media. The new porous-media formulation represents the first unified approach to thermal-hydraulic analysis. It is now possible to perform a multidimensional thermal-hydraulic simulation of either a single component, such as a rod bundle, reactor plenum, piping system, heat exchanger, etc., or a multicomponent system that is a combination of these components. The conservation equations of mass, momentum, and energy based on the new porous-media formulation are solved as a boundary-value problem in space and an initial-value problem in time. Two other unique features provided in the COMMIX-1A code are (1) two solution procedures - a semi-implicit procedure modified from ICE and a fully-implicit procedure, named SIMPLEST-ANL, similar to the SIMPLE/SIMPLER algorithms - available a user's option and (2) a geometrical package capable of approximating many geometries. This report (Volume I) describes in detail the basic equations, formulations, solution procedures, flow charts, rebalancing scheme for faster convergence, options available to users, models to describe the auxiliary phenomena, input instructions, and two sample problems. The Volume II assembles and summarizes the results of many simulations that have been performed with COMMIX-1A computer program
Energy Technology Data Exchange (ETDEWEB)
Seo, Jae Kwang; Yoon, J
2003-12-01
The concept of a Multi-cavity Cold Gas PressuriZeR (MCGPZR) is applied to the SMART: The pressurizer system includes in-vessel cavities and out-of-vessel gas cylinders holding the gas supply/vent system. The gas cylinders are connected to the one of the in-vessel cavities via piping with valves. A pressurizer is maintained at a cold temperature of less than about 100 .deg. C, which is realized with coolers installed in and with wet thermal insulators installed on one of the cavities located inside the hot reactor vessel, to minimize the contribution of a steam partial pressure and is filled with nitrogen gas as a pressure-absorbing medium. The working medium and working temperature of the MCGPZR is totally different from that of a hot steam pressurizer of the commercial PWR. In addition, the MCGPZR is intended to be designed to meet a pressure transient during normal power operation (by its gas volume capacity) without using an active control system and during plant heatup/cooldown operation by using an active gas control (filling/venting) system. Therefore in order to evaluate the feasibility of the concept of the MCGPZR and its intended design goal, the thermal hydraulic behaviors and controllability of the MCGPZR during transients especially a heatup/cooldown operation must be analyzed. In this study, a thermal hydraulic transient analysis computer code, PZRTR, for the Reactor Coolant System (RCS) of an integral reactor composed of the MCGPZR, modular Once-Through Steam Generators (OTSGs), a core and a reactor coolant loop is developed. The pressurizer module (MCGPZR module) of the PZRTR code is based on a two-fluid, nonhomogeneous, nonequilibrium model for the two-phase system behavior and the OTSG module is based on a homogeneous equilibrium model of the two-phase flow process. The core module is simply based on the axial power distributions and the reactor coolant loop is based on the temperature distributions. The code is currently dedicated for the
Energy Technology Data Exchange (ETDEWEB)
Seo, Jae Kwang; Kang, H. O.; Yoon, J.; Kim, K. K
2006-12-15
The concept of a Multi-cavity Cold Gas PressuriZeR(MCGPZR) is applied to the SMART: The pressurizer system includes in-vessel cavities and out-of-vessel gas cylinders holding the gas supply/vent system. The gas cylinders are connected to the one of the in-vessel cavities via piping with valves. A pressurizer is maintained at a cold temperature of less than about 120 .deg. C which is realized with coolers installed in and with wet thermal insulators installed on one of the cavities located inside the hot reactor vessel, to minimize the contribution of a steam partial pressure and is filled with nitrogen gas as a pressure-absorbing medium. The working medium and working temperature of the MCGPZR is totally different from that of a hot steam pressurizer of the commercial PWR. In addition, the MCGPZR is intended to be designed to meet a pressure transient during normal power operation (by its gas volume capacity) without using an active control system and during plant heatup/cooldown operation by using an active gas control (filling/venting) system. Therefore in order to evaluate the feasibility of the concept of the MCGPZR and its intended design goal, the thermal hydraulic behaviors and controllability of the MCGPZR during transients especially a heatup/cooldown operation must be analyzed. In this study, a thermal hydraulic transient analysis computer code, PZRTR rev 1, for the Reactor Coolant System(RCS) of an integral reactor composed of the MCGPZR, modular Once-Through Steam Generators(OTSGs), a core and a reactor coolant loop is developed. The pressurizer module (MCGPZR module) of the PZRTR rev 1 code is based on a two-fluid, nonhomogeneous, nonequilibrium model for the two-phase system behavior and the OTSG module is based on a homogeneous equilibrium model of the two-phase flow process. The core module is simply based on the axial power distributions and the reactor coolant loop is based on the temperature distributions. The code is currently dedicated for the
International Nuclear Information System (INIS)
Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.
2012-01-01
The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout
Energy Technology Data Exchange (ETDEWEB)
Sun, K. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Chenu, A. [Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Mikityuk, K.; Krepel, J. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland)
2012-07-01
The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout
International Nuclear Information System (INIS)
Koizumi, Yasuo; Tasaka, Kanji
1986-01-01
The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Break location effects on thermal-hydraulics during intermediate LOCAs were investigated by using four experiments at the ROSA-III, the 15 and 25 % main recirculation pump suction line break (MRPS-B) experiments, the 21 % single-ended jet pump drive line break (JPD-B) experiment and the 15 % main steam line break (MSL-B) experiment. Water injection from the high pressure core spray (HPCS) was not used in any of the experiments. Failure of ECCS actuation by the high containment pressure was also assumed in the tests. In the MRPS-B experiments, the discharge flow turned from low quality fluid to high quality fluid when the downcomer water level dropped to the main recirculation line outlet elevation, which suppressed coolant loss from the vessel and the core. In the JPD-B experiment, the jet pump drive nozzle was covered with low quality fluid and low quality fluid discharge continued even after the downcomer water level reached the jet pump suction elevation. Low quality fluid discharge ceased after the ADS actuation. It suggestes that the JPD-B LOCA has the possibility of causing larger and more severe core dryout and cladding temperature excursion than the MRPS-B LOCA. The MSL-B LOCA was characterized by mixture level swell in the downcomer and the core. The core mixture level swell resulted in the much later core dryout initiation than that in the MRPS-B LOCA, however, ECCS actuation was also delayed because of slow downcomer water level drop. (author)
Process management using component thermal-hydraulic function classes
Morman, J.A.; Wei, T.Y.C.; Reifman, J.
1999-07-27
A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.
Process management using component thermal-hydraulic function classes
Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques
1999-01-01
A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Shouichi; Yamane, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2003-03-01
Since exact information is not always acquired in the criticality accident of fuel solution, parametric survey calculations are required for grasping behaviors of the thermal-hydraulics. On the other hand, the practical methods of the calculation with can reduce the computation time with allowable accuracy will be also required, since the conventional method takes a long calculation time. In order to fulfill the requirement, a two-dimensional (R-Z) nuclear-kinetics analysis code considering thermal-hydraulic based on the multi-region kinetic equations with one-group neutron energy was created by incorporating with the thermal-hydraulics analysis code PHOENICS for all-purpose use the computation time of the code was shortened by separating time mesh intervals of the nuclear- and heat-calculations from that of the hydraulics calculation, and by regulating automatically the time mesh intervals in proportion to power change rate. A series of analysis were performed for the natural-cooling characteristic test using TRACY in which the power changed slowly for 5 hours after the transient power resulting from the reactivity insertion of a 0.5 dollar. It was found that the code system was able to calculate within the limit of practical time, and acquired the prospect of reproducing the experimental values considerably for the power and temperature change. (author)
GCFR thermal-hydraulic experiments
International Nuclear Information System (INIS)
Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.
1980-01-01
The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company
Energy Technology Data Exchange (ETDEWEB)
Sakai, Takaaki; Enuma, Yasuhiro [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwasaki, Takashi [Nuclear Energy System Inc., Tokyo (Japan); Ohyama, Kazuhiro [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)
2001-05-01
The feasibility study on future commercial fast breeder reactors in Japan has been conducted at JNC, in which various plant design options with all the possible coolant and fuel types are investigated to determine the conditions for the future detailed study. Lead-bismuth eutectic coolant has been selected as one of the possible coolant options. During the phase-I activity of the feasibility study in FY1999 and FY2000, several plant concepts, which were cooled by the heavy liquid metal coolant, were examined to evaluate the feasibility mainly with respect to economical competitiveness with other coolant reactors. A medium-scale (300 - 550 MWe) plant, cooled by a lead-bismuth natural circulation flow in a pool type vessel, was selected as the most possible plant concept for the heavy liquid metal coolant. Thus, a conceptual design study for a lead-bismuth-cooled, natural-circulation reactor of 400 MWe has been performed at JNC to identify remaining difficulties in technological aspect and its construction cost evaluation. In this report, a thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors is described. A Multi-dimensional Steam Generator analysis code (MSG) was applied to evaluate the natural circulation plant by combination with a flow-network-type, plant dynamics code (Super-COPD). By using this combined multi-dimensional plant dynamics code, decay heat removals, ULOHS and UTOP accidents were evaluated for the 100 MWe STAR-LM concept designed by ANL. In addition, decay heat removal by the Primary Reactor Auxiliary Cooling System (PRACS) in the 400 MWe lead-bismuth-cooled, natural-circulation reactor, being studied at JNC, was analyzed. In conclusion, it becomes clear that the combined multi-dimensional plant dynamics code is suitably applicable to analyses of lead-bismuth-cooled, natural-circulation reactors to evaluate thermal-hydraulic phenomena during steady-state and transient conditions. (author)
Energy Technology Data Exchange (ETDEWEB)
Jeong, J. J.; Chung, B. D.; Lee, W.J
2005-02-01
The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.
International Nuclear Information System (INIS)
Terada, Masafumi; Ikeda, Takashi; Nakahara, Katsuhiko; Shirakawa, Noriyuki; Horie, Hideki; Katsuragi, Kazuyuki; Yamagishi, Makoto; Ito, Takahiro
2003-01-01
As one of the verification studies of SAMPSON code, PHEBUS-FPT1, which is authorized as the International Standard Problem-46, was analyzed about the in-core phenomena with four modules, the molten core relocation analysis (MCRA) module, the fuel rod heat up analysis (FRHA) module, the fission product release analysis (FPRA) module, and the analysis control module (ACM) of SAMPSON. This paper describes the analysis of thermal hydraulics and core degradation behavior in the test train. Two-dimensional version of MCRA models the whole structure of the test train in the cylindrical system, including the fuel bundle and the shroud. FRHA models eighteen irradiated fuel rods, two fresh fuel rods, and one control rod in the center of the bundle. FRHA evaluates the transient behavior of fuel rods and releases failed fuel components to MCRA. MCRA evaluates the fluid dynamics of steam and debris considering the thermal and fluid mechanical interaction between them, and at the same time the thermal interaction between gas/debris and shroud material. By the phase change model of MCRA, molten debris forms debris pool and a part of them possibly freezes on fuel rods or shroud surface, then forms crust. This combination of modules of SAMPSON was proved to be capable for modeling the PHEBUS-FPT1 in-core phenomena sufficiently. The analysis has shown sufficient agreement with test results regarding to steam flow rates at the outlet, reproducing its reduction due to hydrogen generation, steam and shroud temperature, and debris relocation behavior. (author)
Mercury Thermal Hydraulic Loop (MTHL) Summary Report
Energy Technology Data Exchange (ETDEWEB)
Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-03-01
The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.
Applied mathematical methods in nuclear thermal hydraulics
International Nuclear Information System (INIS)
Ransom, V.H.; Trapp, J.A.
1983-01-01
Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated
Energy Technology Data Exchange (ETDEWEB)
Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong [Korea Power Engineering Company, Inc, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)
2006-07-01
This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient
International Nuclear Information System (INIS)
Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong
2006-01-01
This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient
A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor
Energy Technology Data Exchange (ETDEWEB)
Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)
1998-03-01
The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.
Proceedings of the 8. Brazilian Meeting on Reactor Physics and Thermal Hydraulics
International Nuclear Information System (INIS)
1991-01-01
Some papers about pressurized light water reactors, fast reactors, accident analysis, transients, research reactors, nuclear data collection, thermal hydraulics, reactor monitoring, neutronics are presented. (E.G.)
Review of computational thermal-hydraulic modeling
International Nuclear Information System (INIS)
Keefer, R.H.; Keeton, L.W.
1995-01-01
Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix
Directory of Open Access Journals (Sweden)
Siniša Šadek
2017-01-01
Full Text Available The integrity of the containment will be challenged during a severe accident due to pressurization caused by the accumulation of steam and other gases and possible ignition of hydrogen and carbon monoxide. Installation of a passive filtered venting system and passive autocatalytic recombiners allows control of the pressure, radioactive releases, and concentration of flammable gases. Thermal hydraulic analysis of the containment equipped with dedicated passive safety systems after a hypothetical station blackout event is performed for a two-loop pressurized water reactor NPP with three integral severe accident codes: ASTEC, MELCOR, and MAAP. MELCOR and MAAP are two major US codes for severe accident analyses, and the ASTEC code is the European code, joint property of Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France and Gesellschaft für Anlagen und Reaktorsicherheit (GRS, Germany. Codes’ overall characteristics, physics models, and the analysis results are compared herein. Despite considerable differences between the codes’ modelling features, the general trends of the NPP behaviour are found to be similar, although discrepancies related to simulation of the processes in the containment cavity are also observed and discussed in the paper.
Energy Technology Data Exchange (ETDEWEB)
Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-12-01
The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.
Cross-cutting european thermal-hydraulics research for innovative nuclear systems
International Nuclear Information System (INIS)
Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.
2010-01-01
Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures
International Nuclear Information System (INIS)
Liles, D.R.; Mahaffy, J.H.
1986-07-01
The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients
Energy Technology Data Exchange (ETDEWEB)
Santos, Thiago A. dos; Maiorino, José R., E-mail: thiago.santos@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil); Stefanni, Giovanni L. de, E-mail: giovanni.stefanni@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O{sub 2}. For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O{sub 2}.The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO{sub 2} was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)
Energy Technology Data Exchange (ETDEWEB)
Liles, D.R.; Mahaffy, J.H.
1986-07-01
The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.
Energy Technology Data Exchange (ETDEWEB)
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional
2015-07-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
International Nuclear Information System (INIS)
Santos, Thiago A. dos; Maiorino, José R.; Stefanni, Giovanni L. de
2017-01-01
In order to project a nuclear reactor, the neutronic calculus must be validated, so that its thermal limits and safety parameters are respected. Considering this issue, this research aims to evaluate the APTh-100 reactor thermal limits. This PWR is a project developed in Universidade Federal do ABC (UFABC) using fuel composed of Uranium and Thorium oxide mixed (U,Th)O 2 . For this purpose, a simplified, although conservative, code was developed in a MATLAB environment named STC-MOX-Th 'Simplified Thermal-hydraulics Code-Mixed Oxide Thorium'. This code provides axial and radial temperature distribution, as well as DNBR distribution over the hottest channel of the reactor core. Moreover, it brings other hydraulic quantities, such as pressure drop over the fuel rod, considering any fuel proportion of (U,Th)O 2 .The software uses basic laws of conservation of mass, momentum and energy, it also calculates the thermal conduction equation, considering the thermal conductive coefficient as a temperature function. In order to solve this equation, the finite elements method was used. Furthermore, the proportion of 36% of UO 2 was used to evaluate the temperature over the fuel rod and DNBR minimum in three burn conditions: beginning, middle and ending. The program has proven to be efficient in every condition and the results evidenced that the APTh-1000 reactor, in an initial analysis, has its thermal limits within the recommended security parameters. (author)
International Nuclear Information System (INIS)
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.
2015-01-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS
Energy Technology Data Exchange (ETDEWEB)
D’Auria, F; Rohatgi, Upendra S.
2017-01-12
The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.
Thermal-hydraulic analysis for core conversion to the use of low-enriched uranium fuels in the KUR
International Nuclear Information System (INIS)
Mishima, Kaichiro; Kanda, Keiji; Shibata, Toshikazu
1985-01-01
A feasibility study has been performed on the core conversion to the use of low-enriched uranium (LEU) fuels in the KUR. Five fuel element geometries are studied. For each fuel element, the relation between the pressure drop and the flow rate, critical heat flux, and heat fluxes for the onset of flow instability and the onset of nucleate boiling are calculated using the computer code PLTEMP3.MOD1 which has been developed for this analysis. The effect of fuel material (UAl x -Al, U 3 O 8 -Al and U 3 Si 2 -Al) on the peak fuel temperatures is also studied. A particular interest in the mixed core which may be constructed on the way to the use of LEU fuels, the change in the bypass flow rate due to the change in the gap between different fuel elements is investigated. (author)
International Nuclear Information System (INIS)
Chenu, A.
2011-10-01
liquid film after dryout onset. The validation of the extended TRACE code has been achieved through the successful simulation of out-of-pile experiments. A review of available sodium boiling test data has first been carried out, and complementary tests have been selected to assess the quality of the different physical models like the pressure drop and cooling limits under quasi steady-state conditions, as well as the simulation of a loss-of-flow transient. The extended TRACE code has demonstrated its capacity to predict the main thermal-hydraulics characteristics such as the single- and two-phase pressure drop and heat transfer, as also the boiling inception, void fraction evolution and expansion of the boiling region, pressure evolution, as well as coolant and clad temperatures. The natural convection test conducted in 2009 in the Phenix reactor has been used to validate TRACE single-phase sodium flow modelling. Data from the Phenix test have been used for the validation of the FAST code system. Analyses based on a point-kinetics TRACE model and on coupled TRACE/PARCS 3D-kinetics modelling have enabled an in-depth understanding of the transient behaviour of a sodium-cooled fast reactor core, leading to potential improvements in the FAST code system. The experimental power evolution could be satisfactorily reproduced within the measurement uncertainties with both models, and the detailed analysis of the core neutronics has enabled one to define the most important reactivity feedbacks taking place during the considered transient. The developed tool has been applied to the simulation of a hypothetical, unprotected loss-of-flow event for one of the European SFR core concepts. This study has demonstrated the new calculation tool’s capability to adequately simulate the core response through the modelling of single- and two-phase sodium flow, coupled to 3D neutron kinetics. Thereby, the space-dependent reactivity feedbacks, such as the void and Doppler effects, have been
Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Baek, W. P.; Song, C. H.; Kim, Y. S. and others
2005-02-15
The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.
Energy Technology Data Exchange (ETDEWEB)
Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov
2012-10-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest
Energy Technology Data Exchange (ETDEWEB)
Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)
2015-10-15
A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.
International Nuclear Information System (INIS)
Uwaba, Tomoyuki; Ohshima, Hiroyuki; Imai, Yasutomo
2003-04-01
A simulation system of a deformed fuel subassembly is being developed for the structure integrity of high burn-up wire-spacer-type fuel subassemblies of sodium-cooled fast breeder reactors. This report describes a computer program improvement work for coupling analyses of deformation and thermal-hydraulics in a fuel subassembly as part of the simulation system development. In this work, a function of data conversion as an interface between a bundle deformation analysis program BAMBOO and a thermal hydraulic analysis program ASFRE-IV was incorporated to each program. BAMBOO was improved to accept the coolant temperature data from ASFRE-IV and to offer bundle deformation data to ASFRE-IV. ASFRE-IV was also improved to offer the coolant temperature data to BAMBOO and to obtain the bundle deformation data from BAMBOO. Improved BAMBOO and ASFRE-IV were applied to an analysis of 169-pin bundle for the program verification. It was confirmed that the coupling analysis gave the physically reasonable results on both deformation and thermal hydraulic behaviors in the fuel subassembly. (author)
Thermal hydraulic feasibility assessment of the spent nuclear fuel project
International Nuclear Information System (INIS)
Heard, F.J.
1996-01-01
A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The goal was to develop a series of thermal-hydraulic models that could respond to all process and safety related issues that may arise pertaining to the SNFP, as well as provide a basis for validation of the results. Results show that there is a reasonable envelope for process conditions and requirements that are thermally and hydraulically acceptable
Energy Technology Data Exchange (ETDEWEB)
Yoon, Seok Jong; Park, Goon Cherl; Cho, Hyoung Kyu [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In Korea, subchannel analysis code, MATRA has been developed by KAERI (Korea Atomic Energy Research Institute). MATRA has been used for reactor core T/H design and DNBR (Departure from Nucleate Boiling Ratio) calculation. Also, the code has been successfully coupled with neutronics code and fuel analysis code. However, since major concern of the code is not the accident simulation, some features of the code are not optimized for the accident conditions, such as the homogeneous model for two-phase flow and spatial marching method for numerical scheme. For this reason, in the present study, application of CUPID for the subchannel scale T/H analysis in rod bundle geometry was conducted. CUPID is a component scale T/H analysis code which adopts three dimensional two-fluid three-field model developed by KAERI. In this paper, the validation results of the CUPID code for subchannel scale rod bundle analysis at single phase adiabatic conditions were presented. At first, the physical models required for a subchannel scale analysis were implemented to CUPID. In the future, the scope of validation tests will be extended to diabetic and two phase flow conditions and required models will be implemented into CUPID.
International Nuclear Information System (INIS)
No, Hee Cheon; Yoon, Ho Joon; Kim, Seung Jun; Lee, Byeng Jin; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik
2009-01-01
We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the through flow calculation with a Newton- Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)
2016-05-15
The existing nuclear system analysis codes such as RELAP5, TRAC, MARS and SPACE use the first-order numerical scheme in both space and time discretization. However, the first-order scheme is highly diffusive and less accurate due to the first order of truncation error. So, the numerical diffusion problem which makes the gradients to be smooth in the regions where the gradients should be steep can occur during the analysis, which often predicts less conservatively than the reality. Therefore, the first-order scheme is not always useful in many applications such as boron solute transport. RELAP7 which is an advanced nuclear reactor system safety analysis code using the second-order numerical scheme in temporal and spatial discretization is being developed by INL (Idaho National Laboratory) since 2011. Therefore, for better predictive performance of the safety of nuclear reactor systems, more accurate nuclear reactor system analysis code is needed for Korea too to follow the global trend of nuclear safety analysis. Thus, this study will evaluate the feasibility of applying the higher-order numerical scheme to the next generation nuclear system analysis code to provide the basis for the better nuclear system analysis code development. The accuracy is enhanced in the spatial second-order scheme and the numerical diffusion problem is alleviated while indicates significantly lower maximum Courant limit and the numerical dispersion issue which produces spurious oscillation and non-physical results in the higher-order scheme. If the spatial scheme is the first order scheme then the temporal second-order scheme provides almost the same result with the temporal firstorder scheme. However, when the temporal second order scheme and the spatial second-order scheme are applied together, the numerical dispersion can occur more severely. For the more in-depth study, the verification and validation of the NTS code built in MATLAB will be conducted further and expanded to handle two
Energy Technology Data Exchange (ETDEWEB)
Navarro-Valenti, S.; Kim, S.H.; Georgevich, V. [Oak Ridge National Lab., TN (United States)] [and others
1995-09-01
The purpose of this paper is to describe the analysis performed to predict the thermal behavior of fuel miniplates under rapid transient heatup conditions. The possibility of explosive boiling was considered, and it was concluded that the heating rates are not large enough for explosive boiling to occur. However, transient boiling effects were pronounced. Because of the complexity of transient pool boiling and the unavailability of experimental data for the situations studied, an approximation was made that predicted the data very well within the uncertainties present. If pool boiling from the miniplates had been assumed to be steady during the heating pulse, the experimental data would have been greatly overestimated. This fact demonstrates the importance of considering the transient nature of heat transfer in the analysis of reactivity excursion accidents. An additional contribution of the present work is that it provided data on highly subcooled steady nulceate boiling from the cooling portion of the thermocouple traces.
International Nuclear Information System (INIS)
Nguyen, Thi-Phuong-Kieu
2016-01-01
We investigated some finite volume methods for the numerical simulation of a flow involving two incompressible phases or general two compressible phases in mechanical disequilibrium. The main difficulties of the regime where there is either a phase appearance or a phase disappearance is the singularity of the velocity. We show that using the entropy fix will much improve these problems. Finally, we perform some important numerical tests to verify the numerical methods, such as a phase separation by gravity or a boiling channel. (author) [fr
International Nuclear Information System (INIS)
Nguyen, Thi Phuong Kieu
2016-01-01
We investigated some finite volume methods for the numerical simulation of a flow involving two incompressible phases or general two compressible phases in mechanical disequilibrium. The main difficulties of the regime where there is either a phase appearance or a phase disappearance is the singularity of the velocity. We show that using the entropy fix will much improve these problems. Finally, we perform some important numerical tests to verify the numerical methods, such as a phase separation by gravity or a boiling channel. (author)
PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel
International Nuclear Information System (INIS)
Pilch, M.
1982-01-01
PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds
CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs
Directory of Open Access Journals (Sweden)
Anil Kumar
2016-05-01
Full Text Available This study presents the heat transfer and fluid flow characteristics in a rib-roughened SAH (solar air heater channel. The artificial roughness of the rectangular channel was in the form of a thin circular wire in discrete multi V-pattern rib geometries. The effect of this geometry on heat transfer, fluid flow, and performance augmentation was investigated using the CFD (computational fluid dynamics. The roughness parameters were a relative discrete distance of 0.69, a relative rib height of 0.043, a relative rib pitch of 10, a relative rib width of 6.0, and a flow-attack-angle of 60°. The discrete width ratios and Reynolds numbers ranged from 0.5 to 2.0 and from 2000 to 20,000, respectively. The CFD results using the renormalization k-epsilon model were in good agreement with the empirical relationship. This model was used to investigate the heat transfer and fluid flow characteristics in the multi V-pattern rib roughened SAH channel. The thermo-hydraulic performance was found to be the best for the discrete width ratio of 1.0. A discrete multi V-pattern rib combined with dimple staggered ribs also had better overall thermal performance compared to other rib shapes.
International Nuclear Information System (INIS)
Nishiyama, Pedro Julio Batista de Oliveira
2012-01-01
Technetium-99m ( 99m Tc), the product of radioactive decay of molybdenum-99 ( Mo), is one of the most widely used radioisotope in nuclear medicine, covering approximately 80% of all radiodiagnosis procedures in the world. Nowadays, Brazil requires an amount of about 450 Ci of 99 Mo per week. Due to the crisis and the shortage of 99 Mo supply chain that has been observed on the world since 2008, IPEN/CNEN-SP decided to develop a project to produce 99 Mo through fission of uranium-235. The objective of this dissertation was the development of neutronic and thermal-hydraulic calculations to evaluate the operational safety of a device for 99 Mo production to be irradiated in the IEA-Rl reactor core at 5 MW. In this device will be placed ten targets of UAl x -Al dispersion fuel with low enriched uranium (LEU) and density of 2.889 gU/cm 3 . For the neutronic calculations were utilized the computer codes HAMMER-TECHNION and CITATION and the maximum temperatures reached in the targets were calculated with the code MTRCR-IEA-R1. The analysis demonstrated that the device irradiation will occur without adverse consequences to the operation of the reactor. The total amount of 99 Mo was calculated with the program SCALE and considering that the time needed for the chemical processing and recovering of the 99 Mo will be five days after the irradiation, we have that the 99 Mo activity available for distribution will be 176 Ci for 3 days of irradiation, 236 Ci for 5 days of irradiation and 272 Ci for 7 days of targets irradiation. (author)'
International Nuclear Information System (INIS)
Min Lee
1994-01-01
Critical heat flux (CHF) bundle data from the Heat Transfer Research Facility of Columbia University are used to check the validity of the CHF approaches used in thermal-hydraulic system analysis codes for light water reactors. The CHF approaches assessed include the Biasi et al. correlation of TRAC, the Groeneveld et al. CHF table lookup approach of RELAP5/MOD3, the CHF table lookup approach of CATHARE, and the CHF approach of RETRAN. Depending on system pressure, RETRAN uses the B and W2, Barnett, and modified Barnett correlations and a linear interpolation scheme to predict CHF. Results show that among these CHF approaches, the Groeneveld et al. approach has the best prediction accuracy and the smallest uncertainty in the estimation of the HTRF bundle data. On the average, the Groeneveld et al. approach overpredicts the uniform axial heat flux distribution by 3.6% and the nonuniform axial heat flux distribution by 0.9%. The performance of the RETRAN approach is comparable with that of the Groenevel et al. Approach for uniform axial heat flux. In general, the accuracy and the uncertainty of all the approaches, except that of CATHARE, are worse under a nonuniform axial heat distribution than under a uniform axial heat distribution. All the CHF approaches assessed have a tendency to overpredict the HTRF bundle data at low pressure, low measured CHF, and high CHF quality. The performance of the Groenevel et al. approach is improved through a CHF table update and modification of the bundle correction factor using the HTRF bundle data
International Nuclear Information System (INIS)
Kim, Jong Hyun; Jin, Dong Sik; Chang, Soon Heung
2013-01-01
Highlights: • Developed new safety analysis methodology of moderator system failures for CANDU-6. • The new methodology used the TH-physics coupling concept. • Thermalhydraulic code is CATHENA, physics code is RFSP-IST. • Moderator system failure ends to the subcriticality through self-shutdown. -- Abstract: The new safety analysis methodology for the CANDU-6 nuclear power plant (NPP) moderator system failure has been developed by using the coupling technology with the thermalhydraulic code, CATHENA and reactor core physics code, RFSP-IST. This sophisticated methodology can replace the legacy methodology using the MODSTBOIL and SMOKIN-G2 in the field of the thermalhydraulics and reactor physics, respectively. The CATHENA thermalhydraulic model of the moderator system can simulate the thermalhydraulic behaviors of all the moderator systems such as the calandria tank, head tank, moderator circulating circuit and cover gas circulating circuit and can also predict the thermalhydraulic property of the moderator such as moderator density, temperature and water level in the calandria tank as the moderator system failures go on. And these calculated moderator thermalhydraulic properties are provided to the 3-dimensional neutron kinetics solution module – CERBRRS of RFSP-IST as inputs, which can predict the change of the reactor power and provide the calculated reactor power to the CATHENA. These coupling calculations are performed at every 2 s time steps, which are equivalent to the slow control of CANDU-6 reactor regulating systems (RRS). The safety analysis results using this coupling methodology reveal that the reactor operation enters into the self-shutdown mode without any engineering safety system and/or human interventions for the postulated moderator system failures of the loss of heat sink and moderator inventory, respectively
International Nuclear Information System (INIS)
Lee, J.H.; Park, G.C.; Cho, H.K.
2015-01-01
In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)
International Nuclear Information System (INIS)
Kalimullah, M.; Olson, A.O.; Feldman, E.E.; Hanan, N.; Dionne, B.
2012-01-01
The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.
Energy Technology Data Exchange (ETDEWEB)
Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-04-07
The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.
International Nuclear Information System (INIS)
Broadus, C.R.; Doyle, R.J.; James, S.W.; Lime, J.F.; Mings, W.J.
1980-04-01
The BEACON code is a best-estimate, advanced containment code designed to perform a best-estimate analysis of the flow of a mixture of air, water, and steam in a nuclear reactor containment system under loss-of-coolant accident conditions. The code can simulate two-component, two-phase fluid flow in complex geometries using a combination of two-dimensional, one-dimensional, and lumped-parameter representations for the various parts of the system. The current version of BEACON, which is designated BEACON/MOD3, contains mass and heat transfer models for wall film and wall conduction. It is suitable for the evaluation of short-term transients in dry-containment systems. This manual describes the models employed in BEACON/MOD3 and specifies code implementation requirements. It provides application information for input data preparation and for output data interpretation
Pre-analysis of Phenix End-of-Life Thermal-hydraulic tests with the MARS-LMR Code
International Nuclear Information System (INIS)
Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Suk, Su Dong; Lee, Yong Bum
2009-01-01
A prototype SFR, PHENIX has been operated by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) since 1973. Through the successful operation for 35 years, PHENIX has achieved its original objective to demonstrate a fast breeder reactor technology and also played an important role as an irradiation facility for innovative fuels and materials. Since its first operation, PHENIX has accumulated about 4,300 equivalent full power days (EFPDs) of operational experience and it reached its final shutdown in 2009. Before the decommissioning of PHENIX, the CEA started a PHENIX end-of-life (EOL) test program and opened it for international collaboration to share the valuable information from the test. The KAERI joined this program to utilize the unique opportunity to validate its SFR system analysis code, MARS-LMR which will be a basic tool in future SFR development
Application of Sub-cooled Boiling Model to Thermal-hydraulic Analysis Inside a CANDU-6 Fuel Channel
International Nuclear Information System (INIS)
Kim, Man Woong; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Kang, Hyoung Chul; Yoo, Seong Yeon
2007-01-01
Forced convection nucleate boiling is encountered in heat exchangers during normal and non-nominal modes of operation in pressurized water or boiling water reactors (PWRs or BWRs). If the wall temperature of the piping is higher than the saturation temperature of the nearby liquid, nucleate boiling occurs. In this regime, bubbles are formed at the wall. Their growth is promoted by the wall superheat (the difference between the wall and saturation temperatures), and they depart from the wall as a result of gravitational and liquid inertia forces. If the bulk liquid is subcooled, condensation at the bubble-liquid interface takes place and the bubble may collapse. This convection nucleate boiling is called as a sub-cooled nucleate boiling. As for the fuel channel of a CANDU 6 reactor, forced convection nucleate boiling models for flows along fuel elements enclosed inside typical CANDU-6 fuel channel has encountered difficulties due to the modeling of local effects along the horizontal channel. Therefore, the subcooled nucleate boiling has been modeled through temperature driven boiling heat and mass transfer, using a model developed at Rensselaer Polytechnic Institute. The objectives of this study are: (i) to investigate a proposed sub-cooled boiling model developed at Rensselaer Polytechnic Institute and (ii) to apply against a experiment and (iii) to predict local distributions of flow fields for the actual fuel channel geometries of CANDU-6 reactors. The numerical implementation is conducted using by the FLUENT 6.2 CFD computer code
International Nuclear Information System (INIS)
Costa, A. L.; Cherubini, M.; D'Auria, F.; Giannotti, W.; Moskalev, A.
2007-01-01
One of the transients that have received considerable attention in the safety evaluation of RBMK reactors is the partial break of a group distribution header (GDH). The coolant flow rate blockage in one GDH might lead to excessive heat-up of the pressure tubes and can result in multiple fuel channels (FC) ruptures. In this work, the GDH flow blockage transient has been studied considering the Smolensk-3 RBMK NPP (nuclear power plant). In the RBMK, each GDH distributes coolant to 40-43 FC. To investigate the behavior of each FC belonging to the damaged GDH and to have a more realistic trend, one (affected) GDH has been schematised with its forty-two FC, one by one. The calculations were performed using the 0-D NK (neutron kinetic) model of the RELAP5-3.3 stand-alone code. The results show that, during the event, the mass flow rate is disturbed differently according to the power distribution established for each FC in the schematization. The start time of the oscillations in mass flow rate depends strongly on the attributed power to each FC. It was also observed that, during the event, the fuel channels at higher thermal power values tend to undergo first cladding rupture leaving the reactor to scram and safeguarding all the other FCs connected to the affected GDH.
Institute of Scientific and Technical Information of China (English)
S.Talebi; M.M.Valoujerdi
2017-01-01
The present paper discusses entropy generation in fully developed turbulent flows through a subchannel,arranged in square and triangle arrays.Entropy generation is due to contribution of both heat transfer and pressure drop.Our main objective is to study the effect of key parameters such as spacer grid,fuel rod power distribution,Reynolds number Re,dimensionless heat power ω,lengthto-fuel-diameter ratio λ,and pitch-to-diameter ratio ξ on subchannel entropy generation.The analysis explicitly shows the contribution of heat transfer and pressure drop to the total entropy generation.An analytical formulation is introduced to total entropy generation for situations with uniform and sinusoidal rod power distribution.It is concluded that power distribution affects entropy generation.A smoother power profile leads to less entropy generation.The entropy generation of square rod array bundles is more efficient than that of triangular rod arrays,and spacer grids generate more entropy.
Thermal-hydraulic analysis of water cooled breeding blanket of K-DEMO using MARS-KS code
Energy Technology Data Exchange (ETDEWEB)
Lee, Jeong-Hun; Park, Il Woong; Kim, Geon-Woo; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)
2015-10-15
Highlights: • The thermal design of breeding blanket for the K-DEMO is evaluated using MARS-KS. • To confirm the prediction capability of MARS, the results were compared with the CFD. • The results of MARS-KS calculation and CFD prediction are in good agreement. • A transient simulation was carried out so as to show the applicability of MARS-KS. • A methodology to simulate the entire blanket system is proposed. - Abstract: The thermal design of a breeding blanket for the Korean Fusion DEMOnstration reactor (K-DEMO) is evaluated using the Multidimensional Analysis of Reactor Safety (MARS-KS) code in this study. The MARS-KS code has advantages in simulating transient two-phase flow over computational fluid dynamics (CFD) codes. In order to confirm the prediction capability of the code for the present blanket system, the calculation results were compared with the CFD prediction. The results of MARS-KS calculation and CFD prediction are in good agreement. Afterwards, a transient simulation for a conceptual problem was carried out so as to show the applicability of MARS-KS for a transient or accident condition. Finally, a methodology to simulate the multiple blanket modules is proposed.
Thermal-hydraulic analysis of bayonet cooling thimble in fuel drain tank of ORNL 10 MW MSRE
International Nuclear Information System (INIS)
Sun Lu; Sun Licheng; Yan Changqi
2012-01-01
The residual heat removal system of molten salt reactor designed by ORNL, using molten salt as fuel and draining the fuel into fuel drain tank after shutdown of the reactor, removes the decay heat by the circulation of water through the bayonet cooling thimbles in the fuel drain tank. According to structural features of the bayonet cooling thimbles in ORNL 10 MW molten salt reactor experiment (MSRE), this paper presents the analytical results of the influence of the width of gas gap and the width of steam riser on the heat removal ability and the natural circulation of the cooling water, etc. The analysis results show that, when the width of gas gap range from 3.1 mm to 5.1 mm, the change of heat dissipation power and natural circulation flow rate are both less than 5%; when the width of steam riser changes from 3.6 mm to 5.1 mm, the flow mass of the natural circulation change from 1.9 kg/s to 4.79 kg/s, with a slightly effect on the heat transfer efficiency of the system. (authors)
Adjoint sensitivity analysis of the RELAPS/MOD3.2 two-fluid thermal-hydraulic code system
International Nuclear Information System (INIS)
Ionescu-Bujor, M.
2000-10-01
This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the non-equilibrium, non-homogeneous two-fluid model, including boron concentration and non-condensable gases, of the RELAP5/MOD3.2 code. The end-product of this implementation is the Adjoint Sensitivity Model (ASM-REL/TF), which is derived for both the differential and discretized equations underlying the two-fluid model with non-condensable(s). The consistency requirements between these two representations are also highlighted. The validation of the ASM-REL/TF has been carried out by using sample problems involving: (i) liquid-phase only, (ii) gas-phase only, and (iii) two-phase mixture (of water and steam). Thus the 'Two-Loops with Pumps' sample problem supplied with RELAP5/MOD3.2 has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when only the liquid-phase is present. Furthermore, the 'Edwards Pipe' sample problem, also supplied with RELAP5/MOD3.2, has been used to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when both (i.e., liquid and gas) phases are present. In addition, the accuracy and stability of the numerical solution of the ASM-REL/TF have been verified when only the gas-phase is present by using modified 'Two-Loops with Pumps' and the 'Edwards Pipe' sample problems in which the liquid and two-phase fluids, respectively, were replaced by pure steam. The results obtained for these sample problems depict typical sensitivities of junction velocities and volume-averaged pressures to perturbations in initial conditions, and indicate that the numerical solution of the ASM-REL/TF is as robust, stable, and accurate as the original RELAP5/MOD3.2 calculations. In addition, the solution of the ASM-REL/TF has been used to calculate sample sensitivities of volume-averaged pressures to variations in the pump head. (orig.) [de
Thermal-hydraulic methods in fast reactor safety
International Nuclear Information System (INIS)
Weber, D.P.; Briggs, L.L.
1985-01-01
Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided
Development of thermal hydraulic evaluation code for CANDU reactors
International Nuclear Information System (INIS)
Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun
2004-02-01
To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted
Experimental thermal hydraulics in support of FBR
International Nuclear Information System (INIS)
Padmakumar, G.; Anand Babu, C.; Kalyanasundaram, P.; Vaidyanathan, G.
2009-01-01
The thermal hydraulic design plays a crucial role for the safe and economical deployment of Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Robust experimental programmes are required in support of LMFBR thermal hydraulics design. The philosophy of testing has been to construct small scale models to understand the physical behaviour and to build larger scale models to optimize the component design. The experiments are conducted either in sodium or using a simulant like water/air. The paper gives a brief account of the various thermal hydraulic experiments carried out in support of the design of Prototype Fast Breeder Reactor (PFBR). (author)
International Nuclear Information System (INIS)
Domingos, Douglas Borges
2014-01-01
In this work neutronic and thermal-hydraulic analyses were made to compare three types of targets (UAl 2 -Al, U-Ni cylindrical and U-Ni plate) used for the production of 99 Mo by fission of 235 U. Some experiments were conducted to validate the neutronic and thermal-hydraulics methodologies used in this work. For the neutronic calculations the computational programs NJOY99.0, AMPX-II and HAMMERTECHNION were used to generate the cross sections. SCALE 6.0 and CITATION computational programs were used for three-dimensional calculations of the reactor cores, fuel burning and the production of 99 Mo. The computational programs MTRCR-IEAR1 and ANSYS CFX were used to calculate the thermal and hydraulic parameters of the irradiation devices and for comparing them to limits and design criteria. First were performed neutronic and thermal-hydraulic analyzes for the reactor IEA-R1 with the targets of UAl 2 -Al (10 mini plates). Analyses have shown that the total activity obtained for 99 Mo on the mini plates does not meet the demand of Brazilian hospitals (450 Ci/week) and that no limit of thermo-hydraulic design is overtaken. Next, the same calculations were performed for the three target types in Multipurpose Brazilian Reactor (MBR). The neutronic analyzes demonstrated that the three targets meet the demand of Brazilian hospitals. The thermal hydraulic analysis shows that a minimum speed of 7 m/s for the target UAl 2 -Al, 8 m/s for the cylindrical target U-Ni and 9 m/s for the target U-Ni plate will be necessary in the irradiation device to not exceed the design limits. Were performed experiments using a test bench for validate the methodologies for the thermal-hydraulic calculation. The experiments performed to validate the neutronic calculations were made in the reactor IPEN/MB-01. All experiments were simulated with the methodologies described above and the results compared. The simulations results showed good agreement with experimental results. (author)
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
International Nuclear Information System (INIS)
Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei
2015-01-01
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)
2015-02-15
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.
International Nuclear Information System (INIS)
Petruzzi, Alessandro; D'Auria, Francesco; Bajs, Tomislav; Reventos, Francesc; Hassan, Yassin
2007-01-01
Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the user effect' and stems from the limitations embedded in the codes as well as from the limited capability of the analysis to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users. Six seminars have been held at University of Pisa (2003, 2004), at The Pennsylvania State University (2004), at University of Zagreb (2005), at the School of Industrial Engineering of Barcelona (January-February 2006) and in Buenos Aires, Argentina (October 2006), being this last one requested by ARN (Autoridad Regulatoria Nuclear), NA-SA (Nucleoelectrica Argentina S.A) and CNEA (Comision Nacional de Energia Atomica). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed 'permanent' stepwise approach to user training. The 3D S.UN.COP 2006 in Barcelona was successfully held with the attendance of 33
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
International Nuclear Information System (INIS)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-01
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved
Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Song, C. H.; Chung, M. K.; Park, C. K. and others
2005-04-15
The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.
Current and anticipated uses of thermal hydraulic codes in Korea
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung-Doo; Chang, Won-Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-07-01
In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.
International Nuclear Information System (INIS)
Petruzzi, Alessandro; D'Auria, Francesco; Bajs, Tomislav; Reventos, Francesc
2006-01-01
Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the 'user effect' and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users [1]. Five seminars have been held at University of Pisa (2003, 2004), at The Pennsylvania State University (2004), at University of Zagreb (2005) and at the School of Industrial Engineering of Barcelona (2006). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed 'permanent' stepwise approach to user training. The 3D S.UN.COP 2006 was successfully held with the attendance of 33 participants coming from 18 countries and 28 different institutions (universities, vendors, national laboratories and regulatory bodies). More than 30 scientists (coming from 13 countries and 23 different institutions) were
Evaluation on thermal-hydraulic characteristics for passive safety device of APR1400
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seong Yeon; Lee, S. H.; Son, M. K. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jee, M. S.; Chung, M. H. [Chungnam National Univ., Taejon (Korea, Republic of)
2001-07-15
To establish evaluation and verification guideline for the APR1400, thermal-hydraulic characteristics for fuel rod bundle, reactor vessel and fluidic device is analyzed using FLUENT. Scope and major results of research are as follows : Thermal-hydraulic characteristics for nuclear fuel rod bundle: design data for nuclear fuel rod bundle and structure are surveyed, and 3 x 3 sub-channel model is adopted to investigate the fluid flow and heat transfer characteristics in fuel rod bundle. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions. Thermal-hydraulic characteristics for reactor vessel: reactor vessel design data are surveyed to develop numerical model. Porous media model is applied for fuel rod bundle, and full-scale, three dimensional simulation is performed at actual operating conditions. Distributions of velocity, pressure and temperature are discussed. Flow characteristics for fluidic device: three dimensional numerical model for fluidic device is developed, and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics is analyzed at low and high flow rate conditions, respectively.
International Nuclear Information System (INIS)
1976-06-01
A discussion is presented of the use of the RELAP4/MOD5 computer program in simulating the thermal-hydraulic behavior of light-water reactor systems when subjected to postulated transients such as a LOCA, pump failure, or nuclear excursion. The volume is divided into main sections which cover: (1) program description, (2) input data, (3) problem initialization, (4) user guidelines, (5) output discussion, (6) source program description, (7) implementation requirements, (8) data files, (9) description of PLOTR4M, (10) description of STH20, (11) summary flowchart, (12) sample problems, (13) problem definition, and (14) problem input
Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR
International Nuclear Information System (INIS)
Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi
1997-01-01
Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)
International Nuclear Information System (INIS)
Cha, J. E.; Kim, S. O.; Choi, H. L.; Kim, H. B.; Kim, H. W.; Lee, S. H.
2012-01-01
In this report, the thermal hydraulic and flow visualization experiment was described for the KALIMER-600 water-scaled model. In order to investigate a thermal hydraulic characteristics for the SFR KALIMER-600, which has been conceptually designed in the KAERI, a water-scaled 1/10 reactor vessel model was designed and prepared through the scaling analysis during three-years research. In this research, SFR Photos system, which has inherently very complicated the internal structures, was fabricated with a transparent vessel. It was shown that a serious of thermal hydraulic test was conducted within a short period if modeled with water than sodium. Natural circulation test was successfully performed with the modeled heater assembly and heat exchanger system coupled with cooling system. The water-scaled RSV experimental facility made in this research could be used to study the USA development for the future SFR system and utilized to analyze the flow characteristics before changing a main internal part of Photos system. It could also be used to test a pool-inspection study and a sensor selection study before large scale sodium experiment. The PCV system prepared in this research could be utilized to test other TSH experiment and temperature field measurement
Energy Technology Data Exchange (ETDEWEB)
Palmieri, Elcio T.; Navarro, Moyses A.; Aronne, Ivam D.; Terra, Jose L. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)
2002-07-01
The goal of the work presented in this paper is to provide necessary thermal hydraulics information to the design of an experimental installation to investigate the Pressurized Thermal Shock (PTS) to be implemented at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN). The envisaged installation has a test section that represents, in a small scale, a pressure vessel of a nuclear reactor. This test section will be heated and then exposed to a PTS in order to evaluate the appearance and development of cracks. To verify the behavior of the temperatures of the pressure vessel after a sudden flood through the annulus, calculations were made using the RELAP5/MOD 3.2.2 gamma code. Different outer radiuses were studied for the annular region. The results showed that the smaller annulus spacing (20 mm) anticipates the wetting of the surface and produces a higher cooling of the external surface, which stays completely wet for a longer time. (author)
International Nuclear Information System (INIS)
Han, S. J.; Im, H. K.; Yang, J. U.
2003-01-01
Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation
International Nuclear Information System (INIS)
Lapins, J.; Seubert, A.; Buck, M.; Bader, J.; Laurien, E.
2011-01-01
Comprehensive safety studies of high temperature gas cooled reactors (HTR) require full three dimensional coupled treatments of both neutron kinetics and thermal-hydraulics. In a common effort, GRS and IKE developed the coupled code system TORT-TD/ATTICA3D for pebble bed type HTR that connects the 3-D transient discrete-ordinates transport code TORT-TD with the 3-D porous medium thermal-hydraulics code ATTICA3D. In this paper, the physical models and calculation capabilities of TORT-TD and ATTICA3D are presented, focusing on model improvements in ATTICA3D and extensions made in TORT-TD related to HTR application. For first applications, the OECD/NEA/NSC PBMR-400 benchmark has been chosen. Results obtained with TORT-TD/ATTICA3D will be shown for transient exercises, e.g. control rod withdrawal and a control rod ejection. Results are compared to other benchmark participants' solutions with special focus on fuel temperature modelling features of ATTICA3D. The provided “grey-curtain” nuclear cross section libraries have been used. First results on 3-D effects during a control rod withdrawal transient will be presented. (author)
Thermal-hydraulic interfacing code modules for CANDU reactors
Energy Technology Data Exchange (ETDEWEB)
Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others
1997-07-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.
Thermal-hydraulic interfacing code modules for CANDU reactors
International Nuclear Information System (INIS)
Liu, W.S.; Gold, M.; Sills, H.
1997-01-01
The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis
International Nuclear Information System (INIS)
Guo Chunqiu; Xie Jiachun; Liu Xingmin
2013-01-01
In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)
Thermal-hydraulic design of the 200 MW NHR
Energy Technology Data Exchange (ETDEWEB)
Jincai, Li; Zuying, Gao; Baocheng, Xu; Junxiao, He [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)
1997-09-01
The main problems regarding the AST-500 NHR thermal-hydraulics are considered. Basic thermal data of the reactor plant are given and peculiarities of coolant parameters at natural convection in the primary circuit are discussed. The in-reactor instrumentation system is briefly describes, as well as the results of natural-convective flow characteristics investigations using reactor test models. (author). 4 refs, 5 figs.
International Nuclear Information System (INIS)
Ivanov, B.; Ivanov, K.; Aniel, S.; Royer, E.; Kolev, N.; Groudev, P.
2004-01-01
The present paper describes the two phases of the OECD/DOE/CEA VVER-1000 coolant transient benchmark labeled as V1000CT. This benchmark is based on a data from the Bulgarian Kozloduy NPP Unit 6. The first phase of the benchmark was designed for the purpose of assessing neutron kinetics and thermal-hydraulic modeling for a VVER-1000 reactor, and specifically for their use in analyzing reactivity transients in a VVER-1000 reactor. Most of the results of Phase 1 will be compared against experimental data and the rest of the results will be used for code-to-code comparison. The second phase of the benchmark is planned for evaluation and improvement of the mixing computational models. Code-to-code and code-to-data comparisons will be done based on data of a mixing experiment conducted at Kozloduy-6. Main steam line break will be also analyzed in the second phase of the V1000CT benchmark. The results from it will be used for code-to-code comparison. The benchmark team has been involved in analyzing different aspects and performing sensitivity studies of the different benchmark exercises. The paper presents a comparison of selected results, obtained with two different system thermal-hydraulics codes, with the plant data for the Exercise 1 of Phase 1 of the benchmark as well as some results for Exercises 2 and 3. Overall, this benchmark has been well accepted internationally, with many organizations representing 11 countries participating in the first phase of the benchmark. (authors)
Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics
International Nuclear Information System (INIS)
Santos Bastos, W. dos
1995-01-01
These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods
Computational features of the MELT-III neutronics, thermal-hydraulics computer code system
International Nuclear Information System (INIS)
Wilburn, N.P.; Waltar, A.E.
1976-01-01
A multichannel, thermal-hydraulics, neutronic accident analysis program for simulating fast reactor behavior from a hypothetical accident inception to the start of core disassembly or to reactor shutdown is described
CFD studies on thermal hydraulics of spallation targets
International Nuclear Information System (INIS)
Tak, N.I.; Batta, A.; Cheng, X.
2005-01-01
Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)
Thermal-hydraulic modeling of porous bed reactors
International Nuclear Information System (INIS)
Araj, K.J.; Nourbakhsh, H.P.
1987-01-01
Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs
Thermal hydraulic model descrition of TASS/SMR
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H
2001-04-01
The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.
Thermal hydraulic feasibility assessment for the Spent Nuclear Fuel Project
International Nuclear Information System (INIS)
Heard, F.J.; Cramer, E.R.; Beaver, T.R.; Thurgood, M.J.
1996-01-01
A series of scoping analyses have been completed investigating the thermal-hydraulic performance and feasibility of the Spent Nuclear Fuel Project (SNFP) Integrated Process Strategy (IPS). The SNFP was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy's Hanford Site in Richland, Washington. The subject efforts focused on independently investigating, quantifying, and establishing the governing heat production and removal mechanisms for each of the IPS operations and configurations, obtaining preliminary results for comparison with and verification of other analyses, and providing technology-based recommendations for consideration and incorporation into the design bases for the SNFP. The goal was to develop a series fo thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the SNFP. A series of sensitivity analyses were also performed to help identify those parameters that have the greatest impact on energy transfer and hence, temperature control. It is anticipated that the subject thermal-hydraulic models will form the basis for a series of advanced and more detailed models that will more accurately reflect the thermal performance of the IPS and alleviate the necessity for some of the more conservative assumptions and oversimplifications, as well as form the basis for the final process and safety analyses
International Nuclear Information System (INIS)
Akimoto, Hajime; Kukita; Ohnuki, Akira
1997-01-01
The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment
VHTR core modeling: coupling between neutronic and thermal-hydraulics
International Nuclear Information System (INIS)
Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.
2005-01-01
Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)
Views on the future of thermal hydraulic modeling
Energy Technology Data Exchange (ETDEWEB)
Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1997-07-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes.
Views on the future of thermal hydraulic modeling
International Nuclear Information System (INIS)
Ishii, M.
1997-01-01
It is essential for the U.S. NRC to sustain the highest level of the thermal-hydraulics and reactor safety research expertise and continuously improve their accident analysis capability. Such expertise should span over four different areas which are strongly related to each other. These are: (1) Reactor Safety Code Development, (2) Two-phase Flow Modeling, (3) Instrumentation and Fundamental Experimental Research, and (4) Separate Effect and Integral Test. The NRC is already considering a new effort in the area of advanced thermal-hydraulics effort. Its success largely depends on the availability of a significantly improved two-phase flow formulation and constitutive relations supported by detailed experimental data. Therefore, it is recommended that the NRC start significant research efforts in the areas of two-phase flow modeling, instrumentation, basic and separate effect experiments which should be pursued systematically and with clearly defined objectives. It is desirable that some international program is developed in this area. This paper is concentrated on those items in the thermal-hydraulic area which eventually determine the quality of future accident analysis codes
Primary system thermal hydraulics of future Indian fast reactors
Energy Technology Data Exchange (ETDEWEB)
Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)
2015-12-01
Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.
Energy Technology Data Exchange (ETDEWEB)
Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp; Ohshima, Hiroyuki; Ito, Masahiro
2017-06-15
Highlights: • The coupled computational code system allowed for mechanical and thermal-hydraulic analyses in a fast reactor fuel subassembly. • In this system interactive calculations between flow area deformations and coolant temperature changes are repeated to their convergence state. • Effects on bundle-duct interaction on coolant temperature distributions were investigated by using the code system. - Abstract: The coupled numerical analysis of mechanical and thermal-hydraulic behaviors was performed for a wire-wrapped fuel pin bundle subassembly irradiated in a fast reactor. For the analysis, the fuel pin bundle deformation analysis code BAMBOO and the thermal-hydraulic analysis code ASFRE exchanged the deformation and temperature analysis results through the iterative calculations to attain convergence corresponding to the static balance between deformation and temperature. The analysis by the coupled code system showed that the radial distribution of coolant temperature in the subassembly tended to flatten as a result of the fuel pin bundle deformation governed by cladding void swelling and irradiation creep. Such flattening of temperature distribution was slightly observed as a result of fuel pin bowings due to the cladding-wire interaction even when no bundle-duct interaction occurred. The effect of the spacer wire-pitch on deformation and thermal-hydraulics was also investigated in this study.
Energy Technology Data Exchange (ETDEWEB)
Menzel, Francine; Sabundjian, Gaianê, E-mail: franmenzel@gmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); D’Auria, Francesco, E-mail: f.dauria@ing.unipi.it [University of Pisa, San Piero a Grado Nuclear Research Group (Italy)
2017-07-01
Nuclear thermal hydraulic and accident analysis are based in three pillar activities, which con