WorldWideScience

Sample records for invery underdoped yttrium-barium-copper-oxide

  1. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  2. Effets thermoelectrique et thermomagnetique du yttrium barium copper oxide monocristallin

    Science.gov (United States)

    Ghamlouche, Hassan

    1998-09-01

    Des la decouverte des supraconducteurs a haute temperature critique, les recherches se sont intensifiees afin de comprendre les mecanismes qui sont a l'origine des proprietes de ces materiaux L'etat mixte, tout comme l'etat supraconducteur pur et l'etat normal, a fait l'objet de nombreux travaux de recherche. En particulier, la structure des vortex a l'etat mixte, et leur mouvement sous l'effet d'une force quelconque, etaient et restent le centre de preoccupation. Les effets thermoelectrique (Seebeck) et thermomagnetique (Nernst) sont parmi les differentes mesures qui peuvent donner de l'information sur les etats des vortex a l'etat mixte. L'avantage essentiel de ces deux effets est l'absence d'un courant electrique applique. Ce dernier peut donner des perturbations indesirables durant les mesures. D'autre pari, nous avons utilise la methode CA (Courant Alternatif) pour effectuer nos mesures. Cette methode est caracterisee par une meilleure resolution par rapport a la methode CC (Courant Continu) conventionnelle. Nous avons etudie autant des echantillons macles que des echantillons sans macles. D'abord nous avons teste notre montage a champ magnetique nul. Nous avons alors montre que le pic rapporte par certains dans l'effet Seebeck a la transition supraconductrice ne correspond pas a une realite physique mais a un artefact experimental. On avait associe ce pic aux fluctuations. Par la suite, nous avons mis en evidence et etudie pour la premiere fois avec les effets Seebeck et Nernst le phenomene de la fusion du reseau de vortex grace a des mesures sur les echantillons sans macles. Cette etude s'est faite pour deux concentrations d'oxygene differentes et pour un gradient de temperature parallele, consecutivement, aux deux axes cristallographiques dans le plan ab. Finalement, nous avons etudie l'effet des plans de maclage sur le mouvement des vortex. Ceci a ete realise en appliquant le gradient de temperature selon trois directions differentes (0, 45 et 90°) avec les plans de maclage. Nous avons observe, pour le premier angle un mouvement libre du vortex, pour le second angle une contribution de l'effet Nernst a l'effet Seebeck et pour la troisieme direction un phenomene d'activation. Dans ce dernier cas, les plans de maclage font un obstacle qui s'oppose au mouvement des vortex. De ce qui precede, nous concluons qu'avec la bonne resolution de notre technique nous sommes capables d'observer des phenomenes que la technique CC ne met pas en relief. D'autre part, la variete d'echantillons que nous avons etudies et les phenomenes que nous avons observes valorisent la presente etude.

  3. Experimental study of yttrium barium copper oxide superconducting ...

    Indian Academy of Sciences (India)

    Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428, India ... at 77 K. The degradation is largely attributed to the shear stress and torsional ... 2G high-temperature YBCO-coated conductor manufactured by American ...

  4. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Eom, B. H. [California Institute of Technology, Pasadena, California 91125 (United States)

    2014-06-21

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  5. Experimental transport studies of yttrium barium copper oxide and lambda-DNA

    Science.gov (United States)

    Zhang, Yuexing

    This dissertation consists of two parts. In Part I, we focus on the quasi-particle transport properties in the high temperature superconductor YBa2Cu3O7-delta (YBCO), probed by the thermal Hall conductivity (kappa xy). The thermal Hall conductivity selectively reflects the transport behaviors of the charge carriers. By measuring kappaxy in the normal state YBCO, we established a new method to determine the Wiedemann-Franz (WF) ratio in cuprates. We determined the Hall-channel WF ratio kappa xy/sigmaxyT in Cu and YBCO. In the latter, we uncovered a T-linear dependence and suppression of the Hallchannel WF ratio. The suppression of the Hall-channel WF ratio in systems with predominant electron-electron scattering will be discussed. Thermal transport behaviors of the quasi-particles in the mixed state were studied by measuring kappaxx and kappa xy in a high-purity YBCO crystal. From the field-dependence of the thermal conductivity kappaxx, we separated the quasi particle contribution (kappae) from the phonon background. In the Hall channel, we observed that the (weak-field) kappa xy increased 103-fold between T c (90 K) and 30 K, implying a 100-fold enhancement of the quasi-particle lifetime. We found that kappaxy exhibited a specific scaling behavior below ˜30 K. The implication of the scaling behavior will be discussed. In Part II, we describe an experiment on determining the electrical conductivity of the bacteriophage lambda-DNA, an issue currently under intense debate. We covalently bonded the DNA to Au electrodes by incorporating thiol modified dTTP into the 'sticky' ends of the lambda-DNA. Two-probe measurements on such molecules provided a lower bound for the resistivity rho > 10 6 mum at bias potentials up to 20 V, in conflict with recent claims of moderate to high conductivity. We stress the importance of eliminating salt residues in these measurements.

  6. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    International Nuclear Information System (INIS)

    Lindeman, M. A.; Bonetti, J. A.; Bumble, B.; Day, P. K.; Holmes, W. A.; Kleinsasser, A. W.; Eom, B. H.

    2014-01-01

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devices and present measurements of their sensitivity.

  7. a Positron Study of the Electronic Structure of Yttrium Barium Copper Oxide.

    Science.gov (United States)

    Haghighi, Hossein

    The work described in this thesis is concerned with a study of the electronic structure of the high T _{c} superconductor YBa _2Cu_3O _7 using the technique of two dimensional angular correlation of annihilation radiation (2D-ACAR). We have studied this compound with a view to clarifying whether YBa_2Cu_3O _7 possess a Fermi surface. The numerous different theories that have been proposed to explain the superconductivity phase of these types of materials can be classified into two main groups. The theories in the first group assume the existence of a conventional Fermi fluid and Fermi surface. The alternative more exotic models do not require a Fermi surface but are based on the Mott-Hubbard model of strongly correlated charge and spin excitations. Prior to this work all 2D-ACAR studies of YBa _2Cu_3O _7 involved twinned crystals and modest statistics and little of significance was learned other than that, consistent with that of predictions of theory, the positron was preferentially annihilating on the copper-oxygen chains. The studies of untwinned crystals of YBa_2Cu _3O_7, herein described are of much higher statistics and resulted in one of the clearest imaginable manifestations of a Fermi surface in the form of an extended discontinuity in the measured momentum spectrum. This discontinuity is even more apparent in the LCW-folded spectrum with a form and profile in substantial agreement with the theoretical predictions of a Gamma-X electron ridge Fermi surface section arising from states in the Cu-O chains.

  8. Alternating current loss characteristics in (bismuth,lead)SCCO and yttrium barium copper oxide superconducting tapes

    Science.gov (United States)

    Nguyen, Doan Ngoc

    Alternating current (AC) loss and current carrying capacity are two of the most crucial considerations in large-scale power applications of high temperature superconducting (HTS) conductors. AC losses result in an increased thermal load for cooling machines, and thus increased operating costs. Furthermore, AC losses can stimulate quenching phenomena or at least decrease the stability margin for superconducting devices. Thus, understanding AC losses is essential for the development of HTS AC applications. The main focus of this dissertation is to make reliable total AC loss measurements and interpret the experimental results in a theoretical framework. With a specially designed magnet, advanced total AC loss measurement system in liquid nitrogen (77 K) has been successfully built. Both calorimetric and electromagnetic methods were employed to confirm the validity of the measured results and to have a more thorough understanding of AC loss in HTS conductors. The measurement is capable of measuring total AC loss in HTS tapes over a wide range of frequency and amplitude of transport current and magnetic field. An accurate phase control technique allows measurement of total AC loss with any phase difference between the transport current and magnetic field by calorimetric method. In addition, a novel total AC loss measurement system with variable temperatures from 30 K to 100 K was successfully built and tested. Understanding the dependence of AC losses on temperature will enable optimization of the operating temperature and design of HTS devices. As a part of the dissertation, numerical calculations using Brandt's model were developed to study electrodynamics and total AC loss in HTS conductors. In the calculations, the superconducting electrical behavior is assumed to follow a power-law model. In general, the practical properties of conductors, including field-dependence of critical current density Jc, n-value and non-uniform distribution of Jc, can be accounted for in the numerical calculations. The numerical calculations are also capable of investigating eddy current loss in the stabilizer and ferromagnetic loss in the substrate of YBa2Cu3O 7-delta (YBCO) coated conductor. AC loss characteristics and electrodynamics in several (Bi,Pb)2 Sr2Ca2Cu3Ox (Bi-2223) and YBCO tapes were studied experimentally and numerically. It was found that AC loss behavior Ax in HTS tapes is strongly affected by the sample parameters such as cross-section, structure, dimensions, critical current distribution as well as by operation parameters including temperature, frequency, the phase difference between transport current and magnetic field, the orientation of magnetic field. The Ni-5%W substrate in YBCO conductors generates some ferromagnetic loss but this loss component is significantly reduced by a small parallel DC magnetic field. At a given AC magnetic field B0, there is a temperature Tmax at which the magnetization loss is maximum. The design of HTS devices needs to be optimized to avoid operating at that temperature. In general, the total AC loss in HTS tapes is still high for many power device applications, especially for those that present a rather high AC applied magnetic field. The development of low loss conductors is therefore crucial for HTS large-scale applications.

  9. Processing yttrium-barium-copper oxide superconductor zero gravity using a double float zone surface

    International Nuclear Information System (INIS)

    Pettit, D.R.; Peterson, D.E.; Kubat-Martin, K.A.; Petrovic, J.J.; Sheinberg, H.; Coulter, Y.; Day, D.E.

    1997-04-01

    The effects of processing YBa 2 Cu 3 O x (Y123) superconductor in the near-zero gravity (0g) environment provided by the NASA KC-135 airplane flying on parabolic trajectories were studied. A new sheet float zone furnace, designed for this study, enabled fast temperature ramps. Up to an 18-gram sample was processed with each parabola. Samples of Y123 were processed as bulk sheets, composites containing Ag and Pd, and films deposited on single crystal Si and MgO substrates. The 0g-processed samples were multi-phase yet retained a localized Y123 stoichiometry where a single ground-based (1g) oxygen anneal at temperatures of 800 C recovered nearly 100-volume percent superconducting Y123. The 1g processed control samples remained multi-phase after the same ground-based anneal with less than 45 volume percent as superconducting Y123. The superconducting transition temperature was 91 K for both 0g and 1g processed samples. A 29 wt.% Ag/Y123 composite had a transition temperature of 93 K. Melt texturing of bulk Y123 in 0g produced aligned grains about a factor of three larger than in analogous 1g samples. Transport critical current densities were at or below 18 A/cm 2 , due to the formation of cracks caused by the rapid heating rates required by the short time at 0g. Y123 deposited on single crystal Si and MgO in 0g was 30 vol.% y123 without an anneal. A weak superconducting transition at 80 K on MgO showed that substrate interactions occurred

  10. Annealing experiments on and high-temperature behavior of the superconductor yttrium barium copper oxide (YBa2Cu3Ox)

    NARCIS (Netherlands)

    Brabers, V.A.M.; Jonge, de W.J.M.; Bosch, L.A.; Steen, van der C.; de Groote, A.M.W.; Verheyen, A.A.; Vennix, C.W.H.M.

    1988-01-01

    The high temperature behaviour (300–1100 K) of the superconductor YBa2Cu3Ox has been studied by annealing experiments, thermal dilatation, thermogravimetry and measurements of the electrical resistance and thermoelectric power. For the fast oxidation process of this compound, reaction enthalpies

  11. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements

    International Nuclear Information System (INIS)

    Roth, D.J.

    1991-01-01

    This dissertation is presented in two major chapters. In the first chapter, the use of ultrasonic velocity for estimating pore fraction in YBCO and other polycrystalline materials is reviewed, modeled, and statistically analyzed. This chapter provides the basis for using ultrasonic velocity to interrogate microstructure. In the second chapter, (1) the effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples is characterized, (2) spatial (within-sample) variations in microstructure and superconductor properties are investigated and (3) the effect of oxygen content on elastic behavior is examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic-velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristic. Superconductor properties including within-sample uniformity were generally poorest for samples containing the lowest (0.10) pore fraction. Ultrasonic velocity was linearly related to pore fraction thereby allowing sample classification. Changes in superconducting behavior were observed consistent with changes in oxygen content

  12. Preparation of a calcium-substituted copper-rich yttrium barium copper oxide superconductor from a spray-dried nitrate precursor

    International Nuclear Information System (INIS)

    Gyurov, G.; Khristova, I.; Peshev, P.; Abrashev, M.V.

    1993-01-01

    A calcium-substituted YBa 2 Cu 4 O 8 (1-2-4) high-temperature superconductor is synthesized from a precursor obtained by spray-drying of a nitrate solution containing the corresponding metals in a stoichiometric ratio. The synthesis takes place during one-stage heat-treatment of the precursor at 800 C in an oxygen flow under a pressure of 1 atm within a relatively short period of time, additives as well as intermediate grinding and pressing of the products being not needed. Measurements of the a.c. susceptibility have revealed a very sharp superconducting transition which is comparable with that of samples prepared under a high pressure. The transition in Ca-substituted YBa 2 Cu 4 O 8 occurs at a temperature by about 8 K higher than T c of the Ca-free phase. Raman spectra suggest that during the substitution calcium does not occupy barium positions in the YBa 2 Cu 4 O 8 lattice

  13. Pseudogap and competing states in underdoped cuprates

    International Nuclear Information System (INIS)

    Lee, Patrick A.

    2004-01-01

    I shall argue that the high T c problem is the problem of doping into a Mott insulator. Furthermore, the well documented pseudo-gap phenomenon in underdoped cuprates holds the key to understanding this physics. Phase fluctuation alone cannot explain this phenomenon, but there is a clear need to identify a competing state which lives in the vortex core. The staggered flux state is a good candidate for the competing state and experimental tests of these ideas will be discussed

  14. Extension to AC Loss Minimisation in High Temperature Superconductors

    National Research Council Canada - National Science Library

    Campbell, Archie

    2004-01-01

    ...: (a) Measure the AC losses of appropriate Yttrium Barium Copper Oxide (YBCO) samples with strong potential for minimizing losses at high frequencies and magnetic fields with the existing equipment. (b...

  15. In-plane optical response in underdoped YBCO

    Science.gov (United States)

    Kakeshita, Teruhisa; Masui, Takahiko; Tajima, Setsuko

    2005-03-01

    The recent STM experiments demonstrated that the electronic state in CuO2 plane is inhomogeneous [1], which becomes conspicuous in the underdoped regime. In such an inhomogeneous state, it is not obvious whether a superfluid density is correctly estimated by a conventional way. We investigated the in-plane optical response for underdoped YBCO crystal to discuss the relation between inhomogeneity and superfluid density in the pseudo-gapped state. The a-axis optical spectrum shows a larger residual conductivity than that for the optimum doping. The superfluid density estimated from our optical spectrum at the lowest temperature is substantially smaller than that determined by μSR. We discuss this strongly suppressed superfluid density and the large residual conductivity in terms of the inhomogeneity in real- and k-space. This work was supported by the New Energy and Industrial Technology Development Organization(NEDO) through ISTEC as the Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications. [1]K.M.Lang et al., Nature 415, 412 (2002). *present address: Dept. of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

  16. Charge ordering phenomena and superconductivity in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tassini, Leonardo [Bayerische Akademie der Wissenschaften, Muenchen (Germany). Lehrstuhl E23 fuer Technische Physik

    2008-01-16

    In this thesis electronic properties of two prototypical copper-oxygen superconductors were studied with Raman scattering. The underdoped regime including the onset point of superconductivity p{sub sc1} was investigated. Evidence of quasi one-dimensional (1D) dynamical stripes was found. The 1D structures have a universal preferential orientation along the diagonals of the CuO{sub 2} planes below p{sub sc1}. At p{sub sc1}, lattice and electron dynamics change discontinuously. The results show that charge ordering drives the transition at p{sub sc1} and that the maximal transition temperature to superconductivity at optimal doping T{sub c}{sup MAX} depends on the type of ordering at p{sub sc1}. (orig.)

  17. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  18. Towards a complete Fermi surface in underdoped high Tc superconductors

    Science.gov (United States)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  19. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    DEFF Research Database (Denmark)

    Hücker, M.; Christensen, Niels Bech; Holmes, A. T.

    2014-01-01

    order decreases with underdoping to TCDW~90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic...

  20. Evidence for a pseudogap above T{sub c} in underdoped superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J; Boettger, G; Furrer, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Berastegui, P; Mutka, H [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    Our measurements of the temperature dependence of the relaxation rate of crystal field excitations in underdoped high temperature superconductors show clear evidences for the opening of a pseudogap in the normal state. The critical temperature related to the opening of the pseudogap appears to be extremely dependent upon the energy window at which the static susceptibility is being probed. (author) 2 figs., 4 refs.

  1. On the 590cm-1 B1g feature in underdoped Bi2Sr2CaCu2O8+delta

    OpenAIRE

    Hewitt, Kevin C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-01-01

    Raman scattering studies have been performed on underdoped Bi2Sr2CaCu2O8+delta. In single crystals underdoped by oxygen removal, a 590 cm-1 peak is observed in the B1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange for 16-O by 18-O. In contrast, the 590cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it correspond to a disorder induced vibrational mode. We have also found that underdoping leads to a depletion of lo...

  2. Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212

    Science.gov (United States)

    Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro

    2018-05-01

    We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.

  3. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  4. Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction

    OpenAIRE

    Marchetti, P. A.; Ye, F.; Su, Z. B.; Yu, L.

    2011-01-01

    Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction betwe...

  5. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Science.gov (United States)

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-04

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

  6. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  7. Heat conduction and thermal stabilization in YBCO tape

    Indian Academy of Sciences (India)

    Yttrium barium copper oxide (YBCO) based 2G/3G tech- nical superconductors ... off-normal scenarios, these superconductors do exceed in an irreversible fashion .... ler G 2007 Factory testing of a 36·5 MW high temperature superconducting ...

  8. Methods of making a high dielectric constant, resistive phase of YBa2Cu3OX and methods of using the same

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1991-01-01

    This patent describes an electrical device. It comprises a dielectric material configured so as to have a pair of opposite sides, the dielectric material comprising a high dielectric constant, high electrical resistivity material phase of yttrium barium copper oxide obtained by heating the yttrium barium copper oxide to at least about 850 degrees Celsius and then quenching the yttrium barium copper oxide from the at least about 850 degrees Celsius at a sufficiently rapid rate so as to produce the high dielectric constant, high electrical resistivity material phase in the yttrium barium copper oxide; a first plate means for storing electrical charge provided on a first one of the pair of opposite sides of the dielectric material; a second plate means for storing electrical charge provided on a second one of the pair of opposite sides of the dielectric material; a first lead means adjacent to and in electrical contact with the first plate means for permitting electrical contact to the first plate means; and a second lead means adjacent to and in electrical contact with the second plate means for permitting electrical contact to the second plate means; wherein the electrical device is a capacitor having a useful, desired capacitance and is adapted to be used in diverse electrical and electronic applications for the storage of electrical charge

  9. Indexes to Volume 81

    Indian Academy of Sciences (India)

    A benchmark study on uncertainty of ALICE ASH 1.0, TALYS 1.0 and MCNPX 2.6 ... Elastic scattering and fusion cross-sections in 7Li + 27Al reaction ... Characterization of pure and copper-doped iron tartrate crystals grown in silica gel ... Experimental study of yttrium barium copper oxide superconducting tape's critical.

  10. Microstructure and superconducting properties of YBCO bulk superconductors with RE substitutions

    Czech Academy of Sciences Publication Activity Database

    Volochová, D.; Antal, V.; Piovarči, S.; Kováč, J.; Jirsa, Miloš; Noudem, J.; Diko, P.

    2016-01-01

    Roč. 26, č. 3 (2016), s. 1-4, č. článku 7200604. ISSN 1051-8223 Institutional support: RVO:68378271 Keywords : yttrium barium copper oxide * critical current density (superconductivity) * powders * magnetic fields * microstructure * temperature measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.092, year: 2015

  11. Observation of distinct, temperature dependent flux noise near bicrystal grain boundaries in YBa2Cu3O7-x films

    DEFF Research Database (Denmark)

    Bukh, K. R.; Jacobsen, Claus Schelde; Hansen, Jørn Bindslev

    2000-01-01

    The characteristics of the magnetic flux noise in high temperature superconducting thin-films of yttrium-barium-copper-oxide (YBa2Cu3O7) in the vicinity of artificial grain boundaries have been studied by means of a low critical temperature superconducting quantum interference device (SQUID...

  12. U(1) x SU(2) Chern-Simons gauge theory of underdoped cuprate superconductors

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhao-Bin; Yu Lu

    1998-05-01

    The Chern-Simons bosonization with U(1)xSU(2) gauge field is applied to the 2-D t-J model in the limit t>>J, to study the normal state properties of underdoped cuprate superconductors. We prove the existence of an upper bound on the partition function for holons in a spinon background, and we find the optimal spinon configuration saturating the upper bound on average - a coexisting flux phase and s+id-like RVB state. After neglecting the feedback of holon fluctuations on the U(1) field B and spinon fluctuations on the SU(2) field V, the holon field is a fermion and the spinon field is a hard-core boson. Within this approximation we show that the B field produces a π flux phase for the holons, converting them into Dirac-like fermions, while the V field, taking into account the feedback of holons produces a gap for the spinons vanishing in the zero doping limit. The nonlinear σ-model with a mass term describes the crossover from the short-ranged antiferromagnetic (AF) state in doped samples to long range AF order in reference compounds. Moreover, we derive a low-energy effective action in terms of spinons holons and a self-generated U(1) gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi liquid theory with a Fermi surface consisting of 4 ''half-pockets'' centered at (+-π/2,+-π/2) and one reproduces the results for the electron spectral function obtained in the mean field approximation, in agreement with the photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state with electron quantum numbers. The renormalisation effects due to gauge fluctuations give rise to non-Fermi liquid behaviour for the composite electron, in certain temperature range showing the linear in T resistivity. This formalism provides a new interpretation of the spin gap in the underdoped superconductors

  13. Isotope shift of the 590-cm-1 Raman feature in underdoped Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Hewitt, K. C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-10-01

    Raman-scattering studies have been performed on underdoped Bi2Sr2CaCu2O8+δ. In single crystals underdoped by oxygen removal, a 590-cm-1 peak is observed in the B1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of 16O by 18O. In contrast, the 590-cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it is a vibrational mode activated by oxygen deficency. We have also found that underdoping leads to a depletion of low-energy spectral weight from regions of the Fermi surface located near the Brillouin-zone axes.

  14. The 590 cm-1 B_1g feature in underdoped Bi_2Sr_2CaCu_2O_8+δ

    Science.gov (United States)

    Hewitt, Kevin C.; Wang, N. L.; Irwin, J. C.; Pooke, D. M.; Pantoja, A. E.; Trodahl, H. J.

    1999-05-01

    Raman scattering studies have been performed on underdoped Bi_2Sr_2CaCu_2O_8+δ. In single crystals underdoped by oxygen removal, a 590 cm-1 peak is observed in the B_1g spectrum. The feature is observed to soften in frequency by 3.8% with isotopic exchange of ^16O by ^18O. In contrast, the 590 cm-1 peak is not observed in crystals underdoped by Y substitution which suggests that it corresponds to a disorder induced vibrational mode. We have also found that underdoping leads to a depletion of low energy spectral weight from regions of the Fermi surface located near the Brillouin zone axes.

  15. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    Directory of Open Access Journals (Sweden)

    Yucel Yildirim

    2011-09-01

    Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.

  16. Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates

    Science.gov (United States)

    Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Kamchatnaya, S. N.; Feher, A.; Dobrovolskiy, O. V.

    2018-05-01

    The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped YBa_2Cu_3O_{7-δ } and HoBa_2Cu_3O_{7-δ } single crystals in the normal and superconducting states is investigated. The form of the derivatives dρ (T)/dT makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of T_c, and a decrease in the Debye temperature.

  17. Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates

    International Nuclear Information System (INIS)

    Yuan Feng; Feng Shiping; Su Zhaobin; Yu Lu

    2001-08-01

    The doping, temperature and energy dependence of the dynamical spin structure factors of the underdoped lanthanum cuprates in the normal state is studied within the t-J model using the fermion-spin transformation technique. Incommensurate peaks are found at [(1±δ)π, π], [π, (1±δ)π] at relatively low temperatures with δ linearly increasing with doping at the beginning and then saturating at higher dopings. These peaks broaden and weaken in amplitude with temperature and energy, in good agreement with experiments. The theory also predicts a rotation of these peaks by π/4 at even higher temperatures, being shifted to [(1±δ/√2)π, (1±δ/√2)π]. (author)

  18. Compensated electron and hole pickets in an underdoped high Tc superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Laboratory; Altarawneh, Moaz M [Los Alamos National Laboratory; Mielke, Charles H [Los Alamos National Laboratory; Sebastian, Suchitra E [CAMBRIDGE U; Goddard, P A [U OF OXFORD; Liang, Ruixing [U BRITISH COLUMBIA; Bonn, D A [U BRITISH COLUMBIA; Hardy, W N [U BRITISH COLUMBIA; Andersen, O K [MAX PLANCK INST.; Lonzarich, G G [CAMBRIDGE U

    2010-01-01

    Important to the question of high temperature superconductivity is whether bound fermionic pairs with zero or finite momentum - exhibiting bosonic physics - are involved. Here we use angle-dependent magnetic quantum oscillation measurements in underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} to reveal two significantly differently corrugated small sections of Fermi surface, identifying them as comprising opposite carriers located at different locations of the Brillouin zone. The surprising finding that these disproportionately heavy small pockets are equal in size indicates they are prone to a finite momentum excitonic insulator instability. We discuss the possibility that reducing the doping drives YBa{sub 2}Cu{sub 3}O{sub 6+x} closer to an instability of this nature, its ultimate realization occuring at the metal-insulator quantum critical point, accompanied by a potential enhancement of superconducting transition temperatures.

  19. Tunneling spectroscopy of heavily underdoped crystals of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Ozyuzer, L.; Zasadzinski, J.F.; Miyakawa, N.; Kendziora, C.; Jian, S.; Hinks, D. G.; Gray, K.E.

    2000-01-01

    Crystals of Bi 2 Sr 2 CaCu 2 O 8+δ with optimal Tc = 95 K have been underdoped using two different methods and the superconducting gaps have been obtained by tunneling. In some cases, three different tunneling geometries have been utilized: point contact, STM and break junctions. The first doping method involves control of the oxygen content by annealing in various partial pressures of oxygen. These crystals exhibit a narrow spread of gap values over a wide doping range from overdoped (Tc = 56 K) to underdoped with Tc = 70 K. However, for underdoped crystals with Tc midpoints in the range 25 K--63 K, there is a dramatic increase in the spread of gap values which may signal the development of static phase separation of either chemical or electronic origin. To avoid possible chemical phase separation, the authors have explored another doping procedure which incorporates Dy substitution on the Ca site. These crystals exhibit a relatively narrow superconducting transition width and some preliminary tunneling spectra will be presented

  20. A universal order underlying the pseudogap regime of the underdoped high Tc cuprates

    Science.gov (United States)

    Harrison, Neil

    2014-03-01

    A major achievement in condensed matter physics in the last quarter century has been a step towards the understanding of the unconventional d-wave superconducting state in the copper-oxide materials. Surprisingly, the normal state out of which the superconducting state emerges remains a mystery at low charge carrier densities, i.e., in the underdoped regime. This regime is of particular interest because it is characterised by an unusual momentum dependent energy pseudogap in the excitation spectrum that has defied explanation and is key to a full understanding of the unconventional d-wave superconducting state. I will present new quantum oscillation experimental results within the pseudogap regime of the high Tc superconductors YBa2Cu3O6+x and YBa2Cu4O8 which now extend up to the optimally-doped regime. These data reveal the evolution of the Fermi surface approaching the putative quantum critical point under the superconducting dome. A comprehensive angle-resolved study of the Fermi surface enables us to unambiguously identify a specific form of order that accounts for the observed quantum oscillations as well as other spectroscopic, transport and thermodynamic probes within the pseudogap regime. The author would like to thank B. Ramshaw, S. Sebastian, F. Balakirev, C. Mielke, M. Altarawneh, P. Goddard, S. Sabok, B. Babrowski, D. Bonn, W. Hardy, R. Liang and G. Lonzarich. This work was supported by the DOE BES ``Science of 100 tesla'' project and by the NSF and Florida State.

  1. Quantum oscillations and nodal pockets from Fermi surface reconstruction in the underdoped cuprates

    Science.gov (United States)

    Harrison, Neil

    2012-02-01

    Fermiology in the underdoped high Tc cuprates presents us with unique challenges, requiring experimentalists to look deeper into the data than is normally required for clues. Recent measurements of an oscillatory chemical potential affecting the oscillations at high magnetic fields provide a strong indication of a single type of carrier pocket. When considered in conjunction with photoemission and specific heat measurements, a Fermi surface comprised almost entirely of nodal pockets is suggested. The mystery of the Fermi surface is deepened, however, by a near doping-independent Fermi surface cross-sectional area and negative Hall and Seebeck coefficients. We explore ways in which these findings can be reconciled, taking an important hint from the diverging effective mass yielded by quantum oscillations at low dopings. The author wishes to thank Suchitra Sebastian, Moaz Atarawneh, Doug Bonn, Walter Hardy, Ruixing Liang, Charles Mielke and Gilbert Lonzarich who have contributed to this work. The work is supported by the NSF through the NHMFL and by the DOE project ``Science at 100 tesla.''

  2. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    DEFF Research Database (Denmark)

    Forgan, E.M.; Blackburn, E.; Holmes, A.T.

    2015-01-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6...... oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states...

  3. Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Superconductor Ba1-xKxFe2As2

    DEFF Research Database (Denmark)

    Park, J.T.; Inosov, D.S.; Niedermayer, C.

    2009-01-01

    Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba1-xKxFe2As2 by means of x-ray powder diffraction, neutron scattering, muon-spin rotation (µSR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below Tm70 K as inferred from......-state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors....

  4. Pseudogap in normal underdoped phase of Bi2212: LDA + DMFT + Σk

    International Nuclear Information System (INIS)

    Nekrasov, I.A.; Kuchinskii, E.Z.; Pchelkina, Z.V.; Sadovskii, M.V.

    2007-01-01

    Pseudogap phenomena are observed for normal underdoped phase of different high-T c cuprates. Among others Bi 2 Sr 2 CaCu 2 O 8-δ (Bi2212) compound is one of the most studied experimentally [A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75 (2003) 473; J.C. Campuzano, M.R. Norman, M. Randeria, in: K.H. Bennemann, J.B. Ketterson (Eds.), Physics of Superconductors, vol. 2, Springer, Berlin, 2004, p. 167; J. Fink et al., (cond-mat/0512307); X.J. Zhou et al., (cond-mat/0604284)]. To describe pseudogap regime in Bi2212, we employ novel generalized DMFT + Σ k approach [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, (doi:10.1016/j.physc.2007.03.367)]. This approach gives possibility to preserve conventional dynamical mean-field theory (DMFT) equations [A. Georges et al., Rev. Mod. Phys. 68 (1996) 13] and include an additional (momentum dependent) self-energy Σ k . In the present case, Σ k describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations [M.V. Sadovskii, Physics-Uspekhi 44 (2001) 515, (cond-mat/0408489)]. The effective single impurity problem in the DMFT + Σ k is solved by numerical renormalization group (NRG) [R. Bulla, A.C. Hewson, Th. Pruschke, J. Phys. Cond. Mat. 10 (1998) 8365; R. Bulla, Phys. Rev. Lett. 83 (1999) 136]. To take into account material specific properties of two neighboring CuO 2 layers of Bi2212 we employ local density approximation (LDA) to calculate necessary model parameters, e.g. the values of intra- and interlayer hopping integrals between Cu-sites. Onsite Coulomb interaction U for x 2 -y 2 orbital was calculated in constrained LDA method [O. Gunnarsson et al., Phys. Rev. B 39 (1989) 1708]. The value of pseudogap potential Δ was obtained within DMFT(NRG) [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al

  5. Magnetic study of the low temperature anomalies in the underdoped PrBCO compound

    Science.gov (United States)

    Lahoubi, Mahieddine

    2018-05-01

    The low temperature anomalous magnetic properties of a non-superconducting PrBCO6+x compound in an underdoped oxygen state of concentration (x = 0.44) are characterized by paraprocess magnetic susceptibility χH(T) measurements carried out as a function of temperature T under different values of a DC magnetic field H up to 110 kOe. The derivatives dχH(T)/dT curves reveal a significant reduction with increasing H in the Néel temperature TN = 9 K of the Pr antiferromagnetic (AFM) ordering for which the transition subsists at 100 kOe. The small anomaly at T2 = 6-7 K is confirmed at 20 kOe and the previous spin reorientation attributed to this transition temperature seems to be suppressed above 60 kOe. The well defined anomaly in the vicinity of the low-critical point Tcr = 4-5 K which occurs simultaneously, is still present when the strength of H is increased up to 100 kOe. Weak field induced phase transitions are observed between T2 and TN at a low transition-field (Ht<11 kOe) in the differential magnetic susceptibility dMT(H)/dH as a function of H deduced from the isothermal magnetizations MT(H) with H up to 21 kOe, whereas a weak ferromagnetic behavior of the Pr sublattice appears below Tcr. The magnetic field effects give rise to more evidence for the Pr-Cu(2) coupling with 'exchange-frustrated AFM' interactions and ascertain the main role of the Pr sublattice whereas the Cu(2) sublattice seems to be less efficient.

  6. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  7. Compensated electron and hole pockets in an underdoped high- Tc superconductor

    Science.gov (United States)

    Sebastian, Suchitra E.; Harrison, N.; Goddard, P. A.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Andersen, O. K.; Lonzarich, G. G.

    2010-06-01

    We report quantum oscillations in the underdoped high-temperature superconductor YBa2Cu3O6+x over a wide range in magnetic field 28≤μ0H≤85T corresponding to ≈12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian [Nature (London) 454, 200 (2008)10.1038/nature07095], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at ≈535T to be clearly resolved into three separate peaks at ≈460 , ≈532 , and ≈602T , in reasonable agreement with the reported frequencies of Audouard [Phys. Rev. Lett. 103, 157003 (2009)10.1103/PhysRevLett.103.157003]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted α ) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted γ ). On comparison with band structure, the d -wave symmetry of the interlayer dispersion locates the minimally corrugated α pocket at the “nodal” point knodal=(π/2,π/2) , and the significantly corrugated γ pocket at the “antinodal” point kantinodal=(π,0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking—a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (α) pocket corresponding to holes, with the weaker antinodal (γ) pocket corresponding to electrons—likely responsible

  8. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  9. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  10. NMR evidence for spin fluctuations in underdoped LaO{sub 1-x}F{sub x}FeAs

    Energy Technology Data Exchange (ETDEWEB)

    Hammerath, Franziska; Grafe, Hans-Joachim; Lang, Guillaume; Behr, Guenter; Werner, Jochen; Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Paar, Dalibor [Department of Physics, Faculty of Science, University of Zagreb (Croatia)

    2012-07-01

    We present {sup 75}As Nuclear Magnetic Resonance (NMR) measurements on the iron-based superconductor LaO{sub 1-x}F{sub x}FeAs with 0 {<=} x {<=} 0.1, covering a broad range of the phase diagram from magnetically-ordered to optimally-doped superconducting samples. For underdoped samples (x=0.05,x=0.075) the {sup 75}As NMR spin-lattice relaxation rate (T{sub 1}T){sup -1} shows a Curie-Weiss-like increase at intermediate temperatures, indicating the slowing down of spin fluctuations. However, a simple Curie-Weiss fit fails to describe (T{sub 1}T){sup -1}(T) above 250 K and the occurrence of a peak in (T{sub 1}T){sup -1} slightly above T{sub c}. Instead, the data can be well described by considering a BPP-model for fluctuating magnetic fields in combination with a doping-independent linear temperature dependence at high temperature. At optimal doping (x=0.1) spin fluctuations are suppressed and only the linear contribution to (T{sub 1}T){sup -1} is left. This stands in contrast to other pnictides, such as Ba(Fe{sub 1-x}Co{sub x}As){sub 2} and Ba(FeAs{sub 1-x}P{sub x}){sub 2}. Our analysis is consistent with charge carrier localization in underdoped LaO{sub 1-x}F{sub x}FeAs as seen by means of resistivity measurements.

  11. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  12. Magnetic excitations and phase separation in the underdoped La2-xSrxCuO4 superconductor measured by resonant inelastic X-ray scattering.

    Science.gov (United States)

    Braicovich, L; van den Brink, J; Bisogni, V; Sala, M Moretti; Ament, L J P; Brookes, N B; De Luca, G M; Salluzzo, M; Schmitt, T; Strocov, V N; Ghiringhelli, G

    2010-02-19

    We probe the collective magnetic modes of La2CuO4 and underdoped La2-xSrxCuO4 (LSCO) by momentum resolved resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge. For the undoped antiferromagnetic sample, we show that the single magnon dispersion measured with RIXS coincides with the one determined by inelastic neutron scattering, thus demonstrating that x rays are an alternative to neutrons in this field. In the spin dynamics of LSCO, we find a branch dispersing up to approximately 400 meV coexisting with one at lower energy. The high-energy branch has never been seen before. It indicates that underdoped LSCO is in a dynamic inhomogeneous spin state.

  13. Vortex phase diagram for extremely underdoped Bi2.2Sr1.72La0.08CaCu2O8+δ

    International Nuclear Information System (INIS)

    Yamaguchi, Yuij; Oka, Kunihiko; Mumtaz, Arif; Bando, Hiroshi

    2003-01-01

    Vortex phase diagram for H parallel c of extremely underdoped Bi 2.2 Sr 1.72 La 0.08 CaCu 2 O 8+δ superconductor was determined from a magnetization measurement. In the magnetization curve, a second peak in the low temperature region and a sharp change in the high temperature region were observed. The second-peak field and the sharp-change field are explained based on the three-to-two dimensional crossover and the decoupling transition of the vortex lattice, respectively. For the most underdoped sample, which has the transition temperature T c =60.2 K, the anisotropy constant γ and the ab plane penetration length λ 0 have been deduced to be γ=320 and λ 0 ∼340 nm, respectively

  14. Tunneling spectroscopy of heavily underdoped crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Ozyuzer, L.; Zasadzinski, J. F.; Miyakawa, N.; Kendziora, C.; Jian, S.; Hinks, D. G.; Gray, K. E.

    2000-02-17

    Crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} with optimal {Tc} = 95 K have been underdoped using two different methods and the superconducting gaps have been obtained by tunneling. In some cases, three different tunneling geometries have been utilized: point contact, STM and break junctions. The first doping method involves control of the oxygen content by annealing in various partial pressures of oxygen. These crystals exhibit a narrow spread of gap values over a wide doping range from overdoped ({Tc} = 56 K) to underdoped with {Tc} = 70 K. However, for underdoped crystals with {Tc} midpoints in the range 25 K--63 K, there is a dramatic increase in the spread of gap values which may signal the development of static phase separation of either chemical or electronic origin. To avoid possible chemical phase separation, the authors have explored another doping procedure which incorporates Dy substitution on the Ca site. These crystals exhibit a relatively narrow superconducting transition width and some preliminary tunneling spectra will be presented.

  15. Magnetic excitations in underdoped Ba (Fe1-x Cox)2 As2 with x = 0.047

    International Nuclear Information System (INIS)

    Tucker, G.S.; Fernandes, R.M.; Li, Haifeng; Thampy, Vivek; Ni, N.; Abernathy, Douglas L.; Budko, S.L.; Broholm, C.; Canfield, Paul; Vaknin, D.; Schmalian, J.; Mcqueeney, R.J.

    2012-01-01

    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diusive spin dynamics. At low energies, the spec- trum around the magnetic ordering vector Q AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q AFM . We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.

  16. Anisotropy of the penetration depth in La2-xSrxCuO4 in underdoped and overdoped regions

    Science.gov (United States)

    Zaleski, A. J.; Klamut, J.

    1999-12-01

    We present the results of measurements of the penetration depth anisotropy in pulverized, ceramic La2-xSrxCuO4. The measurements were carried out for x = 0.08, 0.1, 0.125, 0.15 and 0.2. The powdered samples, immersed in wax, were magnetically oriented in a static magnetic field of 10 T. The penetration depth in the a-b plane, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab, and perpendicular to it, icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>, were derived from alternating-current susceptibility measurements. For underdoped samples they both vary linearly with temperature (for the low-temperature region), while for the samples from the overdoped region the measured points can be fitted by an exponential function. These results support Uemura's picture (Uemura Y J 1997 Physica C 282-287 194) of crossover from Bose-Einstein condensation to a Bardeen-Cooper-Schrieffer mechanism of superconductivity. The penetration depth values extrapolated to T = 0 may be described by a quadratic function of the strontium concentration (for both icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>ab and icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/>icons/Journals/Common/perp" ALT="perp" ALIGN="MIDDLE"/>). The anisotropy of the penetration depth as a function of the substitution shows a similar dependence to the critical temperature Tc(x).

  17. Quantum oscillation signatures of spin-orbit interactions controlling the residual nodal bilayer-splitting in underdoped high-Tc cuprates

    Science.gov (United States)

    Harrison, Neil; Shekhter, Arkady

    2015-03-01

    We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.

  18. Observation of a common symmetry for the pseudogap and the superconducting order parameter near the surface of underdoped YBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Koren, G.; Shkedy, L.; Polturak, E.

    2004-01-01

    Measurements of the angular dependence of conductance spectra in the a-b plane of underdoped YBa 2 Cu 3 O 6+x junctions are reported. At zero magnetic field the superconducting gap shows a vertical bar d+is vertical bar-like symmetry. Application of a magnetic field strongly suppresses this gap leaving only the pseudogap feature which also shows a vertical bar d+is vertical bar-like angular dependence. We thus observe the same symmetry for the superconducting gap and the pseudogap characterizing the YBCO electrodes near the interface with the barrier. An H c2 value of ∼5 T of the secondary (is) order parameter can also be deduced from our results

  19. Investigation of the effect of Zn impurities and magnetic field on the spin dynamics in underdoped YBa2(Cu1-yZny)3Ox

    International Nuclear Information System (INIS)

    Suchaneck, Anton

    2009-01-01

    This work employs neutron scattering to examine the changes in the spin excitation spectrum of the underdoped high-temperature superconductor YBa 2 Cu 3 O x which is doped with zinc or subject to a strong magnetic field. Doping levels of x=6.6 and x=6.45 are used with an optional zinc substitution of 2% zinc per copper atom. A detwinning procedure is an important factor in order to reorient all twinning domains of the orthorhombic crystal cell in the same direction. Numerous single crystals were oriented and assembled to create a sample of total mass 2 g neccessary for neutron scattering experiments. The experiments were performed on triple axis neutron scattering spectrometers to measure spin excitations around the antiferromagnetic wave vector at energies up to 50 meV. Zinc substitution and magnetic field influence the spin excitations, which in the pure compound feature the resonance mode, a spin gap and an hour-glass dispersion. Upon zinc substitution the spectrum of YBa 2 (Cu 0.98 Zn 0.02 ) 3 O 6.6 is quantitatively unchanged around the resonance energy, however its marked temperature onset disappears. At lower energies new induced quasi-static excitations emerge. Similar finding have been observed in other cuprate compounds. The induced excitation exhibit a strong anisotropy in the copper planes. All these results are compared to other experimental techniques which provide comparable experimental evidence. Another compounds examined in this work is the more strongly oxygen underdoped YBa 2 (Cu 0.98 Zn 0.02 ) 3 O 6.45 . The common bilayer related signal remains unchanged with zinc substitution, however a new inter-plane correlated signal is induced indicating ordering between copper planes. A comparison with other experimental techniques indicated that the superconducting critical temperature is the sole determining factor of the qualitative spin excitation spectrum, no matter what factor are responsible for it. Additional examinations have been devoted to the

  20. Use of neutron diffraction in determining strains in high-temperaure superconducting composites

    International Nuclear Information System (INIS)

    Hitterman, R.L.; Faber, J. Jr.; Kupperman, D.S.; Singh, J.P.; Majumdar, S.

    1990-01-01

    The Argonne Intense Pulsed Neutron Source and General Purpose Powder Diffractometer have been used to study high T c metal oxide composites composed of yttrium barium copper oxide and silver. Neutron diffraction techniques were applied to composites with 15, 20 and 30% silver content by volume. The authors have observed that after hot pressing, the 30% Ag specimens contained both orthorhombic high T c and tetragonal, non-superconducting phases near the center of the specimens but only tetragonal near the surface. The relationship of shifts in Bragg peaks to strains of the constituents is discussed

  1. Synthesis and characterization of superconducting YBCO powder

    International Nuclear Information System (INIS)

    Praveen, B.; Karki, T.; Krishnamoorthi, J.

    2008-01-01

    Full text: Superconducting yttrium barium copper oxide power has been synthesized through solid state sintering method - milling and sintering - using Y 2 O 3 , BaCo 3 and CuO powders. XRD result of the milled and sintered powder reveals that the powder that has formed contains YBa 2 Cu 3 O 6.5 superconducting phase. Results obtained by SEM/EDAX show the distribution of the different elements. Experiments carried out by intermediate firing and final annealing in oxygen controlled atmosphere show the diffusion of oxygen in preformed YBa 2 Cu 3 O 6.5 and their results are discussed

  2. Low-temperature resistivity anomaly in underdoped Pr0.8Sr0.2MnO3 manganite nanoparticles

    International Nuclear Information System (INIS)

    Das, Proloy T.; Giri, S.K.; Panda, J.; Taraphder, A.; Nath, T.K.; Nigam, A.K.

    2013-01-01

    High resolution electrical resistivity measurements were carried out of under-doped Pr 0.8 Sr 0.2 MnO 3 manganite nanoparticles with grain size modulation down to 40 nm in magnetic fields H, from 0 to 9 T in the low temperature regime down to a temperature of 4.2 K. In the temperature range below 80 K, a distinct resistivity minima is observed for all the samples with different particle sizes for all H. While trying to fit low temperature resistivity data with different models for the observed resistivity minima with negative temperature coefficient of resistance (TCR) for all H, it appears that all the data for different particle sizes, can be best described by electron-electron (e-e) interaction effect in comparison with other models, e.g., Kondo model, coulomb blockades etc. The low temperature data for all H have been fitted with an expression containing three terms, namely, residual resistivity, inelastic scattering, e-e interaction and Kondo effects. We conclude that the e-e interaction is the dominant transport mechanism at low temperatures for the observed negative TCR in this strongly disordered nanometric Pr 0.8 Sr 0.2 MnO 3 phase separated manganite system. (author)

  3. Investigation of the effect of Zn impurities and magnetic field on the spin dynamics in underdoped YBa{sub 2}(Cu{sub 1-y}Zn{sub y}){sub 3}O{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Anton

    2009-04-20

    This work employs neutron scattering to examine the changes in the spin excitation spectrum of the underdoped high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} which is doped with zinc or subject to a strong magnetic field. Doping levels of x=6.6 and x=6.45 are used with an optional zinc substitution of 2% zinc per copper atom. A detwinning procedure is an important factor in order to reorient all twinning domains of the orthorhombic crystal cell in the same direction. Numerous single crystals were oriented and assembled to create a sample of total mass 2 g neccessary for neutron scattering experiments. The experiments were performed on triple axis neutron scattering spectrometers to measure spin excitations around the antiferromagnetic wave vector at energies up to 50 meV. Zinc substitution and magnetic field influence the spin excitations, which in the pure compound feature the resonance mode, a spin gap and an hour-glass dispersion. Upon zinc substitution the spectrum of YBa{sub 2}(Cu{sub 0.98}Zn{sub 0.02}){sub 3}O{sub 6.6} is quantitatively unchanged around the resonance energy, however its marked temperature onset disappears. At lower energies new induced quasi-static excitations emerge. Similar finding have been observed in other cuprate compounds. The induced excitation exhibit a strong anisotropy in the copper planes. All these results are compared to other experimental techniques which provide comparable experimental evidence. Another compounds examined in this work is the more strongly oxygen underdoped YBa{sub 2}(Cu{sub 0.98}Zn{sub 0.02}){sub 3}O{sub 6.45}. The common bilayer related signal remains unchanged with zinc substitution, however a new inter-plane correlated signal is induced indicating ordering between copper planes. A comparison with other experimental techniques indicated that the superconducting critical temperature is the sole determining factor of the qualitative spin excitation spectrum, no matter what factor are responsible

  4. Evolution of magnetic and superconducting phases with doping and pressure in the underdoped iron-arsenide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hassinger, Elena [Universite de Sherbrooke, Quebec (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada); Max Planck Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Gredat, Gregory; Valade, Fabrice; Rene de Cotret, Samuel; Juneau-Fecteau, Alexandre; Reid, Jean-Philippe; Doiron-Leyraud, Nicolas [Universite de Sherbrooke, Quebec (Canada); Kim, H.; Tanatar, Makariy A.; Prozorov, Ruslan [Ames Laboratory, Ames, Iowa (United States); Shen, B.; Wen, H.H. [Nanjing University (China); Taillefer, Louis [Universite de Sherbrooke, Quebec (Canada); Canadian Institute for Advanced Research, Toronto, Ontario (Canada)

    2015-07-01

    The electrical resistivity ρ of the iron-arsenide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} was measured in applied pressures up to 2.75 GPa for seven underdoped samples. Six of them are antiferromagnetic at P = 0 with 0.16 < x < 0.24 and one is non-magnetic with x = 0.26. The stripe-like antiferromagnetic ordering temperature T{sub N}, detected as a sharp anomaly in ρ(T), decreases linearly with pressure. For every magnetic sample a second phase appears with pressure at a lower temperature T{sub 0}, which rises with pressure. The critical pressure above which this phase appears decreases with doping going to zero for x = 0.24 just below the critical doping for the magnetic phase. This behaviour is reminiscent of the second magnetic phase appearing in Ba{sub 0.76}Na{sub 0.24}Fe{sub 2}As{sub 2} where the tetragonal symmetry is restored in favour of the scenario in which the nematic order in the iron pnictides is of magnetic origin.

  5. Levitation force of melt-textured YBCO superconductors under non-quasi-static situation

    Science.gov (United States)

    Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.

    2018-06-01

    The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.

  6. The Y2BaCuO5 oxide as green pigment in ceramics

    International Nuclear Information System (INIS)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R.; Llopis, J.; Paje, S.E.; Saez-Puche, R.; Julian, I.

    1998-01-01

    Fine particles of green yttrium-barium-copper-oxide pigments Y 2 BaCuO 5 have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 μm. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 μm. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.)

  7. Buffer layers for coated conductors

    Science.gov (United States)

    Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  8. Incorporation of self-organised gold nano crystals in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: Modification of superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Westerhausen, Markus; Koch, Stefanie; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany); Treiber, Sebastian [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2012-07-01

    Using pulsed laser deposition we are able to fabricate and examine Yttrium-Barium-Copper-Oxide (YBCO) thin films of high quality. A particular point of interest thereby is the influence of a pre-deposited gold layer with a well-defined film thickness. During the growth of the YBCO thin film the intermediate gold layer self assembles into crystalline nano particles, which modify the growth conditions and hence the physical properties of the growing YBCO. We report on the modification of structural and superconducting properties of our YBCO thin films (such as rocking curve widths, critical temperature T{sub c} and critical current density j{sub c}) comparing conventional to Au added YBCO. The temperature dependence of the critical current density thereby was determined using transport measurements as well as magneto-optical measurements. Furthermore investigations of the flux noise of our gold modified YBCO films are presented.

  9. Measurement of residual strain in composites by means of time-of- flight neutron diffraction

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Majumdar, S.; Richardson, J.; Saigal, A.

    1993-01-01

    Neutron diffraction time-of-flight measurements using the Intense Pulsed Neutron Source at Argonne National Laboratory have been employed to study strain in various metal- and ceramic-matrix composites. For example, measurements carried out to 900 C on a composite composed of a titanium alloy matrix and silicon carbide fibers have been used to validate theoretical assumptions in the prediction of fabrication-induced residual stress. Sapphire reinforced nickel aluminide composites have also been studied. Studies of a high-temperature ceramic superconducting composite consisting of yttrium barium copper oxide and silver with various volume fractions of silver have also been carried out. The results of these studies have provided information on the effect of Ag content on interface bonding. In addition, ceramic-matrix composites with randomly dispersed ceramic whiskers with varying fiber content have been investigated

  10. The oxygen-isotope effect on the in-plane penetration depth in underdoped Y{sub 1-x} Pr{sub x} Ba{sub 2} Cu{sub 3} O{sub 7-{delta}} as revealed by muon-spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Morenzoni, E [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Yugoslavia); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2003-01-22

    The oxygen-isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane penetration depth {lambda}{sub ab} (0) in underdoped Y{sub 1-x} Pr{sub x} Ba{sub 2} Cu{sub 3} O{sub 7-{delta}} was studied by means of muon-spin rotation. A pronounced OIE on {lambda}{sub ab}{sup -2} (0) was observed with a relative isotope shift of {delta}{lambda}{sub ab}{sup -2} /{lambda} {sub ab}{sup -2} = -5(2)% for x=0.3 and -9(2)% for x=0.4. The OIE exponents of T{sub c} and of {lambda}{sub ab}{sup -2} (0) exhibit a relation that appears to be generic for cuprate superconductors. (letter to the editor)

  11. Impurity-induced moments in underdoped cuprates

    International Nuclear Information System (INIS)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-01-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society

  12. Impurity induced resistivity upturns in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nabyendu, E-mail: nabyendudas@gmail.com; Singh, Navinder

    2016-01-28

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  13. Impurity induced resistivity upturns in underdoped cuprates

    International Nuclear Information System (INIS)

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  14. Strongly suppressed proximity effect and ferromagnetism in topological insulator/ferromagnet/superconductor thin film trilayers of Bi2Se3/SrRuO3/underdoped YBa2Cu3O x : a possible new platform for Majorana nano-electronics

    Science.gov (United States)

    Koren, Gad

    2018-07-01

    We report properties of a topological insulator–ferromagnet–superconductor trilayers comprised of thin films of 20 nm thick {Bi}}2{Se}}3 on 10 nm SrRuO3 on 30 nm {YBa}}2{Cu}}3{{{O}}}x. As deposited trilayers are underdoped and have a superconductive transition with {{T}}{{c}} onset at 75 K, zero resistance at 65 K, {{T}}Cueri} at 150 K and {{T}}* of about 200 K. Further reannealing under vacuum yields the 60 K phase of {YBa}}2{Cu}}3{{{O}}}x which still has zero resistance below about 40 K. Only when 10 × 100 microbridges were patterned in the trilayer, some of the bridges showed resistive behavior all the way down to low temperatures. Magnetoresistance versus temperature of the superconductive ones showed the typical peak due to flux flow against pinning below {{T}}{{c}}, while the resistive ones showed only the broad leading edge of such a peak. All this indicates clearly weak-link superconductivity in the resistive bridges between superconductive {YBa}}2{Cu}}3{{{O}}}x grains via the topological and ferromagnetic cap layers. Comparing our results to those of a reference trilayer (RTL) with the topological {Bi}}2{Se}}3 layer substituted by a non-superconducting highly overdoped {La}}1.65{Sr}}0.35{CuO}}4, indicates that the superconductive proximity effect as well as ferromagnetism in the topological trilayer are actually strongly suppressed compared to the non-topological RTL. This strong suppression could originate in lattice and Fermi levels mismatch as well as in short coherence length and unfavorable effects of strong spin–orbit coupling in {Bi}}2{Se}}3 on the d-wave pairing of {YBa}}2{Cu}}3{{{O}}}x. Proximity induced edge currents in the SRO/YBCO layer could lead to Majorana bound states, a possible signature of which is observed in the present study as zero bias conductance peaks.

  15. Conductus makes high-Tc integrated circuit

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that researchers at Conductus have successfully demonstrated what the company says is the world's first integrated circuit containing active devices made from high-temperature superconductors. The circuit is a SQUID magnetometer made from seven layers of material: three layers of yttrium-barium-copper oxide, two layers of insulating material, a seed layer to create grain boundaries for the Josephson junctions, and a layer of silver for making electrical contact to the device. The chip also contains vias, or pathways that make a superconducting contact between the superconducting layers otherwise separated by insulators. Conductus had previously announced the development of a SQUID magnetometer that featured a SQUID sensor and a flux transformer manufactured on separate chips. What makes this achievement important is that the company was able to put both components on the same chip, thus creating a simple integrated circuit on a single chip. This is still a long way from conventional semiconductor technology, with as many as a million components per chip, or even the sophisticated low-Tc superconducting chips made by the Japanese, but the SQUID magnetometer demonstrates all the elements and techniques necessary to build more complex high-temperature superconductor integrated circuits, making this an important first step

  16. Simulation of YBCO Tape and Coils in HTS Maglev System

    Directory of Open Access Journals (Sweden)

    Song Mengxiao

    2017-01-01

    Full Text Available In the process of running high temperature superconducting maglev train, the AC(Alternating Current loss of superconducting coil is directly related to its safe operation and operating cost. In this paper, the simulation model was built based on the finite element software COMSOL Multiphysics, and mainly simulated and calculated the AC losses of YBCO(Yttrium Barium Copper Oxide tape and coils. In this model, as the solving object, the singular and infinite long YBCO tape and coils model was solved with H-formulation and the nonlinear characteristic (E-J constitutive law and anisotrophy (B-J characteristic were taken into consideration as the theoretical foundation. Then on the basis of the model under maglev suspension system, AC losses under different amplitude and frequence AC currents were calculated. The results shows that under different frequencies and dynamic components, the local maximum AC loss of YBCO tape and coils occurs when the steady-state DC(Direct Current current is 30A. Then comparing with old maglev suspension system, the new system can greatly reduce the energy consumption and the material cost.

  17. Effective method to control the levitation force and levitation height in a superconducting maglev system

    International Nuclear Information System (INIS)

    Yang Peng-Tao; Yang Wan-Min; Wang Miao; Li Jia-Wei; Guo Yu-Xia

    2015-01-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. (paper)

  18. A Superconducting Dual-Channel Photonic Switch.

    Science.gov (United States)

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pressure tuning of structure, superconductivity, and novel magnetic order in the Ce-underdoped electron-doped cuprate T'-Pr1.3-xLa0.7CexCuO4 ( x=0.1 )

    Energy Technology Data Exchange (ETDEWEB)

    Guguchia, Z. [Columbia Univ., New York, NY (United States); Paul Scherrer Inst. (PSI), Villigen (Switzerland); Brookhaven National Lab. (BNL), Upton, NY (United States); Adachi, T. [Sophia Univ., Tokyo (Japan); Shermadini, Z. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ohgi, T. [Tohoku Univ., Sendai (Japan); Chang, J. [Univ. of Zurich (Switzerland); Bozin, E. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); von Rohr, F. [Univ. of Zurich (Switzerland); dos Santos, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molaison, J. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boehler, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carnegie Inst. of Washington, Washington, DC (United States); Koike, Y. [Tohoku Univ., Sendai (Japan); Wieteska, A. R. [Columbia Univ., New York, NY (United States); Frandsen, B. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morenzoni, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Amato, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Billinge, S. J. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States); Uemura, Y. J. [Columbia Univ., New York, NY (United States); Khasanov, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2017-09-14

    High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd 2 CuO 4 (the so-called T ' ) structure T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 with x = 0.1 are reported. A strong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T ' to the K 2 NiF 4 (the so-called T) structure is observed up to the maximum applied pressure of p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T so in T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T c . All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.

  20. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  1. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  2. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  3. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    International Nuclear Information System (INIS)

    Zhao, J.; Noh, D.W.; Chern, C.; Li, Y.Q.; Norris, P.E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology

  4. The new superconductors: Prospects for applications

    International Nuclear Information System (INIS)

    Wolsky, A.M.; Giese, R.F.; Daniels, E.J.

    1989-01-01

    Two years ago several groups around the world, excited by the discovery by K. Alex Mueller and J. Georg Bednorz of the IBM Zurich Research Laboratory of a superconducting ceramic oxide, developed an yttrium-barium-copper oxide that superconducted at 90 K. Since then other investigators have found two separate families of copper oxides, one incorporating bismuth and the other thallium, that superconduct at between 110 and 120 K. These high-temperature superconductors could be cooled to 77 degrees K with liquid nitrogen, which is cheap and abundant. This immediately suggested that certain applications of superconductivity long considered not to be economic or practical might be feasible. Yet many of the envisioned applications-generators and motors, energy storage, magnetically levitating trains-raise the same issues to which Onnes referred. It is not yet known whether the new materials can be made easily workable-strong and flexible enough to fashion into wire and other useful forms. Nor is it known whether they can be made to carry large currents and operate in intense magnetic fields. Whether the new discoveries will prove fruitful will depend on the progress made toward achieving design requirements for known applications and on identifying new applications as yet unforeseen. Indeed, such new applications may well have the greater impact. No one foresaw today's most important commercial use of superconductivity, magnetic-resonance imaging for medical diagnosis, in the 1960's, when niobium-3-tin and niobium-titanium were found to remain superconducting while carrying high currents in the presence of sizable magnetic fields. Leaving aside the unforeseen, an informed view of the economic and technical advantages of the new superconductors can help guide attempts to achieve the applications now being envisioned

  5. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  6. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Haug, Daniel; Hinkov, Vladimir; Sidis, Yvan

    2010-01-01

    We present a neutron triple-axis and resonant spin-echo spectroscopy study of the spin correlations in untwinned YBa2Cu3O6+x single crystals with x=0.3, 0.35 and 0.45 as a function of temperature and magnetic field. As the temperature T→0, all samples exhibit static incommensurate magnetic order...... with propagation vector along the a-direction in the CuO2 planes. The incommensurability δ increases monotonically with hole concentration, as it does in La2−xSrxCuO4 (LSCO). However, δ is generally smaller than in LSCO at the same doping level, and there is no sign of a reorientation of the magnetic propagation...... vector at the lowest doping levels. The intensity of the incommensurate Bragg reflections increases linearly with magnetic field for YBa2Cu3O6.45 (superconducting Tc=35 K), whereas it is field independent for YBa2Cu3O6.35 (Tc=10 K). These results fit well into a picture in which superconducting and spin...

  7. The collapse of the columnar spatial topology of pseudogap excitations in the underdoped-overdoped transition of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Roehler, Juergen [Universitaet zu Koeln, 50937 Koeln (Germany)

    2016-07-01

    The intensity I{sub Q{sub 0}} of the Q=0 nematic pseudogap excitations in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} was found to increase between p ≥ 0.06 and 0.14 and to collapse at p{sub opt}=0.16, reaching zero at p=0.2. Evidentially it maps the growth and the collapse of the bulge in the doping dependence of the basal-plane area (ab) of p-type cuprates. The nematic topology of the pseudogap excitations results from the non-occupancy constraint for nn ZR-holes excluding 1a dimerization, but favoring 3a pair states with inequivalent O{sub x,y} sites. 3a pair states have hard core properties, yield d-type CDW excitations, and inflate the basal-plane area by a columnar topology against covalency-driven contraction. We show that optimal delocalization of ZR-holes at p{sub opt}=1/6 ≅ 0.17, tantamount to maximal connectedness of 3a pair states, will transform the columnar nematic pattern into isotropic tweedy striations, hence collapses I{sub Q{sub 0}}, and the bulge.

  8. Light induced superconductivity in underdoped YBa{sub 2}Cu{sub 3}O{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Stefan [Max-Planck-Institut fuer die Struktur und Dynamik der Materie, Hamburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); 4. Physikalisches Institut und Research Center SCoPE, Uni Stuttgart (Germany); Nicoletti, Daniele; Hunt, Cassi; Hu, Wanzheng; Mankowsky, Roman; Foerst, Michael; Gierz, Isabella; Cavalleri, Andrea [Max-Planck-Institut fuer die Struktur und Dynamik der Materie, Hamburg (Germany); Loew, Toshinao; LeTacon, Mathieu; Keimer, Bernhard [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2015-07-01

    Photo-stimulation with femtosecond mid-infrared pulses allows us to induce an inhomogeneous non-equilibrium superconducting state in YBa{sub 2}Cu{sub 3}O{sub x} at temperatures as high as 300 K. Its transient response is probed via THz time-domain spectroscopy. We measure and characterize its complex optical response above and below the superconducting transition temperature T{sub c}: Below T{sub c}, we find an enhancement of the optical signatures of superconducting coherence. Above T{sub c} we find that the incoherent optical properties at equilibrium become highly coherent with optical signatures very similar to the ones for superconductors below T{sub c}. In the course of understanding these observations, ultrafast x-ray experiments at LCLS allow us observing reconstructed crystal structure in the transient superconducting state and the influence of competing CDW-order to the phonon-excitation.

  9. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    Science.gov (United States)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current

  10. Microstructure and property correlations in high-temperature superconductors

    Science.gov (United States)

    Kalyanaraman, Ramakrishnan

    1998-11-01

    The work in this dissertation is intended at developing high quality device gradefilms of the high temperature (high-Tsbc) superconductor, Yttrium Barium Copper Oxide (YBCO), on MgO(001) substrates. Three approaches have been used to achieve the above goal, (i) The use of a SrTiOsb3 buffer layer, (ii) The use of Ag to enhance the growth of YBCO films and (iii) Investigation of the atomic structure-property correlations of low-angle grain boundaries in these films. Thin film heterostructures of YBCO/MgO and YBCO/SrTiOsb3/MgO were fabricated by pulsed laser deposition (PLD), using a 248 nm KrF excimer laser. Analysis of the structure and measurement of superconducting properties of the films were carried out to optimize the suitable conditions under each approach. The key findings were, (i) Single crystal-like SrTiOsb3 buffer layers can be grown and they give the highest JsbcYBCO films, (ii) An in-depth study of the role of Ag showed that it enhanced film growth of YBCO thereby improving its quality, and (iii) Low-angle boundaries in YBCO/MgO occur with two probable habit planes and the Jsbcs across them differ slightly. A systematic investigation of the crystalline quality of the SrTiOsb3 films deposited by PLD was performed as a function of oxygen partial pressure (pOsb2) and substrate temperature (Tsbc). The highest quality films were grown in the pOsb2 range of 0.1-1 mTorr at 750sp°C. The films had as-deposited x-ray diffraction rocking curve (omega) values of {˜}0.70sp° and Rutherford backscattering channeling yields (chisbmin) of 5% as compared to omega˜1.40sp° and chisbmin˜14% for the film deposited in 100 mTorr of pOsb2. The x-ray phi-scans showed epitaxial cube-on-cube alignment of the SrTiOsb3 films on MgO(001) substrates. Thermal annealing of the SrTiOsb3 films further improved the quality, and the 1 mTorr films gave omega{˜}0.13sp° and chisbmin˜2.0%. Transmission electron microscopy investigations (TEM) of these films showed that the defects in

  11. Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped La1895Sr0105CuO4 superconductor

    DEFF Research Database (Denmark)

    Chang, J.; Schnyder, A.P.; Gilardi, R.

    2007-01-01

    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895Sr0.105CuO4 (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer Q(IC)=(0.5,0.5 +/-delta,0),(0.5 +/-delta,0.5,0) ...

  12. Scanning tunneling spectroscopy studies of Bi2Sr2CaCu2O8+x from the strongly underdoped to strongly overdoped regime

    Science.gov (United States)

    Slezak, James

    2006-03-01

    Using atomically resolved scanning tunneling microscopy (STS), we investigate the electronic structure Bi2Sr2CaCu2O8+x across a range of doping levels from x ˜ 0.1 up to as high as ˜0.23, with significant changes in electronic structure observed above p˜0.21. New sample preparation processes [1] were used to produce heavily overdoped crystals suitable for the imaging of various forms of electronic heterogeneity. The evolution of the gap map δ(r), coherence peak height map A(r), the inelastic tunneling signatures φ(r), and the quasiparticle interference LDOS modulations, as well as their interrelations across this range of doping levels, will be presented. Additional authors: J. Lee, M. Wang, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, U.S.A; K. Fujita, Department of Advanced Materials Science, University of Tokyo, Tokyo 113-0033, Japan; H. Eisaki, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568; S. Uchida, Department of Physics, University of Tokyo, Tokyo 113-0033; and J. C. Davis, Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University. [1] J. Slezak, K. Fujita, J. C. Davis, in preparation (2005)

  13. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through

  14. Evidence for monoclinic distortion in the ground state phase of underdoped La_1_._9_5Sr_0_._0_5CuO_4: A single crystal neutron diffraction study

    International Nuclear Information System (INIS)

    Singh, Anar; Schefer, Jürg; Frontzek, Matthias; Sura, Ravi; Conder, Kazimierz; Sibille, Romain F.; Ceretti, Monica; Paulus, Werner

    2016-01-01

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La_1_._9_5Sr_0_._0_5CuO_4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La_1_._9_5Sr_0_._0_5CuO_4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way; however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.

  15. Conventional proximity effect in bilayers of superconducting underdoped $La_{1.88}Sr_{0.12}CuO_4$ islands coated with non superconducting overdoped $La_{1.65}Sr_{0.35}CuO_4$

    OpenAIRE

    Koren, G.; Millo, O.

    2009-01-01

    Following a recent study by our group in which a large $T_c$ enhancement was reported in bilayers of the non-superconducting $La_{1.65}Sr_{0.35}CuO_4$ and superconducting $La_{1.88}Sr_{0.12}CuO_4$ films [Phys. Rev. Lett. \\textbf{101}, 057005 (2008)], we checked if a similar effect occurs when superconducting $La_{1.88}Sr_{0.12}CuO_4$ islands are coated with a continuous layer of the non superconducting $La_{1.65}Sr_{0.35}CuO_4$. We found that no such phenomenon is observed. The bare supercond...

  16. Optical Study of Electron-Doped Cuprate Pr1.3-xLa0.7CexCuO4+δ in Under-Doped Regime: Revisit the Phase Diagram

    Science.gov (United States)

    Ohnishi, Ryota; Nakajima, Masamichi; Miyasaka, Shigeki; Tajima, Setsuko; Adachi, Tadashi; Ohgi, Taro; Takahashi, Akira; Koike, Yoji

    2018-04-01

    A recent progress of reduction process for electron-doped cuprates enabled us to get superconducting samples at very low doping levels. In order to clarify the electronic state of strongly reduced Pr1.3-xLa0.7CexCuO4+δ (x = 0.05, 0.10) which exhibit high Tc (˜27 K) superconductivity, we have measured their optical spectra. The reflectivity of these samples was found much higher than the published data for the moderately reduced and non-superconducting samples with the same Ce concentrations. Moreover, the estimated effective electron numbers Neff for x = 0.05 and 0.10 were close to that of the optimally doped and superconducting sample with x = 0.15. Given that the parent compound is a Mott insulator, these results indicate that in the electron-doped cuprates only a small amount of carrier doping changes the system to a high Tc superconductor with a large Fermi surface. At low temperatures, a broad mid-infrared peak appeared even in the superconducting samples.

  17. Metal–insulator crossover in high Tc cuprates: A gauge field approach

    Indian Academy of Sciences (India)

    plane resistivity of underdoped cuprates and a range of superconducting cuprates in the presence of a strong magnetic field suppressing superconductivity. We propose an explanation for this phenomenon based on a gauge field theory approach ...

  18. On the interplay of Jahn-Teller physics and Mott physics in cuprates

    International Nuclear Information System (INIS)

    Kamimura, H; Ushio, H

    2008-01-01

    The extended two-story house model which is now called the Kamimura-Suwa (K-S) model has clarified how the interplay of Mott physics and Jahn-Teller physics plays an important role in determining the superconducting as well as metallic state of underdoped cuprates. In this paper it is first pointed out for underdoped cuprates that Mott physics leads to the existence of local antiferromagnetic order constructed from the localized spins while that the anti-Jahn-Teller effect as a central issue of Jahn-Teller physics leads to the existence of two kinds of orbitals parallel and perpendicular to a CuO 2 plane whose states have nearly the same energy. As a result of the interplay of both physics the K-S model has shown that the exchange interactions between the spins of a localized hole and of a carrier hole play an important role in producing the coexistence of superconductivity and antiferromagnetism in underdoped cuprates. The appearance of d-wave superconductivity even in the phonon-involved mechanism is also shown to be due to the interplay of Jahn-Teller physics and Mott Physics. Brief review of these facts as well as the K-S model is given in this paper. More outstanding result in this paper is that the origin of pseudogap in the deeply underdoped regime has been clarified. In this paper it is shown theoretically for the first time that the so-called T* pseudogap observed in ARPES, STM and tunneling experiments below T c in underdoped cuprates corresponds to the real transition of photo-excited electrons from the occupied states in the originally conduction band below the superconducting gap to a free-electron state above the vacuum level. Thus we conclude that the T* pseudogap in the underdoped cuprates which increases with decreasing the hole concentration is not 'pseudo', but a real gap which exists even below T c

  19. A phenomenological theory of the pseudogap state

    International Nuclear Information System (INIS)

    Rice, T.M.; Yang Kaiyu; Zhang Fuchun

    2007-01-01

    An ansatz is proposed for the coherent part of the single particle Green's function in a doped resonant valence bond (RVB) state by analogy with the form derived by Konik and coworkers for an array of 2-leg Hubbard ladders near half-filling. The parameters of the RVB state are taken from the renormalized mean field theory of Zhang and coworkers for underdoped cuprates. The ansatz shows good agreement with recent angle resolved photoemission on underdoped cuprates and resolves an apparent disagreement with the Luttinger sum rule

  20. Data Analysis of Minima Total Cross-sections of Nitrogen-14 on JENDL-3.2Nuclear Data File

    International Nuclear Information System (INIS)

    Suwoto; Pandiangan, Tumpal; Ferhat-Aziz

    2000-01-01

    The integral tests of neutron cross-section for shielding material suchas nitrogen-14 contained in JENDL-3.2 file have been performed. Analysis ofthe calculation for nitrogen-14 was based on the MAEKER's ORNL-BroomstickExperiment at ORNL-USA. For the data comparison, the calculation analysiswith JENDL-3.1 file, ENDF/B-IV file, ENDF/B-VI file and JEF2.2 have also beencarried out. The overall calculation results by using JENDL-3.2 evaluationshowed good agreement with the experimental data, as well as those with theENDF/B-VI evaluation. In particular, the JENDL-3.2 evaluation gave betterresults than JENDL-3.1 evaluation and ENDF/B-IV. It was been concluded thatthe total cross-sections of Nitrogen-14 contained in JENDL-3.2 file is invery good agreement with the experimental results, although the totalcross-section in the energy range between 0.5 MeV and 0.9 MeV on fileJENDL-3.2 was small (about 4% lower), and minima of total cross-sections wasdeeper. (author)

  1. Interlayer magnetotransport study in electron-doped Sm2 ...

    Indian Academy of Sciences (India)

    On cooling, the -axis resistivity ρc of the mesa structures reveals a semiconductive upturn above c, followed by a sharp superconducting transition at 20 K. When the magnetic field is applied along the -axis, ρc() shows a parallel shift without significant broadening, as also observed in the hole-doped underdoped ...

  2. Effects of impurities and vortices on the low-energy spin excitations in high-Tc materials

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Schmid, M.

    2011-01-01

    We review a theoretical scenario for the origin of the spin-glass phase of underdoped cuprate materials. In particular it is shown how disorder in a correlated d-wave superconductor generates a magnetic phase by inducing local droplets of antiferromagnetic order which eventually merge and form...

  3. Correlation and disorder-enhanced nematic spin response in superconductors with weakly broken rotational symmetry

    DEFF Research Database (Denmark)

    Andersen, Brian Møller; Graser, S.; Hirschfeld, P. J.

    2012-01-01

    Recent experimental and theoretical studies have highlighted the possible role of an electronic nematic liquid in underdoped cuprate superconductors. We calculate, within a model of d-wave superconductor with Hubbard correlations, the spin susceptibility in the case of a small explicitly broken...

  4. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    Science.gov (United States)

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  5. Metal–insulator crossover in high c cuprates: A gauge field ...

    Indian Academy of Sciences (India)

    A metal–insulator crossover appears in the experimental data for in-plane resistivity of underdoped cuprates and a range of superconducting cuprates in the presence of a strong magnetic field suppressing superconductivity. We propose an explanation for this phenomenon based on a gauge field theory approach to the t-J ...

  6. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    The observation of pseudogap in normal-state properties of high-temperature supercon- ducting (HTS) oxide materials has raised many questions about the origin and its relation with superconductivity. Emery and Kevilson [1] first used the term pseudogap temper- ature for underdoped high-Tc materials. The temperature at ...

  7. Correlation of tunneling spectra with surface nanomorphology and doping in thin YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Sharoni, A.; Millo, O. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Koren, G. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Physics

    2001-06-01

    Tunneling spectra measured on thin epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films are found to exhibit strong spatial variations, showing U- and V-shaped gaps as well as zero-bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero-bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no transition to a state of broken time-reversal symmetry in the underdoped regime. (orig.)

  8. Superconducting gap anisotropy and d-wave pairing in YBa2Cu3O7-δ

    Science.gov (United States)

    Verma, Sanjeev K.; Gupta, Anushri; Kumari, Anita; Indu, B. D.

    2018-02-01

    Considering Born-Mayer-Huggins potential as a most suitable potential to study the dynamical properties of high-temperature superconductors (HTS), the many-body quantum dynamics to obtain phonon Green’s functions has been developed via a Hamiltonian that incorporates the contributions of harmonic electron and phonon fields, phonon field anharmonicities, defects and electron-phonon interactions without considering BCS structure. This enables one to develop the quasiparticle renormalized frequency dispersion in the representative high-temperature cuprate superconductor YBa2Cu3O7-δ. The superconducting gap shows substantial changes with increased doping. The in-plane gap study revealed a v-shape gap with a nodal point along kx = ±ky direction for optimum doping (δ = 0.16) and the nodal point vanished in underdoped and overdoped regimes. The dx2-y2 pairing symmetry is observed at optimum doping with the presence of s or dxy components ( < 3%) in underdoped and overdoped regimes.

  9. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  10. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  11. Phenomenological Theory for Pseudogap States in High Tc Cuprate

    Directory of Open Access Journals (Sweden)

    Zhang Fuchun

    2012-03-01

    Full Text Available Pseudogap phase in the underdoped region of high-Tc cuprate is one of the challenging issues in condensed matter physics. In this talk, I will describe a phenomenological theory for this phase, based on analogies to the approach to Mott localization at weak coupling in lower dimensional systems. I will make comparisons of the theory to a series of the experiments, including angle resolved photoemission spectroscope, scanning tunneling microscope.

  12. Damped spin excitations in a doped cuprate superconductor with orbital hybridization

    DEFF Research Database (Denmark)

    Ivashko, O.; Shaik, N. E.; Lu, X.

    2017-01-01

    A resonant inelastic x-ray scattering study of overdamped spin excitations in slightly underdoped La2-xSrxCuO4 (LSCO) with x = 0.12 and 0.145 is presented. Three high-symmetry directions have been investigated: (1) the antinodal (0,0) -> (½,0), (2) the nodal (0,0) -> (¼, ¼), and (3) the zone-boun...

  13. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  14. Elucidation of the origins of transport behaviour and quantum oscillations in high temperature superconducting cuprates

    International Nuclear Information System (INIS)

    Wilson, John A

    2009-01-01

    A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.

  15. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  16. Role of disorder in the multi-critical region of d-wave superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Yanase, Youichi; Ogata, Masao

    2007-01-01

    We investigate the disorder-induced microscopic inhomogeneity in the multi-critical region of d-wave superconductivity and antiferromagnetism on the basis of the microscopic t-t ' -U-V model. We find that a small amount of point disorder induces the nano-scale inhomogeneity of spin and superconducting fluctuations when the coherence length of superconductivity is remarkably short as in the under-doped cuprates. Then, the two fluctuations spatially segregate to avoid their competition. We show the remarkable electron-hole asymmetry in high-T c cuprates where the quite different spatial structure is expected in the electron-doped materials

  17. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  18. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  19. Mechanisms for Superconductivity in Cuprates compared with results from the Generalized MacMillan-Rowell Analysis of High Resolution Laser- ARPES

    Science.gov (United States)

    Varma, Chandra; Choi, Han-Yong; Zhang, Wentao; Zhou, Xingjiang

    2012-02-01

    The spectra of fluctuations and their coupling to fermions has been deduced from extensive high resolution laser ARPES in several BISCCO samples and quantitatively analyzed. We ask the question whether some of the theories for superconductivity in Cuprates are consistent or inconsistent with the frequency and the momentum dependence of the deductions. We find that any fluctuation spectra, for example that of Antiferromagnetic Fluctuations, whose frequency dependence depends significantly on momentum dependence are excluded. We consider the quantum-critical spectra of the loop-current order observed in under-doped cuprates and its coupling to fermions and find it consistent with the data.

  20. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  1. Quasiparticle states driven by a scattering on the preformed electron pairs

    Directory of Open Access Journals (Sweden)

    T. Domanski

    2016-02-01

    Full Text Available We analyze evolution of the single particle excitation spectrum of the underdoped cuprate superconductors near the anti-nodal region, considering temperatures below and and above the phase transition. We inspect the phenomenological self-energy that reproduces the angle-resolved-photoemission-spectroscopy (ARPES data and we show that above the critical temperature, such procedure implies a transfer of the spectral weight from the Bogoliubov-type quasiparticles towards the in-gap damped states. We also discuss some possible microscopic arguments explaining this process.

  2. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    Science.gov (United States)

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  3. Ginzburg-Landau equation and vortex liquid phase of Fermi liquid superconductors

    International Nuclear Information System (INIS)

    Ng, T-K; Tse, W-T

    2007-01-01

    In this paper we study the Ginzburg-Landau (GL) equation for Fermi liquid superconductors with strong Landau interactions F 0s and F 1s . We show that Landau interactions renormalize two parameters entering the GL equation, leading to the renormalization of the compressibility and superfluid density. The renormalization of the superfluid density in turn leads to an unconventional (2D) Berezinskii-Kosterlitz-Thouless (BKT) transition and vortex liquid phase. Application of the GL equation to describe underdoped high-T c cuprates is discussed

  4. Correlation of tunneling spectra with surface nano-morphology and doping in thin YBa2Cu3O7-delta films

    OpenAIRE

    Sharoni, A.; Koren, G.; Millo, O.

    2001-01-01

    Tunneling spectra measured on thin epitaxial YBa2Cu3O7-delta films are found to exhibit strong spatial variations, showing U and V-shaped gaps as well as zero bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no tr...

  5. Characterizing the pseudogap in the high- Tc superconductors using very high magnetic fields: implications on the phase diagram

    Science.gov (United States)

    Zheng, Guo-qing; Ozaki, H.; Kitaoka, Y.; Clark, W. G.; Kodama, Y.; Kondo, T.; Shimakawa, Y.; Kubo, Y.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.

    2001-11-01

    We find contrastive response of the pseudogap (PG) to high magnetic fields up to 28.5 T based on 63Cu NMR measurements. In the slightly overdoped TlSr 2CaCu 2O 6.8, the PG is strongly field dependent and shown to be due to the superconducting fluctuations. By contrast, the PG in the underdoped YBa 2Cu 4O 8 does not depend on magnetic fields up to 28.5 T. These results imply that there exists a field-insensitive PG up to a certain doping level beyond which it is taken over by the superconducting fluctuations-induced one.

  6. Potassium substitution effects in YBa2Cu3O7- & delta superconductor

    OpenAIRE

    M Farbod; M Zargar Shoushtari

    2006-01-01

      YBa2-xKxCu3O7-δ compound with x = 0, 0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1 was prepared. The samples were characterized by XRD, Tc, oxygen content and room temperature thermopower measurements. The results shows that by increasing the potassium, the samples go to the underdoped regime. This is due to the depletion of oxygen from the samples. By post annealing of the sample with x = 0.2 and Tc = 78 K in oxygen, the Tc increased up to 93 K which means it is possible to put back the oxygens into th...

  7. The resistivity measurements of Pb-based 1212 superconductors under pressure

    International Nuclear Information System (INIS)

    Sampath Kumar, T.S.; Subba Raman, T.S.; Gokulnath, K.; Latha, B.; Natarajan, S.

    1995-01-01

    High pressure resistivity study of (Pb 0.5 Cd 0.5 )Sr 2 (Y 0.7 Ca 0.3 )Cu 2 O 7 compounds, annealed in air and oxygen, has been carried out at room temperature. Both the samples show an initial drop in resistivity up to 20 kb followed by a steady value up to 80 kb. But the rate of drop of resistivity with pressure is sharp for the oxygen annealed 1212-sample, and has the lowest resistivity value above 20 kb. The high pressure results suggest that the (Pb,Cd)-1212 samples are under-doped. (author)

  8. Thermoelectric anisotropy in the iron-based superconductor Ba (Fe1-xCox) 2As2

    Science.gov (United States)

    Matusiak, Marcin; Rogacki, Krzysztof; Wolf, Thomas

    2018-06-01

    We report on the in-plane anisotropy of the Seebeck and Nernst coefficients as well as of the electrical resistivity determined for a series of strain-detwinned single crystals of Ba (Fe1-xC ox) 2A s2 . Two underdoped samples (x =0.024 , 0.045) exhibiting a transition from the tetragonal paramagnetic phase to the orthorhombic spin density wave (SDW) phase (at Ttr=100 and 60 K, respectively) show an onset of Nernst anisotropy at temperatures above 200 K, which is significantly higher than Ttr. In the optimally doped sample (x =0.06 ) the transport properties also appear to be in-plane anisotropic below T ≈120 K, despite the fact that this particular composition does not show any evidence of long-range magnetic order. However, the anisotropy observed in the optimally doped crystal is rather small, and for the Seebeck and Nernst coefficients the difference between values measured along and across the uniaxial strain has an opposite sign to those observed for underdoped crystals with x =0.024 and 0.045. For these two samples, the insensitivity of the Nernst anisotropy to the SDW transition suggests that the origin of nematicity might be something other than magnetic.

  9. A revision of the fishtail effect in YBa{sub 2}Cu{sub 3}O{sub 7−δ} crystals and its connection with vortex dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica and CONICET, Av. General Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Pasquini, G., E-mail: pasquini@df.uba.ar [Departamento de Física, FCEyN, Universidad de Buenos Aires and IFIBA, CONICET, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2015-01-15

    Highlights: • A critical revision of the accepted fishtail magnetization picture in YBCO crystals. • In slightly underdoped YBCO crystals the fishtail has a dynamic origin. • We show correlation between fishtail magnetization, Peak Effect and history effects. • We propose that the fishtail indicates a crossover between two plastic creep regimes. - Abstract: The fishtail magnetization observed in many type II superconductors has been investigated since the earliest nineties and associated with different phase transitions and dynamic crossovers in complex vortex matter. In systems without a sharp order–disorder phase transition, the fishtail has been related with a crossover from elastic to plastic vortex creep regimes. In this paper we perform a critical revision of this accepted picture. We show that, in slightly underdoped YBa{sub 2}Cu{sub 3}O{sub 7−δ} single crystals, there is a clear correlation between the fishtail magnetization and the Peak Effect observed in ac experiments with the associated history effects. We propose that both features are originated in the same dynamic crossover, between two plastic creep regimes. The proposed picture can also apply to other system, as those belonging to same families of iron-based pnictides.

  10. Field-dependent transport critical current in single crystals of Ba(Fe1-xTMx)2As2 (TM = Co, Ni) superconductors

    International Nuclear Information System (INIS)

    Tanatar, M A; Ni, N; Bud'ko, S L; Canfield, P C; Prozorov, R

    2010-01-01

    Critical current density was studied by direct electrical transport measurements in single crystals of Ba(Fe 1-x TM x ) 2 As 2 under magnetic fields up to 9 T. To understand the relation of the critical current to the structural transformations in the material, the electron doping level was controlled by the amount of TM = Co (underdoped x = 0.054 versus optimally doped x = 0.074) and by the nature of the dopant (optimally doped TM = Co versus TM = Ni). It is found that the suppression of the critical current density by the magnetic field is much slower for Ni and underdoped Co compositions than for an optimally doped Co composition. We relate this difference to the proximity to the orthorhombic/antiferromagnetic phase boundary in the T(x) phase diagram. Structural domains formed in this area of the phase diagram create favorable conditions for pinning and not only increase critical current densities, but also hamper the degradation of the critical current under magnetic field.

  11. Probing the phase diagram of cuprates with YBa2Cu3O7 -δ thin films and nanowires

    Science.gov (United States)

    Arpaia, Riccardo; Andersson, Eric; Trabaldo, Edoardo; Bauch, Thilo; Lombardi, Floriana

    2018-02-01

    We have grown and characterized 30-nm-thick YBa2Cu3O7 -δ (YBCO) films, deposited by pulsed laser deposition on both MgO (110) and SrTiO3 (001) substrates, which induce opposite strain to the superconducting layer. By carefully tuning the in situ post-annealing oxygen pressure, we achieved, in a reproducible way, films at different oxygen doping, spanning from the slightly overdoped down to the strongly underdoped region of the phase diagram. The transport properties of the films, investigated through resistance versus temperature measurements, are in perfect qualitative agreement with single crystals. Starting from these films, we have also successfully fabricated nanowires with widths down to 65 nm, at different oxygen doping. The nanostructures exhibit characteristic temperatures (as the critical temperature Tc and the pseudogap temperature T*) similar to those of the as-grown films and carry critical current densities Jc close to the critical depairing value, limited by vortex entry. This implies that the superconducting and the normal state properties of underdoped YBCO are preserved in our films, and they can be studied as a function of the dimensionality of the system, down to the nanoscale.

  12. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsoo [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  13. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  14. Nernst effect in the electron-doped cuprate superconductor L a2 -xC exCu O4

    Science.gov (United States)

    Mandal, P. R.; Sarkar, Tarapada; Higgins, J. S.; Greene, Richard L.

    2018-01-01

    We report a systematic study of the Nernst effect in films of the electron-doped cuprate superconductor L a2 -xC exCu O4 as a function of temperature and magnetic field (up to 14 T) over a range of doping from underdoped (x =0.08 ) to overdoped (x =0.16 ). We have determined the characteristic field scale HC2 * of superconducting fluctuation which is found to track the domelike dependence of superconductivity (TC). The fall of HC2 * and TC with underdoping is most likely due to the onset of long-range antiferromagnetic order. We also report the temperature onset, Tonset, of superconducting fluctuations above TC. For optimally doped x =0.11 Tonset (≅39 K ) is high compared to TC (26 K). For higher doping Tonset decreases and tends to zero along with the critical temperature at the end of the superconducting dome. The superconducting gap closely tracks HC2 * measured from the temperature- and field-dependent Nernst signal.

  15. Scaling properties of YBa{sub 2}Cu{sub 3}O{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Arushanov, E [Institute of Applied Physics, Academy of Sciences of the Moldova Republic, Academie street 5, Chisinau, MD 2028 (Moldova, Republic of); Levcenko, S [Institute of Applied Physics, Academy of Sciences of the Moldova Republic, Academie street 5, Chisinau, MD 2028 (Moldova, Republic of); Alami, H El [GPMD-Universite Paris 12, 61 avenue De Gaulle, 94010 CRETEIL Cedex (France); Cavellin, C Deville [GPMD-Universite Paris 12, 61 avenue De Gaulle, 94010 CRETEIL Cedex (France)

    2005-11-01

    An alternative simple method is proposed for analysing the scaling properties of the high-T{sub c} superconductor cuprates. The temperature is rescaled with a parameter T{sub R} determined from the precise analysis of R{sub H}(1/T), where R{sub H} is the Hall coefficient, in the high-temperature range. To illustrate this new method, the resistivity and Hall effect data obtained on underdoped YBa{sub 2}Cu{sub 3}O{sub x} epitaxial thin films are analysed. It is shown that the temperature-dependent resistivity {rho}(T), Hall coefficient R{sub H}(T) and the cotangent of the Hall angle cot {theta}{sub H}(T) of underdoped YBa{sub 2}Cu{sub 3}O{sub x} can be scaled into universal curves using this parameter T{sub R} to make a linear transformation of temperature and {rho}(T), R{sub H}(T) or cot{theta}{sub H}(T)

  16. The growth and characterisation of YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    McCurry, M.P.

    1999-02-01

    The normal state properties of YBa 2 Cu 3 O 7-δ (YBCO) are not completely understood. It is known that the oxygen doping play a large part in determining these properties. The optical conductivity of a series of c-axis YBCO thin films was investigated in this thesis. The films were grown on (100) MgO substrates using a pulsed laser deposition (PLD) system and characterised using X-ray diffraction, atomic force microscopy and resistance-temperature measurements. The optimum parameters for c-axis YBCO thin film growth were determined by systematically varying the main deposition parameters. The best quality films had a transition temperature T c ∼ 88K, with a transition width ∼ 1-2K. Critical current densities of J c ∼ 10 7 Acm -2 were obtained. Substrate and target morphology affected the quality of the films. a-axis YBCO films were grown using a PrBa 2 Cu 3 O 7 (PBCO) film as a template for growth. The choice of target and substrate were again important, with a smooth substrate essential for the multi-layering. T c ∼ 83K and J c ∼ 10 6 Acm -2 were the best values obtained. These values compare with data published on the 'best' YBCO films deposited by PLD. A series of c-axis films was controllably under-doped using an ex-situ annealing process. The as-grown films were assumed to be optimally doped with δ ∼ 0.05. Doping levels in the 'metallic' region, 0.05 -2 mbar. Another tetragonal film was obtained by cooling it after deposition in a nitrogen atmosphere. Neither had a superconducting transition; the c-axes of both films were elongated. The films could be successfully re-doped with oxygen, with a subsequent return to optimal values of T c and c-axis lattice parameter. The dielectric function of optimally doped and under-doped c-axis YBCO films was determined using the attenuated total reflection (ATR) technique. This data was obtained at a fixed frequency of 2984 cm -1 , (0.366eV), at temperatures ranging from 300K to 80K. The data was analysed in

  17. Anisotropic Resistivities of Precisely Oxygen Controlled Single-Crystal Bi2Sr2CaCu2O8+δ: Systematic Study on ''Spin Gap'' Effect

    International Nuclear Information System (INIS)

    Watanabe, T.; Matsuda, A.; Fujii, T.; Matsuda, A.

    1997-01-01

    The in-plane resistivity ρ a (T) and the out-of-plane resistivity ρ c (T) have been systematically measured for Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with their oxygen contents precisely controlled. In the underdoped region, deviation from T -linear in-plane resistivity, which evidences the opening of the spin gap, is clearly observed, while the out-of-plane resistivity is well reproduced by the activation-type phenomenological formula ρ c (T)=(a/T)exp (Δ/T)+c . In contrast to the YBa 2 Cu 3 O 7-δ system, we find that the onset of the semiconducting ρ c (T) does not coincide with the opening of the spin gap seen in the ρ a (T) in this Bi 2 Sr 2 CaCu 2 O 8+δ system. copyright 1997 The American Physical Society

  18. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  19. What is strange about high-temperature superconductivity in cuprates?

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  20. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  1. Evolution of magnetic and superconducting fluctuations with doping of high-Tc superconductors. An electronic Raman scattering study

    International Nuclear Information System (INIS)

    Blumberg, G.

    1998-01-01

    For YBa 2 Cu 3 O 6+δ and Bi 2 Sr 2 CaCu 2 O 3±δ superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T c the system exhibits a sharp Raman resonance of B 1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T c produces a global SC state

  2. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Kapaev, V.V.; Belyavsky, V.I. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation); Kopaev, Yu.V. [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow 119991 (Russian Federation)], E-mail: kopaev@sci.lebedev.ru; Smirnov, M.Yu. [State Pedagogical University, Voronezh 394043 (Russian Federation)

    2007-09-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = ({pi}, {pi}). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response.

  3. Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors

    Science.gov (United States)

    Jacobsen, H.; Holm, S. L.; Lǎcǎtuşu, M.-E.; Rømer, A. T.; Bertelsen, M.; Boehm, M.; Toft-Petersen, R.; Grivel, J.-C.; Emery, S. B.; Udby, L.; Wells, B. O.; Lefmann, K.

    2018-01-01

    We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La2 CuO4 +y . We observe that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. Therefore, the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, and the signals originate from different domains in the sample. These observations support real-space electronic phase separation in the crystal, where the static stripes in one phase are pinned versions of the dynamic stripes in the other, having slightly different periods. Our results explain earlier observations of unusual dispersions in underdoped La2 -xSrx CuO4 (x =0.07 ) and La2 -xBax CuO4 (x =0.095 ).

  4. Fabrication and characterization of intrinsic Josephson junctions in RE-123 whiskers

    International Nuclear Information System (INIS)

    Okutsu, T.; Ueda, S.; Ishii, S.; Nagasawa, M.; Takano, Y.

    2008-01-01

    The series of REBa 2 Cu 3 O 7-δ RE-123; RE = Y, Eu, Gd, Dy, Ho, Er, Tm, and Lu) single-crystal whiskers have been successfully grown using the Te- or Sb-doping method. Intrinsic Josephson junctions (IJJs) were fabricated from the whiskers using a focused ion beam (FIB). As-grown IJJs with T c > 70 K showed a Josephson current but no multi-branches in the current-voltage (I-V) characteristics. Under-doped specimens were obtained by a post-annealing process. As-grown IJJs with lower T c and all the specimens of the post-annealed IJJs showed clear multi-branched structure. The post-annealing reduced the critical temperature (T c ) and the critical current density (J c ) of the IJJs, and increased the anisotropic parameter γ

  5. NMR initiatives on understanding high-temperature superconductivity

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Mukuda, H.; Shimizu, S.; Abe, M.; Iyo, A.; Tanaka, Y.; Kito, H.; Tokiwa, K.; Watanabe, T.

    2007-01-01

    We review a recent progress of NMR studies [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.] on multi-layered cuprates. This work has shed new light to a generic phase diagram of high-temperature superconductivity (HTSC) which suggests a competition between antiferromagnetism (AFM) and superconductivity (SC). The multi-layered cuprates include two types of CuO 2 planes, an outer CuO 2 plane (OP) in a pyramidal coordination and an inner CuO 2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered systems is the presence of ideally flat CuO 2 planes that are homogeneously doped. Systematic Cu-NMR studies on the optimally-doped five-layered HgBa 2 Ca 4 Cu 5 O 12+δ (Hg-1245(OPT)) and slightly overdoped Tl-1245(OVD) have revealed the coexistent phase of SC and AFM in a unit cell [H. Kotegawa, et al., Phys. Rev. B 64 (2001) 064515; H. Kotegawa, et al., Phys. Rev. B 69 (2004) 014501.]. The optimally doped two OPs are predominantly superconducting with T c =108 and 100K, whereas the under-doped three IPs show the AFM order below T N =60 and 45K for Hg-1245(OPT) and Tl-1245(OVD), respectively. Recently exciting is the finding of the uniform mixing of AFM and HTSC in a single CuO 2 layer in the under-doped Hg-1245(UD) and the heavily underdoped four-layered Ba 2 Ca 3 Cu 4 O 8 F 2 (0234F(2.0)) that has fluorine ions (F 1- ) as apical ions [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.]. In Hg-1245(UD) with T c =72K and T N =290K, the OPs exhibit the uniform mixing of AFM and HTSC with AFM moment of M AFM (OP)=0.1μ B , whereas the IPs are possibly AFM insulators with a small doping [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001.]. In 0234F(2.0) with T c =55K and T N =100K, the uniform mixing of AFM and HTSC is demonstrated to take place in electron (n)-doped IPs [S. Shimizu, et al., submitted for publication.], thanks to insight

  6. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  7. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  8. Persistent photoconductivity in YBa2Cu3Ox by visible and UV excitation below Tc

    International Nuclear Information System (INIS)

    Markowitsch, W.; Altenburger, A.; LA, W.; Peruzzi, M.; Pedarnig, J.D.; Baeuerle, D.

    2004-01-01

    We studied the persistent photoconductivity in underdoped metallic YBa 2 Cu 3 O x (x∼6.6) by visible and UV excitation above and below T c . The results show that the photodoping effect exists also when the sample is in the superconducting state and that its efficiency is approximately the same as at low temperatures above T c . The dependence of the effect on the temperature where the photodoping is performed is essentially the same for visible light and UV radiation, i.e., a relatively small effect at low temperatures but a significantly larger effect near room temperature. We also observed that the efficiency is somewhat smaller with UV radiation, in contrast to previous results in semiconducting samples

  9. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  10. Superconductivity, Pairing Symmetry, and Disorder in the Doped Topological Insulator Sn1-xInxTe for x >= 0.10.

    Energy Technology Data Exchange (ETDEWEB)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; Louden, E. R.; Eskildsen, M. R.; Sefat, A. S.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Bokari, E.; Niraula, P. M.; Kayani, A.; Dewhurst, C. D.; Snezhko, A.; Welp, U.

    2018-01-19

    The temperature dependence of the London penetration depth Delta lambda(T) in the superconducting doped topological crystalline insulator Sn1-xInxTe was measured down to 450 mK for two different doping levels, x approximate to 0.45 (optimally doped) and x approximate to 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T-c, indicating that ferroelectric interactions do not compete with superconductivity.

  11. Potassium substitution effects in YBa2Cu3O7- & delta superconductor

    Directory of Open Access Journals (Sweden)

    M Farbod

    2006-09-01

    Full Text Available   YBa2-xKxCu3O7-δ compound with x = 0, 0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1 was prepared. The samples were characterized by XRD, Tc, oxygen content and room temperature thermopower measurements. The results shows that by increasing the potassium, the samples go to the underdoped regime. This is due to the depletion of oxygen from the samples. By post annealing of the sample with x = 0.2 and Tc = 78 K in oxygen, the Tc increased up to 93 K which means it is possible to put back the oxygens into the structure.

  12. Effect of external magnetic field on superconducting and spin density wave gaps of high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)

    2009-07-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  13. Effect of external magnetic field on superconducting and spin density wave gaps of high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2009-01-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  14. Interplay of charge density wave and spin density wave in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in

    2008-12-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.

  15. Interplay of charge density wave and spin density wave in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2008-01-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters

  16. Defects that control the properties of Tl- and Hg-based superconductors

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Chmaissem, O.; Hinks, D.G.; Mitchell, J.F.; Wagner, J.L.; Univ. of North Dakota, Grand Forks, ND; Jensen, W.R.; Dabrowski, B.; Northern Illinois Univ., DeKalb, IL

    1997-03-01

    Defects that affect T c in Tl 2 Ba 2 CuO 6+δ and HgBa 2 CuO 4+δ and HgBa 2 CuO 4+δ have been characterized by neutron powder diffraction. In Tl 2 Ba 2 CuO 6+δ , the dominant defect is interstitial oxygen between the two Tl-O planes, but Cu substitution on the Tl site also affects properties and there is evidence for a second oxygen defect for compositions in the vicinity of maximum T c . In HgBa 2 CuO 4+δ , there are two competing oxygen defects in the Hg layer. The relative concentrations of these defects switches upon passing from the underdoped region, through the maximum T c , to the overdoped region. This remarkable behavior could result from a change in the topology of the Fermi surface upon passing through the van Hove singularity

  17. Mirror nesting of the Fermi contour and enhanced diamagnetism of the pseudogap state in cuprates

    International Nuclear Information System (INIS)

    Kapaev, V.V.; Belyavsky, V.I.; Kopaev, Yu.V.; Smirnov, M.Yu.

    2007-01-01

    Since the insulating gap in parent spin antiferromagnet survives under a hole underdoping, it might result in a rise of a metal state with a pocket-like Fermi contour with both conventional and mirror nesting corresponding to the same momentum K = (π, π). The nesting leads to a possibility of singlet orbital antiferromagnetic order whereas the mirror nesting promotes the superconducting pairing with the momentum K. We assume screened Coulomb repulsion to be the dominating pairing interaction in the cuprates resulting in the two-component superconducting order parameter. The relative phase of the parameter can be related to orbital current circulations as it follows from the Ginzburg-Landau phenomenology. The orbital antiferromagnetic state with the insulating gap on the Fermi contour is related to the pseudogap state with enhanced diamagnetic response

  18. Single-particle properties of the Hubbard model in a novel three-pole approximation

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.

  19. d-Wave density waves in high Tc cuprates and CeCoIn5

    International Nuclear Information System (INIS)

    Maki, Kazumi; Dora, Balazs; Vanyolos, Andras; Virosztek, Attila

    2007-01-01

    Unconventional density waves (UDW) have a long history starting with the speculation of Halperin and Rice in 1968. However, a more realistic approach started around 1999 in order to clarify the nature of the pseudogap in the underdoped region of hole-doped high T c cuprates. Also d-wave density waves (dDW) evolved from early unrealistic 2D model with Z 2 symmetry to more realistic 3D mean-field condensate with U(1) gauge symmetry. More recently, the giant Nernst effect and the angle dependent magnetoresistance in LSCO, YBCO, Bi2212 and CeCoIn 5 are successfully described in terms of dDW, where the Landau quantization of the quasiparticle spectrum in dDW in a magnetic field (the Nersesyan effect) plays the crucial role

  20. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  1. The pseudogap in the c-axis optical conductivity in high Tc-cuprates

    International Nuclear Information System (INIS)

    Won, H.

    1999-01-01

    The pseudogap phenomenon is most remarkable in the underdoped region of high-T c cuprates. Since the superconducting state in the optimally doped high-T c cuprates is well described by the BCS-like d-wave superconductors, it is natural to assume that the pseudogap arises from the standard superconducting fluctuation. In particular in the layered compounds like high-T c cuprates Varlamov and his coworkers pointed out the density of states (DOS) correction to the superconducting fluctuation will play the crucial role. However, unfortunately in their analysis d-wave nature of the high-T c cuprates is ignored. Perhaps more seriously some unnecessary approximations were introduced in their analysis. The present theory gives somewhat different expressions of quasi-particle density of states for B = 0 and B ≠ 0, which can be tested experimentally. (orig.)

  2. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors.

    Science.gov (United States)

    Hong, Seung Hwan; Choi, Han-Yong

    2013-09-11

    We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.

  3. Reversible oxidation and critical current of YBa2Cu3Ox coated conductors

    International Nuclear Information System (INIS)

    Claus, H.; Uprety, K.K.; Ma, B.; Paulikas, A.P.; Vlasko-Vlasov, V.K.; Welp, U.; Veal, B.W.; Gray, K.E.

    2004-01-01

    We were able to vary the oxygen concentration of a YBCO coated-conductor sample from the under-doped to the over-doped regime. This was achieved by secondary oxygenation treatments at temperatures between 250 deg. C and 500 deg. C employing a novel oxygenation scheme. The YBCO-coated conductor was fabricated by the inclined substrate deposition method. Superconducting transition temperature and critical current as function of temperature and magnetic field were determined by a contact-free magnetization technique on a ring sample. It is observed that for temperatures at and below 77 K, the maximum critical current is obtained in the most over-doped state where the transition temperature is significantly depressed

  4. Tunnel and thermal c-axis transport in BSCCO in the normal and pseudogap states

    International Nuclear Information System (INIS)

    Giura, M; Fastampa, R; Sarti, S; Pompeo, N; Silva, E

    2007-01-01

    We consider the problem of c-axis transport in double-layered cuprates, in particular with reference to Bi 2 Sr 2 CaCu 2 O 8+δ compounds. We exploit the effect of the two barriers on the thermal and tunnel transport. The resulting model is able to describe accurately the normal state c-axis resistivity in Bi 2 Sr 2 CaCu 2 O 8+δ , from the underdoped side up to the strongly overdoped. We extend the model, without introducing additional parameters, in order to allow for the decrease of the barrier when an external voltage bias is applied. The extended model is found to describe properly the c-axis resistivity for small voltage bias above the pseudogap temperature T * , the c-axis resistivity for large voltage bias even below T c , and the differential dI/dV curves taken in mesa structures

  5. The Role of C-axis Polarized Phonons in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Timusk, T.; Homes, C. C.; Reichardt, W.

    1995-01-01

    We report on the optical conductivity of c-axis phonons in YBa 2 Cu 3 O 7-σ as a function of doping and temperature. At room temperature the frequencies and strengths of the modes are in good agreement with results from shell models based on neutron scattering. We discuss the apical oxygen mode which becomes asymmetric in underdoped materials and argue, with Burns, that the Au mode shifts from 570 cm -1 to 610 cm -1 for the two-fold coordinated copper sites in the chain layer in oxygen depleted materials. At low temperature there is a large transfer of c-axis phonon oscillator strength from O(4) apical and O (2, 3,) plane bending modes, to a very broad at 400 cm -1

  6. Synthesis and pressure effects on the La doped CaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo Hyun; Park, Tuson [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Shang, T.; Yuan, H. Q. [Dept. of physics, Zhejiang University, Hangzhou (China)

    2014-09-15

    We have synthesized La doped CaFe2As{sub 2} single crystals with Sn flux in an evacuated quartz ampule. Doping and pressure effects on the magnetic and superconducting properties of the under-doped Ca{sub 1-x}La{sub x}Fe{sub 2}As{sub 2} (x=0.08, 0.1) were studied by measuring electrical resistivity under quasi-hydrostatic pressure up to 21 kbar. Magnetic transition temperatures for all studied concentrations were sharply suppressed with slight amplitude of pressure, less than 3 kbar, while superconducting transition temperatures were robust against pressure. In this communication, we report temperature-pressure phase diagram for the La-doped CaFe{sub 2}As{sub 2} single crystals.

  7. Electromagnetic response in kinetic energy driven cuprate superconductors: Linear response approach

    International Nuclear Information System (INIS)

    Krzyzosiak, Mateusz; Huang, Zheyu; Feng, Shiping; Gonczarek, Ryszard

    2010-01-01

    Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.

  8. Spin fluctuations and the

    Directory of Open Access Journals (Sweden)

    V.M. Loktev

    2008-09-01

    Full Text Available We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antiferromagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a constraint results in the free carrier spectra with the maxima at k=(± π/2 , ± π/2 observed in some cuprates. We consider the spectral properties of the model by taking into account fluctuations of the spins in the antiferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole Green's function and these fluctuations can be responsible for some anomalous "strange metal" properties of underdoped cuprates in the nonsuperconducting regime.

  9. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  10. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  11. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  12. Pseudogap temperature T* of cuprate superconductors from the Nernst effect

    Science.gov (United States)

    Cyr-Choinière, O.; Daou, R.; Laliberté, F.; Collignon, C.; Badoux, S.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Yan, J.-Q.; Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Pyon, S.; Takayama, T.; Takagi, H.; Doiron-Leyraud, N.; Taillefer, Louis

    2018-02-01

    We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of hole-doped cuprate superconductors. New data for the Nernst coefficient ν (T ) of YBa2Cu3Oy (YBCO), La1.8 -xEu0.2SrxCuO4 (Eu-LSCO), and La1.6 -xNd0.4SrxCuO4 (Nd-LSCO) are presented and compared with previously published data on YBCO, Eu-LSCO, Nd-LSCO, and La2 -xSrxCuO4 (LSCO). The temperature Tν at which ν /T deviates from its high-temperature linear behavior is found to coincide with the temperature at which the resistivity ρ (T ) deviates from its linear-T dependence, which we take as the definition of the pseudogap temperature T★—in agreement with the temperature at which the antinodal spectral gap detected in angle-resolved photoemission spectroscopy (ARPES) opens. We track T★ as a function of doping and find that it decreases linearly vs p in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low p ,T★ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of T★(p ) to p =0 yields T★(p →0 ) ≃TN (0), the Néel temperature for the onset of antiferromagnetic order at p =0 , suggesting that there is a link between pseudogap and antiferromagnetism. With increasing p ,T★(p ) extrapolates linearly to zero at p ≃pc 2 , the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favor pseudogap formation also favor pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above the critical temperature Tc, as a function of doping, and find that a narrow fluctuation regime tracks Tc, and not T★. This confirms that the pseudogap phase is not a form of precursor superconductivity, and fluctuations in the phase of the

  13. Effect of quasiparticles on interlayer transport in highly anisotropic layered superconductors

    International Nuclear Information System (INIS)

    Artemenko, S.N.; Bulaevskii, L.N.; Maley, M.P.; Vinokur, V.M.

    1999-01-01

    We have performed a microscopic calculation of the dielectric response function in highly anisotropic layered superconductors and used the developed approach to obtain the frequency-dependent London penetration length and conductivity in the case of d-wave pairing for currents perpendicular to the layers. We consider a BCS model with coherent interlayer tunneling of electrons and take into account contributions from both superconducting electrons and quasiparticles to the dielectric response. We show that quasiparticles change the low-temperature behavior of the penetration length in the intermediate frequency range where the frequency is smaller than the superconducting order parameter but larger than the inverse quasiparticle scattering time. The obtained results are used to describe the low-temperature behavior of the Josephson plasma resonance, in particular the temperature dependence of the resonance frequency and the resonance linewidth in zero external magnetic field. We compare our results with the available experimental data for Tl 2 Ba 2 CuO 6 and Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) and show that results of a BCS model with coherent interlayer tunneling for the dc c-axis resistivity in the superconducting state are inconsistent with experimental data for underdoped and optimally doped Bi-2212 crystals. copyright 1999 The American Physical Society

  14. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  15. The electronic structure of the high-TC cuprates within the hidden rotating order

    Science.gov (United States)

    Azzouz, M.; Ramakko, B. W.; Presenza-Pitman, G.

    2010-09-01

    The doping dependence of the Fermi surface and energy distribution curves of the high-TC cuprate materials La2 - xSrxCuO4 and Bi2Sr2CaCu2O8 + δ are analyzed within the rotating antiferromagnetism theory. Using three different quantities; the k-dependent occupation probability, the spectral function, and the chemical potential (energy spectra), the Fermi surface is calculated and compared to experimental data for La2 - xSrxCuO4. The Fermi surface we calculate evolves from hole-like pockets in the underdoped regime to large electron-like contours in the overdoped regime. This is in agreement with recent findings by Sebastian et al for the α-pocket of Y Ba2Cu3O6 + x (2010 Phys. Rev. B 81 214524). In addition, the full width at half maximum of the energy distribution curves is found to behave linearly with their peak position in agreement with experiment for Bi2Sr2CaCu2O8 + δ. The effect of scattering on both the Fermi surface and energy distribution curves is examined.

  16. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition

    International Nuclear Information System (INIS)

    Bouis, F.

    1999-01-01

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  17. Charge and current orders in the spin-fermion model with overlapping hot spots

    Science.gov (United States)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  18. A {mu}SR study of the magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95 and 0.80)

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, A C [Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (United Kingdom); Attfield, J P [Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King' s Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Van Duijn, J [Instituto de Investigacion en EnergIas Renovables, Universidad de Castilla la Mancha, Albacete, E02006 (Spain); Hillier, A D, E-mail: a.c.mclaughlin@abdn.ac.uk [ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2011-09-14

    Zero field muon spin relaxation (ZF-{mu}SR) has been used to study the magnetic properties of the underdoped giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} (x = 0.95, 0.80). The magnetoresistance (MR) is defined so that MR = (({rho}{sub H}-{rho}{sub 0})/{rho}{sub 0}) and the giant magnetoresistive ruthenocuprates RuSr{sub 2}Nd{sub 1.8-x}Y {sub 0.2}Ce{sub x}Cu{sub 2}O{sub 10-{delta}} exhibit a large reduction in electronic resistivity upon application of a magnetic field. The ZF-{mu}SR results show a gradual loss of initial asymmetry A{sub 0} at the ruthenium spin transition temperature, T{sub Ru}. At the same time the electronic relaxation rate, {lambda}, shows a gradual increase with decreasing temperature below T{sub Ru}. These results have been interpreted as evidence for Cu spin cluster formation below T{sub Ru}. These magnetically ordered clusters grow as the temperature is decreased thus causing the initial asymmetry to decrease slowly. Giant magnetoresistance is observed over a wide temperature range in the materials studied and the magnitude increases as the temperature is reduced from T{sub Ru} to 4 K which suggests a relation between Cu spin cluster size and |-MR|. (paper)

  19. Spin dynamics in the pseudo-gap state of a high-temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)

    2007-07-01

    The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)

  20. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  1. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  2. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, Warawat

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  3. Effects of out-of-plane disorder on the superconductivity of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Roehler, Juergen; Trabant, Christoph; Frielingsdorf, Johanna; Djemour, Rabia [Universitaet Koeln, 50937 Koeln (Germany); Martovitsky, Victor [Lebedev-Institute, 119991 Moscow (Russian Federation); Dudy, Lenart; Dwelk, Helmut; Krapf, Alica [Humboldt Universitaet Berlin, 12489 Berlin (Germany)

    2008-07-01

    The effects of out-of-plane substitutional order/disorder on cuprate superconductivity remains to a large extent an unresolved issue. We have investigated the connection between superconductivity and the lattice effects arising from the heterovalent doping of Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}}, x = 0.8-0.1. Decreasing lanthanum content tunes the compound through the entire underdoped and overdoped regimes. Cu-K and La- K EXAFS served as local structural probes, and single crystal X-ray diffraction for the determination of the basic unit cell, and the symmetry of the supercell. The oxygen atoms in the CuO{sub 2} planes were found significantly disordered, dependent on doping, and to exhibit minimum disorder around x{sub opt}=0.33. But the degree of substitutional disorder in the out-of-plane La environment turned out independent on the concentration of the La dopants, the superstructure symmetry, and the crystal growth parameters, whereas T{sub c} depends sensitively on them. No evidence was found for possible concentration dependent site changes of the La dopant from the nominal Sr to the Bi sites. We discuss the probably crucial role of the interstitial oxygen atoms for the superconducting properties of the Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}} system.

  4. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S.K. [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  5. A temperature dependent study of the Raman-active phonon modes in Ca and Zn doped YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Quilty, J. W.; Trodahl, H. J.; Simpson, A.; Flower, N.; Staines, M.; Downes, J.

    1996-01-01

    Full text: The temperature dependent behaviour of the phonon modes in YBa 2 Cu 3 O 7-x (Y-123) are of interest because the strong electron-phonon coupling within these materials yields information about the magnitude of the superconducting gap. The opening of a gap provides a new decay route for phonons, hence phonons near the gap energy show changes in their frequencies and widths as the temperature drops below T c . The magnitude of the superconducting gap may be estimated from these changes. We report our temperature-dependent measurements of the Raman-active phonon modes in ceramic and preferentially oriented polycrystalline samples of Y-123, under a variety of doping regimes. The samples were made underdoped, optimally doped and overdoped by manipulation of the hole concentration on the Cu-O planes, achieved by changing the oxygen stoichiometry, substitution of Zn for Cu, and substitution of Ca for Y. As observed by others, the 340cm -1 phonon, involving vibrations of the oxygen ions on the Cu-O planes, showed the greatest magnitude of change when the samples were cooled below T c , indicating that the superconducting gap energy is close to that of the 340cm -1 phonon

  6. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  7. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  8. Structure of the charge density wave in cuprate superconductors: Lessons from NMR

    Science.gov (United States)

    Atkinson, W. A.; Ufkes, S.; Kampf, A. P.

    2018-03-01

    Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.

  9. Temperature behavior of the hole density of (Bi,Pb)-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Aliakbar; Janowitz, Christoph; Dwelk, Helmut; Krapf, Alica; Manzke, Recardo [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Ariffin, Ahmad Kamal [Dept. of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia)

    2012-07-01

    One of the most puzzling anomalies of high-T{sub c} cuprates is the strong temperature dependence of the Hall coefficient (R{sub H}) and the hole density (n{sub H}). Gor'kov and Teitel'baum (GT) showed by using experimental data of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) that the number of holes per Cu atom, n{sub H}, changes with temperature according to n{sub H}(T,x)=n{sub 0}(x)+n{sub 1}(x)exp(-{Delta}(x)/T). To clarify the temperature dependence of n{sub H} we have determined n{sub H} by X-ray absorption spectra (XAS) at the CuL{sub 3} edge for nearly optimum and slightly underdoped (Bi,Pb)-2212 single crystals. Our results point out that the GT formula cannot fit our data and therefore must be extended to the three terms.

  10. In-plane polarization dependence of (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} single crystals studied by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A., E-mail: ghafari@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149 Trieste (Italy); Ariffin, A.K. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Department of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia); Janowitz, C., E-mail: christoph.janowitz@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Dwelk, H.; Krapf, A.; Manzke, R. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany)

    2014-06-15

    The effects of in-plane polarization change on the determination of the hole density of weakly under-doped (Bi, Pb)-2212 single crystals has been studied by x-ray absorption spectroscopy (XAS). The XAS signal at the CuL{sub 3} edge (925–940 eV) and O K edge (525 eV to 539 eV) were recorded under continuous rotation of the CuO{sub 2} plane from 0° to 180° with a minimum increment of 1.8°, yielding experimentally an in-plane polarization dependence for the absorption signals at the respective threshold. From that the in-plane angular dependence of the hole density (n{sub H}(φ)) could be determined. Fermi's golden rule was then used for the evaluation of the in-plane polarization dependence showing the expected polarization independence in disaccord to the experimental observations. Possible scenarios to solve this issue are discussed. Our results propose that polarization dependence could be due to inhomogeneous distribution of holes in the CuO{sub 2} planes which is also supported by models. Second, the role of out of plane orbitals has to be taken into account for interpretation.

  11. Effective SU(2) theory for the pseudogap state

    Science.gov (United States)

    Montiel, X.; Kloss, T.; Pépin, C.

    2017-03-01

    This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d -wave superconducting (SC) phase and a d -wave charge order. We define the operators responsible for the SU(2) rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2) fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0 ,π ) and (π ,0 ). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead, in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding light on another notoriously mysterious part of the phase diagram of the cuprates.

  12. Thermoelectric Power and Normal State of the High - Tc Copper Oxides

    International Nuclear Information System (INIS)

    Goodenough, J.B.; Zhou, J.S.; Besuker, G.I.

    1995-01-01

    The temperature dependence of the thermoelectric power and resistance for the system La 2-x Sr x CuO 4 , 0≤ x ≤0.30, are presented and interpreted. The following model emerges: (1) In the underdoped region 0 2 sheets by Sr substitution form non-adiabatic large polarons containing 6 ± 1 Cu atoms; a cooperative pseudo Jahn-Teller vibronic coupling increases the size of the polaron, but a contraction of the equilibrium Cu-O distance inside the polaron limits the size. Polaron motion occurs via a tunneling of one Cu - O bond at a time. A dynamic segregation into a hole-poor parent phase and a hole-rich superconductive phase occurs below 150K. (2) The range 0.10 2 sheet. In the polaron liquid, pairs of polarons form zig-zag polaron chains; these chains form an ordered array of alternating polaron and parent-phase stripes. Complete ordering of the stripes occurs below Tc. (4) In the overdoped region x>0.27, polaron overcrowding suppresses polaron formation; however, the vibronic coupling stabilized by the dynamic pseudo Jahn -Teller deformations persists to give unusual properties to the overdoped metallic phase. (author)

  13. The Stripe State in Cupratesa

    Directory of Open Access Journals (Sweden)

    Lee T.-K.

    2012-03-01

    Full Text Available Since the discovery of high temperature superconductors (HTS two decades ago, many anomalous properties have been reported. One of the most interesting properties is the possible existence of the stripe state consisting of one dimensional charge-density modulation coupled with some kind of spin ordering. X-ray and neutron scattering experiments and recently high resolution scanning tunneling microscopy have reported direct evidences of such a structure. In particular it has found in the La-Sr-Cu-O (LSCO family the existence of the half-doped stripe with average of half a hole in one charge modulation period below and about 1/8 hole density. These results have fueled the idea about the presence of these charge or spin density wave states competing with the superconducting phase in underdoped HTS. They may even contribute to the pairing mechanism. In this talk, we will demonstrate that the presence of these stripes is actually a natural consequence of the strongly interacting t-J model by using a variational approach which provides a good enough accuracy to address the subtle result. Furthermore we show that half-doped stripes could be stabilized in hole-doped systems if we assume a simple electron-phonon interaction to renormalize the electron mass. However we have not found any evidence to support half-doped stripes in electron-doped systems.

  14. Determining the in-plane Fermi surface topology in high Tc superconductors using angle-dependent magnetic quantum oscillations

    International Nuclear Information System (INIS)

    Harrison, N; McDonald, R D

    2009-01-01

    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa 2 Cu 3 O 6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|. (fast track communication)

  15. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    Research highlights: → Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. → The longitudinal velocity of sound is studied in the under-doped region. → The velocity of sound exhibits suppression in both the CDW and SDW phases. → Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T c cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  16. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    International Nuclear Information System (INIS)

    Raj, B.K.; Panda, S.K.; Rout, G.C.

    2013-01-01

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy

  17. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)

    2013-09-15

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.

  18. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S K [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  19. Gossamer superconductivity, new paradigm?

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)

    2006-01-01

    We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Phonon anomalies in trilayer high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dubroka, Adam; Munzar, Dominik

    2004-01-01

    We present an extension of the model proposed recently to account for dramatic chAes below T c (anomalies) of some c-axis polarized infrared-active phonons in bilayer cuprate superconductors, that applies to trilayer high-T c compounds. We discuss several types of phonon anomalies that can occur in these systems and demonstrate that our model is capable of explaining the spectral chAes occurring upon entering the superconducting state in the trilayer compound Tl 2 Ba 2 Ca 2 Cu 3 O 10 . The low-temperature spectra of this compound obtained by Zetterer and coworkers display an additional broad absorption band, similar to the one observed in underdoped YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . In addition, three phonon modes are strongly anomalous. We attribute the absorption band to the transverse Josephson plasma resonance, similar to that of the bilayer compounds. The phonon anomalies are shown to result from a modification of the local fields induced by the formation of the resonance. The spectral chAes in Tl 2 Ba 2 Ca 2 Cu 3 O 10 are compared with those occurring in Bi 2 Sr 2 Ca 2 Cu 3 O 10 , reported recently by Boris and coworkers

  1. High-temperature superconductors, as seen through the eyes of neutrons

    Directory of Open Access Journals (Sweden)

    Z. Yamani

    2006-09-01

    Full Text Available   Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC. Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are essential for a neutron scattering experiment, have become available. The results of neutron scattering measurements on such crystals have considerably enhanced our understanding of the magnetism in HTSC both in the superconducting (SC and normal states. In this review, the neutron scattering results on two main HTSC families, La2-xSrxCuO4 (LSCOx and YBa2CuO3O6+x (YBCO6+x, are considered with an emphasis on the most prominent properties of these materials that are now widely accepted. These include the presence of strong antiferromagnetic (AF fluctuations even in optimally doped region of the phase diagram, neutron resonance peak that scales with SC transition temperature, Tc, incommensurate magnetic fluctuations (stripes, and a pseudogap in the normal state of underdoped materials.

  2. Valency and spin states of substituent cations in Bi2.15Sr1.85CaCu2O8+δ

    Science.gov (United States)

    Benseman, T. M.; Cooper, J. R.; Zentile, C. L.; Lemberger, L.; Balakrishnan, G.

    2011-10-01

    We studied the valency and spin behavior of M = Mn, Fe, Co, Li, and Al in the high-temperature superconducting compound Bi2.15Sr1.85Ca(Cu1-zMz)2O8+δ (Bi-2212) for small values of z. Mn, Fe, and Co retain their magnetic moments, and our thermopower and magnetic susceptibility data imply ionization states Mn3+, Fe2+, and Co2+, while Li and Al are accommodated in the charge reservoir layers. Single-crystal studies show that the susceptibility of Co2+ ions in Bi-2212 is strongly anisotropic, with a weak anisotropy detected for Mn3+ and none for Fe2+. Fits to a pseudogap formula for a pure Bi-2212 crystal suggest that the spin susceptibility of the host compound is more anisotropic than previously realized. Data in the superconducting state allow us to compare the pair-breaking properties of the different impurities. Several aspects of the data, including the stronger suppression of the superconducting transition temperature Tc by Co compared with Fe for underdoped and optimally doped samples, show that the d-level structure of the magnetic ions and multiorbital effects are important. We also find that the temperatures of the magnetization crossing points are equal to the low-field Tc values to within 1% or 2%. This agrees with a 2D thermodynamic fluctuation argument given by Junod

  3. Anomalous electron doping independent two-dimensional superconductivity

    Science.gov (United States)

    Zhou, Wei; Xing, Xiangzhuo; Zhao, Haijun; Feng, Jiajia; Pan, Yongqiang; Zhou, Nan; Zhang, Yufeng; Qian, Bin; Shi, Zhixiang

    2017-07-01

    Transition metal (Co and Ni) co-doping effects are investigated on an underdoped Ca0.94La0.06Fe2As2 compound. It is discovered that electron doping from substituting Fe with transition metal (TM = Co, Ni) can trigger high-{T}{{c}} superconductivity around 35 K, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Remarkably, the critical temperature for the high-{T}{{c}} superconductivity remains constant against a wide range of TM doping levels. And the net electron doping density dependence of the superconducting {T}{{c}} based on the rigid band model can be nicely scaled into a single curve for Co and Ni substitutions, in stark contrast to the case of Ba(Fe1-x TM x )2As2. This carrier density independent superconductivity and the unusual scaling behavior are presumably resulted from the interface superconductivity based on the similarity with the interface superconductivity in a La2-x Sr x CuO4-La2CuO4 bilayer. Evidence of the two-dimensional character of the superfluid by angle-resolved magneto-resistance measurements can further strengthen the interface nature of the high-{T}{{c}} superconductivity.

  4. Quantum oscillations in vortex-liquids

    Science.gov (United States)

    Banerjee, Sumilan; Zhang, Shizhong; Randeria, Mohit

    2012-02-01

    Motivated by observations of quantum oscillations in underdoped cuprates [1], we examine the electronic density of states (DOS) in a vortex-liquid state, where long-range phase coherence is destroyed by an external magnetic field H but the local pairing amplitude survives. We note that this regime is distinct from that studied in most of the recent theories, which have focused on either a Fermi liquid with a competing order parameter or on a d-wave vortex lattice. The cuprate experiments are very likely in a resistive vortex-liquid state. We generalize the s-wave analysis of Maki and Stephen [2] to d-wave pairing and examine various regimes of the chemical potential, gap and field. We find that the (1/H) oscillations of the DOS at the chemical potential in a d-wave vortex-liquid are much more robust, i.e., have a reduced damping, compared to the s-wave case. We critically investigate the conventional wisdom relating the observed frequency to the area of an underlying Fermi surface. We also show that the oscillations in the DOS cross over to a √H behavior in the low field limit, in agreement with the recent specific heat measurements. [1] L. Taillefer, J. Phys. Cond. Mat. 21, 164212 (2009). [2] M. J. Stephen, Phys. Rev. B 45, 5481 (1992).

  5. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering.

    Science.gov (United States)

    Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G

    2012-10-19

    Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

  6. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  7. Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4

    Science.gov (United States)

    Baity, P. G.; Sasagawa, T.; Popović, Dragana

    2018-04-01

    The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.

  8. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  9. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  10. Efficient charge carriers induced by extra outer-shell electrons in iron-pnictides: a comparison between Ni- and Co-doped CaFeAsF

    International Nuclear Information System (INIS)

    Zhang Min; Yu Yi; Tan Shun; Zhang Yuheng; Zhang Changjin; Zhang Lei; Qu Zhe; Ling Langsheng; Xi, Chuanying

    2010-01-01

    A comprehensive study of the difference between CaFe 1-x Ni x AsF and CaFe 1-x Co x AsF systems has been carried out by measuring the efficient charge carrier concentration, the valence states and the superconducting phase diagram. It is found that at the same doping level, Ni doping introduces nearly twice the number of charge carriers as Co doping. However, x-ray absorption near-edge spectroscopy measurements reveal that the valence state of Fe in both systems is close to 2, indicating that there is no valence mismatch. We suggest that the charge carriers in CaFe 1-x M x AsF (M=transition metal elements) are not induced by valence mismatch but come from the difference in the number of outer-shell electrons. We also suggest that with Ni and Co doping, the systems change from a multi-band material in the underdoped regions to a single-band state in the overdoped regions.

  11. Softening of the elastic shear mode C{sub 66} in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Anna; Burger, Philipp [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Karlsruher Institut fuer Technologie, Fakultaet fuer Physik, D-76128 Karlsruhe (Germany); Hardy, Frederic; Schweiss, Peter; Fromknecht, Rainer; Wolf, Thomas; Meingast, Christoph [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, D-76021 Karlsruhe (Germany); Reinecker, Marius; Schranz, Wilfried [Universitaet Wien, Fakultaet fuer Physik, A-1090 Wien, Vienna (Austria)

    2013-07-01

    The structural phase transition of underdoped iron-based superconductors is accompanied by a large softening of the elastic shear mode C{sub 66}, which has attracted considerable attention. This softening has been discussed both in terms of orbital and spin-nematic fluctuations which would be responsible for the structural phase transition and, possibly, superconductivity. However, sample requirements have so far restricted experimental investigations of C{sub 66} (via measurements of the ultrasound velocity) to the Ba(Fe,Co){sub 2}As{sub 2} system. Here, we report on a new technique, based on a three-point bending setup, to probe the Young's modulus of a sample with a capacitance dilatometer. For certain orientations, the Young's modulus is related to the elastic constant C{sub 66} whose effective temperature dependence can be obtained. Platelet-like samples, as frequently encountered for iron-based systems, are easily studied with our setup. Data on several systems are presented and discussed.

  12. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  13. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  14. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  15. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  16. Novel interplay between high-Tc superconductivity and antiferromagnetism in Tl-Based Six-CuO2-layered cuprates. 205Tl- and 63Cu-NMR probes

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Shiki, Nozomu; Kimoto, Naoki; Yashima, Mitsuharu; Kitaoka, Yoshio; Tokiwa, Kazuyasu; Iyo, Akira

    2016-01-01

    We report 63 Cu- and 205 Tl-NMR studies on six-layered (n = 6) high-T c superconducting (SC) cuprate TlBa 2 Ca 5 Cu 6 O 14+δ (Tl1256) with T c ∼ 100 K, which reveal that antiferromagnetic (AFM) order takes place below T N ∼ 170 K. In this compound, four underdoped inner CuO 2 planes [n(IP) = 4] sandwiched by two outer planes (OPs) are responsible for the onset of AFM order, whereas the nearly optimally-doped OPs responsible for the onset of bulk SC. It is pointed out that an increase in the out-of-plane magnetic interaction within an intra-unit-cell causes T N ∼ 45 K for Tl1245 with n(IP) = 3 to increase to ∼170 K for Tl1256 with n(IP) = 4. It is remarkable that the marked increase in T N and the AFM moments for the IPs does not bring about any reduction in T c , since T c ∼ 100 K is maintained for both compounds with nearly optimally doped OP. We highlight the fact that the SC order for n ≥ 5 is mostly dominated by the long-range in-plane SC correlation even in the multilayered structure, which is insensitive to the magnitude of T N and the AFM moments at the IPs or the AFM interaction among the IPs. These results demonstrate a novel interplay between the SC and AFM orders when the charge imbalance between the IPs and OP is significantly large. (author)

  17. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

    International Nuclear Information System (INIS)

    Yi, Ming

    2011-01-01

    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe 1-x Co x ) 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

  18. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates

    Science.gov (United States)

    Dai, Zhehao; Zhang, Ya-Hui; Senthil, T.; Lee, Patrick A.

    2018-05-01

    A recent scanning tunneling microscopy (STM) experiment reports the observation of a charge-density wave (CDW) with a period of approximately 8a in the halo region surrounding the vortex core, in striking contrast to the approximately 4a period CDWs that are commonly observed in the cuprates. Inspired by this work, we study a model where a bidirectional pair-density wave (PDW) with period 8 is at play. This further divides into two classes: (1) where the PDW is a competing state of the d -wave superconductor and can exist only near the vortex core where the d -wave order is suppressed and (2) where the PDW is the primary order, the so-called "mother state" that persists with strong phase fluctuations to high temperature and high magnetic field and lies behind the pseudogap phenomenology. We study the charge-density wave structures near the vortex core in these models. We emphasize the importance of the phase winding of the d -wave order parameter. The PDW can be pinned by the vortex core due to this winding and become static. Furthermore, the period-8 CDW inherits the properties of this winding, which gives rise to a special feature of the Fourier transform peak, namely, it is split in certain directions. There is also a line of zeros in the inverse Fourier transform of filtered data. We propose that these are key experimental signatures that can distinguish between the PDW-driven scenario from the more mundane option that the period-8 CDW is primary. We discuss the pro's and con's of the options considered above. Finally, we attempt to place the STM experiment in the broader context of pseudogap physics of underdoped cuprates and relate this observation to the unusual properties of x-ray scattering data on CDW carried out to very high magnetic field.

  19. Robust s± pairing in CaK (Fe1-xNix) 4As4 (x =0 and 0.05) from the response to electron irradiation

    Science.gov (United States)

    Teknowijoyo, S.; Cho, K.; Kończykowski, M.; Timmons, E. I.; Tanatar, M. A.; Meier, W. R.; Xu, M.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-04-01

    Controlled pointlike disorder introduced by 2.5-MeV electron irradiation was used to probe the superconducting state of single crystals of CaK (Fe1-xNix) 4As4 superconductor at x =0 and 0.05 doping levels. Both compositions show an increase of the residual resistivity and a decrease of the superconducting transition temperature, Tc, at the rate of d Tc/d ρ (Tc) ≈0.19 K/(μ Ω cm ) for x =0 and 0.38 K/(μ Ω cm ) for x =0.05 , respectively. In the Ni-doped compound (x =0.05 ), the coexisting spin-vortex crystal (SVC) magnetic phase is suppressed at the rate of d TN/d ρ (TN) ≈ 0.16 K/(μ Ω cm ). The low-temperature variation of London penetration depth is well approximated by the power-law function, Δ λ (T ) =A Tn , with n ≈2.5 for x =0 and n ≈1.9 for x =0.05 in the pristine state. Detailed analysis of λ (T ) and Tc evolution with disorder is consistent with two effective nodeless energy gaps in the density of states due to robust s± pairing. Overall the behavior of CaK (Fe1-xNix) 4As4 at x =0 is similar to a slightly overdoped Ba1 -yKyFe2As2 at y ≈ 0.5, and at x =0.05 to an underdoped composition at y ≈ 0.2.

  20. Dynamic response of the electronic structure of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Freutel, Simon

    2015-01-01

    This work investigates the dynamic response of the electronic system of the high critical temperature superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) due to the optical excitation by ultra short laser pulses. By using time- and angle-resolved photoemission spectroscopy on optimally and underdoped Bi2212 in the pseudogap phase two effects revealed by changes in the electronic structure are being discussed which, due to their different temporal behaviors, can be considered as independent. First, this is an photoinduced change of the effective mass m* around the kink energy of E - E F = -70 meV, that occurs during the experiment's time resolution of ∝100 fs and therefore can be interpreted as perturbation of the underlying electronic interaction caused directly by the pump pulse. Second, a shift of the Fermi surface vector k F is observed, that can be interpreted as an effective change of hole doping that gives rise to new opportunities for possible ultrafast optoelectronic devices based on optically induced phase transitions. Furthermore, the energy- and fluence-dependent dynamics of excited electrons are investigated, which exhibit a biexponential behavior. While the slow component of this decay seems to be independent from the excitation fluence, the fast component shows a pronounced jump in the corresponding decay time above and below the material's characteristic energy of 70 meV. This jump is most pronounced for the low fluences, which will be discussed in the context of an appropriate theoretical model system. Moreover, a major part of this work was the construction and build up of an entirely new experimental setup for photoemission spectroscopy. The main part regarding this issue consists of the design of 6-axis manipulator which is capable of moving the sample at low temperature independently in all 3 rotational and translational degrees of freedom. In the context of this work first tests and characterization measurements has been performed using

  1. Thermal conductivity of La2-xSrxCuO4 (0.05 ≤ x ≤ 0.22)

    International Nuclear Information System (INIS)

    Yan, J-Q; Zhou, J-S; Goodenough, J B

    2004-01-01

    A systematic study of the thermal conductivity of single-crystal samples of the La 2-x Sr x CuO 4 superconductive system and comparison with that of La 1.60-x Nd o.40 Sr x CuO 4 0.15 and 0.20) have demonstrated that this measurement is a useful indirect probe of mechanisms that suppress phonons. The data distinguish octahedral-site rotational or charge-order fluctuations above a structural order-disorder transition and two-phase fluctuations associated with locally cooperative atomic displacements within two-dimensional sheets that segregate hole-rich and hole-poor regions in a mixed-valent system. The former suppress phonons in both the basal plane and along the apical axis, whereas the latter only suppress phonons in the basal plane. The data support a spinodal phase segregation below room temperature into the parent and the superconductive phases in the underdoped compositional range as well as the superconductive and metallic phases in the overdoped compositions; they also support the existence of locally cooperative bond-length fluctuations in the normal state of the superconductive phase that prevent the formation of a percolative matrix capable of supporting phonons. Restoration of the phonons below T c signals a long-range, dynamic ordering of the bond-length fluctuations which implies stabilization of a travelling charge-density wave with possible hybridization of electrons and phonons below T c to give heavy vibrons that pair in the superconductive phase

  2. Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM

    Science.gov (United States)

    Schmidt, A. R.; Fujita, K.; Kim, E.-A.; Lawler, M. J.; Eisaki, H.; Uchida, S.; Lee, D.-H.; Davis, J. C.

    2011-06-01

    We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E=Δ0. We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k=±(π/a0,0) and k=±(0,π/a0). In both phases, the only broken symmetries detected for the |E|modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E=Δ1. Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E~Δ1 are found to be indistinguishable in the dSC and PG phases. The next challenge for SI-STM studies is to determine the relationship of the E~Δ1 broken symmetry electronic states with the PG phase, and with the E<Δ0 states associated with Cooper pairing.

  3. Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors

    Science.gov (United States)

    Lee, Patrick A.

    2014-07-01

    The enigmatic pseudogap phase in underdoped cuprate high-Tc superconductors has long been recognized as a central puzzle of the Tc problem. Recent data show that the pseudogap is likely a distinct phase, characterized by a medium range and quasistatic charge ordering. However, the origin of the ordering wave vector and the mechanism of the charge order is unknown. At the same time, earlier data show that precursive superconducting fluctuations are also associated with this phase. We propose that the pseudogap phase is a novel pairing state where electrons on the same side of the Fermi surface are paired, in strong contrast with conventional Bardeen-Cooper-Schrieffer theory which pairs electrons on opposite sides of the Fermi surface. In this state the Cooper pair carries a net momentum and belongs to a general class called pair density wave. The microscopic pairing mechanism comes from a gauge theory formulation of the resonating valence bond (RVB) picture, where spinons traveling in the same direction feel an attractive force in analogy with Ampere's effects in electromagnetism. We call this Amperean pairing. Charge order automatically appears as a subsidiary order parameter even when long-range pair order is destroyed by phase fluctuations. Our theory gives a prediction of the ordering wave vector which is in good agreement with experiment. Furthermore, the quasiparticle spectrum from our model explains many of the unusual features reported in photoemission experiments. The Fermi arc, the unusual way the tip of the arc terminates, and the relation of the spanning vector of the arc tips to the charge ordering wave vector also come out naturally. Finally, we propose an experiment that can directly test the notion of Amperean pairing.

  4. Study of the vortex matter in Bi2Sr2CaCu2O8+δ using the Josephson plasma resonance

    International Nuclear Information System (INIS)

    Colson, S.

    2003-10-01

    The Josephson plasma resonance (JPR) is a tool of choice to measure the inter-plane phase coherence in the layered superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (BSCCO). It enables us to evaluate the wandering length r w , defined as the thermal average of the relative thermal excursions of two pancake vortices belonging to the same flux line and localized in two consecutive superconducting layers. In this work, using two experimental techniques to probe the JPR (the resonant cavity perturbation technique and the bolometric method), we have measured r w in the vortex solid in pristine or heavy-ion irradiated (dose n d = 5 x 10 10 ions.cm -2 , i.e. B φ n-dΦ 0 = 1 T) under-doped BSCCO single crystals. In the pristine samples, at low magnetic fields, the temperature dependence of r w and its increase with the applied field can only be accounted for by the dominant role of the line tension (due to Josephson coupling) and its renormalization due to thermal fluctuations. The latter are responsible for the softening of the line tension for the large-wave vector modes, which eventually leads to the first order phase transition between the vortex solid and the vortex liquid. The field and temperature dependence of r w in the irradiated crystals for B φ , is the same as observed in the pristine samples. This observation is a validation for a description in term of 'discrete superconductor' of the material. (author)

  5. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  6. Interplay of superconductivity and magnetism in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and ist potential as wire material

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenmayer, Josef Erwin

    2015-07-07

    The results presented in this thesis provide a deeper insight in the physical properties of Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and their connection among each other. By using a combination of high resolution X-ray diffraction, susceptibility measurements, and μSR, it was possible to unambiguously identify a microscopic coexistence of superconductivity and antiferromagnetism in underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} (up to x=0.23). This result strongly supports the assumption of an s± symmetry in the area 0f the phase diagram. These studies were extended to the optimally and overdoped Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} up to x=0.66 generating a phase diagram displaying gradual transitions from long-range to short -range order instead of sharp borders. This magnetic order can be detected up to at last x=0.66, a value beyond the expected one (between 0.2 and 0.3). On Ba{sub 0.6}Na{sub 0.2}Fe{sub 2}As{sub 2} under pressure, a new antiferromagnetic order AFM2 was discovered, also displaying coexistence with superconductivity. In the second part of this thesis, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} was examined as material for the production of superconducting wires and tapes. Preliminary critical current density measurements of these prototype filaments are encouraging. To further investigate these wires, a new synthesis route was explored using mechanical alloying of the ternary precursors BaFe{sub 2}As{sub 2} and KFe{sub 2}As{sub 2} in order to obtain larger sample amounts.

  7. On the effect of heterovalent substitutions in ruthenocuprates

    Energy Technology Data Exchange (ETDEWEB)

    Klamut, P.W.; Dabrowski, B.; Mini, S.M.; Maxwell, M.; Mais, J.; Felner, I.; Asaf, U.; Ritter, F.; Shengelaya, A.; Khasanov, R.; Savic, I.M.; Keller, H.; Wisniewski, A.; Puzniak, R.; Fita, I.M.; Sulkowski, C.; Matusiak, M

    2003-05-01

    We discuss the properties of superconducting derivatives of the RuSr{sub 2}GdCu{sub 2}O{sub 8} (1212-type) ruthenocuprate, for which heterovalent doping has been achieved through partial substitution of Cu ions into the RuO{sub 2} planes (Ru{sub 1-x}Sr{sub 2}GdCu{sub 2+x}O{sub 8-{delta}}, 0{<=}x{<=}0.75, T{sub c}{sup max}=72 K for x=0.3-0.4) and Ce ions into the Gd sites (RuSr{sub 2}Gd{sub 1-y}Ce{sub y}Cu{sub 2}O{sub 8}, 0{<=}y{<=}0.1). The measurements of XANES, thermopower, and magnetization under external pressure reveal an underdoped character of all compounds. Muon spin rotation experiments indicate the presence of magnetic order at low temperatures (T{sub m}=14-2 K for x=0.1-0.4). Properties of these two series lead us to the qualitative phase diagram for differently doped 1212-type ruthenocuprates. The difference in temperature of magnetic ordering found for superconducting and non-superconducting RuSr{sub 2}GdCu{sub 2}O{sub 8} is discussed in the context of the properties of substituted compounds. The high pressure oxygen conditions required for synthesis of Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-{delta}}, have been extended to synthesis of a Ru{sub 1-x}Sr{sub 2}Eu{sub 2-y}Ce{sub y}Cu{sub 2+x}O{sub 10-{delta}} series. The Cu {yields} Ru doping achieved in these phases is found to decrease the temperature for magnetic ordering as well the volume fraction of the magnetic phase.

  8. Study of the vortex matter in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} using the Josephson plasma resonance; Etude de la matiere de vortex dans Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} a l'aide de la resonance de plasma Josephson

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S

    2003-10-01

    The Josephson plasma resonance (JPR) is a tool of choice to measure the inter-plane phase coherence in the layered superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (BSCCO). It enables us to evaluate the wandering length r{sub w}, defined as the thermal average of the relative thermal excursions of two pancake vortices belonging to the same flux line and localized in two consecutive superconducting layers. In this work, using two experimental techniques to probe the JPR (the resonant cavity perturbation technique and the bolometric method), we have measured r{sub w} in the vortex solid in pristine or heavy-ion irradiated (dose n{sub d} = 5 x 10{sup 10} ions.cm{sup -2}, i.e. B{sub {phi}} n-d{phi}{sub 0} = 1 T) under-doped BSCCO single crystals. In the pristine samples, at low magnetic fields, the temperature dependence of r{sub w} and its increase with the applied field can only be accounted for by the dominant role of the line tension (due to Josephson coupling) and its renormalization due to thermal fluctuations. The latter are responsible for the softening of the line tension for the large-wave vector modes, which eventually leads to the first order phase transition between the vortex solid and the vortex liquid. The field and temperature dependence of r{sub w} in the irradiated crystals for B << B{sub {phi}}, is the same as observed in the pristine samples. This observation is a validation for a description in term of 'discrete superconductor' of the material. (author)

  9. Hydrostatic and uniaxial pressure effect on Tc of YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Ludwig, H.A.; Quenzel, R.; Schlachter, S.I.

    1996-01-01

    The variation of the transition temperature T c of YBa 2 Cu 3 O x with hydrostatic He-gas pressure depends on the oxygen content x. The pressure effect dT c /dp increases from small negative values at x=7 to dT c /dp=7.4 K/GPa at x=6.7. For oxygen contents below x=6.7 dT c /dp drops to 3 K/GPa and remains nearly constant. The charge transfer model cannot explain the drop at x=6.7. Thermal expansion measurements on YBa 2 Cu 3 O x indicated that the uniaxial pressure effects along the three crystal axes are different. To investigate the uniaxial pressure effects inductively an experimental setup was constructed. The T c -change of several YBa 2 Cu 3 O x single crystals with different oxygen contents has been investigated under pressure along the c-axis. To avoid oxygen ordering processes the samples were held below 105 K during the measurements. The results of uniaxial pressure measurements in c-axis direction fit to former uniaxial pressure data and are explained within the charge transfer model. Hydrostatic pressure data of overdoped samples fit to the same curve. However, this is not the case for under doped samples. From this the authors conclude that only a part of the hydrostatic pressure effect can be explained by charge transfer in the underdoped region. The remaining part can be ascribed to uniaxial pressure effects along the a- and b-axis

  10. Unconventional superconductivity in magic-angle graphene superlattices

    Science.gov (United States)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  11. Optical probes of symmetry breaking in magnetic and superconducting BaFe2(As1-xPx)2

    Science.gov (United States)

    Orenstein, Joseph

    The discovery of iron pnictide superconductors has opened promising new directions in the effort to fully understand the phenomenon of high-Tc, with a focus on the connections between superconductivity, magnetism, and electronic nematicity. The BaFe2(As1-xPx)2 (P:Ba122) system in particular has received attention because isovalent substitution of As for P generates less disorder than doping on the Fe site. The phase diagram of P:Ba122 is characterized by a line of simultaneous antiferromagnetic (AF) and tetragonal-to-orthorhombic transitions, Ts (x) , that penetrates the superconducting dome at x =0.28, just below optimal doping (xopt = 0.30). In this work, we use spatially-resolved optical polarimetry and photomodulated reflectance to detect linear birefringence and therefore breaking of 4-fold rotational (C4) symmetry. In underdoped (xTsand grows continuously with decreasing T . The birefringence is unidirectional in a large (300 μm x300 μm) field of view, suggesting that C4 breaking in this range of T is caused by residual strain that couples to a diverging nematic susceptibility. Birefringence maps just below Ts (x) show the appearance of domains, indicating the onset of spontaneous symmetry breaking to an AF ground state. Surprisingly, in samples with x>0.28, in which the low T phase is superconducting/ tetragonal rather than AF/orthorhombic, C4 breaking is observed as well, with an abrupt onset and domain formation at 55 K. We tentatively associate these features with a transition to an AF phase induced by residual strain, as previously proposed [H.-H. Kuo et al. Phys. Rev. B86, 134507 (2012)] to account for structure in resistivity vs. T. Time-resolved photomodulation allow us to follow the amplitude of the AF order with time following pulsed photoexcitation. Below Tc the AF order at first weakens , but then strengthens in response to the photoinduced weakening of superconductivity. This complex time evolution is accounted for quantitatively by a model

  12. Temperature dependence of the hole density in high-T{sub C} superconductors Bi{sub 2−y}Pb{sub y}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A. [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Janowitz, C., E-mail: janowitz@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Ariffin, A.K. [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Dep. of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia); Dwelk, H.; Krapf, A.; Manzke, R. [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2013-02-14

    Highlights: ► We have done x-ray absorption spectra on the CuL{sub 3} edge of Bi(Pb)-2212 cuprates. ► We have measured the hole density n{sub H} in the CuO{sub 2} plane of Bi(Pb)-2212 cuprates. ► The measurements were performed from 10 K to 300 K. ► Gor’kov and Teitel’baums formula of n{sub H} consists of a linear and an exponential term. ► We have extended the Gor’kov and Teitel baum formula by a T{sup 3/2} term. -- Abstract: One of the most puzzling anomalies of high-T{sub C} cuprates is the strong temperature dependence of the Hall coefficient (R{sub H}) and the hole density (n{sub H}). Gor’kov and Teitel’baum (GT) proposed by using experimental data of La{sub 2−x}Sr{sub x}CuO{sub 4} (LSCO) a two fluid model. The number of holes per Cu atom n{sub H}, changes with temperature according to n{sub H}(T,x) = n{sub 0}(x) + n{sub 1}(x)exp(−Δ(x)/T) [1]. To clarify the temperature dependence of n{sub H} we have determined n{sub H} from X-ray absorption spectra (XAS) at the CuL{sub 3} edge for nearly optimum and slightly underdoped Bi{sub 2−y}Pb{sub y}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} single crystals yielding directly the absolute value of n{sub H} in the CuO{sub 2} planes and also its change with temperature n{sub H}(T). It shows pronounced structures between 10 K and 300 K. The temperature dependence puts constraints to the applicability of previously developed models: (i) the two-band model without any explicit temperature dependence and (ii) the formula of GT, because the latter is not able to fit our data over the whole temperature range from 10 K to 300 K. Instead the thermal behavior of n{sub H} proposes a function with at least three terms, i.e. a third term added to the formula of GT is of exponential form ∼T{sup 3/2}.

  13. Recombination and propagation of quasiparticles in cuprate superconductors

    International Nuclear Information System (INIS)

    Gedik, Nuh

    2004-01-01

    Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa 2 Cu 3 O 6.5 and Bi 2 Sr 2 CaCu 2 O 8+x using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity ΔR which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate β, the inelastic scattering coefficient and γ th thermal equilibrium quasiparticle decay rate. We also present the dependence of recombination measurements on doping in Bi 2 Sr 2 CaCu 2 O 8+x . Going from underdoped to overdoped regime, the sign of ΔR changes from positive to negative right at the optimal doping. This is accompanied by a change in dynamics. The decay of ΔR stops being intensity dependent exactly at the optimal doping. We provide possible interpretations of these two observations. To study the propagation of quasiparticles, we interfered two laser pulses to introduce a spatially

  14. Atomic-scale Visualization of Electronic Nematicity and Cooper Pairing in Iron-based Superconductors

    Science.gov (United States)

    Allan, Milan P.

    2013-03-01

    The mechanism of high-temperature superconductivity in the relatively novel iron-based high-Tc superconductors is unresolved, both in terms of how the phases evolve with doping, and in terms of the actual Cooper pairing process. To explore these issues, we used spectroscopic-imaging scanning tunneling microscopy to study the electronic structure of CaFe2As2 in the antiferromagnetic-orthorhombic `parent' state from which the superconductivity emerges. We discovered and visualized the now widely studied electronic `nematicity' of this phase, whose suppression is associated with the emergence of superconductivity (Science 327, 181, 2010). As subsequent transport experiments discovered a related anisotropic conductance which increases with dopant concentration, the interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has become a pivotal focus of research. We find that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical and strongly anisotropic impurity states that are distributed randomly but aligned with the antiferromagnetic a-axis. We also demonstrate, by imaging their surrounding interference patterns, that these impurity states scatter quasiparticles and thus influence transport in a highly anisotropic manner (M.P. Allan et al., 2013). Next, we studied the momentum dependence of the energy gaps of iron-based superconductivity, now focusing on LiFeAs. If strong electron-electron interactions mediate the Cooper pairing, then momentum-space anisotropic superconducting energy gaps Δi (k) were predicted by multiple techniques to appear on the different electronic bands i. We introduced intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for the determination of anisotropic energy gaps to test these hypotheses and discovered the anisotropy, magnitude, and relative orientations of the energy gaps on multiple

  15. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  16. Interplay between magnetism and superconductivity in iron based high temperature superconductors

    International Nuclear Information System (INIS)

    Price, Stephen

    2013-01-01

    In this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe 0.95 Co 0.05 ) 2 As 2 have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5,0.5,0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe 0.88 Co 0.12 AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5,0.5,0). The observation of the spin resonance signal supports the s ± symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q AFM =(0.5,0.5,0.5), for temperatures below T N . Above T N and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe 0.5 Te 0.5 polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5,0.5,0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, χ ab ''(Q,ω)∼χ c ''(Q,ω). In Eu(Fe 1-x Co x ) 2 As 2 and EuFe 2 (As 1-x P x ) 2 the effect of impurity doping on the static order of the magnetic lattice of the Eu 2+ -moments has been studied by means of

  17. Spin dynamics in 122-type iron-based superconductors

    International Nuclear Information System (INIS)

    Park, Jitae

    2012-01-01

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba 1-x K x Fe 2 As 2 compound, we report the phase separation between

  18. Spin dynamics in 122-type iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jitae

    2012-07-16

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} compound, we report the phase

  19. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    International Nuclear Information System (INIS)

    Kohlrautz, Jonas

    2017-01-01

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T 1 measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T 1 was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu 2 (BO 3 ) 2 . Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa 2 CuO 4+δ for underdoped, optimally doped, and overdoped materials revealed

  20. Ordering phenomena in transition-metal-oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Frano Pereira, Alex Manuel

    2014-01-27

    will address the observation of charge density wave (CDW) order in single crystals of superconducting YBa{sub 2}Cu{sub 3}O{sub 6+δ} (YBCO). With accumulating evidence of a Fermi surface reconstruction suggesting an underlying ordered ground state in underdoped YBCO, diffraction evidence of a CDW was found in YBCO{sub 6.6} single crystals during this PhD project. A thorough study of the energy, temperature, external magnetic field, and doping dependence was done to characterize the details of this ordered state. Together with results obtained on samples doped with non-magnetic Zn impurities, which locally slow the magnetic fluctuations, a competition between the CDW, the spin density wave, and superconducting phase is proposed. Finally, the study extended to investigate the emergence of CDW in SLs comprising fully oxygenated YBCO, a doping level where CDW order eludes single crystals, and half-metallic La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO). Our main finding is that the order originates at the YBCO interface due a charge transfer of electrons from LCMO. The temperature and magnetic field dependencies of the peak suggest a static, saturated phase in stark contrast to the single crystals' fluctuating order. Thus, this result demonstrates how oxide interfaces can act to nucleate metastable electronic phase transitions.

  1. Ordering phenomena in transition-metal-oxide heterostructures

    International Nuclear Information System (INIS)

    Frano Pereira, Alex Manuel

    2014-01-01

    wave (CDW) order in single crystals of superconducting YBa 2 Cu 3 O 6+δ (YBCO). With accumulating evidence of a Fermi surface reconstruction suggesting an underlying ordered ground state in underdoped YBCO, diffraction evidence of a CDW was found in YBCO 6.6 single crystals during this PhD project. A thorough study of the energy, temperature, external magnetic field, and doping dependence was done to characterize the details of this ordered state. Together with results obtained on samples doped with non-magnetic Zn impurities, which locally slow the magnetic fluctuations, a competition between the CDW, the spin density wave, and superconducting phase is proposed. Finally, the study extended to investigate the emergence of CDW in SLs comprising fully oxygenated YBCO, a doping level where CDW order eludes single crystals, and half-metallic La 2/3 Ca 1/3 MnO 3 (LCMO). Our main finding is that the order originates at the YBCO interface due a charge transfer of electrons from LCMO. The temperature and magnetic field dependencies of the peak suggest a static, saturated phase in stark contrast to the single crystals' fluctuating order. Thus, this result demonstrates how oxide interfaces can act to nucleate metastable electronic phase transitions.

  2. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  3. Fundamental studies of superconductors using scanning magnetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, J R [Center for Probing the Nanoscale, Stanford University, Stanford, CA (United States)

    2010-12-01

    in rings of highly underdoped cuprates places limits on spin-charge separation in these materials. Studies of spontaneous generation of fluxoids upon cooling rings through the superconducting transition provide clues to dynamical processes relevant to the early development of the universe, while studies of vortex motion in cuprate grain boundaries allow the measurement of current-voltage characteristics at the femtovolt scale for these technologically important defects. Scanning SQUID susceptometry allows the measurement of superconducting fluctuations on samples comparable in size to the coherence length, revealing stripes in susceptibility believed to be associated with enhanced superfluid density on the twin boundaries in the pnictide superconductor Co doped Ba-122, and indicating the presence of spin-like excitations, which may be a source of noise in superconducting devices, in a wide variety of materials. Scanning magnetic microscopies allow the absolute value of penetration depths to be measured locally over a wide temperature range, providing clues to the symmetry of the order parameter in unconventional superconductors. Finally, MFM tips can be used to manipulate vortices, providing information on flux trapping in superconductors.

  4. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    International Nuclear Information System (INIS)

    Brehm, Sascha

    2009-01-01

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides

  5. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrautz, Jonas

    2017-05-22

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T{sub 1} measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T{sub 1} was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa{sub 2}CuO{sub 4+δ} for underdoped, optimally doped, and

  6. Fermi-surface reconstruction and the origin of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    2010-01-01

    lattice into a d 9 configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.

  7. Interplay between magnetism and superconductivity in iron based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen

    2013-07-01

    In this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2} have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5,0.5,0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe{sub 0.88}Co{sub 0.12}AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5,0.5,0). The observation of the spin resonance signal supports the s{sub ±} symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q{sub AFM}=(0.5,0.5,0.5), for temperatures below T{sub N}. Above T{sub N} and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe{sub 0.5}Te{sub 0.5} polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5,0.5,0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, χ{sub ab}''(Q,ω)∼χ{sub c}''(Q,ω). In Eu(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} and EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} the effect of

  8. Itinerant spin dynamics in iron-based superconductors and cerium-based heavy-fermion antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Friemel, Gerd

    2014-05-26

    implies an unconventional order parameter, which changes the sign between the electron pockets. Moreover, it has a two-dimensional reciprocal-space structure, with an in-plane wave vector Q{sub sf} that is independent of the composition. These results support the current understanding that all FeSe122 contain a unique SC phase with A{sub x}Fe{sub 2}Se{sub 2} stoichiometry and an alkali content of x = 0.36. This phase is embedded in a matrix of an insulating and strongly antiferromagnetic A{sub 2}Fe{sub 4}Se{sub 5} phase, which explains the iron deficiency. Secondly, the spectral weight of the resonance peak and the suppression of the normal-state intensity towards small energies is similar to the phenomenology in underdoped cuprates, rendering this family stronger correlated than the FeSC analogues. CeB6 is considered as a dense Kondo system that exhibits a peculiar antiferroquadrupolar (AFQ) phase below T{sub Q} = 3.2 K and an antiferromagnetic (AFM) phase below T{sub N} = 2.3 K. Its magnetic phase diagram has been described by a purely localized multipolar mean-field model. However, reports on experimental studies in zero or low magnetic field provide a number of conflicting results that prevented a consistent description till now. In this thesis the spin excitations in the AFM and the AFQ state of CeB{sub 6} have been comprehensively mapped out in reciprocal space for the first time. Contrary to the expectations an intense and energetically sharp exciton mode appears at 0.5 meV below T{sub N}, which is restricted to the AFQ wave vector R((1)/(2) (1)/(2) (1)/(2)). This exciton is created, because a gap opens in the spin and charge excitation spectrum of the interacting heavy-fermion quasiparticles below T{sub N}. This phenomenology is similar to the resonant modes in heavy-fermion superconductors below T{sub c}. In addition, a strong ferromagnetic mode at 0.25 meV appears at the Γ point below T{sub N}, which broadly disperses across the Brillouin zone. Both the exciton

  9. Itinerant spin dynamics in iron-based superconductors and cerium-based heavy-fermion antiferromagnets

    International Nuclear Information System (INIS)

    Friemel, Gerd

    2014-01-01

    pockets. Moreover, it has a two-dimensional reciprocal-space structure, with an in-plane wave vector Q sf that is independent of the composition. These results support the current understanding that all FeSe122 contain a unique SC phase with A x Fe 2 Se 2 stoichiometry and an alkali content of x = 0.36. This phase is embedded in a matrix of an insulating and strongly antiferromagnetic A 2 Fe 4 Se 5 phase, which explains the iron deficiency. Secondly, the spectral weight of the resonance peak and the suppression of the normal-state intensity towards small energies is similar to the phenomenology in underdoped cuprates, rendering this family stronger correlated than the FeSC analogues. CeB6 is considered as a dense Kondo system that exhibits a peculiar antiferroquadrupolar (AFQ) phase below T Q = 3.2 K and an antiferromagnetic (AFM) phase below T N = 2.3 K. Its magnetic phase diagram has been described by a purely localized multipolar mean-field model. However, reports on experimental studies in zero or low magnetic field provide a number of conflicting results that prevented a consistent description till now. In this thesis the spin excitations in the AFM and the AFQ state of CeB 6 have been comprehensively mapped out in reciprocal space for the first time. Contrary to the expectations an intense and energetically sharp exciton mode appears at 0.5 meV below T N , which is restricted to the AFQ wave vector R((1)/(2) (1)/(2) (1)/(2)). This exciton is created, because a gap opens in the spin and charge excitation spectrum of the interacting heavy-fermion quasiparticles below T N . This phenomenology is similar to the resonant modes in heavy-fermion superconductors below T c . In addition, a strong ferromagnetic mode at 0.25 meV appears at the Γ point below T N , which broadly disperses across the Brillouin zone. Both the exciton and the ferromagnetic mode are thereby much more intense than the conventional spin waves associated with the AFM order. Both excitations transform

  10. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    Science.gov (United States)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Elastic theory for the vortex-lattice melting in iron-based high-Tc superconductors Q-H Chen, Q-M Nie, J-P Lv and T-C Au Yeung Electronic properties of LaO1-xFxFeAs in the normal state probed by NMR/NQR H-J Grafe, G Lang, F Hammerath, D Paar, K Manthey, K Koch, H Rosner, N J Curro, G Behr, J Werner, N Leps, R Klingeler, H-H Klauss, F J Litterst and B Büchner AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity Deepa Kasinathan, Alim Ormeci, Katrin Koch, Ulrich Burkhardt, Walter Schnelle, Andreas Leithe-Jasper and Helge Rosner Impurity states in a family of antiferromagnetic iron arsenides Qiang Han and Z D Wang Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling K Haule and G Kotliar Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission Y Sekiba, T Sato, K Nakayama, K Terashima, P Richard, J H Bowen, H Ding, Y-M Xu, L J Li, G H Cao, Z-A Xu and T Takahashi Absorption and photoemission spectroscopy of rare-earth oxypnictides T Kroll, F Roth, A Koitzsch, R Kraus, D R Batchelor, J Werner, G Behr, B Büchner and M Knupfer Superconductivity in LnFePO (Ln = La, Pr and Nd) single crystals R E Baumbach, J J Hamlin, L Shu, D A Zocco, N M Crisosto and M B Maple Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hiroshi Kontani and Hideo Aoki Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides S Graser, T A Maier, P J Hirschfeld and D J Scalapino Investigation of superconducting gap structure in TbFeAsO0.9F0.1 using point contact Andreev reflection K A Yates, K Morrison, J A Rodgers, G B S Penny, J-W G Bos, J P Attfield and L F Cohen Competition of magnetism and superconductivity in underdoped (Ba1-xKx)Fe2As2 Marianne Rotter, Marcus