WorldWideScience

Sample records for inverted bubbly slug

  1. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs

  2. Two-phase flow characteristic of inverted bubbly, slug, and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1989-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-critical heat flux (CHF) flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point

  3. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  4. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  5. Automatic discrimination of bubbles and slugs in two-phase gas-liquid flow and measurement of the respective velocities

    International Nuclear Information System (INIS)

    Fitremann, J.M.; Guilpin, C.; Postaire, J.

    1976-01-01

    The measurement of the interface velocity in a two-phase gas-liquid flow is a difficult problem, owing to the dispersion of the velocity components of individual bubbles, gas-slugs, droplets, waves, etc. An entirely automatic method is presented, it gives the velocity of slugs and bubbles independently, by discrimination of local phase probe signals into a 'slug' signal and a 'bubble' signal feeding a shape-recognition program. Both discriminated void fractions are also calculated by the apparatus [fr

  6. Statistical criterion for Bubbly-slug flow transition

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, J; Elias, E [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    The investigation of flow pattern transitions is still an interesting problem in the research of multiphase Row. It has been studied theoretically, and experimental confirmation of the models has been found by many investigators. The present paper deals with a statistical approach to bubbly-slug transitions in a vertical upward two phase flow and a new transition criterion is deduced from experimental data (authors).

  7. Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Kyoung [Kyungnam Univ., Changwon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-04-15

    In the present experimental study, the effect of gas- and liquid-injected methods on the formation of bubble and liquid slug at the merging micro T-junction of a square microchannel with dimensions 600 μm × 600 μm was investigated. Nitrogen and water were used as test fluids. The superficial velocities of the liquid and gas were in the range of 0.05 - 1 m/s, and 0.1 - 1 m/s, respectively, where the Taylor flow was observed. The bubble length, liquid slug length, bubble velocity, and bubble generation frequency were measured by analyzing the images captured using a high-speed camera. Under similar inlet superficial velocity conditions, in the case of gas injection to the main channel at the merging T-junction (T{sub g}as-liquid), the lengths of the bubble and liquid slug were longer, and the bubble generation frequency was lower than in the case of liquid injection to the main channel at the merging T-junction (T{sub l}iquid-gas). On the other hand, in both cases, the bubble velocity was almost the same. The previous correlation proposed using experimental data for T{sub l}iquid-gas had predicted the present experimental data of bubble length, bubble velocity, liquid slug length, and bubble generation frequency for T{sub g}as-liquid to be ~24%, ~9%, ~39%, ~55%, respectively.

  8. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  9. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2003-01-01

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  10. On the interaction of Taylor bubbles rising in two-phase co-current slug flow in vertical columns: turbulent wakes

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Campos, J.B.L. [Centro de Estudos de Fenomenos de Transporte, Universidade do Porto Rua (Portugal); Coelho Pinheiro, M.N. [Dept. de Engenharia Quimica, Politecnico de Coimbra (Portugal)

    2001-12-01

    An experimental study on the interaction between Taylor bubbles rising through a co-current flowing liquid in a vertical tube with 32 mm of internal diameter is reported. The flow pattern in the bubble's wake was turbulent and the flow regime in the liquid slug was either turbulent or laminar. When the flow regime in the liquid slug is turbulent (i) the minimum distance between bubbles above which there is no interaction is 5D-6D; (ii) the bubble's rising velocity is in excellent agreement with the Nicklin relation; (iii) the experimental values of the bubble length compare well with theoretical predictions (Barnea 1990); (iv) the distance between consecutive bubbles varied from 13D to 16D and is insensitive to the liquid Reynolds number. When the flow regime in the liquid slug is laminar (i) the wake length is about 5D-6D; (ii) the minimum distance between bubbles above which there is no interaction is higher than 25D; (iii) the bubble's rising velocity is significantly smaller than theoretical predictions. These results were explained in the light of the findings of Pinto et al. (1998) on coalescence of two Taylor bubbles rising through a co-current liquid. (orig.)

  11. Numerical Study on Bubble Dynamics and Two-Phase Frictional Pressure Drop of Slug Flow Regime in Adiabatic T-junction Square Microchannel

    Directory of Open Access Journals (Sweden)

    K. Kishor

    2017-10-01

    Full Text Available In this study, bubble dynamics and frictional pressure drop associated with gas liquid two-phase slug flow regime in adiabatic T-junction square microchannel has been investigated using CFD. A comprehensive study on the mechanism of bubble formation via squeezing and shearing regime is performed. The randomness and recirculation profiles observed in the squeezing regime are significantly higher as compared to the shearing regime during formation of the slug. Further, effects of increasing gas velocity on bubble length are obtained at fixed liquid velocities and simulated data displayed good agreement with available correlations in literature. The frictional pressure drop for slug flow regime from simulations are also obtained and evaluated against existing separated flow models. A regression correlation has also been developed by modifying C-parameter using separated flow model, which improves the prediction of two-phase frictional pressure drop data within slug flow region, with mean absolute error of 10 %. The influences of fluid properties such as liquid viscosity and surface tension on the two-phase frictional pressure drop are also investigated and compared with developed correlation. The higher liquid viscosity and lower surface tension value resulted in bubble formation via shearing regime.

  12. The dynamics of slug trains in volcanic conduits: Evidence for expansion driven slug coalescence

    Science.gov (United States)

    Pering, T. D.; McGonigle, A. J. S.; James, M. R.; Capponi, A.; Lane, S. J.; Tamburello, G.; Aiuppa, A.

    2017-12-01

    Strombolian volcanism is a ubiquitous form of activity, driven by the ascent and bursting of bubbles of slug morphology. Whilst considerable attention has been devoted to understanding the behaviour of individual slugs in this regime, relatively little is known about how inter-slug interactions modify flow conditions. Recently, we reported on high temporal frequency strombolian activity on Etna, in which the larger erupted slug masses were followed by longer intervals before the following explosion than the smaller bursts (Pering et al., 2015). We hypothesised that this behaviour arose from the coalescence of ascending slugs causing a prolonged lag before arrival of the next distinct bubble. Here we consider the potential importance of inter-slug interactions for the dynamics of strombolian volcanism, by reporting on the first study into the behaviour of trains of ascending gas slugs, scaled to the expansion rates in volcanic conduits. This laboratory analogue study illustrates that slugs in trains rise faster than individual slugs, and can be associated with aspects of co-current flow. The work also highlights that coalescence and inter-slug interactions play an important role in modulating slug train behaviour. We also report, for the first time, on slug coalescence driven by vertical expansion of the trailing slug, a process which can occur, even where the leading slug base ascent velocity is greater than that of the trailing slug.

  13. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  14. Investigation of vertical slug flow with advanced two-phase flow instrumentation

    International Nuclear Information System (INIS)

    Mi, Y.; Ishii, M.; Tsoukalas, L.H.

    2001-01-01

    Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow

  15. Bed diameter effects and incipient slugging in gas fluidized beds

    International Nuclear Information System (INIS)

    Agarwal, P.K.

    1986-01-01

    The coalescence and growth of bubble swarms formed at the distributor of a fluidized bed gives rise to lateral as well as vertical distributions of bubble properties. However, existing models employ average bubble properties obtained largely from semi-empirical considerations. In a recent Paper, the author developed a bubble growth model based on a population balance approach. Analytical expressions were derived for the bubble characteristic distributions and averages. However, the model, developed for unconstrained growth, did not take into account the effect of the bed diameter and the possibility of slugging. In this Paper, the model is extended to take these aspects into account. A slugging criterion is also developed which is expected to be valid for the regime where incipient slugging depends on the bed height as well as the region where bed height does not significantly affect minimum slugging conditions

  16. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  17. Development of converter to change gas-liquid two-phase slug flow to bubbly flow in a vertical tube

    International Nuclear Information System (INIS)

    Sakaguchi, T.; Minagawa, H.; Hamaguchi, H.; Shakutusi, H.; Ono, M.; Mizuta, H.

    1989-01-01

    The mechanical and/or the thermal fatigue fracture of pipelines due to the pulsating characteristics of slug flow will be prevented if slug flow is changed to bubbly flow. Then kinds of flow pattern converters were developed and tested in a vertical tube of 30.3 mm I.D. This paper reports that the converter composed of five stages of porous plates is useful. The sintered porous plates of spherical particles made acrylonitrile-butadiene-styrene resin and bronze are selected from 76 kinds of porous plates

  18. Modeling of two-phase slug flow

    International Nuclear Information System (INIS)

    Fabre, J.; Line, A.

    1992-01-01

    When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling

  19. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  20. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    International Nuclear Information System (INIS)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R.; Campos, J.B.L.M.

    2008-01-01

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator

  1. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  2. Slug Flow Analysis in Vertical Large Diameter Pipes

    Science.gov (United States)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show

  3. Characteristic behavior of bubbles and slugs in transient two-phase flow using image-processing method

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishizaki, Yasuo; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Simulation of transient two-phase flow has been performed by solving transient hydrodynamic equations. However, constitution relations used in this simulation are primarily based on steady-state experimental results. Thus it is important to understand the transient behavior of bubbles and slugs, in particular, transient behavior of the void fraction, the interfacial area and the flow pattern, to confirm the applicability of the present simulation method and to advance two-phase flow simulation further. The present study deals with measurement of transient two-phase flow. We have measured local and instantaneous void fractions using imaging techniques, and compared the experimental data with simulation results. (author)

  4. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    Science.gov (United States)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  5. Influence of the initial conditions for the numerical simulation of two-phase slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Pachas Napa, Alex A.; Morales, Rigoberto E.M.; Medina, Cesar D. Perea

    2010-07-01

    Multiphase flows in pipelines commonly show several patterns depending on the flow rate, geometry and physical properties of the phases. In oil production, the slug flow pattern is the most common among the others. This flow pattern is characterized by an intermittent succession in space and time of an aerated liquid slug and an elongated gas bubble with a liquid film. Slug flow is studied through the slug tracking model described as one-dimensional and Lagrangian frame referenced. In the model, the mass and the momentum balance equations are applied in control volumes constituted by the gas bubble and the liquid slug. Initial conditions must be determined, which need to reproduce the intermittence of the flow pattern. These initial conditions are given by a sequence of flow properties for each unit cell. Properties of the unit cell in initial conditions should reflect the intermittence, for which they can be analyzed in statistical terms. Therefore, statistical distributions should be obtained for the slug flow variables. Distributions are complemented with the mass balance and the bubble design model. The objective of the present work is to obtain initial conditions for the slug tracking model that reproduce a better adjustment of the fluctuating properties for different pipe inclinations (horizontal, vertical or inclined). The numerical results are compared with experimental data obtained by PFG/FEM/UNICAMP for air-water flow at 0 deg, 45 deg and 90 deg and good agreement is observed. (author)

  6. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  7. Cap Bubble Drift Velocity in a Confined Test Section

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  8. Measurement and study of amplitudes and velocities of void fraction waves in two-phase gas-liquid flow ranging from bubbly flow to slug flow

    International Nuclear Information System (INIS)

    Tournaire, Agnes

    1987-01-01

    The objective of this research thesis is to study the behaviour of waves at the vicinity of the bubble-slug transition, and to compare it with the one predicted by models. The author also addresses the bubbly regime, and particularly the evolution of wave amplitude whereas studies had been until then limited to the study of wave speed. The first part of the thesis reports the development of a system of vacuum rate measurements in cylindrical duct. The second part proposes the description of the experimental installation, and the third part reports experimental results and discusses them. Finally, the author compares these results with those predicted by using a kinematic modelling [fr

  9. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  10. An investigation on near wall transport characteristics in an adiabatic upward gas-liquid two-phase slug flow

    Science.gov (United States)

    Zheng, Donghong; Che, Defu

    2007-08-01

    The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.

  11. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    International Nuclear Information System (INIS)

    Nigmatulin, R.I.

    1995-01-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered

  12. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  13. Experimental study of inverted-annular-flow hydrodynamics utilizing an adiabatic simulation

    International Nuclear Information System (INIS)

    De Jarlais, G.

    1983-03-01

    In experiments, inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from long aspect nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed-core droplet sizes were recorded at approximately 750 data points. Inverted annular flow was observed to develop into inverted slug flow at low relative velocities, and into dispersed droplet flow at high relative velocities. For both of the above transitions from inverted annular flow, correlations for core jet length were developed by extending work done on free liquid jets to include this new, coaxial, jet disintegration phenomenon. Jet break-up length is correlated as a function of jet diameter, jet Reynolds number, jet Weber number, void fraction, and gas Weber number. Correlations for core shape, break-up mechanisms and dispersed core droplet size for the case of transition to inverted slug flow were developed

  14. Interfacial area concentration in gas–liquid bubbly to churn-turbulent flow regime

    International Nuclear Information System (INIS)

    Ozar, B.; Dixit, A.; Chen, S.W.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► A systematic approach to predict the interfacial area concentration is presented. ► Two group approach for categorizing bubbles is used. ► Prediction of Group-1 bubble size and void fraction are key elements of this work. ► The proposed approach compares well with selected databases. - Abstract: There are very few established correlations to predict the interfacial area concentration beyond the bubbly flow regime in cap-slug and churn-turbulent flow regimes. Present study shows a systematic approach to estimate the interfacial area concentration in bubbly, cap-slug and churn-turbulent flow regimes. Ishii and Mishima’s (1980) formulation and the two group approach for categorizing bubbles (Group-1: spherical or distorted bubble, Group-2: cap bubble) are used to estimate the interfacial area concentration. The key parameters in this framework are the estimation of Group-1 bubble size and the amount of void in the liquid slug, which is a function of Group-1 void fraction. Hibiki and Ishii’s (2002) correlation is utilized to predict the size of the Group-1 bubbles. A correlation is developed to estimate the Group-1 void fraction. The developed model for the estimation of interfacial area concentration is compared with the three existing datasets. These are data for air–water flow taken in annular geometry and round tube and also for air–NaOH solution taken in round tube. The estimation accuracies for these data sets are ±36.4%, ±26.5% and ±37.4%, respectively. These datasets cover a wide range of flow regimes and different physical properties.

  15. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  16. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  17. Effective pressure and bubble generation in a microfluidic T-junction.

    Science.gov (United States)

    Wang, An-Bang; Lin, I-Chun; Hsieh, Yu-Wen; Shih, Wen-Pin; Wu, Guan-Wei

    2011-10-21

    To improve the existing trial-and-error process in designing a microfluidic T-junction, a systematic study of the geometrical (mainly the channel length) effects on the generated bubbly/slug flow was conducted to figure out basic design guidelines based on experimental and theoretical analyses. A driving system with dual constant pressure sources, instead of the commonly used dual constant volume-rate sources (such as two syringe pumps), was chosen in this study. The newly proposed effective pressure ratio (P(e)*) has revealed its advantages in excluding the surface tension effect of fluids. All the data of generated bubbly/slug flow for a given geometry collapse excellently into the same relationship of void fraction and effective pressure ratio. This relationship is insensitive to the liquid viscosity and the operation range is strongly affected by the geometrical effect, i.e., the channel length ratio of downstream to total equivalent length of the main channel in a T-junction chip. As to the theoretical design and analysis of gas-liquid-flow characteristics in a microfluidic T-junction, which is still sporadic in the literature, the proposed semi-empirical model has successfully predicted the operation boundaries and the output flow rate of bubbly/slug flow of different investigated cases and demonstrated its usability.

  18. An Experimental and analytical study on the bubble-to-slug flow regime transition based on the void wave instability

    International Nuclear Information System (INIS)

    Song, Chul Hwa

    1995-02-01

    An experimental and analytical work is performed to investigate the relation between the developing phenomena in bubble flow and the propagation phenomena of void waves. For this purpose, the structural developments in bubble flow and the propagation property of void waves are measured over a broad range of flow conditions including the bubble-to-slug flow regime transition (BSFRT) region. And a linear stability analysis is performed, based on the two-fluid model, to establish the analytical model on the wave propagation parameters, and the predictability of the model is validated by comparing analytical results with experimental observations. In the experimental work, an impedance void meter is developed to measure the void fraction, and a series of test are performed by varying the bubble size in order to investigate the bubble size effect on the bubble flow structures for various flow conditions. Statistical signal processing techniques are applied to void signals in order to objectively identify the changing modes of bubble flow structures and to estimate the wave propagation properties. The impedance void meter developed in this study showed very good temporal and spatial resolutions enough to identify the developing phenomena in bubble flow structures and to investigate the void wave propagations, and the void distribution effect could be minimized by electrically shielding the guard electrodes. It was also designed so that the inherent errors due to the phase shifts between channels be negligible. Various features occurred in the transitional process of bubble flow could be objectively identified by introducing some statistical parameters evaluated from void signals. Two distinct modes of structural development in bubble flow were observed in the transitional process, and they are found to be much influenced by the initial bubble size. And the mechanism to govern BSFRT could be characterized by two ways depending on the developing modes of bubble flow

  19. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  20. Initiation of slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Hanratty, T.J.; Woods, B.D. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31

    The initiation of slug flow in a horizontal pipe can be predicted either by considering the stability of a slug or by considering the stability of a stratified flow. Measurements of the shedding rate of slugs are used to define necessary conditions for the existence of a slug. Recent results show that slugs develop from an unstable stratified flow through the evolution of small wavelength waves into large wavelength waves that have the possibility of growing to form a slug. The mechanism appears to be quite different for fluids with viscosities close to water than for fluids with large viscosities (20 centipoise).

  1. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  2. Prematurely terminated slug tests

    International Nuclear Information System (INIS)

    Karasaki, K.

    1990-07-01

    A solution of the well response to a prematurely terminated slug test (PTST) is presented. The advantages of a PTST over conventional slug tests are discussed. A systematized procedure of a PTST is proposed, where a slug test is terminated in the midpoint of the flow point, and the subsequent shut-in data is recorded and analyzed. This method requires a downhole shut-in device and a pressure transducer, which is no more than the conventional deep-well slug testing. As opposed to slug tests, which are ineffective when a skin is present, more accurate estimate of formation permeability can be made using a PTST. Premature termination also shortens the test duration considerably. Because in most cases no more information is gained by completing a slug test to the end, the author recommends that conventional slug tests be replaced by the premature termination technique. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland

  3. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  4. Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.

    Science.gov (United States)

    Abdula, Daner; Lerud, Ryan; Rananavare, Shankar

    2017-11-07

    Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  6. Modeling of bubble coalescence and disintegration in confined upward two-phase flow

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions

  7. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  8. SlugIn 1.0: A Free Tool for Automated Slug Test Analysis.

    Science.gov (United States)

    Martos-Rosillo, Sergio; Guardiola-Albert, Carolina; Padilla Benítez, Alberto; Delgado Pastor, Joaquín; Azcón González, Antonio; Durán Valsero, Juan José

    2018-05-01

    The correct characterization of aquifer parameters is essential for water-supply and water-quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user-friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy-to-use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large-diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates. © 2018, National Ground Water Association.

  9. Experimental study on flow pattern and heat transfer of inverted annular flow

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji

    1990-01-01

    Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)

  10. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  11. Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition

    International Nuclear Information System (INIS)

    Lusseyran, Francois

    1990-01-01

    This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [fr

  12. Inverted annular flow experimental study

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.

    1985-04-01

    Steady-state inverted annular flow of Freon 113 in up flow was established in a transparent test section. Using a special inlet configuration consisting of long aspect-ratio liquid nozzles coaxially centered within a heated quartz tube, idealized inverted annular flow initial geometry (cylindrical liquid core surrounded by coaxial annulus of gas) could be established. Inlet liquid and gas flowrates, liquid subcooling, and gas density (using various gas species) were measured and varied systematically. The hydrodynamic behavior of the liquid core, and the subsequent downstream break-up of this core into slugs, ligaments and/or droplets of various sizes, was observed. In general, for low inlet liquid velocities it was observed that after the initial formation of roll waves on the liquid core surface, an agitated region of high surface area, with attendant high momentum and energy transfers, occurs. This agitated region appears to propagate downsteam in a quasi-periodic pattern. Increased inlet liquid flow rates, and high gas annulus flow rates tend to diminish the significance of this agitated region. Observed inverted annular flow (and subsequent downstream flow pattern) hydrodynamic behavior is reported, and comparisons are drawn to data generated by previous experimenters studying post-CHF flow

  13. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used

  14. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    International Nuclear Information System (INIS)

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1986-01-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, breakup mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization led to inverted slug flow at low relative velocities, and to dispersed droplet flow, core breakup length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, We/sub J/, α, and We/sub G/,rel. Correlations for core shape, breakup mechanisms, and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies

  15. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Science.gov (United States)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  16. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. Determination of C0-60 in Cobalt Slugs and Slabs and Radionuclides in Curium Sampler Slugs L-Reactor Disassembly Basin

    International Nuclear Information System (INIS)

    Casella, V.R.

    2004-01-01

    Co-60 was historically produced in the SRS reactors. Cobalt slugs were irradiated in the early 1970s. Post-production, remaining cobalt slugs (including slab form) were consolidated for storage. There are approximately nine hundred cobalt slugs currently stored awaiting final disposition. These slugs had historically incomplete documentation for activity rates; therefore, assaying was required in order to determine their activity levels. Since the gamma dose rate from these slugs is extremely high, the most cost effective way to shield a source of this magnitude from personnel and the radiation detector was to use the basin water in which the slugs are stored as the shield. A sodium iodide gamma detector was placed above a specially designed air collimator assembly, so that slug was at least eight feet from the detector and was shielded by the basin water. Using a sodium iodide detector and multichannel analyzer system and an underwater collimator assembly, Co-60 concentrations we re determined for Disassembly Basin cobalt slugs and slabs and 18 curium sampler slugs. The total activity of all of the assayed slugs summed to 31,783 curies. From the Co-60 concentrations of the curium sampler slugs, the irradiation flux was determined for the known irradiation time. The amounts of Pu-238, 239, 240, 241, 242; Am-241, 243; and Cm-242, 244 produced were then obtained based on the original amount of Pu-239 irradiated

  18. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    Science.gov (United States)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  19. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  20. Inhomogeneous MUSIG Model - a population balance approach for polydispersed bubbly flows

    International Nuclear Information System (INIS)

    Frank, T.; Zwart, P.J.; Shi, J.; Krepper, E.; Lucas, D.; Rohde, U.

    2005-01-01

    Many flow regimes in Nuclear Reactor Safety (NRS) Research are characterized by multiphase flows, with one phase being a continuous liquid and the other phase consisting of gas or vapour of the liquid phase. In the range of low to intermediate volume fraction of the gaseous phase the multiphase flow under consideration is a bubbly or slug flow, where the disperse phase is characterized by an evolving bubble size distribution due to bubble breakup and coalescence processes. The paper presents a generalized inhomogeneous Multiple Size Group (MUSIG) Model. Within this model the disperse gaseous phase is divided into N inhomogeneous velocity groups (phases) and each of these groups is subdivided into M bubble size classes. Bubble breakup and coalescence processes between all bubble size classes are taken into account by appropriate models. The derived inhomogeneous MUSIG model has been validated against experimental data from the TOPFLOW test facility at the Research Center Rossendorf (FZR). Comparisons of gas volume fraction and velocity profiles with TOPFLOW-074 test case data are provided, showing the applicability and accuracy of the model for polydispersed bubbly flow in large diameter vertical pipe flow. (author)

  1. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  2. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  3. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  4. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  5. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    Science.gov (United States)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  6. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1987-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  7. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  8. Survey of nematodes associated with terrestrial slugs in Norway.

    Science.gov (United States)

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  9. Some investigations on the mean and fluctuating velocities of an oscillating Taylor bubble

    International Nuclear Information System (INIS)

    Madani, Sara; Caballina, Ophelie; Souhar, Mohamed

    2012-01-01

    Highlights: ► The unsteady motion of an oscillating Taylor bubble has been studied. ► A non-dimensionalized velocity differential equation is numerically solved. ► The role of dimensionless numbers on the dynamics of the bubble is highlighted. ► Mean and fluctuating velocities and the phase shift are experimentally investigated. ► Correlations allowing the prediction of these latter parameters are proposed. - Abstract: The slug flow characterized by large elongated bubbles also called Taylor bubbles is widely encountered in nuclear reactor steam generators, cooling plants, reboilers, etc. The analysis of slug flow is very important as the instability caused by such flows can affect the safety features of nuclear reactors and other two-phase flow equipments. In this paper, we study the motion of a Taylor bubble rising in stagnant fluids in a vertical oscillating pipe. The investigation is restricted to high Reynolds numbers and to an intermediate range of Bond numbers where the effects of surface tension can be considered. The Froude number ranged between 0.22 and 0.33. Firstly, detailed analysis of models proposed in the literature for the motion of a Taylor bubble in an unsteady acceleration field is realized. The velocity differential equation obtained in the case of potential and axisymmetric flow without surface tension given in the literature is first non-dimensionalized to highlight dimensionless numbers. Then, the instantaneous velocity of the bubble is numerically determined. Mean and fluctuating velocities as well as the phase shift (U ¯ b , U f and φ) are estimated by using a technique based on the nonlinear least squares method. Results enable a discussion on the role played by dimensionless numbers on the dynamics of the bubble. It is found that the two parameters, the relative acceleration and the Bond number (a and Bo) have a governing role on the evolution of mean and fluctuating velocities while the ratio of the oscillation amplitude to

  10. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  11. Severe Slugging in Air-Water Hybrid Riser System

    Directory of Open Access Journals (Sweden)

    Jing Gong

    2014-11-01

    Full Text Available In the subsea pipeline gathering system, severe slugging flow is prone to occur. Severe slugging flow brings major threat to production and flow assurance in oil and gas industry due to periodical pressure oscillation and large liquid volume. Currently many researchers pay much more attention on L-shaped riser, catenaries, and S-shaped riser; little research has been made on hybrid riser, which is applied in the Africa West and Gulf of Mexico oil fields. Flow characteristics simulation for hybrid riser is made in this paper, using the one-dimensional and quasi-equilibrium model to simulate not only the riser-base pressure, severe slugging period, and the liquid slug length of the whole system but also base-pressure in the flexible pipe section. The calculated results match well with the experiment data. Besides, the influence of flexible pipe to the severe slugging characteristics of hybrid riser system is analyzed, which are significant for the determination of riser structure.

  12. A nematode that can manipulate the behaviour of slugs.

    Science.gov (United States)

    Morris, Alex; Green, Michael; Martin, Hayley; Crossland, Katie; Swaney, William T; Williamson, Sally M; Rae, Robbie

    2018-06-01

    The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  14. The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Wang Xin-sheng

    2010-07-01

    Full Text Available Abstract Objectives This study explored the expression and function of Slug in human extrahepatic hilar cholangiocarcinoma (EHC to identify its role in tumor progression. Methods The expression of Snail and Slug mRNA in 52 human tissue samples of EHC was investigated. The mRNA of Snail and Slug were quantified using reverse transcriptase-PCR, and correlations with E-cadherin expression and clinicopathological factors were investigated. We then investigated transfection of Slug cDNA in endogenous E-cadherin-positive human EHC FRH0201 cells, selectively induced the loss of E-cadherin protein expression, and then small interfering RNA (siRNA for inhibition of Slug expression in endogenous Slug-positive human EHC QBC939 cells, selectively induced the loss of Slug protein expression. A Boyden chamber transwell assay was used for invasion. Results Slug mRNA was overexpressed in 18 cases (34.6% of EHC compared with adjacent noncancerous tissue. E-Cadherin protein expression determined in the same 52 cases by immunohistochemistry was significantly down-regulated in those cases with Slug mRNA overexpression (P = 0.0001. The tumor and nontumor ratio of Slug mRNA was correlated with nodal metastasis(p = 0.0102, distant metastasis (p = 0.0001and Survival time(p = 0.0443. However, Snail mRNA correlated with neither E-cadherin expression nor tumor invasiveness. By inhibiting Slug expression by RNA interference, we found that reduced Slug levels upregulated E-cadherin and decreased invasion in QBC939 cell. When the QBC939 cells was infected with Slug cDNA,, significant E-cadherin was downregulated and increased invasion in QBC939 cell. Conclusions The results suggested that Slug expression plays an important role in both the regulation of E-cadherin expression and in the acquisition of invasive potential in human EHC. Slug is possibly a potential target for an antitumor therapy blocking the functions of invasion and metastasis in human EHCs.

  15. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  16. Slug control system; Sistema de controle de golfadas

    Energy Technology Data Exchange (ETDEWEB)

    Borges Filho, Alvaro de Miranda; Meira, Marco Antonio Alves de; Vaz, Celio Eduardo Martins [PETROBRAS, Macae, RJ (Brazil). Unidade de Negocios da Bacia de Campos

    2004-07-01

    Due to the characteristics of flow, gas can separate from oil in the pipelines and risers that link subsea manifolds to production offshore platforms, forming liquid and gas slugs in the production separator. Liquid slugs can cause overflow in the separators. Gas slugs can cause burning in the flare due to the limitation in the turbo-compressors acceleration. In both cases the consequences are loss of production or shut-downs. This paper presents a Slug Control System designed to attenuate severe gas and liquid flow variations. The system consist of a control valve installed in the separator inlet, transmitters, a controller, control algorithm and a monitoring station. This system is operating since October 2003 in a production offshore platform, in Campus Basin, Brazil, with excellent results, reducing the gas burning in 45% without oil production loss. (author)

  17. Context-Dependent Passive Avoidance Learning in the Terrestrial Slug Limax.

    Science.gov (United States)

    Fujisaki, Yuko; Matsuo, Ryota

    2017-12-01

    The terrestrial slug Limax has been used as a model animal for studying the neural mechanisms underlying associative olfactory learning. The slug also innately exhibits negative phototactic behavior using its eyes. In the present study, we developed an experimental paradigm for quantification of slug's negative phototaxis behavior, and investigated whether the nature of the negative phototaxis can be modified by learning experience. The experimental set-up consists of light and dark compartments, between which the slug can move freely. During conditioning, the slug was placed in the light compartment, and an aversive stimulus (quinidine sulfate solution) was applied when it reached the dark compartment. After a single conditioning session, the time to reach the dark compartment significantly increased when it was tested following 24 hr or one week. Protein synthesis inhibition immediately following the conditioning impaired the memory retention at one week but not at 24 hr. The retrieval of the memory was context-dependent, as the time to reach the dark compartment did not significantly increase if the slug was placed on a floor with a different texture in the memory retention test. If the aversive stimulus was applied when the slug was in the light compartment, the time to reach the dark compartment did not increase after 24 hr. This is the first report demonstrating the capability of the slug to form context-dependent passive avoidance memory that can be established in a single conditioning session.

  18. Local studies in horizontal gas-liquid slug flow

    International Nuclear Information System (INIS)

    Sharma, S.; Lewis, S.; Kojasoy, G.

    1998-01-01

    The local axial velocity profile development in a horizontal air-water slug flow-pattern was experimentally investigated by simultaneously using two hot-film anemometers. One of the probes was exclusively used as phase identifier while the other probe was traversed for local velocity measurements. It was shown that the velocity rapidly develops into asymmetric but nearly fully-developed profiles within the liquid slugs whereas the velocity never develops into quasi-fully-developed profiles within the liquid layer underneath passing gas slugs. Transient nature of velocity at a given location was demonstrated. (author)

  19. SLUG (SNAI2) deletions in patients with Waardenburg disease.

    Science.gov (United States)

    Sánchez-Martín, Manuel; Rodríguez-García, Arancha; Pérez-Losada, Jesús; Sagrera, Ana; Read, Andrew P; Sánchez-García, Isidro

    2002-12-01

    Waardenburg syndrome (WS; deafness with pigmentary abnormalities) is a congenital disorder caused by defective function of the embryonic neural crest. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. WS1 and WS3 are caused by mutations in PAX3, whereas WS2 is heterogenous, being caused by mutations in the microphthalmia (MITF) gene in some but not all affected families. The identification of Slugh, a zinc-finger transcription factor expressed in migratory neural crest cells, as the gene responsible for pigmentary disturbances in mice prompted us to analyse the role of its human homologue SLUG in neural crest defects. Here we show that two unrelated patients with WS2 have homozygous deletions in SLUG which result in absence of the SLUG product. We further show that Mitf is present in Slug-deficient cells and transactivates the SLUG promoter, and that Slugh and Kit genetically interact in vivo. Our findings further define the locus heterogeneity of WS2 and point to an essential role of SLUG in the development of neural crest-derived human cell lineages: its absence causes the auditory-pigmentary symptoms in at least some individuals with WS2.

  20. Is a combination of different natural substances suitable for slug (Arion spp.) control?

    Energy Technology Data Exchange (ETDEWEB)

    Laznik, Ž.; Trdan, S.

    2016-11-01

    In a laboratory study we investigated the contact and barrier efficacy of different natural substances (wood ash, sawdust, hydrated lime, and diatomaceous earth) against slugs of the genus Arion, an important agricultural pest. Natural substances were tested individually and in combination with each other. The experiment was carried out in plastic petri dishes and in glass insectaria. Moistened tampons and fresh leaves of lettuce were placed into both experimental arenas. The slugs were starved for 48 hours prior to the experiment. Six categories of behaviour were identified for slugs in the presence of the natural substances: (1) slug survived the experiment, (2) slug died during the experiment, (3) slug crossed the barrier, (4) slug did not cross the barrier, (5) slug fed on the lettuce, and (6) slug did not feed on the lettuce. The effect of different treatments (natural substances) was significant. The results of our study have shown that hydrated lime had the best contact efficacy on slugs (the mortality of slugs was 100%), both individually and in combination with other substances. The treatments with hydrated lime also proved to be the most efficient barrier preventing slugs from feeding on lettuce. Hydrated lime shows great potential in Arion control in our investigation; however, further research is needed to investigate the practical value (how to avoid the problem when the substance becomes wet), safety and economics of hydrated lime used in this way. (Author)

  1. Plant-Wide Anti-Slug Control for Offshore Oil and Gas Processes

    DEFF Research Database (Denmark)

    Pedersen, Simon

    In offshore Oil & Gas production processes the undesired severe slug flow regime can be present. The negative impact of severe slug is crucial to the production rate and process safety. In this work, the severe slugs which occur in the well-pipeline-riser system are experimentally and theoretically...... better than the ones developed for Pt . Furthermore, an alternative transmitter is experimentally investigated for online slug detection and monitoring. The transmitter is an Electrical Resistance Tomography (ERT) sensor measuring the electrical resistance over the cross-area section...

  2. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis.

    Science.gov (United States)

    Uygur, Berna; Wu, Wen-Shu

    2011-11-10

    SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  3. Quasi-3D Modelling of Two-Phase Slug Flow in Pipes

    Directory of Open Access Journals (Sweden)

    S. Mo

    2014-03-01

    Full Text Available In this paper, we present progress obtained by the Quasi 3-Dimensional (Q3D model for pipe flows. This model is based on a multi-fluid multi-field formulation with construction and tracking of the large-scale interfaces (LSIs. The computational time is significantly reduced compared to full 3D by using a specially adopted slice-averaging technique. However, the slice-averaging generates new terms in the model equations. These terms are related to important mechanisms such as wall shear stress and turbulence production at side walls. We present some basic performance tests of the Q3D model, including single phase wall friction and the velocities of single Taylor bubbles at inclinations ranging from horizontal to vertical. Finally we report the performance of the model for slug flow in horizontal and 10° inclined pipes. The model reproduces the experimental data satisfactorily for both cases in a very short simulation time compared to full 3D.

  4. Simulation of horizontal pipe two-phase slug flows using the two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)

  5. Challenges in Slug Modeling and Control for Offshore Oil and Gas Productions

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2017-01-01

    The upstream offshore multi-phase well-pipeline-riser installations are facing huge challenges related to slugging flow: An unstable flow regime where the flow rates, pressures and temperatures oscillate in the multi-phase pipelines. One typical severe slug is induced by vertical wells or risers...... most models require specific facility and operating data which, unfortunately, often is not available from most offshore installations. Anti-slug control have been investigated for several decades in oil & gas industry, but many of these existing methods suffer the consequent risk of simultaneously...... reducing the oil & gas production. This paper concludes that slug is a well defined phenomenon, but even though it has been investigated for several decades the current anti-slug control methods still have problems related to robustness. It is predicted that slug-induced challenges will be even more severe...

  6. Production of a high-velocity water slug using an impacting technique

    Science.gov (United States)

    Dehkhoda, S.; Bourne, N. K.

    2014-02-01

    A pulsed water jet consists of a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress pulses reaching an amplitude known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at a lower stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the quality of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence and integrity of the jet core was of concern in this study. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to determine the unity and endurance of the water slug stream once travelled through air.

  7. Characterization of the slug flow formation in vertical-to-horizontal channels with obstructions

    International Nuclear Information System (INIS)

    Onder, E.N.

    2004-01-01

    This thesis presents the results of the work carried out to study the formation of slugs under conditions of vertical-to-horizontal counter-current flow with obstructions. A flow instability is the mechanism proposed for the formation of slugs in a co-current flow. However, to the best of author's knowledge no work has been carried out for the formation of slugs in a vertical-to-horizontal counter-current flow with obstructions. Despite the existence of a few studies on counter-current vertical-to-horizontal slug flow with obstructions, it is in particular of great importance in the area of nuclear reactor safety analysis of a CANDU reactor. A test section manufactured of 63.5 mm inner diameter (ID) plexiglass was used for this work. The test section consists of 2022 mm long vertical and 3327 mm long horizontal legs connected by a 90 o PVC elbow. The horizontal leg contains flanges in which an orifice may be installed. These flanges are located at the distance of 1110 mm and 2217 mm from the elbow. The experiments were carried out to study the frequency of the formation of slugs, the slug propagation velocity and the averaged void fraction of slugs. We also carried out experiments for the characterisation of the propagation of waves. This allowed us to obtain the initial conditions required by the present model in order to predict the formation of slugs. In this model, the initial profile of waves was used to start calculations. Therefore, the aim of these experiments was to obtain the initial profile of these waves. The comparison of the experimental data collected at the onset of flooding with that collected at the onset of slugging shows that the results are very close to each other. This reflects the fact that flooding is simultaneously accompanied by the formation of slugs in the horizontal leg. We found that, for a given liquid flow rate, the gas flow rate, necessary to form the slugs as well as to provoke flooding, decreases as the severity of the

  8. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  9. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis.

    Directory of Open Access Journals (Sweden)

    Mayssa Nassour

    Full Text Available Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question.Using a Slug-lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10-20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres.We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and

  10. An invasive slug exploits an ant-seed dispersal mutualism.

    Science.gov (United States)

    Meadley Dunphy, Shannon A; Prior, Kirsten M; Frederickson, Megan E

    2016-05-01

    Plant-animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest-including native and invasive seed-dispersing ants (Aphaenogaster rudis and Myrmica rubra, respectively), an invasive slug (Arion subfuscus), and native rodents-on a native myrmecochorous plant, Asarum canadense. We experimentally manipulated ant, slug, and rodent access to seed depots and measured seed removal. We also video-recorded depots to determine which other taxa interact with seeds. We found that A. rudis was the main disperser of seeds and that A. subfuscus consumed elaiosomes without dispersing seeds. Rodent visitation was rare, and rodent exclusion had no significant effect on seed or elaiosome removal. We then used data obtained from laboratory and field mesocosm experiments to determine how elaiosome robbing by A. subfuscus affects seed dispersal by A. rudis and M. rubra. We found that elaiosome robbing by slugs reduced seed dispersal by ants, especially in mesocosms with A. rudis, which picks up seeds more slowly than M. rubra. Taken together, our results show that elaiosome robbing by an invasive slug reduces seed dispersal by ants, suggesting that invasive slugs can have profound negative effects on seed dispersal mutualisms.

  11. SLUG-STOCHASTICALLY LIGHTING UP GALAXIES. I. METHODS AND VALIDATING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, Robert L.; Fumagalli, Michele; Krumholz, Mark [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2012-02-01

    The effects of stochasticity on the luminosities of stellar populations are an often neglected but crucial element for understanding populations in the low-mass or the low star formation rate regime. To address this issue, we present SLUG, a new code to 'Stochastically Light Up Galaxies'. SLUG synthesizes stellar populations using a Monte Carlo technique that properly treats stochastic sampling including the effects of clustering, the stellar initial mass function, star formation history, stellar evolution, and cluster disruption. This code produces many useful outputs, including (1) catalogs of star clusters and their properties such as their stellar initial mass distributions and their photometric properties in a variety of filters, (2) two dimensional histograms of color-magnitude diagrams of every star in the simulation, and (3) the photometric properties of field stars and the integrated photometry of the entire simulated galaxy. After presenting the SLUG algorithm in detail, we validate the code through comparisons with STARBURST99 in the well-sampled regime, and with observed photometry of Milky Way clusters. Finally, we demonstrate SLUG's capabilities by presenting outputs in the stochastic regime. SLUG is publicly distributed through the Web site http://sites.google.com/site/runslug/.

  12. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    Science.gov (United States)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  13. Slug flow in horizontal pipes with transpiration at the wall

    Science.gov (United States)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  14. Slug flow in horizontal pipes with transpiration at the wall

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: jbrloureiro@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  15. Slug flow in horizontal pipes with transpiration at the wall

    International Nuclear Information System (INIS)

    Loureiro, J B R; Freire, A P Silva

    2011-01-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  16. Transformation of a Water Slug in Free Fall Under the Conditions of Exposure to an Air Flow Orthogonal to the Direction of the Slug Motion

    Science.gov (United States)

    Volkov, R. S.; Zabelin, M. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-07-01

    An experimental study has been made of the influence of an orthogonal (side) air flow propagating with a velocity to 5 m/s on the phases of transformation of a water slug with an initial volume of 0.05-0.5 liter in free fall from a height of 3 m. Use was made of Phantom V411 and Phantom Miro M310 high-speed video cameras and a Tema Automotive software system with the function of continuous tracking. The laws of retardation of the phases of transformation of the water slug from the instant of formation to that of formation of a droplet cloud under the action of the air flow orthogonal to the direction of the slug motion, and also of the deceleration, removal, and destruction of the droplets and fragments of water separating from the slug surface, have been established.

  17. Experimental data for the slug two-phase flow characteristics in horizontal pipeline

    Directory of Open Access Journals (Sweden)

    Abdalellah O. Mohmmed

    2018-02-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled “Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe” (Al-Kayiem et al., 2017 [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.

  18. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  19. Modelling and control of growing slugs in horizontal multiphase pipe flows

    Directory of Open Access Journals (Sweden)

    Steinar M. Elgsæter

    2006-07-01

    Full Text Available In this paper, the use of active control to restrict the length of growing slugs in horizontal pipelines is investigated. Specifically, the paper attempts to determine if such control can be attained with realistic measurements and actuators. Simulations in OLGA2000 show that a feedback controller can use measurements or estimates of slug length to control the growth of a slug in a horizontal pipeline by partially closing inlet or outlet chokes. A control-volume approach is used to develop a low-order model of inlet choke-slug growth dynamics based on mass- and impulse balances. The resulting model is a system of nonlinear differential-algebraic equations, which is suitable for observer-design. The tuned model is found to be in good agreement with experiments and OLGA2000-simulations. Linearizations of the model are found to be observable around realistic trajectories when rates and pressures at the inlet and outlet are measured. An extended Luenberger-observer is shown to give good estimates of slug length and -position in simulations even under model uncertainty.

  20. Integrity of high-velocity water slug generated by an impacting technique

    Science.gov (United States)

    Dehkhoda, Sevda; Bourne, Neil

    2013-06-01

    A pulsed water jet is a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at the stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the integrity of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence of the generated water pulse was of concern in this study. If repeated shock reflections within the chamber were transmitted or were carried into the internal geometry of nozzle, the emerging jet could pulsate. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to study the quality and endurance of the water pulse stream as it travelled through air.

  1. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    PRAKASH

    . Localization of the three major cell types within the migrating slug stage is a dynamic process (Sternfeld 1992;. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to ...

  2. Velocity of large bubble in liquid-solid mixture in a vertical tube

    International Nuclear Information System (INIS)

    Hamaguchi, H.; Sakaguchi, T.

    1995-01-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V o in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V * (=V/V o ), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V * decreases linearly against the volumetric solid fraction ε of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V * and ε is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid

  3. Velocity of large bubble in liquid-solid mixture in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, H.; Sakaguchi, T. [Kobe Univ., Kobe (Japan)

    1995-09-01

    The upward movement of a large bubble in a stationary mixture of liquid and solid is one of the most fundamental phenomena of gas-liquid-solid three phase slug flow in a vertical tube. The purpose of this study is to make clear the characteristic of the rising velocity of this fundamental flow experimentally. The rising velocity of a large bubble V in a liquid-solid mixture was measured and compared with the velocity V{sub o} in a liquid (without solid). The experimental results were correlated using a non-dimensional velocity V{sup *}(=V/V{sub o}), and the following results were obtained. It was found that the characteristic of the rising velocity differs according to the tube diameter and the liquid viscosity, or the Galileo number in the non-dimensional expression. It can be classified into two regimes. (i) When the liquid viscosity is large (or the tube diameter is small), V{sup *} decreases linearly against the volumetric solid fraction {epsilon} of the mixture. (ii) When the viscosity is small, on the other hand, the relation between V{sup *} and {epsilon} is not linear. This classification can be explained by the results in the previous papers by the authors dealing with a large bubble in a liquid.

  4. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  5. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  6. Applicability of slug interference testing of hydraulic characterization of contaminated aquifer sites

    International Nuclear Information System (INIS)

    Spane, F.A.; Swanson, L.C.

    1993-10-01

    Aquifer test methods available for characterizing hazardous waste sites are sometimes restricted because of problems with disposal of contaminated groundwater. These problems, in part, have made slug tests a more desirable method of determining hydraulic properties at such sites. However, in higher permeability formations (i.e., transmissivities ≥ 1 x 10 -3 m 2 /s), slug test results often cannot be analyzed and give, at best, only a lower limit for transmissivity. A need clearly exists to develop test methods that can be used to characterize higher permeability aquifers without removing large amounts of contaminated groundwater. One hydrologic test method that appears to hold promise for characterizing such sites is the slug interference test. To assess the applicability of this test method for use in shallow alluvial aquifer systems, slug interference tests have been conducted, along with more traditional aquifer testing methods, at several Hanford multiple-well sites. Transmissivity values estimated from the slug interference tests were comparable (within a factor of 2 to 3) to values calculated using traditional testing methods, and made it possible to calculate the storativity or specific yield for the intervening test formation. The corroboration of test results indicates that slug interference testing is a viable hydraulic characterization method in transmissive alluvial aquifers, and may represent one of the few test methods that can be used in sensitive areas where groundwater is contaminated

  7. Development of two-phase Flow Model, 'SOBOIL', for Sodium

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum

    2000-03-01

    The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification

  8. Online slug detection in multi-phase transportation pipelines using electrical tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  9. Online Slug Detection in Multi-phase Transportation Pipelines Using Electrical Tomography

    DEFF Research Database (Denmark)

    Pedersen, Simon; Mai, Christian; Hansen, Leif

    2015-01-01

    in the pipelines is a highly investigated topic. To eliminate the slug in an online manner real-time slug detection methods are often required. Traditionally topside pressure transmitters upstream a 3-phase separator have been used as the controlled variable. In this paper Electrical Resistivity Tomography (ERT...

  10. Prediction of adiabatic bubbly flows in TRACE using the interfacial area transport equation

    International Nuclear Information System (INIS)

    Talley, J.; Worosz, T.; Kim, S.; Mahaffy, J.; Bajorek, S.; Tien, K.

    2011-01-01

    The conventional thermal-hydraulic reactor system analysis codes utilize a two-field, two-fluid formulation to model two-phase flows. To close this model, static flow regime transition criteria and algebraic relations are utilized to estimate the interfacial area concentration (a i ). To better reflect the continuous evolution of two-phase flow, an experimental version of TRACE is being developed which implements the interfacial area transport equation (IATE) to replace the flow regime based approach. Dynamic estimation of a i is provided through the use of mechanistic models for bubble coalescence and disintegration. To account for the differences in bubble interactions and drag forces, two-group bubble transport is sought. As such, Group 1 accounts for the transport of spherical and distorted bubbles, while Group 2 accounts for the cap, slug, and churn-turbulent bubbles. Based on this categorization, a two-group IATE applicable to the range of dispersed two-phase flows has been previously developed. Recently, a one-group, one-dimensional, adiabatic IATE has been implemented into the TRACE code with mechanistic models accounting for: (1) bubble breakup due to turbulent impact of an eddy on a bubble, (2) bubble coalescence due to random collision driven by turbulent eddies, and (3) bubble coalescence due to the acceleration of a bubble in the wake region of a preceding bubble. To demonstrate the enhancement of the code's capability using the IATE, experimental data for a i , void fraction, and bubble velocity measured by a multi-sensor conductivity probe are compared to both the IATE and flow regime based predictions. In total, 50 air-water vertical co-current upward and downward bubbly flow conditions in pipes with diameters ranging from 2.54 to 20.32 cm are evaluated. It is found that TRACE, using the conventional flow regime relation, always underestimates a i . Moreover, the axial trend of the a i prediction is always quasi-linear because a i in the

  11. UNDERWATER ANALYSIS OF IRRADIATED REACTOR SLUGS FOR Co-60 AND OTHER RADIONUCLIDES AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    CASELLA, VITO

    2004-01-01

    Co-60 was produced in the Savannah River Site (SRS) reactors in the 1970s, and the irradiated cobalt reactor slugs were stored in a reactor basin at SRS. Since the activity rates of these slugs were not accurately known, assaying was required. A sodium iodide gamma detector was placed above a specially designed air collimator assembly, so that the slug was eight to nine feet from the detector and was shielded by the basin water. Also, 18 curium sampler slugs, used to produce Cm-244 from Pu-239, were to be disposed of with the cobalt slugs. The curium slugs were also analyzed with a High Purity Germanium (HPGE) detector in an attempt to identify any additional radionuclides produced from the irradiation. Co-60 concentrations were determined for reactor disassembly basin cobalt slugs and the 18 curium sampler slugs. The total Co-60 activity of all of the assayed slugs in this work summed to 31,783 curies on 9/15/03. From the Co-60 concentrations of the curium sampler slugs, the irradiation flux was determined for the known irradiation time. The amounts of Pu-238,-239,-240,-241,-242; Am-241,-243; and Cm-242,-244 produced were then obtained based on the original amount of Pu-239 irradiated

  12. An evaluation of slug interference tests for aquifer characterization at the Hanford Site

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1992-01-01

    Slug interference tests are conducted by instantaneously changing the water level in a well and monitoring the aquifer response at one or more observation wells. The applicability of this method for hydraulic characterization of a high permeability unconfined aquifer at the Hanford Site was evaluated. Analytical techniques were used to predict slug interference responses over a range of aquifer hydraulic conditions and observation well distances. This was followed by a field test of the proposed technique. The results showed that slug interference testing can be used to characterize aquifers having transmissivities up to 10 -1 m 2 /s compared to a maximum transmissivity of about 10 -3 m 2 /s for single-well slug tests. The amplitude of the pressure response measured at the observation well is primarily determined by aquifer storativity, while the time-lag of the pressure peak is mainly controlled by the transmissivity. Several recommendations are made optimizing the results of slug interference tests in higher permeability, unconfined to semiconfined aquifers

  13. Development of two-phase Flow Model, 'SOBOIL', for Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum

    2000-03-01

    The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification.

  14. Two-phase wall friction model for the trace computer code

    International Nuclear Information System (INIS)

    Wang Weidong

    2005-01-01

    The wall drag model in the TRAC/RELAP5 Advanced Computational Engine computer code (TRACE) has certain known deficiencies. For example, in an annular flow regime, the code predicts an unphysical high liquid velocity compared to the experimental data. To address those deficiencies, a new wall frictional drag package has been developed and implemented in the TRACE code to model the wall drag for two-phase flow system code. The modeled flow regimes are (1) annular/mist, (2) bubbly/slug, and (3) bubbly/slug with wall nucleation. The new models use void fraction (instead of flow quality) as the correlating variable to minimize the calculation oscillation. In addition, the models allow for transitions between the three regimes. The annular/mist regime is subdivided into three separate regimes for pure annular flow, annular flow with entrainment, and film breakdown. For adiabatic two-phase bubbly/slug flows, the vapor phase primarily exists outside of the boundary layer, and the wall shear uses single-phase liquid velocity for friction calculation. The vapor phase wall friction drag is set to zero for bubbly/slug flows. For bubbly/slug flows with wall nucleation, the bubbles are presented within the hydrodynamic boundary layer, and the two-phase wall friction drag is significantly higher with a pronounced mass flux effect. An empirical correlation has been studied and applied to account for nucleate boiling. Verification and validation tests have been performed, and the test results showed a significant code improvement. (authors)

  15. OIL SLUGS FOR PRODUCTION OF PISTON RING

    Directory of Open Access Journals (Sweden)

    V. F. Bevza

    2008-01-01

    Full Text Available The developed technological process of continuously cyclic casting by frosting allows to receive high-quality hollow cylindrical slugs of cast iron for production of critical parts. 

  16. Real-time measurement of gas and liquid flow rates in two-phase slug flow by an advanced electromagnetic flowmeter and conductance probes

    International Nuclear Information System (INIS)

    Kim Jongrok; Ahn Yeh-Chan; Oh Byung Do; Kang Deok-Hong; Kim Moo Hwan

    2005-01-01

    Full text of publication follows: In order to measure the liquid mean velocity (cross-sectional average) in two-phase flow with an electromagnetic flowmeter, each flow pattern must be considered separately because of their different flow characteristics. Since bubbly flow can be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no additional measurement difficulties compared to single-phase flow. Cha et al. (2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas core is located at the center of the flow tube. Slug flow, however, is the most complicated, since the liquid axial velocity over a slug unit experiences considerable acceleration or deceleration. Therefore an electromagnetic flowmeter with high temporal resolution is needed. In slug flow, film velocity measurements are also difficult to perform because the liquid film is very thin and can be easily disturbed, thus altering the flow field. Only two experimental results for liquid film velocity measurement could be found. They were performed using photo-chromic dye method (DeJesus, 1997) and PIV technique (Polonsky et al., 1999). In this study, an advanced electromagnetic flow-metry was developed to measure liquid mean velocity with high transients. In addition, two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with three rings designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From the

  17. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  18. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  19. Influence of riser-induced slugs on the downstream separation processes

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2017-01-01

    In Oil & Gas installations the severe slug is an undesired flow regime due to the negative impact on the production rate and facility safety. This study will evaluate the severe riser-induced slugs’ influence to a typical separation process, consisting of a 3-phase gravity separator physically...... linked to a de-oiling hydrocyclone, based on experimental tests performed on a laboratory testing facility. Several scenarios are compared, while three PID controllers’ coefficients are kept constant for all the tests: The separator pressure, water level, and hydrocyclone pressure-drop-ratio (PDR......) controllers. Each respective scenario makes a comparison between uncontrolled, open-, and closed-loop anti-slug control configurations. It is concluded that both open- and closed-loop anti-slug control strategies improve the water level and PDR setpoint tracking equally well, but that the closed-loop strategy...

  20. A PLIC-VOF-Based Simulation of Water-Organic Slug Flow Characteristics in a T-Shaped Microchannel

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available A water-organic slug flow in a T-shaped microchannel was numerically studied due to its importance in the microreactor system. Various factors affecting the flow mode were studied, for example, channel width, fluid viscosity, interfacial tension, and inlet velocity. The volume of fluid (VOF method was used to track the liquid-liquid interface, and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF, model and the wall adhesion boundary condition was taken into consideration. The results show that strong vortexes appear in both phases at the meeting sites of main and lateral channels where an organic slug is producing. Inlet velocity influences the slug length and flow mode greatly. The ratio between the slug lengths of two phases in the main channel is almost equal to the ratio between their inlet velocities. If the slug is produced, the interfacial tension and organic viscosity have less effect on the slug length for 200 μm microchannel. The slug producing rate is much higher in a narrow channel than that in a wide channel.

  1. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoxing, E-mail: yanchaoxing0808@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Yan, Changqi, E-mail: Changqi_yan@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Shen, Yunhai [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041 (China); Sun, Licheng; Wang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)

    2014-07-01

    Highlights: • 46 void fraction correlations are evaluated on void fraction. • Evaluation of void fraction correlations on slug velocity is studied. • Effect of void fraction correlations on separated frictional pressure drop is studied. • Drift-flux type correlation shows best agreement with experimental data. • Evaluation is investigated in different flow regions. - Abstract: A visualized investigation was conducted on inclined upward air–water slug flow in a narrow rectangular duct with the cross section of 43 mm × 3.25 mm. The slug velocity and void fraction were obtained through image processing. 46 correlations for predicting void fraction, covering the types of slip ratio, Kβ, Lockhart and Martinelli, drift-flux and general were evaluated against the experimental data. In the experiment, four inclined conditions including 0°, 10°, 20° and 30° were investigated and the ranges of gas and liquid superficial velocity were 0.16–2.63 m/s and 0.12–3.59 m/s, respectively. The results indicate that the inclination has no significant influence on prediction error for a given correlation and the drift-flux type correlations are more competitive than the others in the prediction of slug velocity and void fraction. In addition, most of drift-flux type correlations are quite accurate in turbulent flow region, while they provide relative poor predictions in laminar flow region. As for the frictional pressure drop separated from the measured total pressure drop, the deviation arising from the calculation of the void fraction by different correlations is significant in laminar flow region, whereas is negligible in turbulent flow region.

  2. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Science.gov (United States)

    Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin

    2009-11-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.

  3. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  4. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    International Nuclear Information System (INIS)

    Muñoz-Cobo, José L.; Chiva, Sergio; Essa, Mohamed Ali Abd El Aziz; Mendes, Santos

    2012-01-01

    Highlights: ► We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. ► A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. ► We have investigated the influence of the turbulence induced by the bubbles on the results. ► Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air–water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, φ, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate ε transport equations were simultaneously solved using the k, epsilon model in a (r, z) grid by the finite volume method and the

  5. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Science.gov (United States)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  6. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline

    DEFF Research Database (Denmark)

    Yang, Yan; Li, Jingbo; Wang, Shuli

    2017-01-01

    condition on the liquid slug formation is discussed including pipe diameter, inclination angle, gas superficial velocity and liquid holdup. The results show that the pipe is blocked by the liquid slug at the moment of slug formed. The pipe pressure suddenly increases, and then decreases gradually...... in the process of liquid slug formation and motion. The pipe pressure drop and liquid holdup decrease along with the increasing inclination angle of ascending pipe. On the contrary, they rise with the increase of the inclination angle of descending pipe. Higher gas superficial velocity and liquid holdup result...

  7. Thevetia peruviana (Family: Apocynaceae in the control of slug and snail pests

    Directory of Open Access Journals (Sweden)

    A. Panigrahi

    1994-06-01

    Full Text Available An aqueous extract prepared from Kernels of the fruit of Thevetia peruviana (Pers. Schumann (Family : Apocynaceae was found under experimental conditions, to be toxic ti the slug Laevicaulis alte (Férussac and the snail Achatina fulica Bowdich, the important agrihorticultural pests of Indo-Pacific countries. Concentrations as low as 1% (w/v killed all the slugs exposed in less than 981.00 (± SD 22.76 min, and 2% of the extract killed 100% of the slugs L. alte and 50%, 50% and 30% of the snail A. fulica in between 92.34 (± SD 6.63 - 321.33 (± SD 4.14 and 271.20 (± SD 17.54 - 298.26 (± SD 16.69 min respectively. The most effective concentration of the extract was 20%; it killed 100% of exposed slugs and snails within a short time (40-50 and 90-1440 min respectively when the extract was exposed on the soil in experimental trays or when it was applied to potato slices offered as food to the gastropods.

  8. Slug to churn transition analysis using wire-mesh sensor

    Science.gov (United States)

    H. F. Velasco, P.; Ortiz-Vidal, L. E.; Rocha, D. M.; Rodriguez, O. M. H.

    2016-06-01

    A comparison between some theoretical slug to churn flow-pattern transition models and experimental data is performed. The flow-pattern database considers vertical upward air-water flow at standard temperature and pressure for 50 mm and 32 mm ID pipes. A briefly description of the models and its phenomenology is presented. In general, the performance of the transition models is poor. We found that new experimental studies describing objectively both stable and unstable slug flow-pattern are required. In this sense, the Wire Mesh Sensor (WMS) can assist to that aim. The potential of the WMS is outlined.

  9. miR-34 increases in vitro PANC-1 cell sensitivity to gemcitabine via targeting Slug/PUMA.

    Science.gov (United States)

    Zhang, Qing-An; Yang, Xu-Hai; Chen, Dong; Yan, Xiang; Jing, Fu-Chun; Liu, Hong-Qian; Zhang, Ronghua

    2018-01-01

    miR-34 was deregulated in tumor tissues compared with corresponding noncancerous tissue samples. Furthermore, miR-34 may contribute to cancer-stromal interaction associated with cancer progression. However, whether miR-34 could decrease chemoresistance of cancer cells to chemotherapeutic agent remains unclear. In our study, we examined whether overexpression of miR-34 could sensitize gemcitabine -mediated apoptosis in human pancreatic cancer PANC-1 cells. We found that miR-34 markedly induced gemcitabine -mediated apoptosis in PANC-1 cells. miR-34 induced down-regulation of Slug expression and upregulation of p53 up-regulated modulator of apoptosis (PUMA) expression. The over-expression of Slug or downregulation of PUMA by Slug cDNA or PUMA siRNA transfection markedly blocked miR-34-induced gemcitabine sensitization. Furthermore, miR-34 induced PUMA expression by downregulation of Slug. Taken together, our study demonstrates that miR-34 enhances sensitization against gemcitabine-mediated apoptosis through the down-regulation of Slug expression, and up-regulation of Slug-dependent PUMA expression.

  10. Internal Representation and Memory Formation of Odor Preference Based on Oscillatory Activities in a Terrestrial Slug

    Science.gov (United States)

    Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya

    2010-01-01

    The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…

  11. Soliton wave model for simulating the slug formation in vertical-to-horizontal partially blocked pipes

    International Nuclear Information System (INIS)

    Nihan Onder; Alberto Teyssedou; Danila Roubtsov

    2005-01-01

    Full text of publication follows: In CANDU reactors the fuel channels are connected to inlet and outlet headers by feeder-pipes that consist of vertical and horizontal legs. In some feeders, orifices are installed for flow adjustment. During a postulated Loss of Coolant Accidents, the emergency cooling water injected into the inlet and outlet headers enters the fuel channels through the feeder pipes. Steam produced in the feeders and in the fuel channels may flow in the direction opposite to that of the water, thereby creating vertical to horizontal Counter-Current Flow (CCF). The rate at which the cooling water enters the fuel channel may be substantially limited by the flooding phenomena that entrains the water in the same direction as the steam flow. Steam flowing in the direction opposite to the cooling water can bring about the formation of slug flow. Long slugs of liquid moving at relatively high speed are transported back towards the headers by the steam. This phenomenon substantially reduces the amount of cooling water that can reach the reactor core. We conducted CCF experiments using a vertical-to-horizontal test section connected by 90 deg. elbows, with an orifice installed in the horizontal leg. Four different orifices were used to carry out the experiments. We have observed that soliton-type waves generated close to the elbow propagate in the horizontal leg towards the orifice, where a partial reflection takes place. Without an orifice, the soliton waves are reflected from the second elbow. The reflected waves move in the opposite direction to that of the incident wave. Since soliton-type waves are periodically generated, the incident and reflected waves interfere at some place in the horizontal leg. If the amplitude of the interference wave is high enough, the bridging of the tubes occur, which generates the slugs. During the experiments the water and air flow rates, pressures and void fraction distributions were measured. The slug propagation

  12. Gas6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yunhee [Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Lee, Mira [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Semi, E-mail: semikim@kribb.re.kr [Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the molecular mechanisms underlying Gas6-mediated cancer cell migration. •Gas6 treatment and subsequent Axl activation induce cell migration and EMT via upregulation of Slug. •Slug expression mediated by Gas6 is mainly through c-Jun and ATF-2 in an ERK1/2 and JNK-dependent manner. •The Gas6/Axl-Slug axis may be exploited as a target for anti-cancer metastasis therapy. -- Abstract: Binding of Gas6 to Axl (Gas6/Axl axis) alters cellular functions, including migration, invasion, proliferation, and survival. However, the molecular mechanisms underlying Gas6-mediated cell migration remain poorly understood. In this study, we found that Gas6 induced the activation of JNK and ERK1/2 signaling in cancer cells expressing Axl, resulting in the phosphorylation of activator protein-1 (AP-1) transcription factors c-Jun and ATF-2, and induction of Slug. Depletion of c-Jun or ATF-2 by siRNA attenuated the Gas6-induced expression of Slug. Slug expression was required for cell migration and E-cadherin reduction/vimentin induction induced by Gas6. These results suggest that Gas6 induced cell migration via Slug upregulation in JNK- and ERK1/2-dependent mechanisms. These data provide an important insight into the molecular mechanisms mediating Gas6-induced cell migration.

  13. Review of Slug Detection, Modeling and Control Techniques for Offshore Oil & Gas Production Processes

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2015-01-01

    The current offshore oil & gas multi-phase production and transportation installations have big challenges related with the slugging flow: An unstable multi-phase flow regime where the flow rates, pressures and temperatures oscillate in the considered processes. Slug can be caused by different...... operating conditions and installation structures. The most severe slugs are often induced in long vertical risers or production wells, where liquid blocks gas at the riser/well base and correspondingly it causes the pressure to accumulate and hence originates the oscillating performance. There are many...... of these methods can simultaneously reduce the oil & gas production, which is a very big concern as the production rate is the key evaluation parameter for offshore production. We conclude that the slugging flow is a well-defined phenomenon, even though this subject has been extensively investigated in the past...

  14. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  15. A conservative fully implicit algorithm for predicting slug flows

    Science.gov (United States)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  16. Heat transfer to air-water two-phase flow in slug/churn region

    International Nuclear Information System (INIS)

    Wadekar, V.V.; Tuzla, K.; Chen, J.C.

    1996-01-01

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data

  17. Slug silencing inhibited perineural invasion through regulation of EMMPRIN expression in human salivary adenoid cystic carcinoma.

    Science.gov (United States)

    Wu, Baolei; Wei, Jianhua; Hu, Zhiqiang; Shan, Chun; Wang, Lei; Zhang, Chenping; Yang, Xi; Yang, Xinjie; Lei, Delin

    2016-02-01

    Salivary adenoid cystic carcinoma (SACC) is the most frequent salivary gland malignancy with a unique characteristic that has been named perineural invasion (PNI). EMMPRIN is a transmembrane glycoprotein that has been demonstrated to promote PNI in SACC. Slug, one of the most effective promoters of the epithelial-to-mesenchymal transition (EMT), has been found to be associated with PNI in SACC. The aim of the present study was to investigate the roles and relationships of Slug, EMMPRIN, and E-cadherin in the PNI process of SACC. The expression levels of Slug, EMMPRIN, and E-cadherin in 115 primary SACC cases were statistically analyzed by immunohistochemistry. Simultaneously, the SACC cell line SACC-83 was transfected with recombinant plasmids of silencing Slug (si-Slug) and/or silencing EMMPRIN (si-EMMPRIN). The functions of Slug and EMMPRIN in the EMT and PNI process were assessed by reverse transcription PCR (RT-PCR), western blotting, morphological observation, scratch test, migration assay, and in vitro perineural invasion assay. The immunohistochemical statistics revealed that the high expression of Slug and EMMPRIN and the low expression of E-cadherin were significantly associated with the PNI of SACC (P EMMPRIN expression (P EMMPRIN expression were both significantly negatively associated with E-cadherin expression (P EMMPRIN silencing both significantly inhibited EMMPRIN expression but promoted E-cadherin expression in SACC-83 cells (P EMMPRIN, or both induced cell morphology changes and inhibited tumor cell motility and PNI ability in SACC-83 cells (P EMMPRIN and then upregulating E-cadherin in the PNI process of SACC. The present study indicated that Slug and EMMPRIN are potential biomarkers and therapeutic targets for the diagnosis and treatment of PNI in human SACC.

  18. Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges

    Science.gov (United States)

    Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng

    2018-06-01

    In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.

  19. A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

    Science.gov (United States)

    Sornette, D.; Andersen, J. V.

    Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.

  20. Long liquid slugs in stratified gas/liquid flow in horizontal and slightly inclined pipes

    NARCIS (Netherlands)

    Kadri, U.

    2009-01-01

    Long liquid slugs reaching several hundreds pipe diameter may appear when transporting gas and liquid in horizontal and near horizontal pipes. The long slugs cause system vibration and separation difficulties that may lead to operational failures. Identifying and predicting the time and length

  1. Computational investigations of the mixing performance inside liquid slugs generated by a microfluidic T-junction.

    Science.gov (United States)

    Li, Yuehao; Reddy, Rupesh K; Kumar, Challa S S R; Nandakumar, Krishnaswamy

    2014-09-01

    Droplet-based microfluidics has gained extensive research interest as it overcomes several challenges confronted by conventional single-phase microfluidics. The mixing performance inside droplets/slugs is critical in many applications such as advanced material syntheses and in situ kinetic measurements. In order to understand the effects of operating conditions on the mixing performance inside liquid slugs generated by a microfluidic T-junction, we have adopted the volume of fluid method coupled with the species transport model to study and quantify the mixing efficiencies inside slugs. Our simulation results demonstrate that an efficient mixing process is achieved by the intimate collaboration of the twirling effect and the recirculating flow. Only if the reagents are distributed transversely by the twirling effect, the recirculating flow can bring in convection mechanism thus facilitating mixing. By comparing the mixing performance inside slugs at various operating conditions, we find that slug size plays the key role in influencing the mixing performance as it determines the amount of fluid to be distributed by the twirling effect. For the cases where short slugs are generated, the mixing process is governed by the fast convection mechanism because the twirling effect can distribute the fluid to the flow path of the recirculating flow effectively. For cases with long slugs, the mixing process is dominated by the slow diffusion mechanism since the twirling effect is insufficient to distribute the large amount of fluid. In addition, our results show that increasing the operating velocity has limited effects on improving the mixing performance. This study provides the insight of the mixing process and may benefit the design and operations of droplet-based microfluidics.

  2. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    Science.gov (United States)

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.

  3. Experimental investigation and CFD validation of Horizontal Air/Water slug flow

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas

    2007-01-01

    For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)

  4. MULTIPHASE DROPLET/SLUG BREAK-UP MECHANISM IN MICROFLUIDIC T-JUNCTIONS AT VARIOUS WEBER NUMBERS

    Directory of Open Access Journals (Sweden)

    Wan Leng (Dawn Leow

    2011-10-01

    Full Text Available Normal 0 false false false EN-MY X-NONE X-NONE The formation of immiscible liquid droplets, or slugs, in microchannels features the advantages of volume control and mixing enhancement over single-phase microflows. Although the applications of droplet-based microfluidics have been widely demonstrated, the fundamental physics governing droplet break-up remains an area of active research. This study defines an effective Weber (Weeff number that characterizes the interplay of interfacial tension, shear stress and channel pressure drop in driving slug formation in T-junction microchannel for a relative range of low, intermediate and high flow rates. The immiscible fluid system in this study consists of Tetradecane slug formation in Acetonitrile. The progressive deformation of slug interfaces during break-up events is observed. Experimental results indicate that, at a relatively low Weeff, clean slug break-up occurs at the intersection of the side and main channels. At intermediate Weeff, the connecting neck of the dispersed phase is stretched to a short and thin trail of laminar flow prior to breaking up a short distance downstream of the T-junction. At a relatively high Weeff, the connecting neck develops into a longer and thicker trail of laminar flow that breaks up further downstream of the main channel.

  5. Dynamics of shock wave propagation and interphase process in liquid-vapor medium

    Energy Technology Data Exchange (ETDEWEB)

    Pokusaev, B.G. [Moscow State Academy of Chemical Mechanical Engineering (Russian Federation); Pribaturin, N.A. [Institute of Thermophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    1995-09-01

    This paper considers the experimental results and physical effects on the pressure wave dynamics of a vapour-liquid two-phase medium of bubble and slug structure. The role of destruction and collapse of bubbles and slugs, phase transition (condensation and evaporation) on pressure wave dynamics is also studied. The general mechanisms of the wave formation, behavior and instability of a vapour-liquid structure under pressure waves, basic peculiarities of the interface heat transfer are obtained. In the experiments it has been shown that for the bubble medium the shock wave can be transformed into the powerful pressure pulse with an amplitude greater then the amplitude of the initial pressure wave. For the slug medium a characteristic structure of the amplificated wave is {open_quotes}comb{close_quotes} - like wave. It has been shown that the wave amplification caused by generation of secondary waves in a medium caused by destruction and collapse of bubbles and slugs. The obtained results can be useful at transient and emergency operational regimes of nuclear reactors, fuel tank, pipelines with two-phase flows and for development of safety models for chemical industry.

  6. A semi-analytical solution for slug tests in an unconfined aquifer considering unsaturated flow

    Science.gov (United States)

    Sun, Hongbing

    2016-01-01

    A semi-analytical solution considering the vertical unsaturated flow is developed for groundwater flow in response to a slug test in an unconfined aquifer in Laplace space. The new solution incorporates the effects of partial penetrating, anisotropy, vertical unsaturated flow, and a moving water table boundary. Compared to the Kansas Geological Survey (KGS) model, the new solution can significantly improve the fittings of the modeled to the measured hydraulic heads at the late stage of slug tests in an unconfined aquifer, particularly when the slug well has a partially submerged screen and moisture drainage above the water table is significant. The radial hydraulic conductivities estimated with the new solution are comparable to those from the KGS, Bouwer and Rice, and Hvorslev methods. In addition, the new solution also can be used to examine the vertical conductivity, specific storage, specific yield, and the moisture retention parameters in an unconfined aquifer based on slug test data.

  7. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  8. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  9. Combination of rapamycin, CI-1040, and 17-AAG inhibits metastatic capacity of prostate cancer via Slug inhibition.

    Directory of Open Access Journals (Sweden)

    Guanxiong Ding

    Full Text Available Though prostate cancer (PCa has slow progression, the hormone refractory (HRCP and metastatic entities are substantially lethal and lack effective treatments. Transcription factor Slug is critical in regulating metastases of various tumors including PCa. Here we studied targeted therapy against Slug using combination of 3 drugs targeting 3 pathways respectively converging via Slug and further regulating PCa metastasis. Using in vitro assays we confirmed that Slug up-regulation incurred inhibition of E-cadherin that was anti-metastatic, and inhibited Bim-regulated cell apoptosis in PCa. Upstream PTEN/Akt, mTOR, Erk, and AR/Hsp90 pathways were responsible for Slug up-regulation and each of these could be targeted by rapamycin, CI-1040, and 17-AAG respectively. In 4 PCa cell lines with different traits in terms of PTEN loss and androgen sensitivity we tested the efficacy of mono- and combined therapy with the drugs. We found that metastatic capacity of the cells was maximally inhibited only when all 3 drugs were combined, due to the crosstalk between the pathways. 17-AAG decreases Slug expression via blockade of HSP90-dependent AR stability. Combination of rapamycin and CI-1040 diminishes invasiveness more potently in PCa cells that are androgen insensitive and with PTEN loss. Slug inhibited Bim-mediated apoptosis that could be rescued by mTOR/Erk/HSP90 inhibitors. Using mouse models for circulating PCa DNA quantification, we found that combination of mTOR/Erk/HSP90 inhibitors reduced circulating PCa cells in vivo significantly more potently than combination of 2 or monotherapy. Conclusively, combination of mTOR/Erk/Hsp90 inhibits metastatic capacity of prostate cancer via Slug inhibition.

  10. An investigation for design and operational procedures to avoid water hammer in NPP piping systems

    International Nuclear Information System (INIS)

    Kim, Jin Weon

    1993-02-01

    To predict waterhammer initiation due to water slug formation in the horizontal section of piping system and to calculate its impact pressure by using the results of waterhammer initiation model, waterhammer initiation model and impact pressure calculation model have been developed. In the impact pressure calculation model, the effects of water layer depth at which water slug formation and water temperature variation with time and space have been included to calculate a more realistic impact pressure. Prediction of waterhammer initiation is compared with experimental data for the various 'L' shaped pipes. The results show that the present waterhammer initiation model well predicts the waterhammer initiation boundary for inverted vertical 'L' shaped pipe filled through the horizontal pipe. Impact pressure calculated by present model also gives good agreement with the range of impact pressure of steam bubble collapse experiment. Impact pressure is calculated at the waterhammer initiation boundary by using the conditions obtained from waterhammer initiation model. From this result, it is seen that low inlet subcooling results in not only low frequency of waterhammer but also minor impact pressure if it does occur

  11. Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system - Performance and diastereoselectivity studies

    NARCIS (Netherlands)

    Čech, J.; Hessel, V.; Přibyl, M.

    2017-01-01

    We study synthesis of . L-phenylserine catalyzed by the enzyme . L-threonine aldolase in a slug-flow microfluidic system. Slug-flow arrangement allows for the continuous refilling of sparingly soluble substrate (benzaldehyde) into an aqueous reaction mixture. We identified suitable composition of an

  12. Model for melt blockage (slug) relocation and physico-chemical interactions during core degradation under severe accident conditions

    International Nuclear Information System (INIS)

    Veshchunov, M.S.; Shestak, V.E.

    2008-01-01

    The model describing massive melt blockage (slug) relocation and physico-chemical interactions with steam and surrounding fuel rods of a bundle is developed on the base of the observations in the CORA tests. Mass exchange owing to slug oxidation and fuel rods dissolution is described by the previously developed 2D model for the molten pool oxidation. Heat fluxes in oxidising melt along with the oxidation heat effect at the melt relocation front are counterbalanced by the heat losses in the surrounding media and the fusion heat effect of the Zr claddings attacked by the melt. As a result, the slug relocation velocity is calculated from the heat flux matches at the melt propagation front (Stefan problem). A numerical module simulating the slug behaviour is developed by tight coupling of the heat and mass exchange modules. The new model demonstrates a reasonable capability to simulate the main features of the massive slug behaviour observed in the CORA-W1 test

  13. Recreating Riser Slugging Flow Based on an Economic Lab-sized Setup

    DEFF Research Database (Denmark)

    Hansen, Lasse; Pedersen, Simon; Yang, Zhenyu

    2013-01-01

    As a kind of periodic phenomenon, the slugging flow in the offshore oil & gas production addresses a lot of attentions, due to its limitation of production rate, periodic overload processing facilities, and even direct cause of emergent shutdown. This work studies the emulation of the riser...... slugging flow in the offshore oil & gas production, by constructing an economical lab-sized setup in the university campus. Firstly, the construction and used components for the lab setup are illustrated; then, the constructed setup is validated by checking the consistency with some existing typical riser...

  14. Bubbles

    DEFF Research Database (Denmark)

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  15. An analytic data analysis method for oscillatory slug tests.

    Science.gov (United States)

    Chen, Chia-Shyun

    2006-01-01

    An analytical data analysis method is developed for slug tests in partially penetrating wells in confined or unconfined aquifers of high hydraulic conductivity. As adapted from the van der Kamp method, the determination of the hydraulic conductivity is based on the occurrence times and the displacements of the extreme points measured from the oscillatory data and their theoretical counterparts available in the literature. This method is applied to two sets of slug test response data presented by Butler et al.: one set shows slow damping with seven discernable extremities, and the other shows rapid damping with three extreme points. The estimates of the hydraulic conductivity obtained by the analytic method are in good agreement with those determined by an available curve-matching technique.

  16. Evaluation of the effects of the radial constant-head boundary in slug tests

    Science.gov (United States)

    Dai, Yunfeng; Zhou, Zhifang; Zhao, Yanrong; Cui, Ziteng

    2015-03-01

    A semianalytical model of slug tests, conducted in a completely penetrating well within a radial constant-head boundary, was derived. The model, based on the Cooper et al. (1967) model, estimates the hydraulic conductivity and storage coefficient through the matching of type curves. Type curves of the semianalytical solution were plotted, and the effect of the distance of the radial constant-head boundary is discussed. For different storage coefficients, the critical distances of the effect of the constant-head boundary were determined. The effect of the storage coefficient on the response of the water head in slug tests with a radial constant-head boundary of a certain distance is also shown. To verify the model, laboratory slug-test experiments were carried out using a cylindrical test platform, in which an artificial confined coarse-sand aquifer was built. Pumping tests were also executed using the test platform. The Cooper et al. (1967) model and new semianalytical model were used to analyze measurements; the hydraulic conductivity and storage coefficient determined using the two methods were compared to demonstrate the importance of the radial constant-head boundary. A model considering the inertial effect was also used to analyze the slug-test measurements, and although the water head response did not oscillate greatly, the inertial effect affected the slug-test calculation result. The laboratory experiments indicate that the proposed semianalytical model is reasonable and reliable. Cooper HH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water, Water Resour Res 3(1):263-269.

  17. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  18. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  19. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  20. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion

    Science.gov (United States)

    Dang, Tuyen T.; Westcott, Jill M.; Maine, Erin A.; Kanchwala, Mohammed; Xing, Chao; Pearson, Gray W.

    2016-01-01

    Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome. PMID:27081041

  1. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  2. Off-take and slug transition at T-junction of vertical-up branch in the horizontal pipe

    International Nuclear Information System (INIS)

    Moon, Young Min; No, Hee Cheon

    2003-01-01

    The off-take and the slug transition on air-water interface are experimentally investigated at the T-junction of the horizontal pipe with a vertical upward branch to simulate the loss-of-residual-heat-removal during a mid-loop operation in the Korea standard nuclear power plant. Scaling analysis is performed to scale down the experimental facility to the reference nuclear power plant. Two different diameters of branch pipes are used to verify the scaling laws and their scale effects. Air is used as working gaseous fluid and no water flow exists. Off-take behavior on horizontal stratified and slug flows is visually observed in the horizontal pipe. The experimental data are divided into three categories; onset of liquid entrainment at T-junctions, onset of slug transition in the horizontal pipe, and discharge quality in the branch pipe. It is found out that the scale effect of the branch diameter on the onset of liquid entrainment is small and the existing correlations for it are applicable. Also, the onset of slug transition shows a discrepancy with Taitel-Dukler's correlation and has a strong influence on the discharge quality. New correlations for discharge quality are developed considering the critical dependency of the onset of slugging. (author)

  3. INTERRELATION OF RHOMBICITY AND OCCURRENCE OF INTERNAL CRACKS AT CONTINUOUS CASTING OF SORTED SLUG

    Directory of Open Access Journals (Sweden)

    Ju. A. Samojlovich

    2008-01-01

    Full Text Available Analysis of deformations and stresses in cross section of sorted uninterruptedly-casted slugs at their solidification and cooling within limits of crystallizer with the aim of determination of possibilities for occurrence of internal cracks of diagonal type is carried out on basis of mathematical modeling, the peculiarities of the slug skin cooling at its shrinkage and separation from crystallizer wall are revealed.

  4. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  5. The mucosal toxicity of different benzalkonium chloride analogues evaluated with an alternative test using slugs.

    Science.gov (United States)

    Adriaens, E; Dierckens, K; Bauters, T G; Nelis, H J; van Goethem, F; Vanparys, P; Remon, J P

    2001-07-01

    The objective of this study was to evaluate the mucosal toxicity of different benzalkonium chloride (BAC) analogues using slugs as the alternative test organism. The effect of different BAC analogues on the mucosal tissue of slugs was determined from the protein, lactate dehydrogenase, and alkaline phosphatase released from the foot mucosa after treatment. Additionally, mucus production and reduction in body weight of the slugs were measured. The eye irritation potency of the molecules was evaluated with the Bovine Corneal Opacity and Permeability (BCOP) assay. The antimicrobial activity of the different BAC analogues was also assessed. All BAC analogues induced severe damage to the mucosal epithelium of the slugs, and the irritation increased with decreasing alkyl chain length: BAC-C16 or = BAC-C16 > BAC-C12. The BAC-C14 exhibited higher activity than the BAC-mix. The toxicity and activity of BAC analogues depend on the alkyl chain length. The use of BAC-C14 as a conservative agent in pharmaceutical preparations instead of the BAC-mix should be considered.

  6. Slug flow model for infiltration into fractured porous media

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1999-01-01

    A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug being an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximately by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed

  7. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  8. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  9. Flow near the meniscus of a pressure-driven water slug in microchannels

    International Nuclear Information System (INIS)

    Kim, Sung Wook; Jin, Song Wan; Yoo, Jung Yul

    2006-01-01

    Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion

  10. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  11. Severe slugging in gas-liquid two-phase pipe flow

    NARCIS (Netherlands)

    Malekzadeh, R.

    2012-01-01

    transportation facilities. In an offshore oil and gas production facility, pipeline-riser systems are required to transport two-phase hydrocarbons from subsurface oil and gas wells to a central production platform. Severe slugs reaching several thousands pipe diameters may occur when transporting

  12. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  13. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  14. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  15. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  16. Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor

    Directory of Open Access Journals (Sweden)

    Ying-Na Wang

    2015-10-01

    Full Text Available AIM:To investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs undergoing epithelial-mesenchymal transition (EMT induced by connective tissue growth factor (CTGF.METHODS: HLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL or without CTGF (control for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (α-SMA were further determined by Western blot analysis. RESULTS: HLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64±0.11, 1.96 ±0.03, 3.12 ±0.10, and 4.08±0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, PCONCLUSION: Transcription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro.

  17. Analysis of slug tests in formations of high hydraulic conductivity.

    Science.gov (United States)

    Butler, James J; Garnett, Elizabeth J; Healey, John M

    2003-01-01

    A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.

  18. Ultraviolet Radiation and the Slug Transcription Factor Induce Pro inflammatory and Immunomodulatory Mediator Expression in Melanocytes

    International Nuclear Information System (INIS)

    Shirley, S. H.; Kusewitt, D. F.; Grimm, E. A.

    2012-01-01

    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete pro inflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce pro inflammatory mediators and that Slug is important in this process. Micro array studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of pro inflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  19. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  20. A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Hinsby, Klaus; Bjerg, Poul Løgstrup; Andersen, Lars J.

    1992-01-01

    distributed measurements of a local hydraulic conductivity at a tracer test site at Vejen, Denmark. The mini slug test results calculated by a modified Dax slug test analysing method, applying the elastic storativity in the Dax equations instead of the specific yield, are in good accordance with the results...

  1. Correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue

    Directory of Open Access Journals (Sweden)

    Shan-Ming Lu

    2017-10-01

    Full Text Available Objective: To study the correlation of Slug gene expression with lymph node metastasis and invasion molecule expression in oral squamous cell carcinoma tissue. Methods: Oral squamous cell carcinoma tissue surgical removed in Affiliated Stomatological Hospital of Nanjing Medical University between March 2015 and April 2017 was selected and divided into the oral squamous cell carcinoma tissue with neck lymph node metastasis and the oral squamous cell carcinoma tissues without lymph node metastasis according to the condition of lymph node metastasis. The expression of Slug, epithelial-mesenchymal transition molecules and invasion molecules in the oral squamous cell carcinoma tissue were detected. Results: Slug, N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with neck lymph node metastasis were significantly higher than those in oral squamous cell carcinoma tissue without lymph node metastasis while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue without lymph node metastasis; N-cadherin, Vimentin, CD147, OPN, GRP78, SDF-1 and CXCR4 protein expression in oral squamous cell carcinoma tissue with high Slug expression were significantly higher than those in oral squamous cell carcinoma tissue with low Slug expression while E-cadherin, P120ctn and ZO-1 protein expression were significantly lower than those in oral squamous cell carcinoma tissue with low Slug expression. Conclusion: The highly expressed Slug in oral squamous cell carcinoma tissue can promote the epithelial-mesenchymal transition and invasion of the cells to participate in the lymph node metastasis of tumor cells.

  2. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  3. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  4. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  5. Flow regime mapping of vertical two-phase downflow in a ribbed annulus

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1992-01-01

    Two-phase flow regimes have been mapped for vertical, cocurrent downflow in a narrow annulus which is partially segmented by the presence of longitudinal ribs. This geometry and flow condition has application to the analysis of a Large-Break Loss of Coolant Accident (LB-LOCA) in the production K-Reactor at the Savannah River Site (SRS). The ribbed annular geometry, particularly the presence of non-sealing ribs, gives rise to some unique phenomenological features. The flow behavior is influenced by the partial segmentation of the annulus into four quadrants or subchannels. A random element is induced by the natural bowing of the slender tubes; the width of the azimuthal flow path between two subchannels at a given axial location is indeterminate, and can take on any value between zero and the maximum clearance of 7.6 x l0 -4 m. When the rib gap is zero at a given location, it is at a maximum 180P away at the same axial location. The range of rib gaps is spanned in a single test section, as it would be also in a reactor assembly. As a result of these effects, flow regime maps obtained by other researchers for downflow in annuli are not accurate for defining flow regimes in a ribbed annulus. Flow regime transitions similar to those noted by, e.g., Bamea, were observed; the locations of these transitions were displaced with respect to the transition equations derived by Bamea. Experimental bubble rise velocity measurements were also obtained in the same test section. The bubble rise velocities were much higher than expected from the theory developed for slug bubbles in tubes, unribbed annuli, and rectangular channels. An elliptical-cap bubble rises faster than a slug bubble of the same area. Large, slug-shaped bubbles injected into the test section were observed to reduce in size as they rose, due to interaction with a longitudinal rib. They thereby adopted a shape more like an elliptical-cap bubble, hence rising faster than the original slug bubble

  6. A model established of a 'Embryo' bubble growing-up some visible bubble in bubble chamber and its primary theory calculation

    International Nuclear Information System (INIS)

    Ye Zipiao; Sheng Xiangdong

    2006-01-01

    A model of a 'embryo' bubble growing up a visible bubble in the bubble chamber is established. Through primary theory calculation it is shown that the 'embryo' bubble is not only absorbing quantity of heat, but also some molecules get into the 'embryo' bubble from its environment. It is explained reasonably that the radius of bubbles in bubble camber is different for the same energies of neutrons and proton. The track of neutron in bubble camber is long and thin, and the track of proton in bubble camber is wide and short. It is explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. It is also explained reasonably that there are a little different radius of the bubbles of a track at the some region. It can be predicted theoretically that there should be big bubbles to burst when incident particles enter the bubble chamber at first. The sensitivity and the detective efficiency of bubble camber can be enhanced by choosing appropriate work matter. (authors)

  7. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  8. Kleptoplasts photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis.

    Science.gov (United States)

    Cartaxana, Paulo; Morelli, Luca; Quintaneiro, Carla; Calado, Gonçalo; Calado, Ricardo; Cruz, Sónia

    2018-04-30

    Some sacoglossan sea slugs incorporate intracellular functional algal chloroplasts (kleptoplasty) for periods ranging from a few days to several months. Whether this association modulates the photobehaviour of solar-powered sea slugs is unknown. In this study, the long-term retention species Elysia viridis showed avoidance of dark independently of light acclimation state. On the contrary, Placida dendritica , which shows non-functional retention of kleptoplasts, showed no preference over dark, low or high light. High light acclimated (HL ac ) E. viridis showed a higher preference for high light than low light acclimated (LL ac ) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with increasing light levels leading to a closure of parapodia and protection of kleptoplasts from high light exposure. Furthermore, closure of parapodia occurred at higher irradiances in HL ac E. viridis Our results strongly indicate that kleptoplasts photoacclimation state modulates the photobehaviour of the solar-powered sea slug E. viridis . © 2018. Published by The Company of Biologists Ltd.

  9. Control of slug damage to oilseed rape and wheat with imidacloprid seed dressings in laboratory and field experiments

    NARCIS (Netherlands)

    Simms, L.C.; Ester, A.; Wilson, M.J.

    2006-01-01

    Slugs are common pests of oilseed and cereal crops in Europe and are currently controlled using bait pellets that often fail to give adequate protection: Here we investigate the potential of the broad-spectrum insecticide imidacloprid, previously suggested to have activity against slugs, to control

  10. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Science.gov (United States)

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  11. Individual based model of slug population and spatial dynamics

    NARCIS (Netherlands)

    Choi, Y.H.; Bohan, D.A.; Potting, R.P.J.; Semenov, M.A.; Glen, D.M.

    2006-01-01

    The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field

  12. Inverter for Interchangeable Use as Current Source Inverter and Voltage Source Inverter for Interconnecting to Grid

    Science.gov (United States)

    Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji

    We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.

  13. Fama on Bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  14. Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast

    International Nuclear Information System (INIS)

    Prasad, Chandra P; Rath, Gayatri; Mathur, Sandeep; Bhatnagar, Dinesh; Parshad, Rajinder; Ralhan, Ranju

    2009-01-01

    Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast. In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast. Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression. The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells

  15. Expression analysis of E-cadherin, Slug and GSK3β in invasive ductal carcinoma of breast

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Chandra P [Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi (India); Department of Biochemistry, All India Institute of Medical Sciences, New Delhi (India); Rath, Gayatri [Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi (India); Mathur, Sandeep [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Bhatnagar, Dinesh [Department of Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Dehi (India); Parshad, Rajinder [Department of Surgery, All India Institute of Medical Sciences, New Delhi -110029 (India); Ralhan, Ranju [Department of Biochemistry, All India Institute of Medical Sciences, New Delhi (India); Sonshine Family Centre for Head & Neck Disease, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Room 6-500, Toronto, Ontario M5G 1X5 (Canada); Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, M5G 2N2 (Canada)

    2009-09-14

    Cancer progression is linked to a partially dedifferentiated epithelial cell phenotype. The signaling pathways Wnt, Hedgehog, TGF-β and Notch have been implicated in experimental and developmental epithelial mesenchymal transition (EMT). Recent findings from our laboratory confirm that active Wnt/β-catenin signaling is critically involved in invasive ductal carcinomas (IDCs) of breast. In the current study, we analyzed the expression patterns and relationships between the key Wnt/β-catenin signaling components- E-cadherin, Slug and GSK3β in IDCs of breast. Of the 98 IDCs analyzed, 53 (54%) showed loss/or reduced membranous staining of E-cadherin in tumor cells. Nuclear accumulation of Slug was observed in 33 (34%) IDCs examined. Loss or reduced level of cytoplasmic GSK3β expression was observed in 52/98 (53%) cases; while 34/98 (35%) tumors showed nuclear accumulation of GSK3β. Statistical analysis revealed associations of nuclear Slug expression with loss of membranous E-cadherin (p = 0.001); nuclear β-catenin (p = 0.001), and cytoplasmic β-catenin (p = 0.005), suggesting Slug mediated E-cadherin suppression via the activation of Wnt/β-catenin signaling pathway in IDCs. Our study also demonstrated significant correlation between GSK3β nuclear localization and tumor grade (p = 0.02), suggesting its association with tumor progression. The present study for the first time provided the clinical evidence in support of Wnt/β-catenin signaling upregulation in IDCs and key components of this pathway - E-cadherin, Slug and GSK3β with β-catenin in implementing EMT in these cells.

  16. Interaction of a bubble and a bubble cluster in an ultrasonic field

    International Nuclear Information System (INIS)

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  18. A modified two-fluid model for the application of two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun, X.; Ishii, M.; Kelly, J.

    2003-01-01

    This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  19. The analysis of fuel constituent redistribution for ternary metallic fuel slug

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Oon; Lee, Dong Uk; Kim, Young Kyun; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2004-02-01

    U-TRU-Zr metallic alloy is being considered as the fuel slug for the proliferation resistance core of KALIMER. The radial fuel constituent migration is a general phenomenon in the metallic alloys. This phenomenon may affect the in-reactor performance of metallic fuel rods, influencing such factors as melting temperature, thermal conductivity, power generation rate, phase boundaries and eutectic melting of the fuel slug. Thus, constituent redistribution modeling is essential when developing a metallic fuel performance code. The constituent migration model adopted in this report was based on the Ishida's model and Hofman's theory. A subroutine program has been made and installed into the MACSIS code to simulate constituent redistribution. The radial profile of Zr redistribution was calculated for the ternary metallic fuel, and compared with the measured data.

  20. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  1. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  2. An analytical study of slug impact phenomena

    International Nuclear Information System (INIS)

    Smith, B.L.

    1983-05-01

    Following a HCDA the roof of a fast reactor may be threatened by coolant impact. This article aims to develop at a fundamental level, understanding of the impact process and assess the relevance and magnitude of fluid-structure interaction effects. Reference is made to four 1/30th scale experiments, set up to verify the ideas developed in this work, and to provide quality data for code validation purposes. The impact of a one-dimensional liquid slug on a solid slab is investigated using a simplified form of the Rankine-Hugoniot shock equations derived under the joint assumptions of slight compressibility and small Mach number. Initially the roof slab is considered to be freely supported and of finite thickness. A detailed picture of the shock and expansion wave propagations is built up from the basic equations including the effects of wave reflections at boundaries and wave-wave interactions. Particular attention is paid to the impulse transfer mechanism from the slug as this controls the roof slab acceleration. Bulk fluid cavitation effects are noted. Roof flexural response is then taken into account, together with the effects of the hold-down constraints. It is seen that even very minor structural responses can result in significant mitigation of the impulse loading. Guidelines for the application of the work to HCDA analysis in pool reactor geometries are presented. (Auth.)

  3. Y-source inverter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang

    2014-01-01

    This paper introduces a new 3-phase Y-source inverter whose gain is presently not matched by classical impedance-network-based inverters operating at the same duty ratio. The proposed network uses a tightly coupled transformer with three windings. By squeezing the shoot-through range while keeping...... higher boost, the inverter can operate at a higher modulation index, thereby minimizing switching device stress and providing better output power quality. In addition, the inverter has more degrees of freedom for setting the voltage gain and modulation index than other classical impedance-source networks...

  4. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Nils Böhringer

    2017-06-01

    Full Text Available Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.

  5. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    Science.gov (United States)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  6. Modeling strategy of the source and sink terms in the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun Xiaodong; Kim, Seungjin

    2003-01-01

    This paper presents the general strategy for modeling the source and sink terms in the two-group interfacial area transport equation. The two-group transport equation is applicable in bubbly, cap bubbly, slug, and churn-turbulent flow regimes to predict the change of the interfacial area concentration. This dynamic approach has an advantage of flow regime-independence over the conventional empirical correlation approach for the interfacial area concentration in the applications with the two-fluid model. In the two-group interfacial area transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Based upon a detailed literature review of the research on the bubble interactions, five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest. A systematic integral approach, in which the significant variations of bubble volume and shape are accounted for, is suggested for the modeling of two-group bubble interactions. To obtain analytical forms for the various bubble interactions, a simplification is made for the bubble number density distribution function

  7. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  8. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Science.gov (United States)

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  9. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  10. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  11. Rational equity bubbles

    OpenAIRE

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  12. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  13. Modular inverter system

    Science.gov (United States)

    Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed

    2017-08-01

    A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.

  14. Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition; Caracteristiques cellulaires du regime a poches en ecoulement gaz-liquide co-courant vertical. Transition vers le regime destructure

    Energy Technology Data Exchange (ETDEWEB)

    Lusseyran, Francois

    1990-12-13

    This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [French] Les ecoulements gaz-liquide en conduite verticale presentent quatre configurations ou regimes d'ecoulement. Ce travail porte sur le regime a poches et sur la transition vers la configuration qui lui succede: le regime destructure (churn flow). Les mesures sont effectuees a 200D du point d'injection du gaz, dans une conduite de 12.2 mm de diametre et pour le couple de fluides eau-azote. Les deux principales grandeurs mesurees en fonction des flux d'entree sont: le frottement parietal instantane (methode electrochimique) et l'epaisseur de film instantanee (methode conductimetrique). Une detection optique simultanee de la presence des phases permet un traitement conditionnel de la base de donnees. Les caracteristiques de la cellule moyenne representative de chaque point de fonctionnement en sont deduites: longueur de la cellule

  15. Performance analysis of new type grid-tied inverter-Aalborg Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Wang, Zhen; Ji, Junhao

    2014-01-01

    Aalborg Inverter is a grid-tied DC/AC inverter. In order to optimize the design, its power losses are analyzed in detail, combined with a description of the single-phase operating principle and the modulation strategy. A 2 kW / 220 V experimental prototype is constructed to verify the theoretical...... analysis. It is concluded that a minimize inductance in the power loop does help the inverter to achieve the high efficiency with the good dynamic performance....

  16. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  17. Quasi-Y-source inverter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    This paper introduces a new inverter topology called a “quasi-Y-source inverter”. The proposed inverter inherits all the advantages of the original Y-source inverter. In addition, the new topology draws continuous current from the source which is required for many renewable sources. It also has dc......-current-blocking capacitors, which avoids saturation in the transformer core. Simulations and experimental results have proved the validity of the proposed inverter....

  18. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  19. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  20. Phototaxis during the slug stage of Dictyostelium discoideum: a model study

    NARCIS (Netherlands)

    Marée, A.F.M.; Panfilov, A.V.; Hogeweg, P.

    1999-01-01

    During the slug stage, the cellular slime mould Dictyostelium discoideum moves towards light sources. We have modelled this phototactic behaviour using a hybrid cellular automata/partial differential equation model. In our model, individual amoebae are not able to measure the direction from which

  1. Fluidization behavior in a circulating slugging fluidized bed reactor. Part I : residence time and residence time distribution of polyethylene solids

    NARCIS (Netherlands)

    Putten, van I.C.; Sint Annaland, van M.; Weickert, G.

    2007-01-01

    Square nosed slugging fluidization behavior in a circulating fluidized bed riser using a polyethylene powder with a very wide particle size distribution was studied. In square nosed slugging fluidization the extent of mixing of particles of different size depends on the riser diameter, gas velocity,

  2. Fluidization behavior in a circulating slugging fluidized bed reactor. Part I: Residence time and residence time distribution of polyethylene solids

    NARCIS (Netherlands)

    van Putten, I.C.; van Sint Annaland, M.; Weickert, G.

    2007-01-01

    Square nosed slugging fluidization behavior in a circulating fluidized bed riser using a polyethylene powder with a very wide particle size distribution was studied. In square nosed slugging fluidization the extent of mixing of particles of different size depends on the riser diameter, gas velocity,

  3. Activity of invasive slug Limax maximus in relation to climate conditions based on citizen's observations and novel regularization based statistical approaches.

    Science.gov (United States)

    Morii, Yuta; Ohkubo, Yusaku; Watanabe, Sanae

    2018-05-13

    Citizen science is a powerful tool that can be used to resolve the problems of introduced species. An amateur naturalist and author of this paper, S. Watanabe, recorded the total number of Limax maximus (Limacidae, Pulmonata) individuals along a fixed census route almost every day for two years on Hokkaido Island, Japan. L. maximus is an invasive slug considered a pest species of horticultural and agricultural crops. We investigated how weather conditions were correlated to the intensity of slug activity using for the first time in ecology the recently developed statistical analyses, Bayesian regularization regression with comparisons among Laplace, Horseshoe and Horseshoe+ priors for the first time in ecology. The slug counts were compared with meteorological data from 5:00 in the morning on the day of observation (OT- and OD-models) and the day before observation (DBOD-models). The OT- and OD-models were more supported than the DBOD-models based on the WAIC scores, and the meteorological predictors selected in the OT-, OD- and DBOD-models were different. The probability of slug appearance was increased on mornings with higher than 20-year-average humidity (%) and lower than average wind velocity (m/s) and precipitation (mm) values in the OT-models. OD-models showed a pattern similar to OT-models in the probability of slug appearance, but also suggested other meteorological predictors for slug activities; positive effect of solar radiation (MJ) for example. Five meteorological predictors, mean and highest temperature (°C), wind velocity (m/s), precipitation amount (mm) and atmospheric pressure (hPa), were selected as the effective factors for the counts in the DBOD-models. Therefore, the DBOD-models will be valuable for the prediction of slug activity in the future, much like a weather forecast. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  5. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  6. Health physics monitoring during cobalt slug rod handling at research reactor Dhruva: an experience

    International Nuclear Information System (INIS)

    Verma, Gopal P.; Bhatnagar, Amit; Krishnamohanan, T.; Kalyanasundaram, N.; Gupta, P.C.; Pushparaja; Ghosh, Runner

    2006-01-01

    Cobalt-60 is used in many industrial and medical applications, such as leveling devices, thickness gauge, sterilization of foodstuff to increase their shelf life, sterilization of medicines and in radiotherapy. The Cobalt slug rod containing cobalt pencils were irradiated for nearly two and half years in the Dhruva reactor core to obtain the 60 Co isotope. It had seen a total irradiation of 29053 MWD and the estimated total activity was 93.321 KCi. Campaign for the removal of irradiated rod from reactor core and retrieval of 60 Co pencils were carried out successfully in Dhruva Reactor complex. In view of such a high activity handled, the job was carried out after exhaustive prior planning and according to approved checklists. Radiation Hazards Control Unit, Dhruva provided Radiation Safety surveillance during the entire handling operation consisting of retrieval of the cobalt pencils and disposal of the aluminum slugs used to house the cobalt pencils in the Cobalt slug rod assembly. The whole operation was carried out in such a safe manner that the total man-rem consumption was insignificant. The operational radiation protection methods followed and the experience gained during the campaign are discussed in this paper. (author)

  7. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  8. Effects of Agroecological and Conventional Handling in Slug Populations in Lettuce in Tenjo, Cundinamarca (Colombia)

    International Nuclear Information System (INIS)

    Cordoba Vargas, Cindy Alexandra; Leon Sicard, Tomas

    2010-01-01

    In an organic (FE) and a conventional (FC) farm system the population behavior of slugs and their relationship with some carabids predators was compared, as well as, the presence of weeds, agricultural practices and productivity of four varieties of lettuce. Weekly catches of slugs were made and the damage level, height and the number of leaves in ten plants was measured. Weeds and carabids were collected in both farms. The total number of slugs in the FE was statistically higher and four species (D. reticulatum, Milax gagates, D. and L. laev maximux) were collected compared with two found in FC. With the exception of the variety M orada Lisa , there were no significant differences in the level of damage in the other varieties between the two farms. There were significant differences in the dry weight variable in favour of the organic farm. In FE, 5 carabids species and 25 weeds were presented compared to none in FC and 6, respectively. The data above are explained in terms of the agronomic practices of each management system.

  9. Prediction of Polymer Flooding Performance with an Artificial Neural Network: A Two-Polymer-Slug Case

    Directory of Open Access Journals (Sweden)

    Jestril Ebaga-Ololo

    2017-07-01

    Full Text Available Many previous contributions to methods of forecasting the performance of polymer flooding using artificial neural networks (ANNs have been made by numerous researchers previously. In most of those forecasting cases, only a single polymer slug was employed to meet the objective of the study. The intent of this manuscript is to propose an efficient recovery factor prediction tool at different injection stages of two polymer slugs during polymer flooding using an ANN. In this regard, a back-propagation algorithm was coupled with six input parameters to predict three output parameters via a hidden layer composed of 10 neurons. Evaluation of the ANN model performance was made with multiple linear regression. With an acceptable correlation coefficient, the proposed ANN tool was able to predict the recovery factor with errors of <1%. In addition, to understand the influence of each parameter on the output parameters, a sensitivity analysis was applied to the input parameters. The results showed less impact from the second polymer concentration, owing to changes in permeability after the injection of the first polymer slug.

  10. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  11. Transmissivity and storage coefficient estimates from slug tests, Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Fiore, Alex R.

    2014-01-01

    Slug tests were conducted on 56 observation wells open to bedrock at the former Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. Aquifer transmissivity (T) and storage coefficient (S) values for most wells were estimated from slug-test data using the Cooper-Bredehoeft-Papadopulos method. Test data from three wells exhibited fast, underdamped water-level responses and were analyzed with the Butler high-K method. The range of T at NAWC was approximately 0.07 to 10,000 square feet per day. At 11 wells, water levels did not change measurably after 20 minutes following slug insertion; transmissivity at these 11 wells was estimated to be less than 0.07 square feet per day. The range of S was approximately 10-10 to 0.01, the mode being 10-10. Water-level responses for tests at three wells fit poorly to the type curves of both methods, indicating that these methods were not appropriate for adequately estimating T and S from those data.

  12. Bubbling away

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  13. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  14. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    Directory of Open Access Journals (Sweden)

    Bonita J Brewer

    2015-12-01

    Full Text Available DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs. Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins

  15. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    Science.gov (United States)

    Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K

    2015-12-01

    DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial

  16. Automatic detection of ''bore slug'' in tubes; Detection automatique des manques de metal internes sur tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bisiaux, B.; Deutsch, S.; Tailleux, O.; Mette, F. [CEV Vallourec, Aulnoye (France)

    2001-07-01

    During the tube manufacturing for the petroleum industry, the lacks of internal metal (called Bore Slug) can be created during the hot rolling. These large defects are not good detected by the classic UT and by the wall thickness measurement. That's why VALLOUREC developed an automatic UT device which works by transmission. Nevertheless, this system is too little selective and can cause no doubtful pipes (tubes good detected bad). We adapted a Bore Slug control system on the VMOG UK RP20 at the end of August. The results are rather good and showed a good detection of the Bore Slug and very little no doubtful pipes. (authors)

  17. Bubble Collision in Curved Spacetime

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  18. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  19. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  20. Fama on bubbles

    DEFF Research Database (Denmark)

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  1. Fault-tolerant three-level inverter

    Science.gov (United States)

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  2. Analisis Harmonisa Inverter PWM Satu Fasa

    OpenAIRE

    Rejeki Simanjorang

    2008-01-01

    Pada tesis ini dianalisis harmonisa inverter PWM satu fasa. Inverter PWM satu fasa yang akan ditinjau adalah inverter satu fasa jembatan penuh (konvensional) dan inverter komposit. Analisis difokuskan pada penentuan pola penyaklaran yang optimum agar pembangkitan harmonisa dan switching losses inverter rendah. Untuk menentukan pola penyaklaran optimum maka dilakukan analisis yang berbasis pada rangkaian ekivalen harmonisa inverter satu fasa. Dengan menggunakan pola penyaklaran optimum, kedua ...

  3. 2015 Inverter Workshop | Photovoltaic Research | NREL

    Science.gov (United States)

    Inverter Workshop 2015 Inverter Workshop Wednesday, February 25, 2015 Chair: Jack Flicker In about inverters. This workshop represented a follow-on to the inverter workshops that Sandia National conversations between module and inverter experts. Agenda For a detailed schedule of the day's events, access

  4. Bubbling away

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  5. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer

    International Nuclear Information System (INIS)

    Haslehurst, Alexandria M; Weberpals, Johanne; Davey, Scott; Squire, Jeremy; Park, Paul C; Feilotter, Harriet; Koti, Madhuri; Dharsee, Moyez; Nuin, Paulo; Evans, Ken; Geraci, Joseph; Childs, Timothy; Chen, Jian; Li, Jieran

    2012-01-01

    The epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers. Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of snail and slug was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays. Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including snail, slug, twist2 and zeb2. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of snail and slug, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to in vitro drug effects. This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance

  6. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Haslehurst Alexandria M

    2012-03-01

    Full Text Available Abstract Background The epithelial to mesenchymal transition (EMT is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers. Methods Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of snail and slug was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays. Results Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including snail, slug, twist2 and zeb2. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of snail and slug, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to in vitro drug effects. Conclusions This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for

  7. Slug-flow dynamics with phase change heat transfer in compact heat exchangers with oblique wavy walls

    Science.gov (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji

    2017-11-01

    With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

  8. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  9. Steam chugging in pressure suppression containment

    International Nuclear Information System (INIS)

    Lee, C.K.B.; Chan, C.K.

    1978-01-01

    The condensation of steam flow in subcooled water was studied by injecting a quasi-steady stream of saturated steam into a pool water at different temperature. From the movies, it was observed that chugging occurred at a frequency on the order of 1 to 2 times a second. In between each chug over a period of approximately half a second, a few bubbles formed and collapsed at the exit of the downcomer. At a mass flow rate of approximately 5.02 Kg/m 2 sec., the chugging process is found to be strongly affected by the bubble formation. At pool temperatures below 50 0 C, the chugging process is dominated by internal chugging which is characterized by high water slug exit velocity, detached steam bubble and lhigh chugging level. Above 50 0 C, the external chugging mode is dominant. The external chugging mode is characterized by pancake bubble shape, low water slug exit velocity, and low chugging level. (author)

  10. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  11. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  12. Overload protection system for power inverter

    Science.gov (United States)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  13. A research of vapour-film characteristics of inverted-annular flow film boiling by visual method

    International Nuclear Information System (INIS)

    Xu Jijun; Guo Zhichao; Yan An; Bi Haoran

    1988-01-01

    The vapour-film characteristics are an interesting topic in inverted-annular flow film boiling. A practical set of experimental rig has been designed and constructed for visual observation. Photographic method is adopted for obtaining number of photographs in the conditions of steady state. For references at hands, photographs under steady conditions of water flow film boiling have not been published yet. This paper discusses the typical vapour film characteristics and regards Elias' two-region model summarized from transient visual experiment as reasonable. In addition, under heated conditions, at least, three types of vapour-water interfaces have been observed. They are asymmetric sine waves, symmetic varicose waves, and roll waves offered by Jarlais from an adiabatic simulation. In diabatic conditions a transition of flow pattern to slug flow is usually caused by hydrodynamic instability and/or by thermodynamic instability. The effects of mass velocity, inlet subcooling, heat flux input, initial quality and pressure to vapour-film characteristics are described. An empirical correlation is fitted to 23 sets of tests of discussion

  14. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  15. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  16. Prospects for bubble fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  17. Study of dynamics of two-phase flow through a minichannel by means of recurrences

    Science.gov (United States)

    Litak, Grzegorz; Górski, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2017-05-01

    By changing air and water flow rates in the two-phase (air-water) flow through a minichannel, we observed the evolution of air bubbles and slugs patterns. This spatiotemporal behaviour was identified qualitatively by using a digital camera. Simultaneously, we provided a detailed analysis of these phenomena by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish particular patterns, we used recurrence plots and recurrence quantification analysis. Finally, we showed that the maxima of various recurrence quantificators obtained from the laser time series could follow the bubble and slugs patterns in studied ranges of air and water flows.

  18. Applicability of the black slug Arion ater for monitoring exposure to polycyclic aromatic hydrocarbons and their subsequent bioactivation into DNA binding metabolites

    NARCIS (Netherlands)

    Hamers, T.; Kalis, E.J.J.; Berg, van den J.H.J.; Maas, L.M.; Schooten, van F.J.; Murk, A.J.

    2004-01-01

    The applicability of terrestrial black slugs Arion ater (Mollusca, Gastropoda) was studied for biomonitoring environmental exposure to polycyclic aromatic hydrocarbons (PAHs). In laboratory experiments, slugs were orally exposed to benzo[a]pyrene (BaP) for a short term (3 days) or a long term (119

  19. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  20. The evaluation of the local tolerance of vaginal formulations containing dapivirine using the Slug Mucosal Irritation test and the rabbit vaginal irritation test.

    Science.gov (United States)

    Dhondt, Marijke M M; Adriaens, Els; Roey, Jens Van; Remon, Jean Paul

    2005-08-01

    The purpose of this study was to evaluate the local tolerance of vaginal gels (three gels containing dapivirine, the placebo gel, and Conceptrol) with the Slug Mucosal Irritation test and to compare the results with those of the rabbit vaginal irritation test. The irritation potential on the slug mucosa was assessed by the mucus production caused by a repeated treatment for 5 successive days. Additionally, membrane damage was estimated by the protein and enzyme release. By means of a classification prediction model the formulations were classified into four irritation classes. The effect of a 10-day intravaginal application of the gels on the rabbit vaginal and cervical mucosa was evaluated by means of macroscopic and microscopic examination. The placebo and dapivirine gels induced no irritation of the slug mucosa (low mucus production and protein release, no enzyme release) and no vaginal or cervical irritation in rabbits. Conceptrol caused severe irritation of the slug mucosa (increased mucus production, protein release, and enzyme release) and irritation of the rabbit vagina and cervix. The results obtained with the Slug Mucosal Irritation test were comparable to those of the rabbit vaginal irritation test.

  1. Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty, and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.

  2. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    Science.gov (United States)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  3. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  4. Three-Phase Cascaded Multilevel Inverter Using Power Cells With Two Inverter Legs in Series

    NARCIS (Netherlands)

    Waltrich, G.; Barbi, I.

    2010-01-01

    In this paper, a modular three-phase multilevel inverter specially suited for electrical drive applications is proposed. Unlike the cascaded H-bridge inverter, this topology is based on power cells connected in cascade using two inverter legs in series. A detailed analysis of the structure and the

  5. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  6. Bubble bath soap poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  7. Γ-source Neutral Point Clamped Inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede

    Transformer based Z-source inverters are recently proposed to achieve promising buck-boost capability. They have improved higher buck-boost capability, smaller size and less components count over Z-source inverters. On the other hand, neutral point clamped inverters have less switching stress...... and better output performance comparing with traditional two-level inverters. Integrating these two types of configurations can help neutral point inverters achieve enhanced votlage buck-boost capability....

  8. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  9. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Science.gov (United States)

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bubble nucleation in an explosive micro-bubble actuator

    International Nuclear Information System (INIS)

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  11. SEEPAGE/INVERT INTERACTIONS

    International Nuclear Information System (INIS)

    P.S. Domski

    2000-01-01

    As directed by a written development plan (CRWMS M andO 1999a), a conceptual model for water entering the drift and reacting with the invert materials is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction, and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE), Revision 2 (NRC 1999). This AMR also seeks to: (1) Develop a logical conceptual model for physical/chemical interactions between seepage and the invert materials; (2) screen potential processes and reactions that may occur between seepage and invert to evaluate the potential consequences of the interactions; and (3) outline how seepage/invert processes may be quantified. This document provides the conceptual framework for screening out insignificant processes and for identifying and evaluating those seepage/invert interactions that have the potential to be important to subsequent PAO analyses including the Engineered Barrier System (EBS) physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. Additionally, the concepts discussed within this report may also apply to certain near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts. The seepage/invert interactions will not directly affect any principal factors

  12. Aspherical bubble dynamics and oscillation times

    Energy Technology Data Exchange (ETDEWEB)

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  13. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers

    International Nuclear Information System (INIS)

    Gao, Hongtao; Liu, Bingbing; Yan, Yuying

    2017-01-01

    A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.

  14. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  15. Study of droplet entrainment from bubbling surface in a bubble column

    International Nuclear Information System (INIS)

    Ramirez de Santiago, M.

    1991-05-01

    In a bubble column droplets are ejected from the free surface by bubble bursting or splashing. Depending on their size, the droplets are partly carried away by the streaming gas or fall back to the bubbling surface by gravity force. Experiments have been carried out to determine the void fraction in the column by means of an optical probe. In the interfacial zone the bubble bursting process was captured with a high-speed video camera. Simultaneous measurements were made of size and velocity of droplets at several distances from the bubbling surface with a Phase-Doppler Anemometry. The bubble column can be divided into three regions: A lower zone with a flat profile of the local void fraction, a central zone where the flow regime is steady and an upper zone where the local void fraction grows rapidly. A two-parameter log-normal distribution function was proposed in order to describe the polydisperse distribution of droplet-size. Results were obtained concerning the entrainment, concentration, volume fraction and interfacial area of droplets. Finally, it was found that the turbulence intensity affects the droplet terminal velocity for droplets smaller than the Kolmogorov microscale [fr

  16. Optimization of the bubble radius in a moving single bubble sonoluminescence

    International Nuclear Information System (INIS)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  17. Inverter communications using output signal

    Science.gov (United States)

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  18. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  19. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    Science.gov (United States)

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  20. Multilevel DC link inverter

    Science.gov (United States)

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  1. Correlations of drift velocity for gas-liquid two-phase flow in rod bundle

    International Nuclear Information System (INIS)

    Kataoka, Isao; Matsuura, Keizo; Serizawa, Akimi

    2004-01-01

    A new correlation was developed for the drift velocity for low inlet liquid flux in rod bundle. Based on authors' previous analysis of drift velocity for large diameter pipe, an analysis was made on the drift velocity in rod bundle. It is assumed that the large bubble of which size is several subchannel diameter behaves as slug bubble. Under this assumption, it becomes very important how to define equivalent diameter for rod bundle. In view of physical consideration of slug bubble behavior and previous analysis, an equivalent diameter based on the wetted perimeter was found to be most appropriate. Using this equivalent diameter, experimental data of drift velocity in rod bundle were correlated with dimensional analysis. It was found out that for small diameter (dimensionless diameter less than 48) drift velocity increased with square root of diameter which is same dependency of ordinary slug flow correlation. For larger diameter (dimensionless diameter is more than 48), drift velocity is almost constant and same as that of dimensionless diameter of 48. The physical meaning of this result was considered to be the instability of interface of large slug bubble. The density ratio between gas and liquid and viscosity of liquid phase were found to be the main parameters which affect the drift velocity. This is physically reasonable because density ratio is related to the buoyancy force and liquid viscosity is related to shear force near solid wall. The experimental data were correlated by density ratio and dimensionless liquid viscosity. The obtained dimensionless correlation for the drift velocity in rod bundle successfully correlated experimental data for various rod bundles (equivalent diameters), pressures, liquid fluxes etc. It is also consistent with the drift flux correlation for round tube. (author)

  2. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors

    NARCIS (Netherlands)

    Susanti, S.; Winkelman, J.G.N.; Schuur, Boelo; heeres, h.j.; Yue, J.

    2016-01-01

    Capillary microreactors operated under the slug flow regime were investigated for the separation of lactic acid from the aqueous phase using liquid–liquid reactive extraction. The experiments were performed at a 1:1 flow ratio of the aqueous to organic phases in a setup consisting of an inlet Y-type

  3. Resonant snubber inverter

    Science.gov (United States)

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  4. Dynamics of bubble-bubble interaction in sheared low-viscosity magma imaged by X-ray computed micro-tomography

    Science.gov (United States)

    Helo, C.; Flaws, A.; Hess, K.-U.; Franz, A.; Clague, D. A.; Dingwell, D. B.

    2012-04-01

    X-ray computed tomography of vesicles in basaltic pyroclastic glass fragments has been used to investigate the syn-eruptive shear environment and resulting bubble-bubble interaction during mild pyroclastic eruptions in a mid-ocean ridge environment. We have imaged vesicles present in two different types of pyroclastic fragments produced by mildly explosive activity on Axial Seamount, limu o Pele, that is, thin glass films often described as bubble walls, and tube scoria fragments. Rapid quenching of the glass has prevented extensive bubble relaxation preserving the syn-eruptive geometry of the bubbles in these fragments. Isolated, ellipsoid-shaped vesicles in low-vesicular limu o Pele indicate deformation in a simple shear environment. Under these shear conditions higher vesiculated parts of the erupting magma show strong bubble-bubble interactions partially leading to coalscence and formation of tubular vesicles. These tubular vesicles can reach significant lengths, exceeding the dimensions of the small glass fragments (2 mm). Their unreformed radius can be more then one order of magnitude larger than that of the isolated vesicles in the limu o Pele fragments. We can distinguish two principle modes of interaction based on the relative orientation of the bubbles. Interaction along the sidewalls of two bubbles, and tip-to-tip interaction. At interdistances of less than a few tens of micrometre, interaction of the sidewalls results in deformation of the bubbles to more irregular shapes, with depressions caused by close, small bubbles or in some cases bubbles being partially mantled around tubular bubbles. This often leads to a more close packing of bubbles. At distances of less than a few microns, the melt films between the bubbles destabilize leading to coalescence. This mechanism appears to involve a bulging of the larger bubble into the smaller, followed by melt film rapture and coalescence. The complete digestion of one bubble by the other is the slow rate

  5. Fermi Bubble: Giant Gamma-Ray Bubbles in the Milky Way

    Science.gov (United States)

    Su, Meng

    Data from the Fermi-LAT reveal two gigantic gamma-ray emitting bubble structures (known as the Fermibubbles), extending˜50° above and below the Galactic center symmetric about the Galactic plane, with a width of˜40∘ in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum ({dN}/{dE} ˜ {E}^{-2}) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAPhaze; the edges of the bubbles also line up with features in the ROSATsoft X-ray maps at 1.5-2keV. The Fermibubble is most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last˜10Myr. Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population.

  6. Next Generation Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zilai [General Motors LLC, Detroit, MI (United States); Gough, Charles [General Motors LLC, Detroit, MI (United States)

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  7. Inverting the Linear Algebra Classroom

    Science.gov (United States)

    Talbert, Robert

    2014-01-01

    The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…

  8. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  9. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    International Nuclear Information System (INIS)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B.

    2013-01-01

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs

  10. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs.

  11. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  12. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  13. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bell, Frances [SolarCity, San Mateo, CA (United States); McCarty, Michael [SolarCity, San Mateo, CA (United States)

    2016-07-01

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC

  14. Slug-annular transition with particular reference to narrow rectangular ducts

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1978-01-01

    The transition from slug-flow to annular-flow in two-phase, gas-liquid mixtures is analyzed. A transition equation is derived which agrees well when compared with objective data determined from the disappearance of the low-void peak in the void fluctuation probability density in a rectangular duct. Application to other geometries is suggested and tabular recommendations given for determination of the drift flux coefficient, K, based on results in the literature

  15. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  16. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  17. Neuropeptides predicted from the transcriptome analysis of the gray garden slug Deroceras reticulatum

    Science.gov (United States)

    The gray garden slug, Deroceras reticulatum (Gastropoda: Pulmonata), is one of the most common terrestrial molluscs. Studies on D. reticulatum have mainly focused on ecology and biology due to severe damages on a wide range of vegetables and field crops. However, little is known about hormonal signa...

  18. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Science.gov (United States)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  19. Bubble transport in bifurcations

    Science.gov (United States)

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  20. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  1. Reliable inverter systems

    Science.gov (United States)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  2. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  3. Bubble propagation on a rail: a concept for sorting bubbles by size

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  4. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  5. Changes in cell-type composition in digestive gland of slugs and its influence in biomarkers following transplantation between a relatively unpolluted and a chronically metal-polluted site

    International Nuclear Information System (INIS)

    Zaldibar, B.; Cancio, I.; Soto, M.; Marigomez, I.

    2008-01-01

    Changes in cell-type composition (CCTC) is a general phenomenon that takes place in the digestive gland epithelium of stressed molluscs. The aim of the present work was to determine whether CCTC is a reversible process in the digestive gland of sentinel slugs chronically exposed to metal pollution and how CCTC affects metal accumulation parameters and different cell and tissue biomarkers of exposure and effect. Slugs (Arion ater) from an abandoned zinc mine were transferred to a relatively unpolluted site and the other way around for 3, 10 and 28 d. The volume density of black silver deposits (Vv BSD ) after autometallography, and metallothionein (MT) levels were used as biomarkers of exposure to metals and CCTC and lysosomal responses were selected as effect biomarkers. Results indicated that slugs were sensitive to recent metal pollution; however, slugs chronically exposed to metals presented some characteristic features and were less responsive to pollution cessation without signs of CCTC reversal. - Cell and tissue-level biomarkers in slugs after recent and chronic metal pollution

  6. Addressable inverter matrix for process and device characterization

    Science.gov (United States)

    Buehler, M. G.; Sayah, H. R.

    1985-01-01

    The addressable inverter matrix consists of 222 inverters each accessible with the aid of a shift register. The structure has proven useful in characterizing the variability of inverter transfer curves and in diagnosing processing faults. For good 3-micron CMOS bulk inverters investigated, the percent standard deviation of the inverter threshold voltage was less than one percent and the inverter gain (the slope of the inverter transfer curve at the inverter threshold vltage) was less than 3 percent. The average noise margin for the inverters was near 2 volts for a power supply voltage of 5 volts. The specific faults studied included undersize pull-down transistor widths and various open contacts in the matrix.

  7. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2014-01-01

    -phase flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...

  8. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Stampe, Kasper

    2016-01-01

    , the slug can be avoided or eliminated by proper facility design or control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key operational parameters...

  9. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    International Nuclear Information System (INIS)

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    sensor performance. Among various flow patterns of gas-liquid flow, slug flow occurs frequently in the petroleum, chemical, civil and nuclear industries. In the offshore oil and gas field, the maximum slug length and its statistical distribution are very important for the design of separator and downstream processing facility at steady state operations. However transient conditions may be encountered in the production, such as operational upsets, start-up, shut-down, pigging and blowdown, which are key operational and safety issues related to oil field development. So it is necessary to have an understanding the flow parameters under transient conditions. In this paper, the evolution of slug length along a horizontal pipe in gas-liquid flow is also studied in details and then an experimental study of flowrate transients in slug flow is provided. Also, the special gas-liquid flow phenomena easily encountered in the life span of offshore oil fields, called severe slugging, is studied experimentally and some results are presented.

  10. Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysia timida (Risso, 1818 as compared to short-term and non-chloroplast-retaining sacoglossan slugs.

    Directory of Open Access Journals (Sweden)

    Elise Marie Jerschabek Laetz

    Full Text Available Sacoglossan sea slugs are the only metazoans known to perform functional kleptoplasty, the sequestration and retention of functional chloroplasts within their digestive gland cells. Remarkably, a few species with this ability can survive starvation periods of 3-12 months likely due to their stolen chloroplasts. There are no reports of kleptoplast transfer from mother slug to either eggs or juveniles, demonstrating that each animal must independently acquire its kleptoplasts and develop the ability to maintain them within its digestive gland. We present here an investigation into the development of functional kleptoplasty in a long-term kleptoplast retaining species, Elysia timida. Laboratory-reared juvenile slugs of different post-metamorphic ages were placed in starvation and compared to 5 known short-term retaining slug species and 5 non-retaining slug species. The subsequent results indicate that functional kleptoplasty is not performed by E. timida until after 15 days post-metamorphosis and that by 25 days, these animals outlive many of the short-term retention species. Digestive activity was also monitored using lysosomal abundance as an indicator, revealing different patterns in starving juveniles versus adults. Starved juveniles were reintroduced to food to determine any differences in digestive activity when starvation ends, resulting in an increase in the number of kleptoplasts, but no overall change in lysosomal activity. By revealing some of the changes that occur during early development in these animals, which begin as non-kleptoplast-retaining and grow into long-term retaining slugs, this investigation provides a basis for future inquiries into the origin and development of this remarkable ability.

  11. Inverter design for high frequency power distribution

    Science.gov (United States)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  12. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    Science.gov (United States)

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.

  13. Transformerless PV inverters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borup, U.

    2009-12-15

    Since the start of the project the market for grid connected PV inverters have developed further. When the project started three - phase inverter were only available in high power systems. The technology developed within this project will enable three phase technology also to be implemented in string inverters for system down to 10 kW. We expect this to be very attractive due to the increased demand for symmetrical feed-in to the grid. The project relevance is therefore high and the sector continues to develop very much driven by technology. Especially the inverter technology is getting a lot of focus. The inverter systems are expected to take a much larger role in supporting the electrical grid in the future. The technology platform developed within the project is prepared to be extended with these utility functionalities. The main results of the project were: 1) A new technology concept for transformer-less inverters has been demonstrated with a number of prototypes. 2) Efficiency above 97,7% has been proven. 3) Efficiency and Maximum power point tracking has been optimized to ensure that almost all energy produced of the panels is transferred to the grid. 4) The platform is developed with a very fast control board, which enables extended functionality as demanding grid supporting functions in the future. Details about cost price and details about the control loop implementation is excluded from the report due to the competitive situation for Danfoss Solar Inverters A/S. (LN)

  14. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  15. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim

    2002-01-01

    In this paper the modularity concept applied to medium-voltage adjustable speed drives is addressed. First, the single-phase cascaded voltage-source inverter that uses series connection of IGBT H-bridge modules with isolated dc-buses is presented. Next, a novel three-phase cascaded voltage......-source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...

  16. Gas cooled traction drive inverter

    Science.gov (United States)

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  17. Single bubble sonoluminescence

    NARCIS (Netherlands)

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  18. Embedded EZ-Source Inverters

    DEFF Research Database (Denmark)

    Chiang Loh, Poh; Gao, Feng; Blaabjerg, Frede

    2010-01-01

    overvoltage oscillations to the system. Therefore, Z-source inverters are, in effect, safer and less complex and can be implemented using only passive elements with no additional active semiconductor needed. Believing in the prospects of Z-source inverters, this paper contributes by introducing a new family...

  19. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo

    2017-01-01

    A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...... method to monitor severe slugging by means of low cost instrumentation, in particular, by replacing a cumbersome instrument such as a gamma-densitometer with a differential pressure transmitter. In field operation, the multiphase orifice used in these experiments can be replaced by a calibrated control...... of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...

  20. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  1. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  2. Bidirectional cinematography of steam-bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz.

  3. Bidirectional cinematography of steam-bubble growth

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz

  4. Embedded EZ-Source Inverters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chiang; Gao, F.

    2008-01-01

    -voltage oscillations to the system. Therefore, Z-source inverters are in effect safer and less complex, and can be implemented using only passive elements with no additional active semiconductor needed. Believing in the prospects of Z-source inverters, this paper contributes by introducing a new family of embedded EZ...

  5. An equation of motion for bubble growth

    International Nuclear Information System (INIS)

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  6. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends

    International Nuclear Information System (INIS)

    Padilla, Miguel; Revellin, Rémi; Wallet, Jérémy; Bonjour, Jocelyn

    2013-01-01

    Highlights: ► Visual observation of two-phase flow regimes during downward flow in a return bend. ► Bubble and vapor slug dynamical behaviors in downward slug flow are reported. ► Perturbation lengths up- and downstream of the return bend have been investigated. ► Measurement of 285 pressure drop data points for HFO-1234yf, R-134a and R-410A. -- Abstract: This paper provides a qualitative visual observation of the two-phase flow patterns for HFO-1234yf and R-134a during downward flow in a vertical 6.7 mm inner diameter glass return bend. The different flow regimes observed are: slug, intermittent and annular flows. Bubble and vapor slug dynamical behaviors in downward slug flow are reported for HFO-1234yf. In addition, to determine the perturbation lengths up- and downstream of the return bend, the total pressure drop has been measured at different pressure tap location up- and downstream of the singularity. Furthermore, 285 pressure drop data points measured for two-phase flow of HFO-1234yf, R-134a and R-410A in vertical downward flow return bends are presented. The flow behavior in the return bend, which is subjected to the complex combined actions of gravity and centrifugal force was expressed in terms of the vapor Froude number. This experimental pressure drop database, which is included in the appendix, is compared to four well-known prediction methods available in the literature

  7. Trans-Z-source Neutral Point Clamped inverter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P. C.; Li, D.

    2012-01-01

    Transformer based Z-source (trans-Z-source) inverters are recently proposed by extending the traditional Z-source inverter with higher buck-boost capability as well as reducing the passive components at the same time. Multi-Level Z-source inverters are single-stage topological solutions used...... for buck-boost energy conversion with all the favourable advantages of multi-level switching retained. This paper presents three-level trans-Z-source Neutral Point Clamped (NPC) inverter topology, which achieves both the advantages of trans-Z-source and three-level NPC inverter configuration. With proper...... modulation scheme, the three-level trans-Z-source inverter can function with minimum of six device commutations per half carrier cycle (same as the traditional buck NPC inverter), while maintaining to produce the designed volt-sec average and inductive voltage boosting at ac output terminals. The designed...

  8. About the statistical description of gas-liquid flows

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, D.; Guido-Lavalle, G.; Carrica, P. [Centro Atomico Bariloche and Instituto Balseiro (Argentina)] [and others

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  9. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  10. Bubbles in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  11. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  12. Nuttier bubbles

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  13. A method for the estimation of dual transmissivities from slug tests

    Science.gov (United States)

    Wolny, Filip; Marciniak, Marek; Kaczmarek, Mariusz

    2018-03-01

    Aquifer homogeneity is usually assumed when interpreting the results of pumping and slug tests, although aquifers are essentially heterogeneous. The aim of this study is to present a method of determining the transmissivities of dual-permeability water-bearing formations based on slug tests such as the pressure-induced permeability test. A bi-exponential rate-of-rise curve is typically observed during many of these tests conducted in heterogeneous formations. The work involved analyzing curves deviating from the exponential rise recorded at the Belchatow Lignite Mine in central Poland, where a significant number of permeability tests have been conducted. In most cases, bi-exponential movement was observed in piezometers with a screen installed in layered sediments, each with a different hydraulic conductivity, or in fissured rock. The possibility to identify the flow properties of these geological formations was analyzed. For each piezometer installed in such formations, a set of two transmissivity values was calculated piecewise based on the interpretation algorithm of the pressure-induced permeability test—one value for the first (steeper) part of the obtained rate-of-rise curve, and a second value for the latter part of the curve. The results of transmissivity estimation for each piezometer are shown. The discussion presents the limitations of the interpretational method and suggests future modeling plans.

  14. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  15. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Science.gov (United States)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  16. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  17. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    Science.gov (United States)

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Five-level Z-source diode-clamped inverter

    DEFF Research Database (Denmark)

    Gao, F.; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z......-source inverter are introduced here for operating the proposed inverter with voltage buck–boost energy conversion ability and five-level phase voltage switching. These characteristic features are in fact always ensured at the inverter terminal output by simply adopting a properly designed carrier modulation...

  19. Component-Minimized Buck-Boost Voltage Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede

    2007-01-01

    This paper presents the design of buck-boost B4 inverters that can be derived from either Ćuk- or SEPIC-derived buck-boost B6 inverters. Unlike traditional inverters, the integration of front-end voltage boost circuitry and inverter circuitry allows it to perform buck-boost voltage inversion...... between capacitors. Modulation wise, the proposed buck-boost B4 inverters can be controlled using a carefully designed carrier-based pulse-width modulation (PWM) scheme that will always ensure balanced threephase outputs as desired, while simultaneously achieving minimal voltage stress across...

  20. Analytic solutions to linear, time-dependent fission product deposition models for isothermal laminar, slug, or multiregion flow conditions

    International Nuclear Information System (INIS)

    Durkee, J.W. Jr.

    1983-01-01

    The time-dependent convective-diffusion equation with radioactive decay is solved analytically in axisymmetric cylindrical geometry for laminar and slug velocity profiles under isothermal conditions. Concentration dependent diffusion is neglected. The laminar flow solution is derived using the method of separation of variables and Frobenius' technique for constructing a series expansion about a regular singular point. The slug flow multiregion solution is obtained using the method of separation of variables. The Davidon Variable Metric Minimization algorithm is used to compute the coupling coefficients. These solutions, which describe the transport of fission products in a flowing stream, are then used to determine the concentration of radioactive material deposited on a conduit wall using a standard mass transfer model. Fission product deposition measurements for five diffusion tubes in a Fort St. Vrain High-Temperature Gas-Cooled reactor plateout probe are analyzed. Using single region slug and laminar models, the wall mass transfer coefficients, diffusion coefficients, and inlet concentrations are determined using least squares analysis. The diffusion coefficients and inlet concentrations are consistent between tubes. The derived diffusion coefficients and wall mass transfer coefficients are in relative agreement with known literature values

  1. Computing bubble-points of CO

    NARCIS (Netherlands)

    Ramdin, M.; Balaji, S.P.; Vicent Luna, J.M.; Torres-Knoop, A; Chen, Q.; Dubbeldam, D.; Calero, S; de Loos, T.W.; Vlugt, T.J.H.

    2016-01-01

    Computing bubble-points of multicomponent mixtures using Monte Carlo simulations is a non-trivial task. A new method is used to compute gas compositions from a known temperature, bubble-point pressure, and liquid composition. Monte Carlo simulations are used to calculate the bubble-points of

  2. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  3. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  4. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression

    International Nuclear Information System (INIS)

    Chappell, M A; Payne, S J

    2006-01-01

    Under decompression, bubbles can form in the human body, and these can be found both within the body tissues and the bloodstream. Mathematical models for the growth of both types of bubbles have previously been presented, but they have not been coupled together. This work thus explores the interaction between the growth of tissue and blood-borne bubbles under decompression, specifically looking at the extent to which they compete for the common resource of inert gas held in solution in the tissues. The influence of tissue bubbles is found to be significant for densities as low as 10 ml -1 for tissues which are poorly perfused. However, the effects of formation of bubbles in the blood are not found until the density of bubble production sites reaches 10 6 ml -1 . From comparison of the model predictions with experimental evidence for bubbles produced in animals and man under decompression, it is concluded that the density of tissue bubbles is likely to have a significant effect on the number of bubbles produced in the blood. However, the density of nucleation sites in the blood is unlikely to be sufficiently high in humans for the formation of bubbles in the blood to have a significant impact on the growth of the bubbles in the tissue

  5. On Invertible Sampling and Adaptive Security

    DEFF Research Database (Denmark)

    Ishai, Yuval; Kumarasubramanian, Abishek; Orlandi, Claudio

    2011-01-01

    functionalities was left open. We provide the first convincing evidence that the answer to this question is negative, namely that some (randomized) functionalities cannot be realized with adaptive security. We obtain this result by studying the following related invertible sampling problem: given an efficient...... sampling algorithm A, obtain another sampling algorithm B such that the output of B is computationally indistinguishable from the output of A, but B can be efficiently inverted (even if A cannot). This invertible sampling problem is independently motivated by other cryptographic applications. We show......, under strong but well studied assumptions, that there exist efficient sampling algorithms A for which invertible sampling as above is impossible. At the same time, we show that a general feasibility result for adaptively secure MPC implies that invertible sampling is possible for every A, thereby...

  6. Preparation of inverted medium and processing in the inverted medium

    International Nuclear Information System (INIS)

    Zafarullah, Ijaz; Tian Minghzen; Chang Tiejun; Randall Babbitt, W.

    2007-01-01

    The processing of weak optical signals in spatial-spectral holographic (SSH) materials coherently inverted with optical frequency chirped pulses were investigated. Simulations and experimental studies in Tm 3+ :YAG were conducted to characterize the parameters of the frequency chirped laser pulse used to invert the SSH material in order to obtain high photon echo efficiency for SSH lidar processing. Collinear and angled beam geometries and single shot and accumulated processes were investigated. Echo efficiencies as high as 450% were measured, significantly higher than the typical stimulated photon echo efficiency of 10%

  7. Preparation of inverted medium and processing in the inverted medium

    Energy Technology Data Exchange (ETDEWEB)

    Zafarullah, Ijaz [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: ijaz@montana.edu; Tian Minghzen [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Chang Tiejun [The Spectrum Laboratory, Montana State University, Bozeman, MT 59717 (United States); Randall Babbitt, W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2007-11-15

    The processing of weak optical signals in spatial-spectral holographic (SSH) materials coherently inverted with optical frequency chirped pulses were investigated. Simulations and experimental studies in Tm{sup 3+}:YAG were conducted to characterize the parameters of the frequency chirped laser pulse used to invert the SSH material in order to obtain high photon echo efficiency for SSH lidar processing. Collinear and angled beam geometries and single shot and accumulated processes were investigated. Echo efficiencies as high as 450% were measured, significantly higher than the typical stimulated photon echo efficiency of 10%.

  8. Solar Charged Stand Alone Inverter

    OpenAIRE

    M.Vasugi; Prof R.Jayaraman

    2014-01-01

    This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged o...

  9. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  10. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    Science.gov (United States)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  11. Nanowire NMOS Logic Inverter Characterization.

    Science.gov (United States)

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  12. Sonoluminescence and bubble fusion

    OpenAIRE

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  13. 21 CFR 184.1859 - Invert sugar.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  14. Simplified High-Power Inverter

    Science.gov (United States)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  15. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  16. Fluidization behavior in a circulating slugging fluidized bed reactor. Part II: Plug characteristics

    NARCIS (Netherlands)

    van Putten, I.C.; van Sint Annaland, M.; Weickert, G.

    2007-01-01

    In the transporting square nosed slugging fluidization regime (0.4 < u0 < 1.0m/s) a bed of polyethylene powder with a low density (ρ = 900/kg/m3) and a large particle size distribution (70 < dρ < 1600µm) was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A

  17. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  18. Leverage bubble

    Science.gov (United States)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  19. Aalborg Inverter - A New Type of “Buck in Buck, Boost in Boost” Grid-Tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Ji, Junhao; Blaabjerg, Frede

    2015-01-01

    This paper presents a new family of high efficiency dc/ac grid-tied inverter with a wide variation of input dc voltage. It is a “boost in boost, buck in buck” inverter, meaning that only one power stage works at high frequency in order to achieve minimum switching loss. The minimum voltage drop...... of the filtering inductor in the power loop is achieved to reduce the conduction power loss in both “boost” and “buck” mode. The principle of operation is demonstrated through the analysis on the equivalent circuits of a “half-bridge” single-phase inverter. The theoretical analysis shows that when input dc voltage...... is larger than the magnitude of the ac voltage, it is a voltage-source inverter, and on the contrary it is current-source inverter in the other mode. A 220 V/50 Hz/ 2000 W prototype has been constructed. Simulations and experiments show that it has a good control and system performance....

  20. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  1. Removal of Molluscicidal Bait Pellets by Earthworms and its Impact on Control of the Gray Field Slug, Derocerus reticulatum Mueller, in Western Oregon Grass Seed Fields

    Science.gov (United States)

    Slugs are common pests of grass seed fields in western Oregon and are currently controlled using bait pellets that often fail to give adequate protection. Here we demonstrate the loss of bait pellet products to earthworms and its adverse effects on controlling slugs. Three years of field and greenho...

  2. Influence of the pipe diameter on the structure of the gas-liquid interface in a vertical two-phase pipe flow

    International Nuclear Information System (INIS)

    Prasser, H. M.; Beyer, M.; Boettger, A.; Carl, H.; Lucas, D.; Schaffrath, A.; Schutz, P.; Weiss, F. P.; Zschau, J.

    2003-01-01

    Two-phase flow tests in a 194.1 mm diameter vertical pipe (DN200) with an air-water mixture are reported. Close to the upper end of a 9 m tall test section a wire-mesh sensor is installed that delivers instantaneous void fraction distributions over the entire cross section with time resolution of 2500 frames per second. The sensor disposes of 64 x 64 measuring points, which corresponds to a spatial resolution of 3 mm. Beside an fast flow visualisations, void-fraction profiles and bubble size distributions were obtained. Earlier, similar experiments were carried out in a pipe of 51.2 mm inner diameter (DN50). A comparison of the data from the two different facilities allows to study the scaling effects on void fraction profiles, bubbles size distributions and the flow patterns. In the small pipe, the increase of the air flow rate leads to a transition from bubbly via slug to churn turbulent flow. The transition to slug flow is accompanied by the appearance of a second peak in the bubble size distribution that corresponds to the class of large Taylor bubbles. A similar qualitative behaviour was found in the large pipe, though the large bubble fraction has a significantly bigger mean diameter at identical superficial velocities, the peak is less tall but wider. Bubbles move more freely than in the small pipe, since the confining action of the pipe walls to the flow is less pronounced, while the large Taylor bubbles occupy almost the entire cross section in case of the small pipe. Furthermore, the bubbles show much more deformations in the large pipe. Shapes of such large bubbles were characterised in three dimensions for the first time. They can rather be complicated and far from the shape of ideal Taylor bubbles. Also the small bubble fraction tends to bigger sizes in the large pipe

  3. Manipulating bubbles with secondary Bjerknes forces

    Energy Technology Data Exchange (ETDEWEB)

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  4. Manipulating bubbles with secondary Bjerknes forces

    International Nuclear Information System (INIS)

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  5. Online Variable Topology-Type Photovoltaic Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Wu, Fengjiang; Sun, Bo; Duan, Jiandong

    2015-01-01

    In photovoltaic (PV) grid-connected generation system, the key focus is how to expand the generation range of the PV array and enhance the total efficiency of the system. This paper originally derived expressions of the total loss and grid current total harmonics distortions of cascaded inverter...... and H-bridge inverter under the conditions of variable output voltage and power of the PV array. It is proved that, compared with the H-bridge inverter, the operation range of the cascaded inverter is wider, whereas the total loss is larger. Furthermore, a novel online variable topology-type grid......-connected inverter is proposed. A bidirectional power switch is introduced into the conventional cascaded inverter to connect the negative terminals of the PV arrays. When the output voltages of the PV arrays are lower, the proposed inverter works under cascaded inverter mode to obtain wider generation range. When...

  6. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  7. Implementation of a one-group interfacial area transport equation in a CFD code for the simulation of upward adiabatic bubbly flow

    International Nuclear Information System (INIS)

    Pellacani, F.; Macian, R.; Chiva, S.; Pena, C.

    2011-01-01

    In this paper upward, isothermal and turbulent bubbly flow in tubes is numerically modeled by using ANSYS CFX 12.1 with the aim of creating a basis for the reliable simulation of the flow along a vertical channel in a nuclear reactor as long term goal. Two approaches based on the mono-dispersed model and on the one-group Interfacial Area Transport Equation (IATE) model are used in order to maintain the computational effort as low as possible. This work represents the necessary step to implement a two-group interfacial area transport equation that will be able to dynamically represent the changes in interfacial structure in the transition region from bubbly to slug flow. The drag coefficient is calculated using the Grace model and the interfacial non-drag forces are also included. The Antal model is used for the calculation of the wall lubrication force coefficient. The lift force coefficient is obtained from the Tomiyama model. The turbulent dispersion force is taken into account and is modeled using the FAD (Favre averaged drag) approach, while the turbulence transfer is simulated with the Sato's model. The liquid velocity is in the range between 0.5 and 2 m/s and the average void fraction varies between 5 and 15%.The source and sink terms for break-up and coalescence needed for the calculation of the implemented Interfacial Area Density are those proposed by Yao and Morel. The model has been checked using experimental results by Mendez. Radial profile distributions of void fraction, interfacial area density and bubble mean diameter are shown at the axial position equivalent to z/D=56. The results obtained by the simulations have a good agreement with the experimental data but show also the need of a better study of the coalescence and breakup phenomena to develop more accurate interaction models. (author)

  8. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  9. Inverted base pavements: construction and performance

    KAUST Repository

    Papadopoulos, Efthymios

    2017-05-11

    Inverted base pavements involve a well-compacted granular aggregate base built between a thin asphalt concrete layer and a cement-treated base. Inverted base pavements can be constructed using conventional equipment and procedures but require proper quality control. This study reviews the extensive South African experience and case histories in the USA. Accumulating evidence suggests that inverted base pavements are a viable alternative and can outperform conventional pavements at a lower cost. Inverted base pavements rely on the complementary interaction between layers. The cement-treated base provides a stiff foundation for efficient compaction and constrains the deformation of the stress-sensitive granular aggregate base. The thin asphalt surface layer deforms as a membrane and develops low tensile stress. Additional large-scale field tests should be conducted to assess the performance of inverted base pavement designs in a wide range of conditions relevant to the USA.

  10. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  11. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning

    Directory of Open Access Journals (Sweden)

    He Ji-Huan

    2012-01-01

    Full Text Available Here we show an intriguing phenomenon in the bubble electrospinning process that the ruptured film might be stripped upwards by an electronic force to form a very thin and long plate-like strip, which might been received in the metal receiver as discontinuous backbone-like wrinkled materials, rather than smooth nano-fibers or microspheres. The processes are called the bubble electrospinning. The electronic force can be replaced by a blowing air, and the process is called as the blown bubble spinning. We demonstrate that the size and thickness of the ruptured film are the crucial parameters that are necessary to understand the various observations including beads and nanoporous materials. We identify the conditions required for a ruptured film to form discontinuous structure, and a critical width of the ruptured film to form a cylindrical fiber, above which a long and thin plate-like strip might be obtained, and a criterion for oscillatory jet diameter, which leads to bead morphology of the obtained fibers. The space of the adjacent beads depends on the fiber size. We anticipate our assay to be a starting point for more sophisticated study of the bubble electrospinning and the blown bubble spinning and for mass-production of both nanofibers and nanoscale discontinuous materials.

  12. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    Science.gov (United States)

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  13. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  14. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  15. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    International Nuclear Information System (INIS)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A.; Cunha Filho, Jurandyr S.; Motta, Mauricio S.

    2011-01-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  16. Aalborg Inverter - A new type of “Buck in Buck, Boost in Boost” Grid-tied Inverter

    DEFF Research Database (Denmark)

    Wu, Weimin; Blaabjerg, Frede

    2013-01-01

    This paper presents a new family of high efficiency DC/AC grid-tied inverter with a wide variation of input DC voltage. It is a kind of “Boost in Boost, Buck in Buck” inverter, meaning that only one power stage works at the high frequency to achieve the minimum switching loss. Furthermore......, the minimum filtering inductance in the power loop is achieved to reduce the conduction power loss whether in “Boost” or “Buck” mode. In theory, it can achieve higher efficiency than other inverters under the same condition of input DC voltage. The principle of operation is fully illustrated through...... the analysis on the equivalent circuits of a “three-level” single-phase inverter. Simulations show it has good control performance....

  17. Effects of additional inertia force on bubble breakup

    International Nuclear Information System (INIS)

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  18. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  19. Bubbles in the self-accelerating universe

    International Nuclear Information System (INIS)

    Izumi, Keisuke; Tanaka, Takahiro; Koyama, Kazuya; Pujolas, Oriol

    2007-01-01

    We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane, while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches

  20. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  1. Slowing down bubbles with sound

    Science.gov (United States)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  2. When Will Occur the Crude Oil Bubbles?

    International Nuclear Information System (INIS)

    Su, Chi-Wei; Li, Zheng-Zheng; Chang, Hsu-Ling; Lobonţ, Oana-Ramona

    2017-01-01

    In this paper, we apply a recursive unit root test to investigate whether there exist multiple bubbles in crude oil price. The method is best suited for a practical implementation of a time series and delivers a consistent date-stamping strategy for the origination and termination of multiple bubbles. The empirical result indicates that there exist six bubbles during 1986–2016 when the oil price deviate from its intrinsic value based on market fundamentals. Specifically, oil price contains the fundamentals and bubble components. The dates of the bubbles correspond to specific events in the politics and financial markets. The authorities should actively fight speculative bubbles or just observe their evolutions and speculation activities may decrease, which is favour of the stabilisation of the staple commodities including crude oil price. These findings have important economic and policy implications to recognise the cause of bubbles and take corresponding measures to reduce the impact on the real economy cause of the fluctuation of crude oil price. - Highlights: • Investigate multiple bubbles in crude oil price. • Indicate six bubbles deviate from its intrinsic value based on market fundamentals. • The bubbles correspond to specific events in the politics and financial markets. • Reduce the impact on the real economy cause of the fluctuation of crude oil price.

  3. New evidence on the first financial bubble

    NARCIS (Netherlands)

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  4. Design and Implementation of nine level multilevel Inverter

    Science.gov (United States)

    Dhineshkumar, K.; Subramani, C.

    2018-04-01

    In this paper the solar based boost converter integrated Nine level multilevel inverter presented. It uses 7 switches to produce nine level output stepped waveform. The aim of the work to produce 9 level wave form using solar and boost converter. The conventional inverter has multiple sources and has 16 switches are required and also more number of voltage sources required. The proposed inverter required single solar panel and reduced number of switches and integrated boost converter which increase the input voltage of the inverter. The proposed inverter simulated and compared with R load using Mat lab and prototype model experimentally verified. The proposed inverter can be used in n number of solar applications.

  5. Pinch-off Scaling Law of Soap Bubbles

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  6. Cutaneous application of an accessory-gland secretion after sperm exchange in a terrestrial slug (Mollusca : Pulmonata)

    NARCIS (Netherlands)

    Benke, Mandy; Reise, Heike; Montagne-Wajer, Kora; Koene, Joris M

    Competition for fertilisation in hermaphroditic animals seems to have led to many odd behaviours and complex morphologies involved in the transfer of accessory-gland products to the partner. Terrestrial slugs of the genus Deroceras show remarkably elaborate and interspecifically diverse penis

  7. Bubbles with shock waves and ultrasound: a review.

    Science.gov (United States)

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  8. Efficient/reliable dc-to-dc inverter circuit

    Science.gov (United States)

    Pasciutti, E. R.

    1970-01-01

    Feedback loop, which contains an inductor in series with a saturable reactor, is added to a standard inverter circuit to permit the inverter power transistors to be switched in a controlled and efficient manner. This inverter is applicable where the power source has either high or low impedance properties.

  9. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  10. Single DNA denaturation and bubble dynamics

    International Nuclear Information System (INIS)

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  11. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  13. Rotating bubble membrane radiator

    Science.gov (United States)

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  14. Method and device for characterization of two-phase flow in pipes

    International Nuclear Information System (INIS)

    Skarsvaag, K.; Sunde, A.J.

    1993-01-01

    Gamma radiation transmission measurements are made with one-shot-collimation to determine the distribution of voids within a gas-liquid mixture flowing in a pipe. The distribution of voids in selected portions of the pipe, taken together with statistical and logical tests applied thereto, provides information from which are determined: type of flow pattern or flow regime, the profile of a large gas bubble in slug flow, and the gas and the liquid volume flow rates in slug flow. 4 refs

  15. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  16. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  17. Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes: Visualization studies

    Science.gov (United States)

    Zhang, P.; Fu, X.

    2009-10-01

    Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.

  18. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  19. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  20. Modulation of Current Source Inverter

    Directory of Open Access Journals (Sweden)

    Golam Reza Arab Markadeh

    2011-04-01

    Full Text Available Direct torque control with Current Source Inverter (CSI instead of voltage source inverter is so appropriate because of determining the torque of induction motor with machine current and air gap flux. In addition, Space-Vector Modulation (SVM is a more proper method for CSI because of low order harmonics reduction, lower switching frequency and easier implementation. This paper introduces the SVM method for CSI and uses the proposed inverter for vector control of an induction motor. The simulation results illustrate fast dynamic response and desirable torque and speed output. Fast and accurate response to changes of speed and load torque reference completely proves the prominence of this method.

  1. Detecting and mitigating inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.E.; Taylor, J.H.; Aggarwal, S.K.

    1988-01-01

    Nuclear power plants use inverters to supply power to safety-related equipment, instrumentation, and controls. They convert direct current (dc) to alternating current (ac) power, thereby making low voltage ac power available even under a station blackout condition. As part of the U.S. NRC's nuclear plant aging research (NPAR) program, the operating experience of this equipment has been analyzed to determine the dominant failure modes and causes. This paper summarizes that data, and then describes methods which can be employed to detect inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the mitigation of inverter aging is emphasized

  2. Diode-Assisted Buck-Boost Current Source Inverters

    DEFF Research Database (Denmark)

    Gao, F.; Cai, Liang; Loh, P.C.

    2007-01-01

    This paper presents a couple of novel current source inverters (CSIs) with the enhanced current buckboost capability. With the unique diode-inductor network added between current source inverter circuitry and current boost elements, the proposed buck-boost current source inverters demonstrate...... uninfluenced. Lastly, all theoretical findings were verified experimentally using constructed laboratory prototypes....

  3. Condensation induced water hammer in steam generators

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Saha, P.; Wu, B.J.C.; Ginsberg, T.

    1979-06-01

    The case of condensation induced water hammer in nuclear steam generators is summarized, including both feed ring-type and economizer-type geometries. A slug impact model is described and used to demonstrate the parametric dependence of the impact pressures on heat transfer rates, initial pressures, and relative initial slug and void lengths. The results of the parametric study are related also to the economizer geometry and a suggested alternative model is presented. The importance of concerns regarding attenuation of shocks in two-phase media is delineated, and a simple experiment is described which was used to determine negligible attenuation within the accuracy of the experiment for void fractions up to over 30% in bubbly and slug flows

  4. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  5. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    Science.gov (United States)

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  6. DC-to-AC inverter ratio failure detector

    Science.gov (United States)

    Ebersole, T. J.; Andrews, R. E.

    1975-01-01

    Failure detection technique is based upon input-output ratios, which is independent of inverter loading. Since inverter has fixed relationship between V-in/V-out and I-in/I-out, failure detection criteria are based on this ratio, which is simply inverter transformer turns ratio, K, equal to primary turns divided by secondary turns.

  7. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  8. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  9. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov (United States)

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  10. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  11. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  12. Pulsewidth-modulated 2-source neutral-point-clamped inverter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chang; Gao, Feng

    2007-01-01

    This paper presents the careful integration of a newly proposed Z-source topological concept to the basic neutral-point-clamped (NPC) inverter topology for designing a three-level inverter with both voltage-buck and voltage-boost capabilities. The designed Z-source NPC inverter uses two unique X......-shaped inductance-capacitance (LC) impedance networks that are connected between two isolated dc input power sources and its inverter circuitry for boosting its AC output voltage. Through the design of an appropriate pulsewidth-modulation (PWM) algorithm, the two impedance networks can be short......-circuited sequentially (without shooting through the inverter full DC link) for implementing the ldquonearest-three-vectorrdquo modulation principle with minimized harmonic distortion and device commutations per half carrier cycle while performing voltage boosting. With only a slight modification to the inverter PWM...

  13. On the mobility of fission-gas bubbles

    International Nuclear Information System (INIS)

    Nichols, F.A.; Ronchi, C.

    1986-01-01

    The importance of bubble migration in fuel swelling and fission-product release remains a controversial topic in spite of a great deal of research. For steady state analyses some authors ignore bubble motion totally, whereas others use mobilities (based on out-of-pile measurements) which are far below the theoretical diffusion-control predictions. Under transient conditions some continue to use zero or low bubble mobilities, whereas others invoke higher mobilities. Experimental information on mobility of bubbles under irradiation conditions is very limited, but supports the theoretical values for bubble sizes above 1 μm. The authors discuss here some interesting new results which may provide direct evidence for in-pile mobilities comparable with surface-diffusion control predictions for much smaller bubbles (<20nm), where out-of-pile studies indicate greatly reduced mobilities. A brief summary is presented of information available for bubble mobilities, both in- and out-of-pile

  14. Status and Needs of Power Electronics for Photovoltaic Inverters

    Science.gov (United States)

    Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.

    2002-06-01

    Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.

  15. A Review of the Multilevel Slug Test for Characterizing Aquifer Heterogeneity

    Directory of Open Access Journals (Sweden)

    Chia-Shyun Chen

    2012-01-01

    Full Text Available All aquifers are heterogeneous to a certain degree. The spatial distribution of hydraulic conductivity K(x, y, z, or aquifer heterogeneity, significantly influences the groundwater flow movement and associated solute transport. Of particular importance in designing an in-situ remediation plan is a knowledge of low-K layers because they are less accessible to remedial agents and form a bottleneck in remediation. The characterization of aquifer heterogeneity is essential to the solution of many practical and scientific groundwater problems. This article reviews the field technique using the multilevel slug test (MLST, which determines a series of K estimates at depths of interest in a well by making use of a double-packer system. The K(z obtained manifests the vertical variation of hydraulic conductivity in the vicinity of the test well, and the combination of K(z from different wells gives rise to a three-dimensional description of K(x, y, z. The MLST response is rather sensitive to hydraulic conductivity variation; e.g., it is oscillatory for highly permeable conditions (K > 5 × 10-4 m s-1 and a nonoscillatory for K < 5 × 10-4 m s-1. In this article we discuss the instrumentation of the double-packer system, the implementation of the depth-specific slug test, the data analysis methods for a spectrum of response characteristics usually observed in the field, and field applications of the MLST.

  16. Bubbles and breaking waves

    Science.gov (United States)

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  17. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  18. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    Full text: In this study, air bubble motion in stagnant water condition in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature

  19. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    In this study, air bubble motion in stagnant water condition in a vertical pipe of 4.6 cm diameter is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature. (author)

  20. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  1. Opisthobranchia (Mollusca, Gastropoda – more than just slimy slugs. Shell reduction and its implications on defence and foraging

    Directory of Open Access Journals (Sweden)

    Wägele Heike

    2005-02-01

    Full Text Available Abstract Background In general shell-less slugs are considered to be slimy animals with a rather dull appearance and a pest to garden plants. But marine slugs usually are beautifully coloured animals belonging to the less-known Opisthobranchia. They are characterized by a large array of interesting biological phenomena, usually related to foraging and/or defence. In this paper our knowledge of shell reduction, correlated with the evolution of different defensive and foraging strategies is reviewed, and new results on histology of different glandular systems are included. Results Based on a phylogeny obtained by morphological and histological data, the parallel reduction of the shell within the different groups is outlined. Major food sources are given and glandular structures are described as possible defensive structures in the external epithelia, and as internal glands. Conclusion According to phylogenetic analyses, the reduction of the shell correlates with the evolution of defensive strategies. Many different kinds of defence structures, like cleptocnides, mantle dermal formations (MDFs, and acid glands, are only present in shell-less slugs. In several cases, it is not clear whether the defensive devices were a prerequisite for the reduction of the shell, or reduction occurred before. Reduction of the shell and acquisition of different defensive structures had an implication on exploration of new food sources and therefore likely enhanced adaptive radiation of several groups.

  2. Inverters for photovoltaics: quality assurance

    International Nuclear Information System (INIS)

    Graf, J.D.; Haeberlin, H.

    2000-01-01

    This project-overview published by the University of Applied Science in Burgdorf, Switzerland, looks back at the history of the university's testing laboratory for inverters for use in photovoltaic installations and discusses the work done there. After its move from Oberburg to Burgdorf in the early nineties, the laboratory was equipped to provide testing facilities for inverters up to 60 kW. Additions have been made to the infrastructure since then to facilitate the testing of various types of inverter produced in Switzerland and other countries. The measurements that can be carried out, including DC-AC conversion efficiency, harmonics, RF interference, islanding, sensitivity to tele-control signals, turn-on power and operating voltage range are described. The improvement in the quality of the inverters tested is discussed and the importance of continued testing as new manufacturers come onto the market is emphasised. The installation of further testing equipment, such as a 25 kW solar generator simulator and apparatus for the testing of maximum-power-tracking efficiency is discussed

  3. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  4. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bifurcation scenarios for bubbling transition.

    Science.gov (United States)

    Zimin, Aleksey V; Hunt, Brian R; Ott, Edward

    2003-01-01

    Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.

  6. On Stability of Voltage Source Inverters in Weak Grids

    DEFF Research Database (Denmark)

    Adib, Aswad; Mirafza, Behrooz; Wang, Xiongfei

    2018-01-01

    As the number of inverters increases in the power grid, the stability of grid-tied inverters becomes an important concern for the power industry. In particular, a weak grid can lead to voltage fluctuations at the inverter terminals and consequently cause inverter instability. In this paper, impac...

  7. Hardness of deriving invertible sequences from finite state machines

    DEFF Research Database (Denmark)

    Hierons, Robert M.; Mousavi, Mohammad Reza; Thomsen, Michael Kirkedal

    2017-01-01

    invertible sequences; these allow one to construct additional UIOs once a UIO has been found. We consider three optimisation problems associated with invertible sequences: deciding whether there is a (proper) invertible sequence of length at least K; deciding whether there is a set of invertible sequences...

  8. The Minnaert bubble: an acoustic approach

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  9. A bubble detection system for propellant filling pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng [Robotics Institute, Beihang University, 100191 Beijing (China)

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  10. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  11. Towards Efficient Positional Inverted Index †

    Directory of Open Access Journals (Sweden)

    Petr Procházka

    2017-02-01

    Full Text Available We address the problem of positional indexing in the natural language domain. The positional inverted index contains the information of the word positions. Thus, it is able to recover the original text file, which implies that it is not necessary to store the original file. Our Positional Inverted Self-Index (PISI stores the word position gaps encoded by variable byte code. Inverted lists of single terms are combined into one inverted list that represents the backbone of the text file since it stores the sequence of the indexed words of the original file. The inverted list is synchronized with a presentation layer that stores separators, stop words, as well as variants of the indexed words. The Huffman coding is used to encode the presentation layer. The space complexity of the PISI inverted list is O ( ( N − n ⌈ log 2 b N ⌉ + ( ⌊ N − n α ⌋ + n × ( ⌈ log 2 b n ⌉ + 1 where N is a number of stems, n is a number of unique stems, α is a step/period of the back pointers in the inverted list and b is the size of the word of computer memory given in bits. The space complexity of the presentation layer is O ( − ∑ i = 1 N ⌈ log 2 p i n ( i ⌉ − ∑ j = 1 N ′ ⌈ log 2 p j ′ ⌉ + N with respect to p i n ( i as a probability of a stem variant at position i, p j ′ as the probability of separator or stop word at position j and N ′ as the number of separators and stop words.

  12. Interferometric measurement of film thickness during bubble blowing

    Science.gov (United States)

    Wang, Z.; Mandracchia, B.; Ferraro, V.; Tammaro, D.; Di Maio, E.; Maffettone, P. L.; Ferraro, P.

    2017-06-01

    In this paper, we propose digital holography in transmission configuration as an effective method to measure the time-dependent thickness of polymeric films during bubble blowing. We designed a complete set of experiments to measure bubble thickness, including the evaluation of the refractive index of the polymer solution. We report the measurement of thickness distribution along the film during the bubble formation process until the bubble`s rupture. Based on those data, the variation range and variation trend of bubble film thickness are clearly measured during the process of expansion to fracture is indicated.

  13. Rational Asset Pricing Bubbles Revisited

    OpenAIRE

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  14. A Hybrid, Current-Source/Voltage-Source Power Inverter Circuit

    DEFF Research Database (Denmark)

    Trzynadlowski, Andrzej M.; Patriciu, Niculina; Blaabjerg, Frede

    2001-01-01

    A combination of a large current-source inverter and a small voltage-source inverter circuits is analyzed. The resultant hybrid inverter inherits certain operating advantages from both the constituent converters. In comparison with the popular voltage-source inverter, these advantages include...... reduced switching losses, improved quality of output current waveforms, and faster dynamic response to current control commands. Description of operating principles and characteristics of the hybrid inverter is illustrated with results of experimental investigation of a laboratory model....

  15. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  16. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  17. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive

    NARCIS (Netherlands)

    Christa, Gregor; Zimorski, Verena; Woehle, Christian; Tielens, Aloysius G M; Wägele, Heike; Martin, William F; Gould, Sven B

    2014-01-01

    Several sacoglossan sea slugs (Plakobranchoidea) feed upon plastids of large unicellular algae. Four species--called long-term retention (LtR) species--are known to sequester ingested plastids within specialized cells of the digestive gland. There, the stolen plastids (kleptoplasts) remain

  18. Switching Characteristics of Ferroelectric Transistor Inverters

    Science.gov (United States)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  19. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  20. On intermittent flow characteristics of gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Jignesh; Banerjee, Jyotirmay, E-mail: jbaner@gmail.com

    2016-12-15

    Highlights: • Unified correlations for intermittent flow characteristics are developed. • Influence of inflow conditions on intermittent flow characteristics is analysed. • Developed correlations can be used for effective design of piping components. - Abstract: Flow visualisation experiments are reported for intermittent regime of gas–liquid two-phase flow. Intermittent flow characteristics, which include plug/slug frequency, liquid plug/slug velocity, liquid plug/slug length, and plug/slug bubble length are determined by image processing of flow patterns captured at a rate of 1600 frames per second (FPS). Flow characteristics are established as a function of inlet superficial velocity of both the phases (in terms of Re{sub SL} and Re{sub SG}). The experimental results are first validated with the existing correlations for slug flow available in literature. It is observed that the correlations proposed in literature for slug flow do not accurately predict the flow characteristics in the plug flow regime. The differences are clearly highlighted in this paper. Based on the measured database for both plug and slug flow regime, modified correlations for the intermittent flow regime are proposed. The correlations reported in the present paper, which also include plug flow characteristics will aid immensely to the effective design and optimization of operating conditions for safer operation of two-phase flow piping systems.

  1. Novel, Four-Switch, Z-Source Three-Phase Inverter

    DEFF Research Database (Denmark)

    Antal, Robert; Muntean, Nicolae; Boldea, Ion

    2010-01-01

    This paper presents a new z-source three phase inverter topology. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (one front-end diode, two inductors and two X connected capacitors). This new topology......, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. In contrast to standard four-switch three-phase inverter which operates at half dc input voltage the proposed four-switch z-source inverter, by self boosting, brings the output voltage at same (or higher......) value as in six switch standard three-phase inverter. The article presents the derivation of the equations describing the operation of the converter based on space vector analysis, validation through digital simulations in PSIM and preliminary experimental results on a laboratory setup with a dsPIC30F...

  2. Non-intuitive bubble effects in reactor and containment technology

    International Nuclear Information System (INIS)

    Moody, F.J.

    1991-01-01

    Most people know a lot about bubbles, including how they rise in liquids and the way they appear when the cap is removed from a bottle of carbonated beverage. A lot of bubble knowledge is obtained from bubbling air through water in aquariums to keep the fish alive and happy, or watching scuba divers feed the sharks in large glass tanks at the local zoo. But innocent bubbles can be sources of structural loadings and sometimes destructive fluid behavior. In fact, there are many non-intuitive effects associated with bubbles which have been discovered by experiments and analyses. It has been necessary to design various reactor and containment components in the nuclear energy industry to accommodate the fact that bubbles can expand like compressed springs, or oscillate, or collapse abruptly, and create structural loads. This paper describes several important phenomena associated with bubble action in nuclear reactor and containment systems and the associated loads exerted. An awareness of these effects can help to avoid unwelcome surprises in general thermal-hydraulic applications when a system is disturbed by bubble behavior. Major topics discussed include expanding and collapsing submerged bubbles, steam chugging and ringout, bubble shattering, surprising hot bubble action in a saturated pool, bubble effects on fluid-structure-interaction, waterhammer from collapsing bubble in pipes, and vapor bubble effects on sound speed in saturated mixtures

  3. Single DNA denaturation and bubble dynamics

    DEFF Research Database (Denmark)

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  4. FORMING OF MECHANICAL CHARACTERISTICS OF THE SLUGS OF TITANIC ALLOY BT23 AT THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2005-01-01

    Full Text Available Тhе changings of the initial plate structure of alloy BT23 at running of high-temperature thermal treatment of large-sized slugs with heating up to 650- 950 eC and cooling on air and in water and their influence on forming of complex of mechanical characteristics are examined.

  5. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  6. A study on the characteristics of upward air-water two-phase flow in a large pipe

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Mishima, Kaichiro; Nakamura, Hideo

    2003-01-01

    Adiabatic upward air-water two-phase flow in a vertical large pipe (inner diameter, D: 0.2 m, ratio of pipe length to diameter, L/D: 60.5.) was experimentally investigated under various inlet conditions. Flow regime was observed and void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with optical four-sensor probe. Characteristics of various flow regimes were analyzed carefully. Both the void fraction and the IAC demonstrated radial wall-peak and core-peak distributions in the undisturbed bubbly flow and the other flow regimes, respectively. The existence of bubbly secondary flow accounts for the core-peak distribution in the agitated bubbly, churn bubbly, churn slug and churn froth flow. The bubble frequency showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the main flow of undisturbed bubbly, agitated bubbly and churn bubbly flow regimes and showed a core peak radial distribution in the churn slug flow. In the latter flow regime, the secondary flow disintegrated the bubbles, resulting in the decrease of the Sauter mean diameter. The measurements of the interfacial direction showed that the bubbly main flow and secondary flow can be displayed by the main flow peak and the secondary flow peak, respectively, in the PDF of the interfacial directional angle between the interfacial direction and the z-axis, η zi . The local average η zi at the bubble front hemispheres reflects the local bubble movement and is in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large pipe quantitatively by the local average η zi . Bubbles in the liquid phase moved in a zigzag line with no inclination toward any direction in the plane vertical to z-axis in the pipe core. The axial differential

  7. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  8. The interaction between multiple bubbles and the free surface

    International Nuclear Information System (INIS)

    Zhang Aman; Yao Xiongliang

    2008-01-01

    The flow is assumed to be potential, and a boundary integral method is used to solve the Laplace equation for the velocity potential to investigate the shape and the position of the bubble. A 3D code to study the bubble dynamics is developed, and the calculation results agree well with the experimental data. Numerical analyses are carried out for the interaction between multiple bubbles near the free surface including in-phase and out-of-phase bubbles. The calculation result shows that the bubble period increases with the decrease of the distance between bubble centres because of the depression effect between multiple bubbles. The depression has no relationship with the free surface and it is more apparent for out-of-phase bubbles. There are great differences in dynamic behaviour between the in-phase bubbles and the out-of-phase bubbles due to the depression effect. Furthermore, the interaction among eight bubbles is simulated with a three-dimensional model, and the evolving process and the relevant physical phenomena are presented. These phenomena can give a reference to the future work on the power of bubbles induced by multiple charges exploding simultaneously or continuously

  9. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  10. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  11. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas–liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  12. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  13. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  14. Transistorized PWM inverter-induction motor drive system

    Science.gov (United States)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  15. Hydrodynamics in a swarm of rising bubbles

    International Nuclear Information System (INIS)

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  16. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  17. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  18. Microstreaming from Sessile Semicylindrical Bubbles

    Science.gov (United States)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  19. Detailed modeling of hydrodynamics mass transfer and chemical reactions in a bubble column using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas¿liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  20. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  1. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  2. Sonochemistry and the acoustic bubble

    CERN Document Server

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  3. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  4. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  5. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  6. Structure and kinematics of bubble flow

    International Nuclear Information System (INIS)

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  7. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  8. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  9. Five-Level Z-Source Neutral Point-Clamped Inverter

    DEFF Research Database (Denmark)

    Gao, F.; Loh, P.C.; Blaabjerg, Frede

    2007-01-01

    This paper proposes a five-level Z-source neutralpoint- clamped (NPC) inverter with two Z-source networks functioning as intermediate energy storages coupled between dc sources and NPC inverter circuitry. Analyzing the operational principles of Z-source network with partial dclink shoot......-through scheme reveals the hidden theories in the five-level Z-source NPC inverter unlike the operational principle appeared in the general two-level Z-source inverter, so that the five-level Z-source NPC inverter can be designed with the modulation of carrier-based phase disposition (PD) or alternative phase...

  10. On Bubble Rising in Countercurrent Flow

    Czech Academy of Sciences Publication Activity Database

    Večeř, M.; Leštinský, P.; Wichterle, K.; Růžička, Marek

    2012-01-01

    Roč. 10, č. 2012 (2012), A30 ISSN 1542-6580 R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0069 Institutional support: RVO:67985858 Keywords : ellipsoidal bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.790, year: 2011

  11. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  12. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    Science.gov (United States)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of

  13. Formation of soap bubbles by gas jet

    OpenAIRE

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  14. Analysis of Magnetically-Coupled Impedance Source Three-Phase Four-Switch Inverters

    DEFF Research Database (Denmark)

    Li, Kerui; Abdelhakim, Ahmed; Yang, Yongheng

    2017-01-01

    In this paper, magnetically-coupled impedance source (MCIS) three-phase four-switch inverters are introduced for renewable energy applications. This inverter utilizes two single-phase MCIS inverters to obtain a three-phase output, where less component-count is achieved in order to reduce the inve......In this paper, magnetically-coupled impedance source (MCIS) three-phase four-switch inverters are introduced for renewable energy applications. This inverter utilizes two single-phase MCIS inverters to obtain a three-phase output, where less component-count is achieved in order to reduce...... the inverter volume. On the other hand, as a result of the reduced number of switches, the proposed inverter suffers from higher voltage stresses. The MCIS inverters are first reviewed. Then, the modulation and operation principle of the MCIS three-phase inverter topology are introduced before sizing...

  15. Formation of soap bubbles by gas jet

    Science.gov (United States)

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  16. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  17. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  18. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  19. Comparative study of SiC- and Si-based photovoltaic inverters

    Science.gov (United States)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Shirahata, Yasuhiro; Ushijima, Kazufumi; Murozono, Mikio

    2017-01-01

    This article reports comparative study of 150-300 W class photovoltaic inverters (Si inverter, SiC inverter 1, and SiC inverter 2). In these sub-kW class inverters, the ON-resistance was considered to have little influence on the efficiency. The developed SiC inverters, however, have exhibited an approximately 3% higher direct current (DC)-alternating current (AC) conversion efficiency as compared to the Si inverter. Power loss analysis indicated a reduction in the switching and reverse recovery losses of SiC metal-oxide-semiconductor field-effect transistors used for the DC-AC converter is responsible for this improvement. In the SiC inverter 2, an increase of the switching frequency up to 100 kHz achieved a state-of-the-art combination of the weight (1.25 kg) and the volume (1260 cm3) as a 150-250 W class inverter. Even though the increased switching frequency should cause the increase of the switching losses, the SiC inverter 2 exhibited an efficiency comparable to the SiC inverter 1 with a switching frequency of 20 kHz. The power loss analysis also indicated a decreased loss of the DC-DC converter built with SiC Schottky barrier diodes led to the high efficiency for its increased switching frequency. These results clearly indicated feasibility of SiC devices even for sub-kW photovoltaic inverters, which will be available for the applications where compactness and efficiency are of tremendous importance.

  20. Effects of Gas Dynamics on Rapidly Collapsing Bubbles

    OpenAIRE

    Bauman, Spenser; Fomitchev-Zamilov, Max

    2013-01-01

    The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...

  1. Simple improvements to classical bubble nucleation models.

    Science.gov (United States)

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  2. Sonoluminescing Air Bubbles Rectify Argon

    NARCIS (Netherlands)

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  3. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  4. A note on effects of rational bubble on portfolios

    Science.gov (United States)

    Wang, Chan; Nie, Pu-yan

    2018-02-01

    In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.

  5. Bubble fusion: Preliminary estimates

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  6. From Rising Bubble to RNA/DNA and Bacteria

    Science.gov (United States)

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  7. Application of coalescence and breakup models in a discrete bubble model for bubble columns

    NARCIS (Netherlands)

    van den Hengel, E.I.V.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    In this work, a discrete bubble model (DBM) is used to investigate the hydrodynamics, coalescence, and breakup occurring in a bubble column. The DBM, originally developed by Delnoij et al. (Chem. Eng. Sci. 1997, 52, 1429-1458; Chem. Eng. Sci. 1999, 54, 2217-2226),1,2 was extended to incorporate

  8. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Science.gov (United States)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  9. Evidence that human papillomavirus causes inverted papilloma is sparse.

    Science.gov (United States)

    Justice, Jeb M; Davis, Kern M; Saenz, Daniel A; Lanza, Donald C

    2014-12-01

    Controversy exists regarding the pathogenesis of inverted papilloma as it relates to the involvement of human papillomavirus (HPV). The purpose of this report is to describe the prevalence of HPV in nondysplastic, "early inverted papilloma" and to summarize HPV detection rates in the general population and in other HPV related neoplasia. This case series report characterizes consecutive inverted papilloma patients from January 2005 to August 2012 with regard to smoking history, dysplasia, and HPV detection rates. Presence or absence of low/high risk HPV was determined by standardized in situ hybridization DNA probes. Medline literature review was performed to determine the prevalence of HPV in inverted papilloma without moderate or severe dysplasia. Thirty-six consecutive patients were identified with an average age of 63.6 (range, 40-84) years; gender: 23 men, 13 women. More than half (55%) were active or former smokers (14% active and 41% former). High/low risk HPV was present in 1 in 36 (2.7%) patients and 1 in 36 (2.7%) had mild dysplasia. In the literature review: (1) HPV was detected in 16.4% of inverted papilloma without dysplasia; (2) oral cavity HPV detection was 4.2% to 11.4% in the normal population; and (3) HPV was normally detected in 85% to 95% of HPV-related neoplasia. Given histological features of inverted papilloma and comparatively low detection rates of HPV in inverted papilloma without dysplasia (2.7%), as well as the summary of the world literature, HPV is not related to the initial pathogenesis of inverted papilloma or inverted papilloma's tendency to persist or recur. It is postulated that since inverted papilloma is more an inflammatory polyp, it is susceptible to secondary HPV infection because of its metaplasia. Tobacco and other causes of respiratory epithelium remodeling are more plausible explanations for the initial tissue transformation to inverted papilloma. © 2014 ARS-AAOA, LLC.

  10. Theoretical aspects of appearing of bubbles in economy

    Directory of Open Access Journals (Sweden)

    Pronoza Pavlo V.

    2014-01-01

    Full Text Available The article considers theoretical aspects of appearing of bubbles in economy. It analyses vies of scientists regarding the essence of this phenomenon and, with the help of content analysis, specifies the essence of the bubble notion in economy. It considers main stages of appearance of such bubbles. It offers classification of their types. It analyses pre-requisites of appearance of bubbles in economy and their features. It considers main existing approaches to detection and modelling appearance of bubbles. It proves that bubbles negatively influence economy of the countries, that is why, the problem of their detection and prevention is one of the central problems in the process of development of policy of state regulation of economy.

  11. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  12. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  13. Normal endometrial stromal cells regulate 17β-estradiol-induced epithelial-mesenchymal transition via slug and E-cadherin in endometrial adenocarcinoma cells in vitro.

    Science.gov (United States)

    Zhang, Hui; Li, Hongyan; Qi, Shasha; Liu, Zhao; Fu, Yibing; Li, Mingjiang; Zhao, Xingbo

    2017-01-01

    Stroma-tumor communication participates in the pathogenesis of endometrial carcinomas. In previous studies, we found that normal stromal cells inhibited the growth of endometrial carcinoma cells. Here, we investigated the role of normal stromal cells in the epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells and explored the possible mechanism implied. We found that conditioned medium (CM) by normal endometrial stromal cells (NSC) reduced cell growth and induced cell apoptosis in Ishikawa cells. CM by NSC inhibited 17β-estradiol-induced cell growth and apoptosis decrease in Ishikawa cells. Moreover, CM by NSC inhibited the migration and invasion, and 17β-estradiol-induced migration and invasion in Ishikawa cells. Meanwhile, CM by NSC decreased Slug expression and 17β-estradiol-induced Slug expression, increased E-cadherin expression and abolished 17β-estradiol-induced E-cadherin reduction in Ishikawa cells. In conclusion, normal stromal factors can inhibit 17β-estradiol-induced cell proliferation and apoptosis inhibition, and abolished 17β-estradiol-induced EMT in endometrial cancer cell via regulating E-cadherin and Slug expression.

  14. The little holographic bubble chambers

    International Nuclear Information System (INIS)

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  15. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    Aluminum is one of our most important materials and finds major use in transportation (e.g. aircraft) and packaging (e.g. beverage cans). According to International Aluminium Institute statistics (www.world-aluminium.org) 23.46 million metric tons of aluminum were produced last year in the electrolytic cells used to make this metal, continuing an increase seen over the previous four years and sustained for the first half of this year. 23% of this ?primary? production was in North America. A smaller, yet important, source of the nation?s aluminum is ''secondary production'', that is the recycling of aluminum products such as beverage cans. The Aluminum Association reports that 51.4 billion beverage cans were recycled in the U.S. last year (compared to 98.9 billion new cans shipped). Whether from primary or secondary production, it is typically necessary to treat the aluminum to remove small quantities of impurities or unwanted alloying agents before the metal can be further processed and sold. In the case of primary aluminum it is the removal of trace impurities such as sodium that is needed; in the case of recycled aluminum it is the removal of alloy constituents, such as magnesium which is, after aluminum, the principal metal used in beverage cans. The procedure commonly used is known as ''gas fluxing'' and entails bubbling a reactive mixture of chlorine and argon through the molten metal. The intent is that the chlorine react with the impurities to form compounds that can easily separate from the aluminum. Unfortunately a fraction of the chlorine forms volatile aluminum chloride that leaves the fluxing unit. This represents a loss of aluminum product; furthermore the aluminum chloride can react with atmospheric moisture to form hydrogen chloride gas with impact on workers and the environment. Some of these emissions are controlled by bag houses but some escape. For example EPA's Toxic Release Inventory for 1997 has stack emissions of chlorides and chlorine

  16. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  17. Comparison of cavitation bubbles evolution in viscous media

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2018-01-01

    Full Text Available There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  18. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  19. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  20. Dynamics of micro-bubble sonication inside a phantom vessel

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2013-01-01

    A model for sonicated micro-bubble oscillations inside a phantom vessel is proposed. The model is not a variant of conventional Rayleigh-Plesset equation and is obtained from reduced Navier-Stokes equations. The model relates the micro-bubble oscillation dynamics with geometric and acoustic parameters in a consistent manner. It predicts micro-bubble oscillation dynamics as well as micro-bubble fragmentation when compared to the experimental data. For large micro-bubble radius to vessel diameter ratios, predictions are damped, suggesting breakdown of inherent modeling assumptions for these cases. Micro-bubble response with acoustic parameters is consistent with experiments and provides physical insight to the micro-bubble oscillation dynamics.