WorldWideScience

Sample records for inversion recovery magnetic

  1. Quantitative Magnetization Transfer Imaging in Human Brain at 3 T via Selective Inversion Recovery

    OpenAIRE

    Dortch, Richard D.; Li, Ke; Gochberg, Daniel F.; Welch, E. Brian; Dula, Adrienne N.; Tamhane, Ashish A.; Gore, John C.; Smith, Seth A.

    2011-01-01

    Quantitative magnetization transfer imaging yields indices describing the interactions between free water protons and immobile, macromolecular protons—including the macromolecular to free pool size ratio (PSR) and the rate of magnetization transfer between pools kmf. This study describes the first implementation of the selective inversion recovery quantitative magnetization transfer method on a clinical 3.0-T scanner in human brain in vivo. Selective inversion recovery data were acquired at 1...

  2. Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).

    Science.gov (United States)

    Goldfarb, James W

    2010-04-01

    The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.

  3. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain.

    Science.gov (United States)

    Dortch, Richard D; Bagnato, Francesca; Gochberg, Daniel F; Gore, John C; Smith, Seth A

    2018-03-24

    To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (t I/ t D ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R 1 of free water (R 1f ), and the rate of MT exchange (k mf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal t I /t D combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. Two optimal sampling schemes were determined: (i) a 5-point scheme (k mf estimated) and (ii) a 4-point scheme (k mf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing k mf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB 0 , B1+, and T 1 ) when optimized t I -t D combinations are selected. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery.

    Science.gov (United States)

    Xu, Junzhong; Li, Ke; Zu, Zhongliang; Li, Xia; Gochberg, Daniel F; Gore, John C

    2014-03-01

    Magnetization transfer (MT) provides an indirect means to detect noninvasively variations in macromolecular contents in biological tissues, but, so far, there have been only a few quantitative MT (qMT) studies reported in cancer, all of which used off-resonance pulsed saturation methods. This article describes the first implementation of a different qMT approach, selective inversion recovery (SIR), for the characterization of tumor in vivo using a rodent glioma model. The SIR method is an on-resonance method capable of fitting qMT parameters and T1 relaxation time simultaneously without mapping B0 and B1 , which is very suitable for high-field qMT measurements because of the lower saturation absorption rate. The results show that the average pool size ratio (PSR, the macromolecular pool versus the free water pool) in rat 9 L glioma (5.7%) is significantly lower than that in normal rat gray matter (9.2%) and white matter (17.4%), which suggests that PSR is potentially a sensitive imaging biomarker for the assessment of brain tumor. Despite being less robust, the estimated MT exchange rates also show clear differences from normal tissues (19.7 Hz for tumors versus 14.8 and 10.2 Hz for gray and white mater, respectively). In addition, the influence of confounding effects, e.g. B1 inhomogeneity, on qMT parameter estimates is investigated with numerical simulations. These findings not only help to better understand the changes in the macromolecular contents of tumors, but are also important for the interpretation of other imaging contrasts, such as chemical exchange saturation transfer of tumors. Copyright © 2013 John Wiley & Sons, Ltd.

  5. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  6. Evaluation of myelination and myelination disorders with turbo inversion recovery magnetic resonance imaging

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Schuierer, G.; Link, T.M.; Moeller, H.; Bick, U.; Peters, P.E.; Kurlemann, G.

    1997-01-01

    The aim of our work was to determine the efficacy of turbo inversion recovery spin echo (TIRSE) pulse sequences in differentiating patients with normal and abnormal myelination. Twenty neurological normal children (aged 5 months to 12 years) as well as 65 children presenting clinically with neurologic developmental deficits (aged 2 months to 10 years) were examined using TIRSE, T1-weighted SE, and T2-weighted turbo SE pulse sequences. Contrast-to-noise-ratio (CNR) between myelinated white and gray matter was compared for the different pulse sequences. In addition, two readers analyzed all images qualitatively by consensus. The CNR values were significantly higher on TIRSE images as compared with conventional images (p < 0.05). Forty-two neurologically abnormal patients displayed a normal myelination on all sequences, whereas 23 showed an abnormal myelination. The TIRSE sequence provided a sensitive and specific depiction of an abnormal myelination in all of these patients. The TIRSE sequence provided additional information to conventional pulse sequences in determining myelination disorders in children, especially in children older than 2 years. (orig.)

  7. An Inversion Recovery NMR Kinetics Experiment

    Science.gov (United States)

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  8. Magnetic resonance imaging of lipoma and liposarcoma: potential of short tau inversion recovery as a technique of fat suppression

    International Nuclear Information System (INIS)

    Pang, A.K.K.; Hughes, T.

    2000-01-01

    The present limited retrospective study was performed to assess MR imaging of lipomatous tumours of the musculoskeletal system and to evaluate the potential of the T2 short tau inversion-recovery (STIR) technique for differentiating lipomas from liposarcomas. Magnetic resonance imaging of 12 patients with lipomatous tumours of the musculoskeletal system (eight benign lipomas, three well differentiated liposarcomas and one myxoid liposarcoma) were reviewed. Benign lipomas were usually superficial and showed homogeneity on T1- and T2-weighted spin echo sequences. Full suppression at T2-STIR was readily demonstrated. In contrast the liposarcomas in the present series were all deep-seated. Two well-differentiated liposarcomas showed homogeneity at long and short relaxation time (TR) but failed to show complete suppression at T2-STIR. One case of well-differentiated liposarcoma (dedifferentiated liposarcoma) and one of myxoid liposarcoma showed mild and moderate heterogeneity at T1 and T2, respectively and posed no difficulty in being diagnosed correctly. In conclusion, short and long TR in combination with T2 STIR show promise in differentiating benign from malignant lipomatous tumours of the musculoskeletal system, when taken in combination with the position of the tumour. Copyright (1999) Blackwell Science Pty Ltd

  9. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Il; Han, Ji Won; Oh, San Yeo Wool; Kim, Tae Hui [Seoul National University Bundang Hospital, Department of Neuropsychiatry, Seongnam, Gyeonggi-do (Korea, Republic of); Lee, Jung Jae; Lee, Eun Young [Kyungbook National University Chilgok Hospital, Department of Psychiatry, Buk-gu, Daegu (Korea, Republic of); MacFall, James R. [Duke University Medical Center, Neuropsychiatric Imaging Research Laboratory, Durham, NC (United States); Duke University Medical Center, Department of Radiology, Durham, NC (United States); Payne, Martha E. [Duke University Medical Center, Neuropsychiatric Imaging Research Laboratory, Durham, NC (United States); Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC (United States); Kim, Jae Hyoung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam, Gyeonggi-do (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Kim, Ki Woong [Seoul National University Bundang Hospital, Department of Neuropsychiatry, Seongnam, Gyeonggi-do (Korea, Republic of); Seoul National University College of Medicine, Department of Psychiatry, Jongno-gu, Seoul (Korea, Republic of); Seoul National University College of Natural Sciences, Department of Brain and Cognitive Science, Gwanak-gu, Seoul (Korea, Republic of)

    2014-04-15

    White matter hyperintensities (WMHs) are regions of abnormally high intensity on T2-weighted or fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Accurate and reproducible automatic segmentation of WMHs is important since WMHs are often seen in the elderly and are associated with various geriatric and psychiatric disorders. We developed a fully automated monospectral segmentation method for WMHs using FLAIR MRIs. Through this method, we introduce an optimal threshold intensity (I{sub O}) for segmenting WMHs, which varies with WMHs volume (V{sub WMH}), and we establish the I{sub O} -V{sub WMH} relationship. Our method showed accurate validations in volumetric and spatial agreements of automatically segmented WMHs compared with manually segmented WMHs for 32 confirmatory images. Bland-Altman values of volumetric agreement were 0.96 ± 8.311 ml (bias and 95 % confidence interval), and the similarity index of spatial agreement was 0.762 ± 0.127 (mean ± standard deviation). Furthermore, similar validation accuracies were obtained in the images acquired from different scanners. The proposed segmentation method uses only FLAIR MRIs, has the potential to be accurate with images obtained from different scanners, and can be implemented with a fully automated procedure. In our study, validation results were obtained with FLAIR MRIs from only two scanner types. The design of the method may allow its use in large multicenter studies with correct efficiency. (orig.)

  10. Application of variable threshold intensity to segmentation for white matter hyperintensities in fluid attenuated inversion recovery magnetic resonance images

    International Nuclear Information System (INIS)

    Yoo, Byung Il; Han, Ji Won; Oh, San Yeo Wool; Kim, Tae Hui; Lee, Jung Jae; Lee, Eun Young; MacFall, James R.; Payne, Martha E.; Kim, Jae Hyoung; Kim, Ki Woong

    2014-01-01

    White matter hyperintensities (WMHs) are regions of abnormally high intensity on T2-weighted or fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Accurate and reproducible automatic segmentation of WMHs is important since WMHs are often seen in the elderly and are associated with various geriatric and psychiatric disorders. We developed a fully automated monospectral segmentation method for WMHs using FLAIR MRIs. Through this method, we introduce an optimal threshold intensity (I O ) for segmenting WMHs, which varies with WMHs volume (V WMH ), and we establish the I O -V WMH relationship. Our method showed accurate validations in volumetric and spatial agreements of automatically segmented WMHs compared with manually segmented WMHs for 32 confirmatory images. Bland-Altman values of volumetric agreement were 0.96 ± 8.311 ml (bias and 95 % confidence interval), and the similarity index of spatial agreement was 0.762 ± 0.127 (mean ± standard deviation). Furthermore, similar validation accuracies were obtained in the images acquired from different scanners. The proposed segmentation method uses only FLAIR MRIs, has the potential to be accurate with images obtained from different scanners, and can be implemented with a fully automated procedure. In our study, validation results were obtained with FLAIR MRIs from only two scanner types. The design of the method may allow its use in large multicenter studies with correct efficiency. (orig.)

  11. Computation of inverse magnetic cascades

    International Nuclear Information System (INIS)

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed

  12. Evaluation of Possible Prognostic Factors of Fulminant Acute Disseminated Encephalomyelitis (ADEM) on Magnetic Resonance Imaging with Fluid-Attenuated Inversion Recovery (FLAIR) and Diffusion-Weighted Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, F.Y.; Aslan, H.; Coskun, M. (Dept. of Radiology, Faculty of Medicine, Baskent Univ., Ankara (Turkey))

    2009-04-15

    Background: Acute disseminated encephalomyelitis (ADEM) may be a rapidly progressive disease with different clinical outcomes. Purpose: To investigate the radiological findings of fulminant ADEM on diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) images, and to correlate these findings with clinical outcome. Material and Methods: Initial and follow-up magnetic resonance imaging (MRI) scans in eight patients were retrospectively evaluated for distribution of lesions on FLAIR images and presence of hemorrhage or contrast enhancement. DWI of the patients was evaluated as to cytotoxic versus vasogenic edema. The clinical records were analyzed, and MRI results and clinical outcome were correlated. Results: Four of the eight patients died, three had full recovery, and one had residual cortical blindness. The distribution of the hyperintense lesions on FLAIR sequence was as follows: frontal (37.5%), parietal (50%), temporal (37.5%), occipital (62.5%), basal ganglia (50%), pons (37.5%), mesencephalon (37.5%), and cerebellum (50%). Three of the patients who died had brainstem involvement. Two patients had a cytotoxic edema, one of whom died, and the other developed cortical blindness. Six patients had vasogenic edema: three of these patients had a rapid progression to coma and died; three of them recovered. Conclusion: DWI is not always helpful for evaluating the evolution or predicting the outcome of ADEM. However, extension of the lesions, particularly brainstem involvement, may have an influence on the prognosis.

  13. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    International Nuclear Information System (INIS)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar

    2017-01-01

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol

  14. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar [SGRR Institute of Medical and Health Sciences, Patel Nagar, Dehradun (India)

    2017-11-15

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.

  15. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  16. Study of optimal flip angle for inversion-recovery gradient echo method in delayed contrast-enhanced cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ogawa, Masashi; Matsumura, Yoshio; Tsuchihashi, Toshio

    2013-01-01

    Delayed contrast-enhanced cardiac magnetic resonance imaging (MRI) is a valuable tool for detecting myocardial infarction and assessing myocardial viability. The standard viability MRI technique is the inversion-recovery gradient echo (IR-GRE) method. Several previous studies have demonstrated that this imaging technique provides superior image quality at high magnetic field strengths, e.g., 3.0 T. However, there are numerous possible flip angles. We investigated the optimal flip angle of IR-GRE in delayed contrast-enhanced cardiac MRI. Phantoms were made that modeled infarcted myocardium and normal myocardium after administration of contrast agent. To determine optimal flip angle, we compared the contrast-to-noise ratio (CNR) among these phantoms and evaluated the degree of artifacts induced by increased flip angle. The flip angle that showed the highest CNR for 2D IR-GRE and 3D IR-GRE was 30deg/15deg at 1.5 T and 25deg/15deg at 3.0 T. The flip angle that showed the highest CNR was independent of R-R interval. Streak artifacts induced by increased flip angle tended to occur more readily at 3.0 T than 1.5 T. The optimal flip angle for 2D IR-GRE and 3D IR-GRE at 1.5 T was 30deg and 15deg, respectively. At 3.0 T, taking into account the results for both CNR and streak artifacts, we concluded the optimal flip angle of 2D IR-GRE to be 15-20deg. (author)

  17. Extent of myocardium at risk for left anterior descending artery, right coronary artery, and left circumflex artery occlusion depicted by contrast-enhanced steady state free precession and T2-weighted short tau inversion recovery magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nordlund, David; Heiberg, Einar; Carlsson, Marcus

    2016-01-01

    Background - Contrast-enhanced steady state free precession (CE-SSFP) and T2-weighted short tau inversion recovery (T2-STIR) have been clinically validated to estimate myocardium at risk (MaR) by cardiovascular magnetic resonance while using myocardial perfusion single-photon emission computed...... tomography as reference standard. Myocardial perfusion single-photon emission computed tomography has been used to describe the coronary perfusion territories during myocardial ischemia. Compared with myocardial perfusion single-photon emission computed tomography, cardiovascular magnetic resonance offers...... to show the main coronary perfusion territories using CE-SSFP and T2-STIR. The good agreement between CE-SSFP and T2-STIR from this study and myocardial perfusion single-photon emission computed tomography from previous studies indicates that these 3 methods depict MaR accurately in individual patients...

  18. Magnetic resonance imaging of pelvic entheses - a systematic comparison between short tau inversion recovery (STIR) and T1-weighted, contrast-enhanced, fat-saturated sequences

    International Nuclear Information System (INIS)

    Klang, Eyal; Aharoni, Dvora; Rimon, Uri; Eshed, Iris; Hermann, Kay-Geert; Herman, Amir; Shazar, Nachshon

    2014-01-01

    To assess the contribution of contrast material in detecting and evaluating enthesitis of pelvic entheses by MRI. Sixty-seven hip or pelvic 1.5-T MRIs (30:37 male:female, mean age: 53 years) were retrospectively evaluated for the presence of hamstring and gluteus medius (GM) enthesitis by two readers (a resident and an experienced radiologist). Short tau inversion recovery (STIR) and T1-weighted pre- and post-contrast (T1+Gd) images were evaluated by each reader at two sessions. A consensus reading of two senior radiologists was regarded as the gold standard. Clinical data was retrieved from patients' referral form and medical files. Cohen's kappa was used for intra- and inter-observer agreement calculation. Diagnostic properties were calculated against the gold standard reading. A total of 228 entheses were evaluated. Gold standard analysis diagnosed 83 (36 %) enthesitis lesions. Intra-reader reliability for the experienced reader was significantly (p = 0.0001) higher in the T1+Gd images compared to the STIR images (hamstring: k = 0.84/0.45, GM: k = 0.84/0.47). Sensitivity and specificity increased from 0.74/0.8 to 0.87/0.9 in the STIR images and T1+Gd sequences. Intra-reader reliability for the inexperienced reader was lower (p > 0.05). Evidence showing that contrast material improves the reliability, sensitivity, and specificity of detecting enthesitis supports its use in this setting. (orig.)

  19. Efficacy of double inversion recovery magnetic resonance imaging for the evaluation of the synovium in the femoro-patellar joint without contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ye Na; Jin, Wook; Jahng, Geon-Ho; Park, Yong Sung; Park, So Young [Kyung Hee University School of Medicine, Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of); Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Bucheon-si, Gyeonggi-do (Korea, Republic of); Yun, Seong Jong [Kyung Hee University School of Medicine, Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of); Department of Radiology, Aerospace Medical Center, Republic of Korea Air Force, Cheongwon-gun, Chungcheongbuk-do (Korea, Republic of); Park, Ji Seon; Ryu, Kyung Nam [Kyung Hee University Hospital, Department of Radiology, Seoul (Korea, Republic of)

    2018-02-15

    To investigate the efficacy of double inversion recovery (DIR) sequence for evaluating the synovium of the femoro-patellar joint without contrast enhancement (CE). Two radiologists independently evaluated the axial DIR and CE T1-weighted fat-saturated (CET1FS) images of 33 knees for agreement; the visualisation and distribution of the synovium were evaluated using a four-point visual scaling system at each of the five levels of the femoro-patellar joint and the location of the thickest synovium. The maximal synovial thickness at each sequence was measured by consensus. The interobserver agreement was good (κ = 0.736) for the four-point scale, and was excellent for the location of the thickest synovium on DIR and CET1FS (κ = 0.955 and 0.954). The intersequential agreement for the area with the thickest synovium was also excellent (κ = 0.845 and κ = 0.828). The synovial thickness on each sequence showed excellent correlation (r = 0.872). The DIR showed as good a correlation as CET1FS for the evaluation of the synovium at the femoro-patellar joint. DIR may be a useful MR technique for evaluating the synovium without CE. (orig.)

  20. Modelling and inversion of local magnetic anomalies

    International Nuclear Information System (INIS)

    Quesnel, Y; Langlais, B; Sotin, C; Galdéano, A

    2008-01-01

    We present a method—named as MILMA for modelling and inversion of local magnetic anomalies—that combines forward and inverse modelling of aeromagnetic data to characterize both magnetization properties and location of unconstrained local sources. Parameters of simple-shape magnetized bodies (cylinder, prism or sphere) are first adjusted by trial and error to predict the signal. Their parameters provide a priori information for inversion of the measurements. Here, a generalized nonlinear approach with a least-squares criterion is adopted to seek the best parameters of the sphere (dipole). This inversion step allows the model to be more objectively adjusted to fit the magnetic signal. The validity of the MILMA method is demonstrated through synthetic and real cases using aeromagnetic measurements. Tests with synthetic data reveal accurate results in terms of depth source, whatever be the number of sources. The MILMA method is then used with real measurements to constrain the properties of the magnetized units of the Champtoceaux complex (France). The resulting parameters correlate with the crustal structure and properties revealed by other geological and geophysical surveys in the same area. The MILMA method can therefore be used to investigate the properties of poorly constrained lithospheric magnetized sources

  1. Phase sensitive reconstruction of T1-weighted inversion recovery in the evaluation of the cervical cord lesions in multiple Sclerosis; is it similarly eligible in 1.5 T magnet fields?

    Science.gov (United States)

    Shayganfar, A; Sarrami, A H; Fathi, S; Shaygannejad, V; Shamsian, S

    2018-04-22

    In primary studies with 3 T Magnets, phase sensitive reconstruction of T1-weighted inversion recovery (PSIR) have showed ability to depict the cervical multiple sclerosis (MS) lesions some of which may not be detected by short tau inversion recovery (STIR). Regarding to more availability of 1.5 T MRI, this study was designed to evaluate the eligibility of PSIR in 1.5 T for detection of spinal cord MS lesions. In a study between September 2016 till March 2017 the patients with proven diagnosis of MS enrolled to the study. The standard protocol (sagittal STIR and T2W FSE and axial T2W FSE) as well as sagittal PSIR sequences were performed using a 1.5 T magnet. The images were studied and the lesions were localized and recorded as sharp or faint on each sequence. Of 25 patients (22 females and 3 males, with mean age of 33.5 ± 9.8 years and mean disease duration of 5.4 ± 3.9 years) 69 lesions in STIR, 53 lesions in T2W FSE, 47 lesions in Magnitude reconstruction of PSIR (Magnitude), and 30 lesions in phase sensitive (real) reconstruction PSIR were detected. A Wilcoxon signed-rank test showed STIR has a statistically significant higher detection rate of the plaques rather than other three sequences. (STIR and T2W FSE, Z = -4.000, p definition of the plaques rather than other three sequences. This study shows that in the setting of a 1.5 T magnet field, STIR significantly has a superiority over both of the PSIR reconstructions (i.e. real and magnitude) for the detection as well as the boundary definition of the cervical cord lesions of MS. These results have a good relevance to clinical practice by using MRI scanners and sequences routinely available, however, it is discrepant with other reports performed by 3 T Magnet fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Magnetic catalysis and inverse magnetic catalysis in QCD

    International Nuclear Information System (INIS)

    Mueller, N.

    2015-01-01

    We investigate the effects of strong magnetic fields on the QCD phase structure at vanishing density by solving the gluon and quark gap equations. The chiral crossover temperature as well as the chiral condensate is computed. For asymptotically large magnetic fields we find magnetic catalysis, while we find inverse magnetic catalysis for intermediate magnetic fields. Moreover, for large magnetic fields the chiral phase transition for massless quarks turns into a crossover. The underlying mechanisms are then investigated analytically within a few simplifications of the full numerical analysis. We find that a combination of gluon screening effects and the weakening of the strong coupling is responsible for the phenomenon of inverse catalysis seen in lattice studies. In turn, the magnetic catalysis at large magnetic field is already indicated by simple arguments based on dimensionality. (author)

  3. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  4. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  5. Stoner magnetism in an inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, D.I., E-mail: Denis.Golosov@biu.ac.il

    2016-02-15

    Motivated by recent experimental work on magnetic properties of Si-MOSFETs, we report a calculation of magnetisation and susceptibility of electrons in an inversion layer, taking into account the co-ordinate dependence of electron wave function in the direction perpendicular to the plane. It is assumed that the inversion-layer carriers interact via a contact repulsive potential, which is treated at a mean-field level, resulting in a self-consistent change of profile of the wave functions. We find that the results differ significantly from those obtained in the pure 2DEG case (where no provision is made for a quantum motion in the transverse direction). Specifically, the critical value of interaction needed to attain the ferromagnetic (Stoner) instability is decreased and the Stoner criterion is therefore relaxed. This leads to an increased susceptibility and ultimately to a ferromagnetic transition deep in the high-density metallic regime. In the opposite limit of low carrier densities, a phenomenological treatment of the in-plane correlation effects suggests a ferromagnetic instability above the metal–insulator transition. Results are discussed in the context of the available experimental data. - Highlights: • Stoner-type mean field theory for electrons in an inversion layer is constructed. • Wave function change under an in-plane magnetic field is taken into account. • Tendency toward ferromagnetism is strengthened in comparison with a usual Stoner theory. • In-plane correlations at low densities are taken into account phenomenologically.

  6. Presentation: 3D magnetic inversion by planting anomalous densities

    OpenAIRE

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2013-01-01

    Slides for the presentation "3D magnetic inversion by planting anomalous densities" given at the 2013 AGU Meeting of the Americas in Cancun, Mexico.   Note: There was an error in the title of the talk. The correct title should be "3D magnetic inversion by planting anomalous magnetization"   Abstract: We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the an...

  7. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  8. Role of three-dimensional fluid-attenuated inversion recovery (3D FLAIR) and proton density magnetic resonance imaging for the detection and evaluation of lesion extent of focal cortical dysplasia in patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Saini, Jitender; Kesavadas, Chandrasekharan; Thomas, Bejoy; Singh, Atampreet; Rathore, Chathurbhuj; Radhakrishnan, Ashalatha; Radhakrishnan, Kurupath; Bahuleyan, Biji

    2010-01-01

    Background: Focal cortical dysplasia (FCD) is often associated with epilepsy. Identification of FCD can be difficult due to subtle magnetic resonance imaging (MRI) changes. Though fluid-attenuated inversion recovery (FLAIR) sequence detects the majority of these lesions, smaller lesions may go unnoticed while larger lesions may be poorly delineated. Purpose: To determine the ability of a specialized epilepsy protocol in visualizing and delineating the extent of FCD. Material and Methods: We compared the imaging findings in nine patients with cortical malformation who underwent routine epilepsy MR imaging as well as a specialized epilepsy protocol. All imaging was done on a 1.5T MR unit. The specialized epilepsy protocol included 3D FLAIR in the sagittal plane as well as proton density (PD) and high-resolution T2-weighted (T2W) images in the transverse plane. Results: In all nine patients, the specialized protocol identified lesion anatomy better. In three patients in whom routine MRI was normal, the specialized epilepsy protocol including 3D FLAIR helped in identifying the lesions. One of these patients underwent surgery, and histo-pathology revealed a cortical dysplasia. In one patient, lesion characterization was improved, while in the remaining patients the extent of the FCD was more clearly demonstrated in the 3D FLAIR and PD images. Statistical analysis of images for cortical thickness, cortical signal intensity, adjacent white matter abnormalities, and gray-white matter junction showed significant statistical difference in the ability of 3D FLAIR to assess these aspects over conventional images. PD images were also found superior to the routine epilepsy protocol in assessment of cortical signal, adjacent white matter, and gray-white matter junction. Conclusion: Specialized MRI sequences and techniques should be performed whenever there is a high suspicion of cortical dysplasia, especially when they remain occult on conventional MR protocols. These techniques

  9. 3D inversion of full tensor magnetic gradiometry (FTMG) data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2011-01-01

    Following recent advances in SQUID technology, full tensor magnetic gradiometry (FTMG) is emerging as a practical exploration method. We introduce 3D regularized focusing inversion for FTMG data. Our model studies show that inversion of magnetic tensor data can significantly improve resolution...... compared to inversion of magnetic vector data for the same model. We present a case study for the 3D inversion of GETMAG® FTMG data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D inversion agree very well with the known geology of the area....

  10. Magnetic blocking direct-recovery efficiency

    International Nuclear Information System (INIS)

    Whealton, J.H.; Wooten, J.H.; McGaffey, R.W.

    1981-10-01

    The ion recovery efficiency of a transverse magnetic field monochromatic direct recovery device intended for intense neutral beams is examined theoretically by solving a Poisson-Vlasov equation. An optimum in recovery efficiency is obtained for finite ion current density and excess initial speed

  11. Detection and characterization with short TI inversion recovery MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Komata, Kaori (Nippon Medical School, Tokyo (Japan))

    1994-10-01

    Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although [chi][sup 2] analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author).

  12. Detection and characterization with short TI inversion recovery MR imaging

    International Nuclear Information System (INIS)

    Komata, Kaori

    1994-01-01

    Short TI inversion recovery magnetic resonance imaging (STIR-MRI) with spin echo (SE) T1- and T2-weighted images of the pelvis was investigated to evaluate its usefulness in detecting and characterizing endometriosis. Thirty-one women suspected of having the disease were studied in detail. MR findings with and without STIR-MRI were correlated with the results of laparotomy (27 women) and laparoscopy (4 women). Surgery revealed endometriosis in 29 women (17 ovarian chocolate cysts, 22 intestinal adhesions, 14 cul-de-sac obliterations and 12 adenomyosis). The other two women did not have endometriosis (uterine prolapse in one and submucosal leiomyoma in one). An ovarian chocolate cyst was diagnosed when a T1-elongated lesion showed shading, loculus or a low intensity rim on SE MR images, and a low intensity rim on STIR-MRI. Only 12 of the 17 chocolate cysts and neither of the two hemorrhagic corpus lutein cysts were correctly diagnosed on SE MR images, whereas 18 of these 19 cysts were correctly diagnosed because of the low intensity rim on STIR-MRI. In the pathological analysis, the rim was found to be a fibrous capsule and there were many macrophages which phagocytized hemosiderin. For the assessment of ovarian chocolate cysts, accuracy improved from 63.2% to 94.7%. As for the adhesion between the intestine and the uterus, specificity improved from 61.9% to 90.5% and accuracy improved from 67.7% to 93.5% when STRI-MRI was used. For the assessment of the cul-de-sac obliteration, accuracy improved from 67.7% to 83.8% although χ 2 analysis showed no significance. The major factors for the improved accuracy with STIR-MRI are the decrease of the motion artifact owing to the suppression of the fat signal, decreased chemical shift artifact and accurate differentiation of fat from hemorrhagic component. Therefore, STIR-MRI is a useful and reliable procedure and should be used together with SE T1-, T2-weighted images for the assessment of endometriosis. (author)

  13. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  14. Evaluation of T2-weighted versus short-tau inversion recovery sagittal sequences in the identification and localization of canine intervertebral disc extrusion with low-field magnetic resonance imaging.

    Science.gov (United States)

    Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier

    2017-07-01

    Sagittal T2-weighted sequences (T2-SAG) are the foundation of spinal protocols when screening for the presence of intervertebral disc extrusion. We often utilize sagittal short-tau inversion recovery sequences (STIR-SAG) as an adjunctive screening series, and experience suggests that this combined approach provides superior detection rates. We hypothesized that STIR-SAG would provide higher sensitivity than T2-SAG in the identification and localization of intervertebral disc extrusion. We further hypothesized that the parallel evaluation of paired T2-SAG and STIR-SAG series would provide a higher sensitivity than could be achieved with either independent sagittal series when viewed in isolation. This retrospective diagnostic accuracy study blindly reviewed T2-SAG and STIR-SAG sequences from dogs (n = 110) with surgically confirmed intervertebral disc extrusion. A consensus between two radiologists found no significant difference in sensitivity between T2-SAG and STIR-SAG during the identification of intervertebral disc extrusion (T2-SAG: 92.7%, STIR-SAG: 94.5%, P = 0.752). Nevertheless, STIR-SAG accurately identified intervertebral disc extrusion in 66.7% of cases where the evaluation of T2-SAG in isolation had provided a false negative diagnosis. Additionally, one radiologist found that the parallel evaluation of paired T2-SAG and STIR-SAG series provided a significantly higher sensitivity than T2-SAG in isolation, during the identification of intervertebral disc extrusion (T2-SAG: 78.2%, paired T2-SAG, and STIR-SAG: 90.9%, P = 0.017). A similar nonsignificant trend was observed when the consensus of both radiologists was taken into consideration (T2-SAG: 92.7%, paired T2-SAG, and STIR-SAG = 97.3%, P = 0.392). We therefore conclude that STIR-SAG is capable of identifying intervertebral disc extrusion that is inconspicuous in T2-SAG, and that STIR-SAG should be considered a useful adjunctive sequence during preliminary sagittal screening for intervertebral disc

  15. Extraction of remanent magnetization from magnetization vector inversions of airborne full tensor magnetic gradiometry data

    Science.gov (United States)

    Queitsch, M.; Schiffler, M.; Stolz, R.; Meyer, M.; Kukowski, N.

    2017-12-01

    Measurements of the Earth's magnetic field are one of the most used methods in geophysical exploration. The ambiguity of the method, especially during modeling and inversion of magnetic field data sets, is one of its biggest challenges. Additional directional information, e.g. gathered by gradiometer systems based on Superconducting Quantum Interference Devices (SQUIDs), will positively influence the inversion results and will thus lead to better subsurface magnetization models. This is especially beneficial, regarding the shape and direction of magnetized structures, especially when a significant remanent magnetization of the underlying sources is present. The possibility to separate induced and remanent contributions to the total magnetization may in future also open up advanced ways for geological interpretation of the data, e.g. a first estimation of diagenesis processes. In this study we present the results of airborne full tensor magnetic gradiometry (FTMG) surveys conducted over a dolerite intrusion in central Germany and the results of two magnetization vector inversions (MVI) of the FTMG and a conventional total field anomaly data set. A separation of the two main contributions of the acquired total magnetization will be compared with information of the rock magnetization measured on orientated rock samples. The FTMG inversion results show a much better agreement in direction and strength of both total and remanent magnetization compared to the inversion using only total field anomaly data. To enhance the separation process, the application of additional geophysical methods, i.e. frequency domain electromagnetics (FDEM), in order to gather spatial information of subsurface rock susceptibility will also be discussed. In this approach, we try to extract not only information on subsurface conductivity but also the induced magnetization. Using the total magnetization from the FTMG data and the induced magnetization from the FDEM data, the full separation of

  16. Influence of crosstalk on the fast fluid attenuated inversion recovery pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Tohru; Nonoshita, Koji; Miyazaki, Takayuki; Arima, Akira [Funabashi Municipal Medical Center, Chiba (Japan)

    2000-04-01

    The influence of crosstalk on the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence was studied. On multislice fast FLAIR images, the water null point was shortened in comparison with that on single slice images owing to the crosstalk received from adjacent slices. That influence became greater with decreases in the slice gap and increases in the number of slices. The timing of crosstalk in each slice varied according to excitation order. The process of recovery of longitudinal magnetization changed according to differences in timing; thus, it was possible that the water null point changed in each slice. In brain images with thinner slice gaps, the signal intensity of CSF is increased by the effect of crosstalk. In order to eliminate changes in the water null point caused by crosstalk on fast FLAIR, the multislice sequence requires a sequence with interleaving based on the premise that slice gaps are set for more than 100% of slice thickness. (author)

  17. Influence of crosstalk on the fast fluid attenuated inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Urata, Tohru; Nonoshita, Koji; Miyazaki, Takayuki; Arima, Akira

    2000-01-01

    The influence of crosstalk on the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence was studied. On multislice fast FLAIR images, the water null point was shortened in comparison with that on single slice images owing to the crosstalk received from adjacent slices. That influence became greater with decreases in the slice gap and increases in the number of slices. The timing of crosstalk in each slice varied according to excitation order. The process of recovery of longitudinal magnetization changed according to differences in timing; thus, it was possible that the water null point changed in each slice. In brain images with thinner slice gaps, the signal intensity of CSF is increased by the effect of crosstalk. In order to eliminate changes in the water null point caused by crosstalk on fast FLAIR, the multislice sequence requires a sequence with interleaving based on the premise that slice gaps are set for more than 100% of slice thickness. (author)

  18. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  19. Magnetic field sensor based on asymmetric inverse Wiedemann effect

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Malátek, M.; Dvořák, M.

    2008-01-01

    Roč. 142, č. 2 (2008), s. 468-473 ISSN 0924-4247 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field sensor * inverse Wiedemann effect * off-diagonal magnetoimpedance * amorphous ribbon Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.724, year: 2008

  20. A method of inversion of satellite magnetic anomaly data

    Science.gov (United States)

    Mayhew, M. A.

    1977-01-01

    A method of finding a first approximation to a crustal magnetization distribution from inversion of satellite magnetic anomaly data is described. Magnetization is expressed as a Fourier Series in a segment of spherical shell. Input to this procedure is an equivalent source representation of the observed anomaly field. Instability of the inversion occurs when high frequency noise is present in the input data, or when the series is carried to an excessively high wave number. Preliminary results are given for the United States and adjacent areas.

  1. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    International Nuclear Information System (INIS)

    Costagli, Mauro; Tiberi, Gianluigi; Kelley, Douglas A.C.; Symms, Mark R.; Biagi, Laura; Tosetti, Michela; Stara, Riccardo; Cosottini, Mirco; Maggioni, Eleonora; Barba, Carmen; Guerrini, Renzo

    2014-01-01

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  2. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Biagi, Laura; Tosetti, Michela [IRCCS Stella Maris, Pisa (Italy); Stara, Riccardo; Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Pisa (Italy); Maggioni, Eleonora [IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco (Italy); Politecnico di Milano, Milan (Italy); Barba, Carmen [Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy); Guerrini, Renzo [IRCCS Stella Maris, Pisa (Italy); Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy)

    2014-07-15

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  3. Fat suppression with short inversion time inversion-recovery and chemical-shift selective saturation: a dual STIR-CHESS combination prepulse for turbo spin echo pulse sequences.

    Science.gov (United States)

    Tanabe, Koji; Nishikawa, Keiichi; Sano, Tsukasa; Sakai, Osamu; Jara, Hernán

    2010-05-01

    To test a newly developed fat suppression magnetic resonance imaging (MRI) prepulse that synergistically uses the principles of fat suppression via inversion recovery (STIR) and spectral fat saturation (CHESS), relative to pure CHESS and STIR. This new technique is termed dual fat suppression (Dual-FS). To determine if Dual-FS could be chemically specific for fat, the phantom consisted of the fat-mimicking NiCl(2) aqueous solution, porcine fat, porcine muscle, and water was imaged with the three fat-suppression techniques. For Dual-FS and STIR, several inversion times were used. Signal intensities of each image obtained with each technique were compared. To determine if Dual-FS could be robust to magnetic field inhomogeneities, the phantom consisting of different NiCl(2) aqueous solutions, porcine fat, porcine muscle, and water was imaged with Dual-FS and CHESS at the several off-resonance frequencies. To compare fat suppression efficiency in vivo, 10 volunteer subjects were also imaged with the three fat-suppression techniques. Dual-FS could suppress fat sufficiently within the inversion time of 110-140 msec, thus enabling differentiation between fat and fat-mimicking aqueous structures. Dual-FS was as robust to magnetic field inhomogeneities as STIR and less vulnerable than CHESS. The same results for fat suppression were obtained in volunteers. The Dual-FS-STIR-CHESS is an alternative and promising fat suppression technique for turbo spin echo MRI. Copyright 2010 Wiley-Liss, Inc.

  4. Magnetic-field inversion in vortices in multilayers

    International Nuclear Information System (INIS)

    Theodorakis, S.; Leontidis, E.

    1997-01-01

    We present a description of very dense vortex lattices in highly anisotropic multilayers, for high fields parallel to the layers. We show that a magnetic-field inversion can occur away from the center of a vortex, provided the layers are sufficiently far apart. copyright 1997 The American Physical Society

  5. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  6. A novel inversion scheme for a magnetic dipole

    International Nuclear Information System (INIS)

    Koka, S.; Valsakumar, M.C.; Janawadkar, M.P.; Radhakrishnan, T.S.

    1997-01-01

    In a number of applications of SQUID devices such as biomagnetism, there is a need to infer the position and strength of the source(s) of the magnetic field on the basis of measurements of magnetic fields H and magnetic field gradients δH j /δx k at suitable observation point(s). It is well known that while a specification of sources uniquely determines the resulting field distribution, the inverse problem, in general, does not admit of a unique solution. However, there exist circumstances under which the source may be modeled reasonably well as a single magnetic dipole m. A novel method, which gives a unique solution to localize such a dipole source by measuring all the magnetic field components and their spatial derivatives at a single arbitrary point in space is reported

  7. Magnetic Basement Depth Inversion in the Space Domain

    Science.gov (United States)

    Nunes, Tiago Mane; Barbosa, Valéria Cristina F.; Silva, João Batista C.

    2008-10-01

    We present a total-field anomaly inversion method to determine both the basement relief and the magnetization direction (inclination and declination) of a 2D sedimentary basin presuming negligible sediment magnetization. Our method assumes that the magnetic intensity contrast is constant and known. We use a nonspectral approach based on approximating the vertical cross section of the sedimentary basin by a polygon, whose uppermost vertices are forced to coincide with the basin outcrop, which are presumably known. For fixed values of the x coordinates our method estimates the z coordinates of the unknown polygon vertices. To obtain the magnetization direction we assume that besides the total-field anomaly, information about the basement’s outcrops at the basin borders and the basement depths at a few points is available. To obtain stable depth-to-basement estimates we impose overall smoothness and positivity constraints on the parameter estimates. Tests on synthetic data showed that the simultaneous estimation of the irregular basement relief and the magnetization direction yields good estimates for the relief despite the mild instability in the magnetization direction. The inversion of aeromagnetic data from the onshore Almada Basin, Brazil, revealed a shallow, eastward-dipping basement basin.

  8. Rapid T1 quantification based on 3D phase sensitive inversion recovery

    Directory of Open Access Journals (Sweden)

    Warntjes Marcel JB

    2010-08-01

    Full Text Available Abstract Background In Contrast Enhanced Magnetic Resonance Imaging fibrotic myocardium can be distinguished from healthy tissue using the difference in the longitudinal T1 relaxation after administration of Gadolinium, the so-called Late Gd Enhancement. The purpose of this work was to measure the myocardial absolute T1 post-Gd from a single breath-hold 3D Phase Sensitivity Inversion Recovery sequence (PSIR. Equations were derived to take the acquisition and saturation effects on the magnetization into account. Methods The accuracy of the method was investigated on phantoms and using simulations. The method was applied to a group of patients with suspected myocardial infarction where the absolute difference in relaxation of healthy and fibrotic myocardium was measured at about 15 minutes post-contrast. The evolution of the absolute R1 relaxation rate (1/T1 over time after contrast injection was followed for one patient and compared to T1 mapping using Look-Locker. Based on the T1 maps synthetic LGE images were reconstructed and compared to the conventional LGE images. Results The fitting algorithm is robust against variation in acquisition flip angle, the inversion delay time and cardiac arrhythmia. The observed relaxation rate of the myocardium is 1.2 s-1, increasing to 6 - 7 s-1 after contrast injection and decreasing to 2 - 2.5 s-1 for healthy myocardium and to 3.5 - 4 s-1 for fibrotic myocardium. Synthesized images based on the T1 maps correspond very well to actual LGE images. Conclusions The method provides a robust quantification of post-Gd T1 relaxation for a complete cardiac volume within a single breath-hold.

  9. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    Science.gov (United States)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  10. A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa

    2000-01-01

    Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI

  11. The inverse problem to the evaluation of magnetic fields

    Science.gov (United States)

    Caspi, S.; Helm, M.; Laslett, L. J.; Brady, V.

    1992-12-01

    In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative ('inverse') procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes them to evaluate the current distribution on the specified winding surface that would provide this desired field. We may note that in undertaking such an inverse procedure we would wish, on practical grounds, to avoid the use of any 'double-layer' distributions of current on the winding surface or interface but would not demand that no fields be generated in the exterior region, so that in this respect the goal would differ in detail from that discussed by other authors, in analogy to the distribution sought in electrostatics by the so-caged Green's equivalent stratum.

  12. Inversion satellites of isolated Perl vortex in thin film of magnetic superconductor

    CERN Document Server

    Lomtev, A I

    2001-01-01

    The electrodynamics equation is derived for the magnetic field of the Perl isolated vortex, moving by the arbitrary law in the ultrafine magnetic conductor and true for every type of the magnetic ordering in the magnetic subsystem. The magnetic structure of the Perl isolated oscillating vortex in the magnetic conductor fine film is studied. It is shown that the oscillations process and the magnetic subsystem essentially renorm the vortex field as compared to the Perl decision. The new events of the inversion satellite (the inversion forerunners in the front of the vortex and the inversion traces behind it) are forecasted, which may be actually observed in the magnetic optical experiments

  13. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    Science.gov (United States)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  14. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI

    DEFF Research Database (Denmark)

    Geurts, J J G; Roosendaal, S D; Calabrese, M

    2011-01-01

    Different double inversion recovery (DIR) sequences are currently used in multiple sclerosis (MS) research centers to visualize cortical lesions, making it difficult to compare published data. This study aimed to formulate consensus recommendations for scoring cortical lesions in patients with MS...

  15. The ''INVERSE PROBLEM'' to the evaluation of magnetic fields

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1996-01-01

    In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative (inverse) procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes then to evaluate the current distribution on the specified winding surface that would provide this desired field. By evaluating the specified potential in the region interior to the winding along the interface, the authors have determined that a relaxation solution to the potential in the region outside the winding can be converged and used to calculate wire location. They have demonstrated this method by applying a slightly modified version of the program POISSON to a periodic alternating sinusoidal quadrupole field

  16. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    Science.gov (United States)

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  17. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    Science.gov (United States)

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  18. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.

    Science.gov (United States)

    Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J

    2001-03-01

    The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.

  19. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  20. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Varga-Szemes, Akos; Schoepf, U.J.; De Cecco, Carlo N.; Fuller, Stephen R.; Suranyi, Pal [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Geest, Rob J. van der [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Spottiswoode, Bruce S. [Siemens Medical Solutions, Chicago, IL (United States); Muscogiuri, Giuseppe [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Bambino Gesu Children' s Hospital IRCCS, Department of Imaging, Rome (Italy); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Maurovich-Horvat, Pal; Merkely, Bela [Semmelweis University, MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest (Hungary); Litwin, Sheldon E. [Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands)

    2017-08-15

    To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from -100 to +150 ms at 5-ms intervals relative to the optimal TI (TI{sub 0}). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance. The MagIR{sub sy} technique provided precise assessment of LGE area at TIs ≥ TI{sub 0}, while precision was decreased below TI{sub 0}. The LGE area showed significant differences at ≤ -25 ms compared to TI{sub 0} using 5SD (P < 0.001) and at ≤ -65 ms using the FWHM approach (P < 0.001). LGE measurements did not show significant difference over the analysed TI range in the PSIR{sub sy} images using either of the quantification methods. T1 map-based PSIR{sub sy} images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIR{sub sy}-based MI quantification is precise at TI{sub 0} and at longer TIs while showing decreased precision at TI values below TI{sub 0}. (orig.)

  1. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    Science.gov (United States)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  2. Inverse approach for determination of the coils location during magnetic stimulation

    International Nuclear Information System (INIS)

    Marinova, Iliana; Kovachev, Ludmil

    2002-01-01

    An inverse approach using neural networks is extended and applied for determination of coils location during magnetic stimulation. The major constructions of magnetic stimulation coils have been investigated. The electric and magnetic fields are modelled using finite element method and integral equation method. The effects of changing the construction of coils and the frequency to the effect of magnetic stimulation are analysed. The results show that the coils for magnetic stimulation characterize with different focality and magnetic field concentration. The proposed inverse approach using neural networks is very useful for determination the spatial position of the stimulation coils especially when the location of the coil system is required to be changed dynamically. (Author)

  3. Inversions

    Science.gov (United States)

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  4. Impact reduction of the uncertain geometrical parameters on magnetic material identification of an EI electromagnetic inductor using an adaptive inverse algorithm

    International Nuclear Information System (INIS)

    Abdallh, A.; Crevecoeur, G.; Dupré, L.

    2012-01-01

    The magnetic characteristics of the electromagnetic devices' core materials can be recovered by solving an inverse problem, where sets of measurements need to be properly interpreted using a forward numerical model of the device. However, the uncertainties of the geometrical parameter values in the forward model lead to appreciable recovery errors in the recovered values of the material parameters. In this paper, we propose an effective inverse approach technique, in which the influences of the uncertainties in the geometrical model parameters are minimized. In this proposed approach, the cost function that needs to be minimized is adapted with respect to the uncertain geometrical model parameters. The proposed methodology is applied onto the identification of the magnetizing B–H curve of the magnetic material of an EI core inductor. The numerical results show a significant reduction of the recovery errors in the identified magnetic material parameter values. Moreover, the proposed methodology is validated by solving an inverse problem starting from real magnetic measurements. - Highlights: ► A new method to minimize the influence of the uncertain parameters in inverse problems is proposed. ► The technique is based on adapting iteratively the objective function that needs to be minimized. ► The objective function is adapted by the model response sensitivity to the uncertain parameters. ► The proposed technique is applied for recovering the B–H curve of an EI core inductor material. ► The error in the inverse problem solution is dramatically reduced using the proposed methodology.

  5. Inversion recovery RARE: Clinical application of T2-weighted CSF-suppressed rapid sequence

    International Nuclear Information System (INIS)

    Goetz, G.F.; Hennig, J.; Ziyeh, S.

    1995-01-01

    Inversion-Recovery RARE is a strongly T 2 -weighted fast sequence in which the CSF appears dark. This sequence was used in more than 100 patients. Retrospective analysis of 80 patients with cerebrovascular and inflammatory disease was carried out. The IR-RARE sequence proved to be particularly suitable for identifying small lesions in the neighbourhood of the subarachnoid space. We illustrate the typical contrast provided by this sequence, and describe its characteristics, exemplifying the advantages it offers for the diagnosis of multiple sclerosis, cerebral microangiopathy and brain infarction. (orig.) [de

  6. Inverse magnetic catalysis from the properties of the QCD coupling in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Dominguez, C.A. [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hernández, L.A., E-mail: HRNLUI001@myuct.ac.za [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Loewe, M. [Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Centro Científico-Tecnológico de Valparaíso, Casilla 110-V, Valparaíso (Chile); Zamora, R. [Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza Aérea de Chile, Santiago (Chile); Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago (Chile)

    2016-08-10

    We compute the vacuum one-loop quark–gluon vertex correction at zero temperature in the presence of a magnetic field. From the vertex function we extract the effective quark–gluon coupling and show that it grows with increasing magnetic field strength. The effect is due to a subtle competition between the color charge associated to gluons and the color charge associated to quarks, the former being larger than the latter. In contrast, at high temperature the effective thermo-magnetic coupling results exclusively from the contribution of the color charge associated to quarks. This produces a decrease of the coupling with increasing field strength. We interpret the results in terms of a geometrical effect whereby the magnetic field induces, on average, a closer distance between the (electrically charged) quarks and antiquarks. At high temperature, since the effective coupling is proportional only to the color charge associated to quarks, such proximity with increasing field strength makes the effective coupling decrease due to asymptotic freedom. In turn, this leads to a decreasing quark condensate. In contrast, at zero temperature both the effective strong coupling and the quark condensate increase with increasing magnetic field. This is due to the color charge associated to gluons dominating over that associated to quarks, with both having the opposite sign. Thus, the gluons induce a kind of screening of the quark color charge, in spite of the quark–antiquark proximity. We discuss the implications for the inverse magnetic catalysis phenomenon.

  7. Ion energy recovery experiment based on magnetic electro suppression

    International Nuclear Information System (INIS)

    Kim, J.; Stirling, W.L.; Dagenhart, W.K.; Barber, G.C.; Ponte, N.S.

    1980-05-01

    A proof-of-principle experiment on direct recovery of residual hydrogen ions based on a magnetic electron suppression scheme is described. Ions extracted from a source plasma a few kilovolts above the ground potential (approx. 20 A) are accelerated to 40 keV by a negative potential maintained on a neutralizer gas cell. As the residual ions exit the gas cell, they are deflected from the neutral beam by a magnetic field that also suppresses gas cell electrons and then recovered on a ground-potential surface. Under optimum conditions, a recovery efficiency (the ratio of the net recovered current to the available full-energy ion current) of 80% +- 20% has been obtained. Magnetic suppression of the beam plasma electrons was rather easily achieved; however, handling the fractional-energy ions originating from molecular species (H 2 + and H 3 + ) proved to be extremely important to recovery efficiency

  8. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  9. MSWI boiler fly ashes: magnetic separation for material recovery.

    Science.gov (United States)

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Quantized Response and Topological Magnetic Insulators with Inversion Symmetry

    NARCIS (Netherlands)

    Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.

    2012-01-01

    We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at

  11. A comparative analysis of double inversion recovery TFE and TSE sequences on carotid artery wall imaging

    International Nuclear Information System (INIS)

    Chen Jun; Di Yujin; Bu Chunqing; Zhang Yanfeng; Li Shuhua

    2012-01-01

    Objective: To analyze the characteristics of double inversion recovery (DIR) turbo field echo (TFE) and turbo spin echo (TSE) sequences and explore the value of double inversion recovery TFE sequence on carotid artery wall imaging. Patients and methods: 56 patients (32 males and 24 females, aged 31–76 years with a mean age of 53 years) were performed with DIR TFE and DIR TSE T1 weighted imaging (T1WI) sequences on carotid artery bifurcations. Image quality acquired by different techniques were evaluated and scored by two physicians. Whether there is significant difference is determined by SPSS 11.0 software. Paired-samples t test was used for statistics. Results: There was no significant difference in the image quality scores between two sequences (t = 0.880, P = 0.383 > 0.05). Conclusions: DIR TFE sequence has short scanning time and high spatial resolution. DIR TFE sequence can be used as the preferred sequence for screening carotid atherosclerotic plaque compared with DIR TSE sequence.

  12. Optimal needle placement for the accurate magnetic material quantification based on uncertainty analysis in the inverse approach

    International Nuclear Information System (INIS)

    Abdallh, A; Crevecoeur, G; Dupré, L

    2010-01-01

    The measured voltage signals picked up by the needle probe method can be interpreted by a numerical method so as to identify the magnetic material properties of the magnetic circuit of an electromagnetic device. However, when solving this electromagnetic inverse problem, the uncertainties in the numerical method give rise to recovery errors since the calculated needle signals in the forward problem are sensitive to these uncertainties. This paper proposes a stochastic Cramér–Rao bound method for determining the optimal sensor placement in the experimental setup. The numerical method is computationally time efficient where the geometrical parameters need to be provided. We apply the method for the non-destructive magnetic material characterization of an EI inductor where we ascertain the optimal experiment design. This design corresponds to the highest possible resolution that can be obtained when solving the inverse problem. Moreover, the presented results are validated by comparison with the exact material characteristics. The results show that the proposed methodology is independent of the values of the material parameter so that it can be applied before solving the inverse problem, i.e. as a priori estimation stage

  13. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability

    International Nuclear Information System (INIS)

    Beard, L.P.; Nyquist, J.E.

    1998-01-01

    Where the magnetic permeability of rock or soil exceeds that of free space, the effect on airborne electromagnetic systems is to produce a frequency-independent shift in the in-phase response of the system while altering the quadrature response only slightly. The magnitude of the in-phase shift increases as (1) the relative magnetic permeability is increased, (2) the amount of magnetic material is increased, and (3) the airborne sensor gets nearer the earth's surface. Over resistive, magnetic ground, the shift may be evinced by negative in-phase measurements at low frequencies; but over more conductive ground, the same shift may go unnoticed because of the large positive in-phase response. If the airborne sensor is flown at low levels, the magnitude of the shift may be large enough to affect automatic inversion routines that do not take this shift into account, producing inaccurate estimated resistivities, usually overestimates. However, layered-earth inversion algorithms that incorporate magnetic permeability as an additional inversion parameter may improve the resistivity estimates. The authors demonstrate this improvement using data collected over hazardous waste sites near Oak Ridge, Tennessee, USA. Using resistivity inversion without magnetic permeability, the waste sites are almost invisible to the sensors. When magnetic permeability is included as an inversion parameter, the sites are detected, both by improved resistivity estimates and by estimated magnetic permeability

  14. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data

    Directory of Open Access Journals (Sweden)

    Andrew Wallace

    2012-02-01

    Full Text Available We describe the use of Bayesian inference techniques, notably Markov chain Monte Carlo (MCMC and reversible jump MCMC (RJMCMC methods, to recover forest structural and biochemical parameters from multispectral LiDAR (Light Detection and Ranging data. We use a variable dimension, multi-layered model to represent a forest canopy or tree, and discuss the recovery of structure and depth profiles that relate to photochemical properties. We first demonstrate how simple vegetation indices such as the Normalized Differential Vegetation Index (NDVI, which relates to canopy biomass and light absorption, and Photochemical Reflectance Index (PRI which is a measure of vegetation light use efficiency, can be measured from multispectral data. We further describe and demonstrate our layered approach on single wavelength real data, and on simulated multispectral data derived from real, rather than simulated, data sets. This evaluation shows successful recovery of a subset of parameters, as the complete recovery problem is ill-posed with the available data. We conclude that the approach has promise, and suggest future developments to address the current difficulties in parameter inversion.

  15. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  16. Mantle conductivity obtained by 3-D inversion of magnetic satellite data

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Olsen, Nils

    distributed geomagnetic observatories. Due to the high computational load of a 3-D inversion (requiring thousands of forward calculations), a comprehensive numerical framework is developed to increase the efficiency of the inversion.In particular, we take an advantage of specific features of the IE approach...... and perform the most consuming-time part of the IE forward simulations (the calculation of electric and magnetic tensor Green’s functions) only once. Approximate calculation of the data sensitivities also gives essential speed up of the inversion. We validate our inversion scheme using synthetic induction...

  17. On the possibility to achieve population inversion in a magnetic nanoparticle system

    International Nuclear Information System (INIS)

    Hrianca, Ioan

    2008-01-01

    Based on the fact that an intense magnetic field may group the orientations of easy magnetic axis (e.m.a.) of nanoparticles of a ferrofluid around the field direction, one can state that, by freezing, the grouping remains although the field is absent. By bringing the frozen ferofluid to saturation magnetization in the e.m.a. direction, then followed by the field's effect inversion, a population inversion state is created. Although for nanoparticles with low anisotropy the time of inversion is rather short (10 -5 s), we have proved that for nanoparticles with higher anisotropy, this time can increase, even up to 10 5 s. One can assume that, during the inversion, the particle system represents an active medium for amplipfying electromagnetic radiations in microwaves field

  18. MR imaging of the orbit and eye using inversion recovery sequences

    International Nuclear Information System (INIS)

    Smith, F.W.; Parekh, S.; Forrester, J.; Redpath, T.W.

    1986-01-01

    Most centers performing MR imaging use spin-echo sequences to produce images; however, there are many advantages to using short TI inversion-recovery sequences for examination of the orbits. By selecting a TI similar to the relaxation time of any structure, the signal from this can be suppressed, thereby enhancing the signal from other structures. Using a sequence of TR = 1,000 msec and TI of less than 200 msec, the signal from fat is suppressed, improving image quality adjacent to the surface coil and providing better contrast between orbital structures and fat. The use of this short TI sequence for the examination of the eye in patients with opaque lenses is an accurate method of diagnosis since the sequence enhances the signal from both long T1 and T2 lesions. Eighty-five patients with orbital or ocular pathology have been studied, and the results demonstrate the usefulness of this technique for diagnosis

  19. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  20. Fluid-attenuated inversion recovery vascular hyperintensities in predicting cerebral hyperperfusion after intracranial arterial stenting

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen [Taipei Medical University, Department of Radiology, Shuang-Ho Hospital, New Taipei City (China); Taipei Medical University, School of Medicine, College of Medicine, Taipei (China); Yan, Feng-Xian [Taipei Medical University, Department of Radiology, Shuang-Ho Hospital, New Taipei City (China)

    2017-08-15

    No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P <.05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P <.001), overall nonstenting vascular (P <.001), and ipsilateral PCA (P <.05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS. (orig.)

  1. Fluid-attenuated inversion recovery vascular hyperintensities in predicting cerebral hyperperfusion after intracranial arterial stenting

    International Nuclear Information System (INIS)

    Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen; Yan, Feng-Xian

    2017-01-01

    No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P <.05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P <.001), overall nonstenting vascular (P <.001), and ipsilateral PCA (P <.05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS. (orig.)

  2. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.

    1992-01-01

    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h

  3. Short TI inversion-recovery MR imaging of chest wall malignancies

    International Nuclear Information System (INIS)

    Dubinsky, T.J.; Porter, B.A.; Olson, D.O.

    1987-01-01

    Short-T1 inversion-recovery (STIR) sequences have greater constant, less motion sensitivity, and require shorter imaging times than conventional T2-weighted spin-echo (SE) sequences and are therefore particularly useful for staging chest wall malignancies. MR studies of 49 patients with possible chest wall malignancies were reviewed. Images were produced at 0.15 T with a variety of SE sequences. Forty-five also had STIR (repetition time, 1,400 - 2,100; echo time, 36 or 40; inversion time, 100 or 125). MR studies indicated chest wall involvement in 39 of 49 patients; 12 had obvious rib encasement, the most definitive finding. IN 13, lesions detected on STIR were either not visible or seen only in retrospect on T1 SE images. In five of five, STIR was clearly superior to T2 SE for delineation of tumor margins. The authors have discontinued using T2 SE sequences for chest neoplasms in favor of the higher contrast and sensitivity of STIR

  4. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  5. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  6. Noninvasive investigation of exocrine pancreatic function: Feasibility of cine dynamic MRCP with a spatially selective inversion-recovery pulse.

    Science.gov (United States)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu

    2015-11-01

    To investigate the feasibility of noncontrast-enhanced cine dynamic magnetic resonance cholangiopancreatography (MRCP) with a spatially selective inversion-recovery (IR) pulse for evaluating exocrine pancreatic function in comparison with the N-benzoyl-L-tyrosyl-p-aminobenzoic acid (BT-PABA) test as a pancreatic exocrine function test. Twenty subjects with or without chronic pancreatitis were included. MRCP with a spatially selective IR pulse was repeated every 15 seconds for 5 minutes to acquire a total of 20 images (cine-dynamic MRCP). The median and mean frequency of the observation (the number of times) and the moving distance (mean secretion grading scores) of pancreatic juice inflow on cine-dynamic MRCP were compared with a BT-PABA test. The urinary PABA excretion rate (%) had significant positive correlations with both the mean secretion grade (r = 0.66, P = 0.002) and frequency of secretory inflow (r = 0.62, P = 0.004) in cine dynamic MRCP. Both the mean frequency of observations of pancreatic secretory inflow (1.4 ± 1.6 times vs. 14.3 ± 4.2 times, P Cine dynamic MRCP with a spatially selective IR pulse may have potential for estimating the pancreatic exocrine function noninvasively as a substitute for the BT-PABA test. © 2015 Wiley Periodicals, Inc.

  7. Fast fluid-attenuated inversion-recovery MR image in the intracranial tumors: comparison with fast spin-echo image

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha

    1997-01-01

    To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images

  8. Arterial hyperintensity on BLADE fluid-attenuated inversion recovery images (FLAIR) in hyperacute territorial infarction: comparison with conventional FLAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Eujean; Lim, Soo Mee; Park, Ji Eun; Chae, In Hye [Ewha Womans University School of Medicine, Department of Radiology, Mokdong Hospital, Seoul (Korea, Republic of)

    2014-09-15

    To evaluate the utility of BLADE fluid-attenuated inversion recovery images (FLAIR) magnetic resonance (MR) imaging compared to conventional FLAIR for the detection of arterial hyperintensity (AH) in hyperacute territorial infarction. We retrospectively analysed MR images of patients with hyperacute (<6 h) territorial infarction over a 9-month study period. Special attention was paid to the presence or absence of AH in the frontal, parietal and temporal lobes and the number of AHs in the sylvian fissure. We also evaluated the presence of three kinds of artefacts on BLADE FLAIR and conventional FLAIR images. AH was seen in 41 (91 %) patients with conventional FLAIR and 45 (100 %) patients with BLADE FLAIR images. More instances of AH were detected in the frontal, parietal and temporal lobes and within the sylvian fissure using BLADE FLAIR. Motion artefacts, pulsation artefacts from the sigmoid sinus and incomplete cerebrospinal fluid (CSF) nulling that reduced image quality were observed more frequently on conventional FLAIR images than on BLADE FLAIR images. BLADE FLAIR sequences are more sensitive than conventional FLAIR for the detection of AH in hyperacute territorial infarctions and provide better image quality by reducing artefacts. They may be used in place of conventional FLAIR for patients with hyperacute stroke. (orig.)

  9. Facile route to magnetophotonic crystals by infiltration of 3D inverse opals with magnetic nanoparticles

    International Nuclear Information System (INIS)

    Caicedo, J.M.; Taboada, E.; Hrabovsky, D.; Lopez-Garcia, M.; Herranz, G.; Roig, A.; Blanco, A.; Lopez, C.; Fontcuberta, J.

    2010-01-01

    We report here on the fabrication and characterization of magnetophotonic crystals obtained by infiltrating magnetic nanoparticles (maghemite) into silica-based inverse opals. Good quality opals, with adjustable photonic and magnetic characteristics have been obtained by this method. Magnetic and magneto-optic measurements, performed by using SQUID magnetometry and Kerr and Faraday effects, have been used to monitor the magnetic filling of the opals. It is observed that the Kerr rotation is not proportional to the overall magnetization of the magnetophotonic crystal. Possible scenarios for this unexpected result are discussed.

  10. Predictors of short-term outcome in patients with acute middle cerebral artery occlusion: unsuitability of fluid-attenuated inversion recovery vascular hyperintensity scores

    Directory of Open Access Journals (Sweden)

    Chan-chan Li

    2018-01-01

    Full Text Available Fluid-attenuated inversion recovery (FLAIR vascular hyperintensity (FVH is used to assess leptomeningeal collateral circulation, but clinical outcomes of patients with FVH can be very different. The aim of the present study was to assess a FVH score and explore its relationship with clinical outcomes. Patients with acute ischemic stroke due to middle cerebral artery M1 occlusion underwent magnetic resonance imaging and were followed up at 10 days (National Institutes of Health Stroke Scale and 90 days (modified Rankin Scale to determine short-term clinical outcomes. Effective collateral circulation indirectly improved recovery of neurological function and short-term clinical outcome by extending the size of the pial penumbra and reducing infarct lesions. FVH score showed no correlation with 90-day functional clinical outcome and was not sufficient as an independent predictor of short-term clinical outcome.

  11. Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan

    2017-12-01

    In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8

  12. Magnetic topology of Co-based inverse opal-like structures

    OpenAIRE

    Grigoryeva, N.A.; Mistonov, A.A.; Napolskii, K.S.; Sapoletova, N.A.; Eliseev, A.A.; Bouwman, W.; Byelov, D.; Petukhov, A.V.; Chernyshov, D.Y.; Eckerlebe, H.; Vasilieva, A.V.; Grigoriev, S.V.

    2011-01-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The in...

  13. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    International Nuclear Information System (INIS)

    Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert

    2017-01-01

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  14. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut; Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Järvinen, Matti [Laboratoire de Physique Théorique de l’École Normale Supérieure & Institut de Physique Théorique Philippe Meyer, PSL Research University,CNRS, Sorbonne Universités, UPMC University Paris 06,24 rue Lhomond, 75231 Paris Cedex 05 (France); Nijs, Govert [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2017-03-09

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  15. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    Science.gov (United States)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  16. Some problems associated with the inversion of polar magnetic substorm data recorded at the Earth's surface

    International Nuclear Information System (INIS)

    Mareschal, M.

    1975-01-01

    The major thrust of this dissertation was to test an original method for resolving the current system associated with polar magnetic substorms from ground based magnetic observations. This method is based on a general technique of inversion reviewed by Wiggins in 1972 and appears to give quite satisfactory results, at least, when the current system considered is simulated by a three-dimensional current system consisting of field-aligned currents flowing down to the ionosphere, westward in the ionosphere, and back up again to the magnetosphere. Conclusions suggest that, for the purpose of inverting polar magnetic substorm data with the use of the three-dimensional model of current, the Earth's induction effects can be simulated by introducing a perfectly conducting layer inside the Earth. However, the depth of this equivalent conductor should be allowed to vary with the source frequency as the substorm develops with time. To determine how satisfactorily each model parameter could be expected to be resolved during the process of inversion, a study of the magnetic disturbance variations under specific parameter variations was then performed. The results of that study were encouraging enough to foster the inversion of an actual polar magnetic substorm data, the event of June 15, 1970. Despite the success of the enterprise, it seems reasonable to suggest that the technique of inversion should be further tested before being systematically used to resolve polar magnetic substorms

  17. Magnetization Transfer Effects on the Efficiency of Flow-driven Adiabatic Fast Passage Inversion of Arterial Blood

    OpenAIRE

    Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.

    2007-01-01

    Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...

  18. MULTI-LINE STOKES INVERSION FOR PROMINENCE MAGNETIC-FIELD DIAGNOSTICS

    International Nuclear Information System (INIS)

    Casini, R.; Lopez Ariste, A.; Paletou, F.; Leger, L.

    2009-01-01

    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D 3 ) and 1083.0 nm in prominences (90 deg. scattering). We created data sets of synthetic Stokes profiles for the case of quiescent prominences (B -3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.

  19. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    Science.gov (United States)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  20. Mesencephalic substantia nigra and Parkinson's disease: spin-echo and inversion-recovery MRI evaluation

    International Nuclear Information System (INIS)

    Michaux, Ruben P.

    2004-01-01

    Objective: To comparatively assess the images of the mesencephalic substantia nigra (mSN) obtained with FSE (PD and T2) and IR (STIR; T1; WMS and GMS) sequences in patients with Parkinson's disease (PKD) and normal volunteers. Methods: We studied 8 normal volunteers (N group) and 8 patients (PKD groups) of similar age, both men and women, with a clinical diagnosis of PKD. We obtained axial oblique images of the mesencephalon with FSE PD and T2 sequences; Inversion-Recovery (IR) with a short inversion time (STIR); T1 weighted (IR-T1 phase reconstruction) with white matter signal suppression (IR-WMS) and gray matter signal suppression (IR-GMS). Average values were measured for: a) normalized signal intensity; b) thickness; and c) area of the mSN in each sequence and group. A statistical analysis of the values obtained for each of the variables was performed for both groups (Student and Welch correlation tests), comparing the results of the intra an inter-group sequences. A p value 0.05). Images obtained with IR-WMS and GMS sequences showed significant differences between the three variables assessed, particularly thickness and area (p<0.01), and also showed a posterolateral-anteromedial gradient in the mSN alteration in patients with PKD or recent onset and chronic evolution. Conclusions: The T2 weighted FSE sequences are not useful for the assessment of mSN, whereas PD, STIR and IR-T1 sequences allow to delineate it more accurately, without morphological differences (thickness and area), or signal intensity differences among the groups assessed. The WMS and GMS sequences showed statistically significant differences in the assessment of thickness, area and the signal intensity of the mSN, and may hence be useful for diagnosis. (author)

  1. Galactic cosmic rays in the periods of an inversion of the total solar magnetic field

    International Nuclear Information System (INIS)

    Krajnev, M.B.; Stozhkov, Yu.I.; Charakhch'yan, T.N.

    1984-01-01

    Anomalies in galactic cosmic ray (GCR) behaviour in the periods of the total solar magnetic field (TSMF) inversion are considered according to the data of neutron monitors and stratospheric measurements. These anomalies are interpreted as superpositions of two phenomena: phenomenon 1 and phenomenon 2. Phenomenon 1 is conditioned by the decrease and following strengthening of the regular interplanetary field strong strength in heliosphere in the periods of TSMF inversion. Phenomenon 2 consists in exess of GCR nuclei intensity over the expeited one, corresponding to the level of solar activity after TSMF inversion with dMsub(Z)/dt > 0 (inversion of 1969-1971) and also in decrease of observed GCR nuclei intensity as compared to the expected one after TSMF inversion with dMsub(Z)/dt < 0 (Msub(Z)-projection of magnetic field dipole moment on solar axis of rotation). The phenomenon 1 is slightly late in respect to TSMF inversion, as the phenomenon 2 takes part in the process only approximately 1 year after inversion completing

  2. Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis

    International Nuclear Information System (INIS)

    Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.

    2014-01-01

    A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online

  3. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    Science.gov (United States)

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  4. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets

    International Nuclear Information System (INIS)

    Cho, Jungyeon

    2011-01-01

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  5. Magnetic topology of Co-based inverse opal-like structures

    Science.gov (United States)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  6. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  7. Inverse freezing in the Hopfield fermionic Ising spin glass with a transverse magnetic field

    International Nuclear Information System (INIS)

    Morais, C.V.; Zimmer, F.M.; Magalhaes, S.G.

    2011-01-01

    The Hopfield fermionic Ising spin glass (HFISG) model in the presence of a magnetic transverse field Γ is used to study the inverse freezing transition. The mean field solution of this model allows introducing a parameter a that controls the frustration level. Particularly, in the present fermionic formalism, the chemical potential μ and the Γ provide a magnetic dilution and quantum spin flip mechanism, respectively. Within the one step replica symmetry solution and the static approximation, the results show that the reentrant transition between the spin glass and the paramagnetic phases, which is related to the inverse freezing for a certain range of μ, is gradually suppressed when the level of frustration a is decreased. Nevertheless, the quantum fluctuations caused by Γ can destroy this inverse freezing for any value of a.

  8. Magnetic topology of Co-based inverse opal-like structures

    NARCIS (Netherlands)

    Grigoryeva, N.A.; Mistonov, A.A.; Napolskii, K.S.; Sapoletova, N.A.; Eliseev, A.A.; Bouwman, W.G.; Byelov, D.V.; Petukhov, A.V.; Chernyshov, D.Y.; Eckerlebe, H.; Vasilieva, A.V.; Grigoriev, S.V.

    2011-01-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle

  9. Stochastic modeling of the Earth's magnetic field: Inversion for covariances over the observatory era

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2013-01-01

    Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core-mantle boundary together with its associated model covariances. However, most currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....

  10. Stochastic modelling of the Earth’s magnetic field: inversion for covariances over the observatory era

    DEFF Research Database (Denmark)

    Gillet, Nicolas; Jault, D.; Finlay, Chris

    2013-01-01

    Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core mantle boundary together with its associated model covariances. However, all currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....

  11. An alternative 3D inversion method for magnetic anomalies with depth resolution

    Directory of Open Access Journals (Sweden)

    M. Chiappini

    2006-06-01

    Full Text Available This paper presents a new method to invert magnetic anomaly data in a variety of non-complex contexts when a priori information about the sources is not available. The region containing magnetic sources is discretized into a set of homogeneously magnetized rectangular prisms, polarized along a common direction. The magnetization distribution is calculated by solving an underdetermined linear system, and is accomplished through the simultaneous minimization of the norm of the solution and the misfit between the observed and the calculated field. Our algorithm makes use of a dipolar approximation to compute the magnetic field of the rectangular blocks. We show how this approximation, in conjunction with other correction factors, presents numerous advantages in terms of computing speed and depth resolution, and does not affect significantly the success of the inversion. The algorithm is tested on both synthetic and real magnetic datasets.

  12. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    Science.gov (United States)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  13. Importance of contrast-enhanced fluid-attenuated inversion reconvery magnetic resonance imaging in various intracranial pathologic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung; Lee, Eun Ja; Kim, Sung Won; Lee, Yong Seok [Dept. of Radiology, Dongguk University Ilsan Hospital, Goyang(Korea, Republic of)

    2016-02-15

    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.

  14. The cation inversion and magnetization in nanopowder zinc ferrite obtained by soft mechanochemical processing

    International Nuclear Information System (INIS)

    Milutinović, A.; Lazarević, Z.; Jovalekić, Č.; Kuryliszyn-Kudelska, I.; Romčević, M.; Kostić, S.; Romčević, N.

    2013-01-01

    Graphical abstract: - Highlights: • Nano powder of ZnFe 2 O 4 prepared by a soft mechanochemical route after 18 h milling. • Phase formation controlled by XRD, Raman spectroscopy and magnetic measurements. • Size, strain and cation inversion degree determined by Rietveld refinement. • We were able to estimate the degree of inversion at most 0.348 and 0.4. • Obtained extremely high values of saturation magnetizations at T = 4.5 K. - Abstract: Two zinc ferrite nanoparticle materials were prepared by the same method – soft mechanochemical synthesis, but starting from different powder mixtures: (1) Zn(OH) 2 /α-Fe 2 O 3 and (2) Zn(OH) 2 /Fe(OH) 3 . In both cases a single phase system was obtained after 18 h of milling. The progress of the synthesis was controlled by X-ray diffractometry (XRD), Raman spectroscopy, TEM and magnetic measurements. Analysis of the XRD patterns by Rietveld refinement allowed determination of the cation inversion degree for both obtained single phase ZnFe 2 O 4 samples. The sample obtained from mixture (1) has the cation inversion degree 0.3482 and the sample obtained from mixture (2) 0.400. Magnetization measurements were confirmed that the degrees of the inversion were well estimated. Comparison with published data shows that used method of synthesis gives nano powder samples with extremely high values of saturation magnetizations: sample (1) 78.3 emu g −1 and sample (2) 91.5 emu g −1 at T = 4.5 K

  15. Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun

    2000-01-01

    To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)

  16. Spinal cord microstructure integrating phase-sensitive inversion recovery and diffusional kurtosis imaging

    Energy Technology Data Exchange (ETDEWEB)

    Panara, V.; Navarra, R; Caulo, M. [University ' ' G. d' Annunzio' ' , Department of Neuroscience, Imaging and Clinical Sciences, Chieti (Italy); University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); Mattei, P.A. [University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); University ' ' G. d' Annunzio' ' , Department of Medicine and Science of Aging, Ophthalmology Clinic, Chieti (Italy); Piccirilli, E. [University ' ' G. d' Annunzio' ' , ITAB Institute of Advanced Biomedical Technologies, Chieti (Italy); Cotroneo, A.R.; Uncini, A. [University ' ' G. d' Annunzio' ' , Department of Neuroscience, Imaging and Clinical Sciences, Chieti (Italy); Papinutto, N.; Henry, R.G. [University of California, San Francisco, Department of Neurology, San Francisco, CA (United States)

    2017-08-15

    The aim of this prospective study was to determine the feasibility in terms of repeatability and reproducibility of diffusional kurtosis imaging (DKI) for microstructural assessment of the normal cervical spinal cord (cSC) using a phase-sensitive inversion recovery (PSIR) sequence as the anatomical reference for accurately defining white-matter (WM) and gray-matter (GM) regions of interests (ROIs). Thirteen young healthy subjects were enrolled to undergo DKI and PSIR sequences in the cSC. The repeatability and reproducibility of kurtosis metrics and fractional anisotropy (FA) were calculated in GM, WM, and cerebral-spinal-fluid (CSF) ROIs drawn by two independent readers on PSIR images of three different levels (C1-C4). The presence of statistically significant differences in DKI metrics for levels, ROIs (GM, WM, and CSF) repeatability, reproducibility, and inter-reader agreement was evaluated. Intra-class correlation coefficients between the two readers ranged from good to excellent (0.75 to 0.90). The inferior level consistently had the highest concordance. The lower values of scan-rescan variability for all DKI parameters were found for the inferior level. Statistically significant differences in kurtosis values were not found in the lateral white-matter bundles of the spinal cord. The integration of DKI and PSIR sequences in a clinical MR acquisition to explore the regional microstructure of the cSC in healthy subjects is feasible, and the results obtainable are reproducible. Further investigation will be required to verify the possibility to translate this method to a clinical setting to study patients with SC involvement especially in the absence of MRI abnormalities on standard sequences. (orig.)

  17. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation

    Directory of Open Access Journals (Sweden)

    Yu J.

    2018-01-01

    Full Text Available In this investigation, a pilot-scale fluidized magnetization roasting reactor was introduced and used to enhance magnetic properties of iron ore. Consequently, the effects of roasting temperature, reducing gas CO flow rate, and fluidizing gas N2 flow rate on the magnetization roasting performance were studied. The results indicated that the hematite was almost completely converted into magnetite by a gas mixture of 4 Nm3/h CO and 1 Nm3/h N2 at roasting temperature of 540°C for about 30 s. Under optimized conditions, a high grade concentrate containing 66.84% iron with iron recovery of 91.16% was achieved. The XRD, VSM, and optical microscopy (OM analyses revealed that most of the hematite, except some coarse grains, was selectively converted to magnetite, and that the magnetic properties were greatly enhanced. Thus, their separation from non-magnetic gangue minerals was facilitated.

  18. Ivy Sign on Fluid-Attenuated Inversion Recovery Images in Moyamoya Disease: Correlation with Clinical Severity and Old Brain Lesions

    OpenAIRE

    Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul

    2015-01-01

    Purpose Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. Materials and Methods FLAIR images of 83 patients were reviewed. Each cerebr...

  19. Iterative algorithms for the input and state recovery from the approximate inverse of strictly proper multivariable systems

    Science.gov (United States)

    Chen, Liwen; Xu, Qiang

    2018-02-01

    This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.

  20. Clinical usefulness of fluid-attenuated inversion recovery (FLAIR) sequences in intracranial lesions focusing on emergent cases

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Masashi; Niitsu, Mamoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Wada, Mitsuyoshi

    1997-06-01

    Fluid-Attenuated Inversion Recovery (FLAIR) Pulse Sequences with inversion times of 1700 ms and echo times of 110 ms were used to demonstrate the brain of cerebrovascular disease (CVD) and brain trauma. The long inversion times and long echo times nulls the signal from cerebrospinal fluid and produces heavy T{sub 2} weighting images. We compared FLAIR Pulse Sequences with T{sub 2} weighted image Pulse Sequences for signal intensities of CVD and trauma. FLAIR Pulse Sequences is useful to detect at the periphery of the cerebral hemispheres, but infratentorial small infarctions often cannot be detected for its iso-intensity and slight intensity changes. In all patient of traumatic-subarachnoid hemorrhage (t-SAH) can be definitely detected high signal intensity of the cerebral hemispheres. (author)

  1. 3D Inversion of Magnetic Data through Wavelet based Regularization Method

    Directory of Open Access Journals (Sweden)

    Maysam Abedi

    2015-06-01

    Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.

  2. Inverse scattering problem for a magnetic field in the Glauber approximation

    International Nuclear Information System (INIS)

    Bogdanov, I.V.

    1985-01-01

    New results in the general theory of scattering are obtained. An inverse problem at fixed energy for an axisymmetric magnetic field is formulated and solved within the frames of the quantum-mechanical Glauber approximation. The solution is found in quadratures in the form of an explicit inversion algorithm reproducing a vector potential by the angular dependence of the scattering amplitude. Extreme transitions from the eikonal inversion method to the classical and Born ones are investigated. Integral and differential equations are derived for the eikonal amplitude that ensure the real value of the vector potential and its energy independence. Magnetoelectric analogies the existence of equivalent axisymmetric electric and magnetic fields scattering charged particles in the same manner both in the Glauber and Born approximation are established. The mentioned analogies permit to simulate ion-potential scattering by potential one that is of interest from the practical viewpoint. Three-dimensional (excentral) eikonal inverse problems for the electric and magnetic fields are discussed. The results of the paper can be used in electron optics

  3. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  4. Stokes profile analysis and vector magnetic fields. I. Inversion of photospheric lines

    International Nuclear Information System (INIS)

    Skumanich, A.; Lites, B.W.

    1987-01-01

    Improvements are proposed for the Auer et al. (1977) method for the analytic inversion of Stokes profiles via nonlinear least squares. The introduction of additional physics into the Mueller absorption matrix (by including damping wings and magnetooptical birefringence, and by decoupling the intensity profile from the three-vector polarization profile in the analysis) is found to result in a more robust inversion method, providing more reliable and accurate estimates of sunspot vector magnetic fields without significant loss of economy. The method is applied to sunspot observations obtained with the High Altitude Observatory polarimeter. 29 references

  5. Distribution functions of magnetic nanoparticles determined by a numerical inversion method

    International Nuclear Information System (INIS)

    Bender, P; Balceris, C; Ludwig, F; Posth, O; Bogart, L K; Szczerba, W; Castro, A; Nilsson, L; Costo, R; Gavilán, H; González-Alonso, D; Pedro, I de; Barquín, L Fernández; Johansson, C

    2017-01-01

    In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. (paper)

  6. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  7. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  8. New classical inversion formulas for centrosymmetric electric and magnetic fields; focusing potentials

    International Nuclear Information System (INIS)

    Bogdanov, I.V.; Demkov, Y.N.

    1982-01-01

    New inversion formulas are obtained for the classical scattering of a charged particle by a spherical or axisymmetric electric or magnetic field at a fixed impact parameter or angular momentum. For different cases, focusing fields are obtained similar to those previously considered for scattering by an electric field at a given energy, viz., of the backscattering (cat's eye), Maxwell fish eye, or Luneberg lens type. A magnetoelectric analogy is formulated, namely the existence of equivalent axisymmetric electric and magnetic fields that scatter charged particles in identical fashion

  9. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  10. A realistic inversion algorithm for magnetic anomaly data: the Mt. Amiata volcano test

    Directory of Open Access Journals (Sweden)

    C. Carmisciano

    2003-06-01

    Full Text Available The aim of this work is the formulation of a 3D model of the Mt. Amiata volcanic complex (Southern Tuscany by means of geomagnetic data. This work is shown not only as a real test to check the validity of the inversion algorithm, but also to add information about the structure of the volcanic complex. First, we outline briefly the theory of geomagnetic data inversion and we introduce the approach adopted. Then we show the 3D model of the Amiata volcano built from the inversion, and we compare it with the available geological information. The most important consideration regards the surface distribution of the magnetization that is in good agreement with rock samples from this area. Moreover, the recovered model orientation recall the extension of the lava flows, and as a last proof of validity, the source appears to be contained inside of the topographic contour level. The credibility of the inversion procedure drives the interpretation even for the deepest part of the volcano. The geomagnetic signal appears suppressed at a depth of about 2 km, but the most striking consequence is that sub-vertical structures are found even in different positions from the conduits shown in the geologic sections. The results are thus in good agreement with the information obtained from other data, but showing features that had not been identified, stressing the informative power of the geomagnetic signal when a meaningful inversion algorithm is used.

  11. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun; Joshi, Sunnie; Walton, Jay R.

    2012-01-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a

  12. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  13. Comparison of diffusion-weighted images using short inversion time inversion recovery or chemical shift selective pulse as fat suppression in patients with breast cancer

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Nasu, Katsuhiro; Kuroki, Yoshifumi; Nawano, Shigeru; Ito, Hisao

    2009-01-01

    Fat suppression is essential for diffusion-weighted imaging (DWI) in the body. However, the chemical shift selective (CHESS) pulse often fails to suppress fat signals in the breast. The purpose of this study was to compare DWI using CHESS and DWI using short inversion time inversion recovery (STIR) in terms of fat suppression and the apparent diffusion coefficient (ADC) value. DWI using STIR, DWI using CHESS, and contrast-enhanced T1-weighted images were obtained in 32 patients with breast carcinoma. Uniformity of fat suppression, ADC, signal intensity, and visualization of the breast tumors were evaluated. In 44% (14/32) of patients there was insufficient fat suppression in the breasts on DWI using CHESS, whereas 0% was observed on DWI using STIR (P<0.0001). The ADCs obtained for DWI using STIR were 4.3% lower than those obtained for DWI using CHESS (P<0.02); there was a strong correlation of the ADC measurement (r=0.93, P<0.001). DWI using STIR may be excellent for fat suppression; and the ADC obtained in this sequence was well correlated with that obtained with DWI using CHESS. DWI using STIR may be useful when the fat suppression technique in DWI using CHESS does not work well. (author)

  14. Demonstration of the postcommissural fibres of the fornix in short-inversion time inversion-recovery imaging on a high-field system

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, N.; Kansaku, K.; Higuchi, Y.; Yamaura, A. [Dept. of Neurological Surgery, Chiba University School of Medicine (Japan); Kawano, K.; Iijima, T. [Electrotechnical Lab., Tsukuba (Japan); Inoue, N. [GE Yokagawa Medical Systems, Tokyo (Japan)

    2001-07-01

    Short-inversion time inversion-recovery (STIR) imaging using a 3 tesla system was assessed to reveal the postcommissural fibres (PF) of the fornix, which have rarely been highlighted neuroradiologically in the clinical setting. We studied 27 normal subjects. Sequence parameters were TR/TE/TI 8000/52/150 ms. STIR was expected to take advantage of the high signal-to-noise ratio of a high-field system, due to the long repetition time. PF were identifiable in axial and coronal slices in all cases. They were bordered anteriorly and superiorly by the anterior commissure and posteriorly and inferiorly by the mamillary body. Behind the anterior commissure, they ran in an arch-shaped posterior and inferior course in the hypothalamic nuclei and joined the mamillary body anterolaterally. They usually extended through three 3-mm slices (with 1 mm interslice gap) in anteroposterior and vertical dimensions. Little variation was observed in their course or size. Demonstration of the PF would provide a more detailed correlation of human neuroanatomy to hypothalamic function and individualised understanding of hypothalamic pathology and influence therapy. (orig.)

  15. Demonstration of the postcommissural fibres of the fornix in short-inversion time inversion-recovery imaging on a high-field system

    International Nuclear Information System (INIS)

    Saeki, N.; Kansaku, K.; Higuchi, Y.; Yamaura, A.; Kawano, K.; Iijima, T.; Inoue, N.

    2001-01-01

    Short-inversion time inversion-recovery (STIR) imaging using a 3 tesla system was assessed to reveal the postcommissural fibres (PF) of the fornix, which have rarely been highlighted neuroradiologically in the clinical setting. We studied 27 normal subjects. Sequence parameters were TR/TE/TI 8000/52/150 ms. STIR was expected to take advantage of the high signal-to-noise ratio of a high-field system, due to the long repetition time. PF were identifiable in axial and coronal slices in all cases. They were bordered anteriorly and superiorly by the anterior commissure and posteriorly and inferiorly by the mamillary body. Behind the anterior commissure, they ran in an arch-shaped posterior and inferior course in the hypothalamic nuclei and joined the mamillary body anterolaterally. They usually extended through three 3-mm slices (with 1 mm interslice gap) in anteroposterior and vertical dimensions. Little variation was observed in their course or size. Demonstration of the PF would provide a more detailed correlation of human neuroanatomy to hypothalamic function and individualised understanding of hypothalamic pathology and influence therapy. (orig.)

  16. Triple-layer appearance of Brodmann area 4 at thin-section double inversion-recovery MR imaging.

    Science.gov (United States)

    Kim, Eung Yeop; Kim, Dong-Hyun; Chang, Jong-Hee; Yoo, Eunhye; Lee, Jae-Wook; Park, Hae-Jeong

    2009-02-01

    To investigate whether thin-section axial double inversion-recovery (DIR) brain magnetic resonance (MR) imaging at 3.0 T can help distinguish the primary motor cortex (PMC), or Brodmann area 4, from other selected cortical regions, including the primary sensory cortex (PSC), or Brodmann areas 1-3, on the basis of the presence of a "triple-layer" appearance. This prospective study was approved by the institutional review board; informed consent was obtained from patients. This study included 191 patients (94 female, age range, 5-80 years; 97 male, age range, 5-76 years) with normal findings at 3.0-T MR imaging. The presence or absence of a triple-layer appearance within selected cortical regions on DIR images was graded independently by two neuroradiologists as definitely present (grade 2), probably present (grade 1), or definitely absent (grade 0). Ten additional patients with tumors underwent DIR imaging and intraoperative cortical mapping for further validation of the PMC. A myelin-stained brain specimen image in a patient not imaged with DIR was correlated with a representative set of DIR images. A triple-layer appearance was found in the PMC bilaterally in 184 of 191 patients; grade 0 was assigned in only seven patients, who were all younger than 10 years. Grades were significantly lower in patients younger than 10 years than in others (P .0018). Interobserver agreement was excellent (weighted kappa = 0.843). The PMC determined on DIR images was confirmed with cortical mapping in all 10 patients with tumors. Triple-layer appearance was not present in the other cortical regions examined, including the PSC (P < .01). The triple-layer appearance on DIR images corresponded to the myelin band within the PMC present on the myelin-stained specimen image. A triple-layer appearance was found in the PMC at thin-section 3.0-T DIR imaging but not in other examined brain regions and therefore might be useful as an adjunct sign for identification of motor regions.

  17. Efficacy of the fluid attenuated inversion recovery (FLAIR) sequence of MRI as a preoperative diagnosis of hippocampal sclerosis

    International Nuclear Information System (INIS)

    Morioka, Takato; Nishio, Shunji; Mihara, Futoshi; Muraishi, Mitsuteru; Hisada, Kei; Hasuo, Kanehiro; Fukui, Masashi

    1998-01-01

    A newly advanced MRI pulse sequence, the FLAIR (fluid attenuated inversion recovery) imaging, in which a long TE spin echo sequence is used with suppression of the CSF with an inversion pulse, displays the CSF space as a no-signal intensity area. There have been only a few reports on the FLAIR pulse sequence of temporal lobe epilepsy (TLE) as yet. We examined 9 cases of intractable TLE by FLAIR images and analyzed the advantages and disadvantages of the FLAIR pulse sequence for decision making on temporal lobectomy. All patients underwent anterior temporal lobectomy with hippocampectomy, and the diagnoses were confirmed histologically after surgery. Abnormally high T2 signals (HT2S) were more conspicuous with the FLAIR sequence than with any of the conventional sequences. Tilted axial plane, orientated along to the long axis of the hippocampal body, clearly demonstrated hippocampal atrophy (HA). Selection of a FLAIR sequence into the routine MR examination of patients with TLE is recommended. (author)

  18. Contributions of an adiabatic initial inversion pulse and K-space Re-ordered by inversion-time at each slice position (KRISP) to control of CSF artifacts and visualization of the brain in FLAIR magnetic resonance imaging

    International Nuclear Information System (INIS)

    Curati, Walter L.; Oatridge, Angela; Herlihy, Amy H.; Hajnal, Joseph V.; Puri, Basant K.; Bydder, Graeme M.

    2001-01-01

    AIM: The aim of this study was to compare the performance of three fluid attenuated inversion recovery (FLAIR) pulse sequences for control of cerebrospinal fluid (CSF) and blood flow artifacts in imaging of the brain. The first of these sequences had an initial sinc inversion pulse which was followed by conventional k-space mapping. The second had an initial sinc inversion pulse followed by k-space re-ordered by inversion time at each slice position (KRISP) and the third had an adiabatic initial inversion pulse followed by KRISP. MATERIALS AND METHODS: Ten patients with established disease were studied with all three pulse sequences. Seven were also studied with the adiabatic KRISP sequence after contrast enhancement. Their images were evaluated for patient motion artifact, CSF and blood flow artifact as well as conspicuity of the cortex, meninges, ventricular system, brainstem and cerebellum. The conspicuity of lesions and the degree of enhancement were also evaluated. RESULTS: Both the sinc and adiabatic KRISP FLAIR sequences showed better control of CSF and blood flow artifacts than the conventional FLAIR sequence. In addition the adiabatic KRISP FLAIR sequence showed better control of CSF artifact at the inferior aspect of the posterior fossa. The lesion conspicuity was similar for each of the FLAIR sequences as was the degree of contrast enhancement to that shown with a T 1 weighted spin echo sequence. CONCLUSION: The KRISP FLAIR sequence controls high signal artifacts from CSF flow and blood flow and the adiabatic pulse controls high signal artifacts due to inadequate inversion of the CSF magnetization at the periphery of the head transmitter coil. The KRISP FLAIR sequence also improves cortical and meningeal definition as a result of an edge enhancement effect. The effects are synergistic and can be usefully combined in a single pulse sequence. Curati, W.L. et al. (2001)

  19. Inversion of Magnetic Measurements of the CHAMP Satellite Over the Pannonian Basin

    Science.gov (United States)

    Kis, K. I.; Taylor, P. T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2011-01-01

    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5 x 0.5, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude were downward continued to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks.

  20. Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4T

    Directory of Open Access Journals (Sweden)

    Herlihy Amy H

    2008-01-01

    Full Text Available Abstract Purpose To demonstrate the feasibility of using an inversion recovery pulse sequence and to define the optimal inversion time (TI to assess myocardial infarction in mice by late gadolinium enhancement (LGE MRI at 9.4T, and to obtain the maximal contrast between the infarcted and the viable myocardium. Methods MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4. For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR and signal-to-noise ratio (SNR were measured and compared for each myocardial region of interest (ROI. Results The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006 leading to a maximal relative SI (Signal Intensity between those two areas (344.9 ± 60.4. Conclusion Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.

  1. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    Science.gov (United States)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  2. Development and investigation of an inverse problem solution algorithm for determination of Ap stars magnetic field geometry

    International Nuclear Information System (INIS)

    Piskunov, N.E.

    1985-01-01

    Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves

  3. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    Science.gov (United States)

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  4. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chen-Chen Kuo

    2015-08-01

    Full Text Available We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  5. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Science.gov (United States)

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  6. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    International Nuclear Information System (INIS)

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  7. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.; Kucukcoban, Sezgin; Kallivokas, Loukas F.

    2014-01-01

    to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem

  8. Modeling and Inversion of Magnetic Anomalies Caused by Sediment–Basement Interface Using Three-Dimensional Cauchy-Type Integrals

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2014-01-01

    This letter introduces a new method for the modeling and inversion of magnetic anomalies caused by crystalline basements. The method is based on the 3-D Cauchy-type integral representation of the magnetic field. Traditional methods use volume integrals over the domains occupied by anomalous...... is particularly significant in solving problems of the modeling and inversion of magnetic data for the depth to the basement. In this letter, a novel method is proposed, which only requires discretizing the magnetic contrast surface for modeling and inversion. We demonstrate the method using several synthetic...... susceptibility and on the prismatic representation of the volumes with an anomalous susceptibility distribution. Such discretization is computationally expensive, particularly in 3-D cases. The technique of Cauchy-type integrals makes it possible to represent the magnetic field as surface integrals, which...

  9. Recovery of material parameters of soft hyperelastic tissue by an inverse spectral technique

    KAUST Repository

    Gou, Kun

    2012-07-01

    An inverse spectral method is developed for recovering a spatially inhomogeneous shear modulus for soft tissue. The study is motivated by a novel use of the intravascular ultrasound technique to image arteries. The arterial wall is idealized as a nonlinear isotropic cylindrical hyperelastic body. A boundary value problem is formulated for the response of the arterial wall within a specific class of quasistatic deformations reflective of the response due to imposed blood pressure. Subsequently, a boundary value problem is developed via an asymptotic construction modeling intravascular ultrasound interrogation which generates small amplitude, high frequency time harmonic vibrations superimposed on the static finite deformation. This leads to a system of second order ordinary Sturm-Liouville boundary value problems that are then employed to reconstruct the shear modulus through a nonlinear inverse spectral technique. Numerical examples are demonstrated to show the viability of the method. © 2012 Elsevier Ltd. All rights reserved.

  10. Uncertainty reduction of gravity and magnetic inversion through the integration of petrophysical constraints and geological data

    Science.gov (United States)

    Giraud, Jérémie; Jessell, Mark; Lindsay, Mark; Martin, Roland; Pakyuz-Charrier, Evren; Ogarko, Vitaliy

    2016-04-01

    measurements and standard values obtained from the literature. Finally, we ran the different inversions on gravity and magnetic data generated using this model. As a result, the use of petrophysical constraints permits us to retrieve sharper boundaries while prior structural information from geology on the shallow lithologies permits to retrieve the contacts more accurately. The integration of the different constraints provides a better-resolved model, with reduced uncertainties such as improved posterior covariance and resolution matrices. The analysis of the sensitivity to and resolution indicators using geological a priori information and petrophysical constraints shows complementarity between the resolution matrices. Moreover, the comparison of the posterior covariance matrices (diagonal and non-diagonal elements) shows that when geological prior information and petrophysical constraints are used together higher values coincide with poorly resolved lithologies. This is not always the case when either only geological prior information or no constraints are used. However, the improvement of the inversion results due to the constraints and prior information are more pronounced on gravity inversion than on magnetic inversion.

  11. Geometric approach to inverse scattering for the Schroedinger equation with magnetic and electric potentials

    International Nuclear Information System (INIS)

    Arians, S.

    1997-01-01

    We consider the Hamiltonian H=(p-A(x)) 2 /(2m)+V(x) of a quantum particle in a magnetic field B=rotA and a potential V in space dimensions ν≥2. If V is of short range, then the high-velocity limit of the scattering operator uniquely determines the magnetic field B and the potential V. If, in addition, long-range potentials V l are present, some knowledge of (the far out tail of) V l is needed to define a modified Dollard wave operator and a scattering operator S D . Again its high- velocity limit uniquely determines B and V=V s +V l . Moreover, we give explicit error bounds which are inverse proportional to the velocity. copyright 1997 American Institute of Physics

  12. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-01-01

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  13. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.

    2014-12-28

    © 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.

  14. Successful adaptation of three-dimensional inversion methodologies for archaeological-scale, total-field magnetic data sets

    Science.gov (United States)

    Cheyney, S.; Fishwick, S.; Hill, I. A.; Linford, N. T.

    2015-08-01

    Despite the development of advanced processing and interpretation tools for magnetic data sets in the fields of mineral and hydrocarbon industries, these methods have not achieved similar levels of adoption for archaeological or very near surface surveys. Using a synthetic data set we demonstrate that certain methodologies and assumptions used to successfully invert more regional-scale data can lead to large discrepancies between the true and recovered depths when applied to archaeological-type anomalies. We propose variations to the current approach, analysing the choice of the depth-weighting function, mesh design and parameter constraints, to develop an appropriate technique for the 3-D inversion of archaeological-scale data sets. The results show a successful recovery of a synthetic scenario, as well as a case study of a Romano-Celtic temple in the UK. For the case study, the final susceptibility model is compared with two coincident ground penetrating radar surveys, showing a high correlation with the comparative depth slices. The new approach takes interpretation of archaeological data sets beyond a simple 2-D visual interpretation based on pattern recognition.

  15. Motion-insensitive carotid intraplaque hemorrhage imaging using 3D inversion recovery preparation stack of stars (IR-prep SOS) technique.

    Science.gov (United States)

    Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott

    2017-02-01

    Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Non-contrast MRA using an inflow-enhanced, inversion recovery SSFP technique in pediatric abdominal imaging

    International Nuclear Information System (INIS)

    Serai, Suraj; Towbin, Alexander J.; Podberesky, Daniel J.

    2012-01-01

    Abdominal contrast-enhanced MR angiography (CE-MRA) is routinely performed in children. CE-MRA is challenging in children because of patient motion, difficulty in obtaining intravenous access, and the inability of young patients to perform a breath-hold during imaging. The combination of pediatric-specific difficulties in imaging and the safety concerns regarding the risk of gadolinium-based contrast agents in patients with impaired renal function has renewed interest in the use of non-contrast (NC) MRA techniques. At our institution, we have optimized 3-D NC-MRA techniques for abdominal imaging. The purpose of this work is to demonstrate the utility of an inflow-enhanced, inversion recovery balanced steady-state free precession-based (b-SSFP) NC-MRA technique. (orig.)

  17. Invariant models in the inversion of gravity and magnetic fields and their derivatives

    Science.gov (United States)

    Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni

    2014-11-01

    In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.

  18. Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study

    International Nuclear Information System (INIS)

    Hou, Y H; Liu, Z W; Yu, H Y; Zhong, X C; Qiu, W Q; Zeng, D C; Wen, L S; Zhao, Y J

    2010-01-01

    Partially inverse spinel CoFe 2 O 4 , which may be prepared through various heat treatments, differs remarkably from the ideal inverse spinel in many properties. The structure of partially inverse spinel CoFe 2 O 4 as well as its electronic and magnetic properties through a systemic theoretical calculation of (Co 1-x Fe x ) Tet (Co x Fe 2-x ) Oct O 4 (x = 0, 0.25, 0.5, 0.75 and 1.0) have been investigated by the generalized gradient approximation (GGA) + U approach. It is found that the Co and Fe ions prefer their high spin configurations with higher spin moments at octahedral sites in all the studied cases, in line with experimental observations. The Co ions at the octahedral sites favour being far away from each other in the partial inverse spinels, which also show half metallicity at certain inversion degrees.

  19. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    Science.gov (United States)

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  20. Clinical value of periventricular low-intensity areas detected by fluid attenuated inversion recovery (FLAIR). Relationships between perinatal vital parameter and neonatal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kadowaki, Sachiko; Iwata, Osuke; Tamura, Masanori [Nagano Children' s Hospital, Toyoshina (Japan)] (and others)

    2002-01-01

    A follow-up study was performed to assess the correlation among the incidence of periventricular low intensities (PVLI) on MRI (magnetic resonance imaging) FLAIR (fluid attenuated inversion recovery) imaging, clinical evidence of perinatal insults that may cause white matter damage, and the outcome of the infants. We evaluated periventricular white matter lesions of 329 neonates whose MRI were obtained before two months corrected age. The detective rate of periventricular abnormalities on FLAIR imaging was significantly higher than that of T1-T2 weighted imaging. The most typical lesion detected on FLAIR imaging was periventricular low intensities (PVLI), frequently observed in the neonates with a history of preterm labour, very low birth weight, birth asphyxia and severe respiratory failure. Although we could not characterize the risk factors of PVLI, the incidence of PVLI had a strong correlation with the scores of motor and developmental tests at 12 and 36-months corrected age. In conclusion, FLAIR imaging, detecting the border zone damage of white matter, would be a strong tool to pick out neonates at high risk of neurological disturbances from those without clinical evidence of neurological insults in the neonatal period. (author)

  1. Myocardial viability: comparison of free-breathing navigator-echo-gated three-dimensional inversion-recovery gradient-echo MR and standard multiple breath-hold two-dimensional inversion-recovery gradient-echo MR

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Seo, Joon Beom; Do, Kyung Hyun; Yang, Dong Hyun; Lee, Soo Hyun; Ko, Sung Min; Heo, Jeong Nam; Lim, Tae Hwan

    2004-01-01

    To compare a free-breathing, navigator-echo-gated, three-dimensional, inversion-recovery, gradient-echo, MR pulse sequence (3D-MRI) with standard, multiple breath-hold, two-dimensional, inversion-recovery, gradient-echo MR (2D-MRI) for the evaluation of delayed hyperenhancement of nonviable myocardium in patients with chronic ischemic heart disease. Ten patients with chronic ischemic heart disease were enrolled in this study. MRI was performed on a 1.5-T system. 3D-MRI was obtained in the short axis plane at 10 minutes after the administration of Gd-DTPA (0.2 mmol/kg, 4 cc/sec). Prospective gating of the acquisition based on the navigator echo was applied. 2D-MRI was performed immediately after finishing 3D-MRI. The area of total and hyperenhanced myocardium measured on both image sets was compared with paired Student t-test and Bland-Altman method. By using a 60-segment model, the transmural extent and segment width of the hyperenhanced area were recorded by 3-scale grading method. The agreement between the two sequences was evaluated with kappa statistics. We also evaluated the agreement of hyperenhancement among the three portions (apical, middle and basal portion) of the left ventricle with kappa statistics. The two sequences showed good agreement for the measured area of total and hyperenhanced myocardium on paired t-test (ρ = 0.11 and ρ = 0.34, respectively). No systematic bias was shown on Bland-Altman analysis. Good agreement was found for the segmental width (Κ = 0.674) and transmural extent (Κ = 0.615) of hyperenhancement on the segmented analysis. However, the agreement of the transmural extent of hyperenhancement in the apical segments was relatively poor compared with that in the middle or basal portions. This study showed good agreement between 3D-MRI and 2D-MRI in evaluation of non-viable myocardium. Therefore, 3D-MRI may be useful in the assessment of myocardial viability in patients with dyspnea and children because it allows free

  2. Monitoring of magnetic nano-particles in EOR by using the CSEM modeling and inversion.

    Science.gov (United States)

    Heo, J. Y.; KIM, S.; Jeong, G.; Hwang, J.; Min, D. J.

    2016-12-01

    EOR, which injects water, CO2, or other chemical components into reservoirs to increase the production rate of oil and gas, has widely been used. To promote efficiency of EOR, it is important to monitor distribution of injected materials in reservoirs. Using nano-particles in EOR has advantages that the size of particles is smaller than the pore and particles can be characterized by various physical properties. Specifically, if we use magnetic nano-particles, we can effectively monitor nano-particles by using the electromagnetic survey. CSEM, which can control the frequency range of source, is good to monitor magnetic nano-particles under various reservoir circumstances. In this study, we first perform numerical simulation of 3D CSEM for reservoir under production. In general, two wells are used for EOR: one is for injection, and the other is for extraction. We assume that sources are applied inside the injection well, and receivers are deployed inside the extraction well. To simulate the CSEM survey, we decompose the total fields into primary and secondary fields in Maxwell's equations. For the primary fields, we calculate the analytic solutions of the layered earth. With the calculated primary fields, we compute the secondary fields due to anomalies using the edge-based finite-element method. Finally, we perform electromagnetic inversion for both conductivity and permeability to trace the distribution of magnetic nano-particles. Since these two parameters react differently according to the frequency range of sources, we can effectively describe the distribution of magnetic nano-particles by considering two parameters at the same time. Acknowledgements This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20168510030830), and by the International Cooperation (No. 2012-8510030010) of KETEP, and by the Dual Use Technology Program, granted

  3. What humankind can expect with an inversion of Earth’s magnetic field: threats real and imagined

    Science.gov (United States)

    Tsareva, O. O.; Zelenyi, L. M.; Malova, H. V.; Podzolko, M. V.; Popova, E. P.; Popov, V. Yu

    2018-02-01

    Earth’s global magnetic field generated by an internal dynamo mechanism has been continuously changing on different time scales since its formation. Paleodata indicate that relatively long periods of evolutionary changes can be replaced by quick magnetic inversions. Based on observations, Earth’s magnetic field is currently weakening and the magnetic poles are shifting, possibly indicating the beginning of the inversion process. This paper invokes Gauss coefficients to approximate the behavior of Earth’s magnetic field components over the past 100 years. Using the extrapolation method, it is estimated that the magnetic dipole component will vanish by the year 3600 and at that time the geomagnetic field will be determined by a smaller value of a quadrupole magnetic component. A numerical model is constructed which allows evaluating and comparing both galactic and solar cosmic ray fluxes in Earth’s magnetosphere and on its surface during periods of dipole or quadrupole domination. The role of the atmosphere in absorbing particles of cosmic rays is taken into account. An estimate of the radiation danger to humans is obtained for the ground level and for the International Space Station altitude of ∼ 400 km. It is shown that in the most unfavorable, minimum field interval of the inversion process, the galactic cosmic ray flux increases by no more than a factor of three, implying that the radiation danger does not exceed the maximum permissible dose. Thus, the danger of magnetic inversion periods generally should not have fatal consequences for humans and nature as a whole, despite dramatically changing the structure of Earth’s magnetosphere.

  4. Influence of fluid-attenuated inversion-recovery on stroke apparent diffusion coefficient measurements and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Ni Jianming [Medical Imaging Department, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu Province 214002 (China); Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Mogensen, Monique A. [Department of Radiology, Division of Neuroradiology, University of Southern California, Los Angeles, CA (United States); Chen Zengai [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Shuang Chen; Shen Tianzhen [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Huang Gang, E-mail: huang2802@163.co [Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China)

    2010-08-15

    Background and purpose: The application of a fluid-attenuated inversion-recovery pulse with a conventional diffusion-weighted MRI sequence (FLAIR DWI) decreases the partial volume effects from cerebrospinal fluid on apparent diffusion coefficient (ADC) measurements. For this reason, FLAIR DWI may be more useful in the evaluation of ischemic stroke, but few studies have looked at the effect of FLAIR on ADC measurements in this setting. This study quantitatively compares FLAIR DWI and conventional DWI in ischemic stroke of varying ages to assess the potential advantages of this technique. Methods: We respectively analyzed 139 DWI studies in patients with ischemic stroke with and without FLAIR at varying time points ranging from hyperacute to chronic. ADC values were measured in each lesion, as well as in the contralateral normal side. Comparisons were made between the ADC values obtained from the DWI sequences with and without FLAIR for both the lesion and the normal contralateral side. Results: The ADC measurements within the ischemic lesion were very similar on FLAIR DWI and conventional DWI for lesions less than 14 days old (p > 0.05), but were significantly decreased on FLAIR DWI for lesions between 15 and 30 days old and in lesions >31 days old (chronic stage) (p < 0.01). The contralateral ADC values were all significantly decreased on the FLAIR DWI sequence compared with conventional DWI (p < 0.01). Conclusions: The application of an inversion pulse does not significantly affect the ADC values for early stage ischemic stroke (less than 14 days from symptom onset), but results in a more accurate relative ADC measurement by reducing the cerebrospinal fluid partial volume effects of the normal contralateral side. In addition, combined with the conventional DWI, FLAIR DWI may be helpful in determining the age of ischemic lesions.

  5. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue; Zhang, Junwei; Zhu, Shimeng; Deng, Xia; Ma, Hongbin; Zhang, Junli; Zhang, Qiang; Li, Peng; Xue, Desheng; Mellors, Nigel J; Zhang, Xixiang; Peng, Yong

    2017-01-01

    multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been

  6. The effect of magnetisation transfer contrast on cerebrospinal fluid on motion artefacts on fluid-attenuated inversion-recovery images

    International Nuclear Information System (INIS)

    Aprile, I.; Principi, M.; Ottaviano, P.; Scapeccia, M.

    2003-01-01

    We assessed possible advantages of the use of fluid-attenuated inversion-recovery (FLAIR) sequences with magnetisation-transfer contrast (MTC) over conventional FLAIR images. We carried out cranial MRI at 1 tesla on 50 patients with both sequences. In nine patients with multiple sclerosis (MS) we performed a quantitative comparison of the two sequences, looking at the contrast-to-noise ratio between lesions and normal white matter and counting the number of lesions shown using each method. A qualitative comparison on all patients consisted of the analysis of the appearance of the normal parenchyma, of any lesions, and of artefacts, with particular reference to cerebrospinal fluid (CSF) motion artefacts. The quantitative analysis showed no meaningful difference between the two sequences. The cerebral parenchyma and lesions appeared substantially the same with both techniques. With FLAIR MTC there was a clear, and consistent reduction in CSF motion artefacts. FLAIR MTC sequences can usefully be used in place of the conventional sequence at 1 tesla. (orig.)

  7. Fast fluid-attenuated inversion-recovery imaging: first experience with a 3D version in epilepsy

    International Nuclear Information System (INIS)

    Wieshmann, U.C.; Symms, M.R.; Bartlett, P.A.; Shorvon, S.D.; Barker, G.J.; Stevens, J.M.

    1998-01-01

    We developed a 3D version of fast fluid-attenuated inversion-recovery imaging (FLAIR) which provides images with a slice thickness of 1.5 mm. We present our initial experience with 3D fast FLAIR in patients with epilepsy. We compared 3D fast FLAIR (slice thickness 1.5 mm), 2D fast FLAIR (slice thickness 5 mm) and a 3D spoiled GRASS (IRSPGR) sequence (slice thickness 1.5 mm) in 10 patients with lesional epilepsy (head injury 1, hippocampal sclerosis 2, low-grade glioma 2, dysembryoplastic neuroepithelial tumour 2, polymicrogyria 1, perinatal infarct 1 and presumed thrombosed aneurysm 1). Both 2D and 3D fast FLAIR sequences yielded higher conspicuity for lesions than the T1-weighted IRSPGR sequence, except in the patient with polymicrogyria. The extent of the lesion, in particular that of low-grade tumours, was best assessed on 3D fast FLAIR images. 3D fast FLAIR may be a useful additional tool especially for imaging low-grade tumours. (orig.)

  8. Heat-Assisted Magnetic Recording: Fundamental Limits to Inverse Electromagnetic Design

    Science.gov (United States)

    Bhargava, Samarth

    In this dissertation, we address the burgeoning fields of diffractive optics, metals-optics and plasmonics, and computational inverse problems in the engineering design of electromagnetic structures. We focus on the application of the optical nano-focusing system that will enable Heat-Assisted Magnetic Recording (HAMR), a higher density magnetic recording technology that will fulfill the exploding worldwide demand of digital data storage. The heart of HAMR is a system that focuses light to a nano- sub-diffraction-limit spot with an extremely high power density via an optical antenna. We approach this engineering problem by first discussing the fundamental limits of nano-focusing and the material limits for metal-optics and plasmonics. Then, we use efficient gradient-based optimization algorithms to computationally design shapes of 3D nanostructures that outperform human designs on the basis of mass-market product requirements. In 2014, the world manufactured ˜1 zettabyte (ZB), ie. 1 Billion terabytes (TBs), of data storage devices, including ˜560 million magnetic hard disk drives (HDDs). Global demand of storage will likely increase by 10x in the next 5-10 years, and manufacturing capacity cannot keep up with demand alone. We discuss the state-of-art HDD and why industry invented Heat-Assisted Magnetic Recording (HAMR) to overcome the data density limitations. HAMR leverages the temperature sensitivity of magnets, in which the coercivity suddenly and non-linearly falls at the Curie temperature. Data recording to high-density hard disks can be achieved by locally heating one bit of information while co-applying a magnetic field. The heating can be achieved by focusing 100 microW of light to a 30nm diameter spot on the hard disk. This is an enormous light intensity, roughly ˜100,000,000x the intensity of sunlight on the earth's surface! This power density is ˜1,000x the output of gold-coated tapered optical fibers used in Near-field Scanning Optical Microscopes

  9. Magnetic and catalytic properties of inverse spinel CuFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, S., E-mail: sanand@nitt.edu [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China); Selvamani, T.; Prasad, G. Guru [Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015 (India); Asiri, A.M. [The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413 (Saudi Arabia); Wu, J.J., E-mail: jjwu@fcu.edu.tw [Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan (China)

    2017-06-15

    Highlights: • Copper ferrite (CuFe{sub 2}O{sub 4}) nanoparticles were synthesized via citrate-nitrate combustion method. • Spectroscopic information’s have found that CuFe{sub 2}O{sub 4} nanoparticles as an inverse spinel structure. • Magnetic study exhibits CuFe{sub 2}O{sub 4} nanoparticles have ferromagnetic behavior. • CuFe{sub 2}O{sub 4} nanoparticles employed for photocatalytic decolourisation of methylene blue under visible light irradiation. - Abstract: In this research, inverse spinel copper ferrite nanoparticles (CuFe{sub 2}O{sub 4} NPs) were synthesized via citrate-nitrate combustion method. The crystal structure, particle size, morphology and magnetic studies were investigated using various instrumental tools to illustrate the formation of the inverse spinel structure. Mossbauer spectrometry identified Fe is located both in the tetrahedral and octahedral site in the ratio (40:60) and the observed magnetic parameters values such as saturation magnetization (M{sub s} = 20.62 emu g{sup −1}), remnant magnetization (M{sub r} = 11.66 emu g{sup −1}) and coercivity (H{sub c} = 63.1 mTesla) revealed that the synthesized CuFe{sub 2}O{sub 4} NPs have a typical ferromagnetic behaviour. Also tested CuFe{sub 2}O{sub 4} nanoparticles as a photocatalyst for the decolourisation of methylene blue (MB) in the presence of peroxydisulphate as the oxidant.

  10. The method of inversion of magnetic island two-dimensional structure by magnetic probes and its application on HL-2A tokamak

    International Nuclear Information System (INIS)

    Sun Tengfei; Liu Yi; Ji Xiaoquan; Xu Yuan; Feng Beibin

    2011-01-01

    The new method that reconstructs the polar two-dimensional structure of the magnetic island using magnetic pickup coils data is introduced on HL-2A tokamak and dynamic analysis method that set up based on it for tearing mode is also introduced. In this experiment, the perturbation current which is the source of the perturbation magnetic field can be determined using the data measured by magnetic probes. Superimposing the perturbation flux and equilibrium flux reconnected by EFIT, the structure and the width of the magnetic islands can be obtained. Then two-dimensional structure maps are set up chronologically and recorded in turn. After that these maps are revealed in turn and magnetic island can be analyzed dynamically. This method is applied to analyzing tearing mode. The conclusion that magnetic island rotating direction is in accordance with electronic diamagnetic drift direction is reached. The relationship between the magnetic island width and the magnetic perturbation field is proved and the suppression of magnetic island by ECRH is also verified.It shows the immediacy of the method of inversion of magnetic island structure by magnetic probes and it is very useful for watching and controlling MHD instability. (authors)

  11. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  12. All that glitters is not gold: Increased Signal in the Subarachnoid Space on Fluid-Attenuated Inversion Recovery Imaging after gadolinium injection

    Directory of Open Access Journals (Sweden)

    Juliana Avila Duarte

    2016-08-01

    Full Text Available A 61-year-old woman arrived at the emergency department of the Hospital Nossa Senhora das Graças, Canoas, southern Brazil, with suspected ischemic stroke. After clinical and laboratory examination, the clinical diagnosis of ischemic stroke was made, without fulfilling criteria for thrombolysis. The patient had no history of renal failure. Three days later, she performed a magnetic resonance imaging (MRI examination that confirmed the suspected diagnosis. This examination was performed without sedation or supplemental oxygen. Brain MRI was performed after gadolinium injection, using fluid-attenuated inversion recovery (FLAIR imaging, T1-weighted image, diffusion-weighted imaging, and T2-weighted image sequences that revealed signs of subacute watershed stroke in the left cerebral hemisphere (Figures 1, 2 and 3. There was a hyperintense cerebrospinal fluid (CSF in the subarachnoid space (SAS on FLAIR imaging, a finding that has been reported in many  pathologic conditions1 such as superior sagittal thrombosis, subarachnoid hemorrhage², meningitis,  meningeal carcinomatosis,  next to tumors, status epilepticus and stroke.3-7 It has also been reported in otherwise healthy patients undergoing anesthesia with supplemental oxygen.8 The exact mechanism by which CSF diffuses into the SAS in patients with or without renal insufficiency is not completely explained. Some authores have suggested that in patients with renal failure, the gadolinium may shift across an osmotic gradient at the circumventricular organs in the setting of proctracted elevation of plasma concentrations.9 We believe that the cause of this imaging phenomenon of hyperintense signal of the CSF in the SAS which has already been noted in patients with compromised cerebral perfusion, including cases of acute ischemic stroke, was due to the recent stroke.10-11 Keywords: Flair hyperintensity, MRI, stroke, Gadolinium

  13. Diagnostic value of three-dimensional fluid-attenuated inversion recovery MR imaging after intratympanic administration of contrast media in Meniere's disease

    International Nuclear Information System (INIS)

    Shi Honglu; Zhang Daogong; Wang Guangbin; Fan Zhaomin; Bai Xue; Guo Lijun; Man Xiaoni

    2012-01-01

    Objective: After intratympanic gadolinium administration through the tympanic membrane, three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging (3D-FLAIR MRI) was performed to evaluate endolymphatic visualization and its diagnostic value in Meniere's disease. Methods: Twenty-four hours after intratympanic gadolinium administration through the tympanic membrane, 19 patients with unilateral Meniere's disease diagnosed clinically underwent 3D-FLAIR and 3D-Balance-FFE imaging at 3.0 T MR scanner. The enhanced imaging of perilymphatic space in bilateral cochlea, vestibular and (or) canal were observed. Scala tympani and scala vestibule of bilateral cochlear basal turn were scored respectively. The enhanced range of bilateral vestibule and the signal intensity ratio (SIR) between the vestibule and the brain stem were measured. Wilcoxon tests and paired t tests were used. Results: The gadolinium appeared in almost all parts of the perilymph in cochlea,vestibular and (or) canal, so the endolymphatic space was clearly visualized on 3D-FLAIR imaging. The score of scala vestibuli between the affected side (3 cases scored 2, 9 cases scored 1, 7 cases scored 0) and the healthy side (15 cases scored 2, 2 cases scored 1, 2 cases scored 0) were significantly different (U=3.090, P<0.05). The area of enhanced vestibular were (5.77 ± 2.33) mm 2 and (8.11 ± 3.32) mm 2 for the affected side and the healthy side, which were significantly different (U=3.090, P<0.05 and t=2.638, P<0.05). Conclusions: According to 3D-Balance-FFE MRI and the enhancement of perilymphatic space, 3D-FLAIR MRI with intratympanic gadolinium injection through the tympanic membrane can be used to show the border between the perilymph and the endolymph and confirm endolymphatic hydrops, thus providing radiographic evidence for the diagnosis of Meniere's disease. (authors)

  14. Evaluation of focus laterality in temporal lobe epilepsy: a quantitative study comparing double inversion-recovery MR imaging at 3T with FDG-PET.

    Science.gov (United States)

    Morimoto, Emiko; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Matsumoto, Riki; Takaya, Shigetoshi; Ikeda, Akio; Kunieda, Takeharu; Kikuchi, Takayuki; Paul, Dominik; Miyamoto, Susumu; Takahashi, Ryosuke; Togashi, Kaori

    2013-12-01

    To quantitatively compare the diagnostic capability of double inversion-recovery (DIR) with F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of seizure focus laterality in temporal lobe epilepsy (TLE). This study was approved by the institutional review board, and written informed consent was obtained. Fifteen patients with TLE and 38 healthy volunteers were enrolled. All magnetic resonance (MR) images were acquired using a 3T-MRI system. Voxel-based analysis (VBA) was conducted for FDG-PET images and white matter segments of DIR images (DIR-WM) focused on the whole temporal lobe (TL) and the anterior part of the temporal lobe (ATL). Distribution of hypometabolic areas on FDG-PET and increased signal intensity areas on DIR-WM were evaluated, and their laterality was compared with clinically determined seizure focus laterality. Correct diagnostic rates of laterality were evaluated, and agreement between DIR-WM and FDG-PET was assessed using κ statistics. Increased signal intensity areas on DIR-WM were located at the vicinity of the hypometabolic areas on FDG-PET, especially in the ATL. Correct diagnostic rates of seizure focus laterality for DIR-WM (0.80 and 0.67 for the TL and the ATL, respectively) were slightly higher than those for FDG-PET (0.67 and 0.60 for the TL and the ATL, respectively). Agreement of laterality between DIR-WM and FDG-PET was substantial for the TL and almost perfect for the ATL (κ = 0.67 and 0.86, respectively). High agreement in localization between DIR-WM and FDG-PET and nearly equivalent detectability of them show us an additional role of MRI in TLE. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  15. Regional Fluid-Attenuated Inversion Recovery (FLAIR at 7 Tesla correlates with Amyloid beta in Hippocampus and Brainstem of cognitively normal elderly subjects.

    Directory of Open Access Journals (Sweden)

    Simon J Schreiner

    2014-09-01

    Full Text Available Background: Accumulation of amyloid beta (Aβ may occur during healthy aging and is a risk factor for Alzheimer Disease (AD. While individual Aβ-accumulation can be measured non-invasively using Pittsburgh compound-B positron-emission-tomography (PiB-PET, Fluid-Attenuated Inversion Recovery (FLAIR is a Magnetic Resonance Imaging (MRI sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR- intensity. Methods: 14 healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T. Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho, followed by Holm-Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right:rho=0.86; left:rho=0.84, Brainstem (rho=0.85 and left Basal Ganglia vessel region (rho=0.82. Conclusions: Our finding of a significant relationship between PiB- and FLAIR-intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  16. Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeong Hee [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Lee, Jeong Min; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Jongno-gu, Seoul (Korea, Republic of); Paek, Munyoung [Siemens Healthcare, Seoul (Korea, Republic of)

    2016-06-15

    To determine whether multislice T1 mapping of the liver using a modified look-locker inversion recovery (MOLLI) sequence on gadoxetic acid-enhanced magnetic resonance imaging (MRI) can be used as a quantitative tool to estimate liver function and predict the presence of oesophageal or gastric varices. Phantoms filled with gadoxetic acid were scanned three times using MOLLI sequence to test repeatability. Patients with chronic liver disease or liver cirrhosis who underwent gadoxetic acid-enhanced liver MRI including MOLLI sequence at 3 T were included (n = 343). Pre- and postcontrast T1 relaxation times of the liver (T1liver), changes between pre- and postcontrast T1liver (ΔT1liver), and adjusted postcontrast T1liver (postcontrast T1liver-T1spleen/T1spleen) were compared among Child-Pugh classes. In 62 patients who underwent endoscopy, all T1 parameters and spleen sizes were correlated with varices. Phantom study showed excellent repeatability of MOLLI sequence. As Child-Pugh scores increased, pre- and postcontrast T1liver were significantly prolonged (P < 0.001), and ΔT1liver and adjusted postcontrast T1liver decreased (P< 0.001). Adjusted postcontrast T1liver and spleen size were independently associated with varices (R{sup 2} = 0.29, P < 0.001). T1 mapping of the liver using MOLLI sequence on gadoxetic acid-enhanced MRI demonstrated potential in quantitatively estimating liver function, and adjusted postcontrast T1liver was significantly associated with varices. (orig.)

  17. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    Science.gov (United States)

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  18. Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects

    Science.gov (United States)

    Schreiner, Simon J.; Liu, Xinyang; Gietl, Anton F.; Wyss, Michael; Steininger, Stefanie C.; Gruber, Esmeralda; Treyer, Valerie; Meier, Irene B.; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Nitsch, Roger M.; Pruessmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. Methods: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm–Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). Conclusions: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  19. Reduction of CSF flow artifact in fast fluid attenuated inversion recovery MR imaging. Study of excitation width in 180deg inversion pulse

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Yoshizawa, Satoshi; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Ken; Fujita, Isao

    1998-01-01

    A technique that increases slice thickness so that it becomes wider than the excitation width of the 180deg inversion pulse and in which TR is partitioned twice has been investigated with regard to fast FLAIR. This is a technique that reduces the flow artifact of CSF. It is thought that, with this technique, the flow artifact is reduced because the CSF that flows onto the slice reaches the null point. The cross talk effect of the 180deg inversion pulse appears as a high CSF signal. As a result, the number of slices needs to be partitioned two or three times before imaging. Thus the imaging time is doubled or tripled. Considering the cross talk effect of the 180deg inversion pulse and the imaging time needed for this technique, the optimal imaging technique would be one that uses an inversion pulse that is four times slice thickness plus slice space and for which the number of slices is partitioned twice. Furthermore, the null point of CSF was dependent on dividing TR in half. (author)

  20. Leptomeningeal high signal intensity (ivy sign) on fluid-attenuated inversion-recovery (FLAIR) MR images in moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hirokazu [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan)]. E-mail: hirokazu_fujiwara@ybb.ne.jp; Momoshima, Suketaka [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan); Kuribayashi, Sachio [Department of Diagnostic Radiology, School of Medicine, Keio University, Tokyo 1608582 (Japan)

    2005-08-01

    Purpose: There are a few reports on leptomeningeal high signal intensity (LMHI: ivy sign) on fluid-attenuated inversion-recovery (FLAIR) images in moyamoya disease, but the feature of this finding has not been completely understood. The purpose of this study was to characterize LMHI on FLAIR images in moyamoya disease and to assess usefulness of this finding in the diagnosis of moyamoya disease in conventional MR imaging. Material and methods: MR imaging of 28 patients with moyamoya disease was retrospectively reviewed. The grade of LMHI on FLAIR images was classified as 'absent,' 'minimal,' 'moderate' and 'marked.' Fifty-four hemispheres of 28 patients (2 patients had unilateral disease) were assessed for the frequency of visualization and distribution of LMHI. The correlations between LMHI on FLAIR images, moyamoya vessels on T1- and T2-weighted images and MR angiography findings were also analyzed. Results: Moderate and marked LMHI was seen in 31 out of 54 hemispheres (57%). LMHI was seen more prominently in the frontal and parietal lobes than in the temporal and occipital lobes. Although there was a tendency for LMHI on FLAIR images to be prominent in groups with moderate and marked moyamoya vessels on T1- and T2-weighted images, there was no significant correlation. More prominent LMHI was observed in the hemispheres in which cortical branches of the middle cerebral arteries were poorly visualized on MR angiography. Conclusion: Leptomeningeal high signal intensity (ivy sign) on FLAIR images is predominantly seen in the frontal and parietal lobes. Because this sign can be seen in patients with unremarkable moyamoya vessels, LMHI is a useful sign in conventional MR imaging for the diagnosis of moyamoya disease.

  1. Ivy Sign on Fluid-Attenuated Inversion Recovery Images in Moyamoya Disease: Correlation with Clinical Severity and Old Brain Lesions.

    Science.gov (United States)

    Seo, Kwon-Duk; Suh, Sang Hyun; Kim, Yong Bae; Kim, Ji Hwa; Ahn, Sung Jun; Kim, Dong-Seok; Lee, Kyung-Yul

    2015-09-01

    Leptomeningeal collateral, in moyamoya disease (MMD), appears as an ivy sign on fluid-attenuated inversion-recovery (FLAIR) images. There has been little investigation into the relationship between presentation of ivy signs and old brain lesions. We aimed to evaluate clinical significance of ivy signs and whether they correlate with old brain lesions and the severity of clinical symptoms in patients with MMD. FLAIR images of 83 patients were reviewed. Each cerebral hemisphere was divided into 4 regions and each region was scored based on the prominence of the ivy sign. Total ivy score (TIS) was defined as the sum of the scores from the eight regions and dominant hemispheric ivy sign (DHI) was determined by comparing the ivy scores from each hemisphere. According to the degree of ischemic symptoms, patients were classified into four subgroups: 1) nonspecific symptoms without motor weakness, 2) single transient ischemic attack (TIA), 3) recurrent TIA, or 4) complete stroke. TIS was significantly different as follows: 4.86±2.55 in patients with nonspecific symptoms, 5.89±3.10 in patients with single TIA, 9.60±3.98 in patients with recurrent TIA and 8.37±3.39 in patients with complete stroke (p=0.003). TIS associated with old lesions was significantly higher than those not associated with old lesions (9.35±4.22 vs. 7.49±3.37, p=0.032). We found a significant correlation between DHI and motor symptoms (p=0.001). Because TIS has a strong tendency with severity of ischemic motor symptom and the presence of old lesions, the ivy sign may be useful in predicting severity of disease progression.

  2. Evaluation of extractant-coated magnetic microparticles for the recovery of hazardous metals from waste solution

    International Nuclear Information System (INIS)

    Kaminski, M. D.

    1998-01-01

    A magnetically assisted chemical separation (MACS) process was developed earlier at Argonne National Laboratory (ANL). This compact process was designed for the separation of transuranics (TRU) and radionuclides from the liquid waste streams that exist at many DOE sites, with an overall reduction in waste volume requiring disposal. The MACS process combines the selectivity afforded by solvent extractant/ion exchange materials with magnetic separation to provide an efficient chemical separation. Recently, the MACS process has been evaluated with acidic organophosphorus extractants for hazardous metal recovery from waste solutions. Moreover, process scale-up design issues have been addressed with respect to particle filtration and recovery. Two acidic organophosphorus compounds have been investigated for hazardous metal recovery, bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanexreg-sign 272) and bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanexreg-sign 301). Coated onto magnetic microparticles, these extractants demonstrated superior recovery of hazardous metals from solution, relative to what was expected on the basis of results from solvent extraction experiments. The results illustrate the diverse applications of MACS technology for dilute waste streams. Preliminary process scale-up experiments with a high-gradient magnetic separator at Oak Ridge National Laboratory have revealed that very low microparticle loss rates are possible

  3. Magnetic structure of Basse-Terre volcanic island (Guadeloupe, Lesser Antilles) inferred from 3D inversion of aeromagnetic data

    Science.gov (United States)

    Barnoud, Anne; Bouligand, Claire; Coutant, Olivier; Carlut, Julie

    2017-12-01

    We interpret aeromagnetic data to constrain the magnetic structure of the island of Basse-Terre, Guadeloupe, Lesser Antilles. Aeromagnetic data are inverted in the spatial domain with a Bayesian formulation to retrieve the 3D distribution of rock magnetization intensity and polarity. The inversion is regularized using a correlation length and standard deviation for magnetization chosen to be consistent with results from paleomagnetic measurements on lava flow samples from Basse-Terre. The resulting 3D model of magnetization is consistent at the surface with observed polarities and at depth with a 2D model obtained from a Parker and Huestis (1974) inversion in the Fourier domain. The inferred magnetic structure is compared with the available geological information deduced from published geological, geomorphological and geochronological studies. In the southern part of the island, very low magnetization is observed around the Soufrière lava dome, last activity of the Grande-Découverte-Carmichaël-Soufrière composite volcano, in relation with a high level of hydrothermal alteration. High-magnetizations in the South-East might reflect the presence of massive lava flows and lava domes from the Madeleine vents and Monts Caraïbes. Medium magnetizations in the South-West coincide with the location of debris avalanche deposits associated with the collapse of the former Carmichaël volcano and might reflect less massive lava structure at depth. Using the volume of normal polarity in the South part of Basse-Terre recovered in our 3D model of rock magnetization, we estimate an average construction rate of ∼ 9.4 ×10-4 km3/yr during the Brunhes chron which provides new insights on the volcanic activity of La Soufrière volcano.

  4. The application of neural network techniques to magnetic and optical inverse problems

    International Nuclear Information System (INIS)

    Jones, H.V.

    2000-12-01

    The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and

  5. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  6. Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties

    KAUST Repository

    Zeng, Xue

    2017-04-25

    Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

  7. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  8. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  9. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  10. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    International Nuclear Information System (INIS)

    Ji-Cheng, Zhang; Kao-Ping, Song; Er-Long, Yang; Li, Liu

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency. (fundamental areas of phenomenology (including applications))

  11. Reliability of cortical lesion detection on double inversion recovery MRI applying the MAGNIMS-Criteria in multiple sclerosis patients within a 16-months period.

    Directory of Open Access Journals (Sweden)

    Tobias Djamsched Faizy

    Full Text Available In patients with multiple sclerosis (MS, Double Inversion Recovery (DIR magnetic resonance imaging (MRI can be used to identify cortical lesions (CL. We sought to evaluate the reliability of CL detection on DIR longitudinally at multiple subsequent time-points applying the MAGNIMs scoring criteria for CLs.26 MS patients received a 3T-MRI (Siemens, Skyra with DIR at 12 time-points (TP within a 16 months period. Scans were assessed in random order by two different raters. Both raters separately marked all CLs on each scan and total lesion numbers were obtained for each scan-TP and patient. After a retrospective re-evaluation, the number of consensus CLs (conL was defined as the total number of CLs, which both raters finally agreed on. CLs volumes, relative signal intensities and CLs localizations were determined. Both ratings (conL vs. non-consensus scoring were compared for further analysis.A total number of n = 334 CLs were identified by both raters in 26 MS patients with a first agreement of both raters on 160 out of 334 of the CLs found (κ = 0.48. After the retrospective re-evaluation, consensus agreement increased to 233 out of 334 CL (κ = 0.69. 93.8% of conL were visible in at least 2 consecutive TP. 74.7% of the conL were visible in all 12 consecutive TP. ConL had greater mean lesion volumes and higher mean signal intensities compared to lesions that were only detected by one of the raters (p<0.05. A higher number of CLs in the frontal, parietal, temporal and occipital lobe were identified by both raters than the number of those only identified by one of the raters (p<0.05.After a first assessment, slightly less than a half of the CL were considered as reliably detectable on longitudinal DIR images. A retrospective re-evaluation notably increased the consensus agreement. However, this finding is narrowed, considering the fact that retrospective evaluation steps might not be practicable in clinical routine. Lesions that were not reliably

  12. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    International Nuclear Information System (INIS)

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  13. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  14. Preparation of Co-Zn ferrite nano-based materials and their enhanced magnetic performance via inverse miniemulsion method

    Science.gov (United States)

    Ji, Juejin; Zhang, Zhenqian; Fang, Bijun; Ding, Jianning

    2017-11-01

    The well dispersed CZF/PAM nanoparticles were prepared by the inverse miniemulsion method, which present high calcining and sintering activity for preparing Co0.875Zn0.125Fe2O4 (CZF) films, powders and ceramics at rather low temperatures. The prepared CZF/PAM inverse miniemulsion exhibits excellent film-formation performance, which is feasible for coating CZF films. XRD and FT-IR measurements confirmed that phase pure spinel structure and well crystalline CZF powders can be prepared calcined at the least temperature of 400 °C. The 450 °C-calcined CZF powders exhibit nearly spherical shape grains with average particle size 20-30 nm accompanied by apparent conglomeration. Improved external magnetic performance and electrical properties are obtained in the synthesized CZF powders and ceramics, which provide versatile promising applications.

  15. Population inversion and gain measurements for soft x-ray-laser development in a magnetically confined plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Voorhees, D.; Milchberg, H.; Keane, C.; Semet, A.

    1983-06-01

    We present population inversion and gain measurements from an experimental investigation of possibilities to obtain high gain and lasing action in the soft x-ray region. Our approach to soft x-ray-laser development is based on rapid plasma cooling after the laser pulse by radiation losses, leading to fast recombination and collisional cascade into upper excited levels of CVI, for example, while the lower excited levels depopulate rapidly by radiative transitions, thus creating population inversions and gain. A approx. = 0.5 kJ CO 2 laser was focused onto a target of solid carbon or teflon; or CO 2 , O 2 , Ne gas, and the resulting plasma confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics with absolute intensity calibration were used to measure level populations

  16. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  17. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  18. Characterization of secondary electron collection for energy recovery from high energy ions with a magnetic field

    International Nuclear Information System (INIS)

    Hagihara, Shota; Wada, Takayuki; Nakamoto, Satoshi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Furuyama, Yuichi; Taniike, Akira

    2015-01-01

    A traveling wave direct energy converter (TWDEC) is expected to be used as an energy recovery device for fast protons produced during the D- 3 He nuclear fusion reaction. Some protons, however, are not fully decelerated and pass through the device. A secondary electron direct energy converter (SEDEC) was proposed as an additional device to recover the protons passing through a TWDEC. In our previous study, magnetic field was applied for efficient secondary electron (SE) collection, but the SEs were reflected close to the collector due to the magnetic mirror effect and the collection was degraded. Herein, a new arrangement of magnets is proposed to be set away from the collector, and experiments in various conditions are performed. An appropriate arrangement away from the collector resulted in the improvement of SE collection. (author)

  19. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states

    Science.gov (United States)

    Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus

    2014-11-01

    The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.

  20. Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey

    DEFF Research Database (Denmark)

    Meyer, A.; Hansen, D.B.; Goncalves Gomes, Claudia Sofia

    2005-01-01

    and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at similar to50-fold increased scale (cf. magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85...

  1. Magnetic topology of Co-based inverse opal-like structures

    NARCIS (Netherlands)

    Grigoryeva, N.A.; Mistonov, A.A.; Napolskii, K.S.; Sapoletova, N.A.; Eliseev, A.A.; Bouwman, W.; Byelov, D.; Petukhov, A.V.; Chernyshov, D.Y.; Eckerlebe, H.; Vasilieva, A.V.; Grigoriev, S.V.

    2011-01-01

    Themagnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle

  2. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)

    2016-07-10

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  3. Chemical shift-selective snapshot FLASH MR imaging in combination with inversion-recovery T1 contrast at different field strengths

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1991-01-01

    With fast MR imaging, chemical shift contract becomes available to the clinician in seconds. The purpose of this paper is to evaluate the combination of chemical shift selective (CHESS) MR imaging using the snapshot FLASH MR method with the inversion-recovery technique and to obtain information concerning the signal-to-noise and chemical shift with the presaturation method at different field strengths. Investigations with volunteers and experimental animals were done at 2 and 3 T (whole body) and in a 4.7-T animal image. For the inversion-recovery experiments, saturation was done before every snapshot FLASH image. With increasing field strength due to signal-to-noise and chemical shift advantages, the method performs better. Increasing T1 values are also important at high field strengths. The combined technique is useful only for T1 water images with fat saturation. It also allows fast quantification of T1 in water-containing organs and pathologic processes. At high field strengths, fast CHESS and T1 imaging promise fast quantitative information. This is a possible argument for clinical high-field-strength MR imagining along with MR spectroscopy

  4. The inversion layer of electric fields and electron phase-space-hole structure during two-dimensional collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.

    2011-01-01

    Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.

  5. Magnetic-field-induced crossover from the inverse Faraday effect to the optical orientation in EuTe

    Science.gov (United States)

    Pavlov, V. V.; Pisarev, R. V.; Nefedov, S. G.; Akimov, I. A.; Yakovlev, D. R.; Bayer, M.; Henriques, A. B.; Rappl, P. H. O.; Abramof, E.

    2018-05-01

    A time-resolved optical pump-probe technique has been applied for studying the ultrafast dynamics in the magnetic semiconductor EuTe near the absorption band gap. We show that application of external magnetic field up to 6 T results in crossover from the inverse Faraday effect taking place on the femtosecond time scale to the optical orientation phenomenon with an evolution in the picosecond time domain. We propose a model which includes both these processes, possessing different spectral and temporal properties. The circularly polarized optical pumping induces the electronic transition 4 f 7 5 d 0 → 4 f 6 5 d 1 forming the absorption band gap in EuTe. The observed crossover is related to a strong magnetic-field shift of the band gap in EuTe at low temperatures. It was found that manipulation of spin states on intrinsic defect levels takes place on a time scale of 19 ps in the applied magnetic field of 6 T.

  6. Influence of the interplanetary driver type on the durations of main and recovery phases of magnetic storms

    OpenAIRE

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2013-01-01

    We study durations of main and recovery phases of magnetic storms induced by different types of large-scale solar-wind streams (Sheath, magnetic cloud (MC), Ejecta and CIR) on the basis of OMNI data base during 1976-2000. Durations of both main and recovery phases depend on types of interplanetary drivers. On the average, duration of main phase of storms induced by compressed regions (CIR and Sheath) is shorter than by MC and Ejecta while duration of recovery phase of CIR- and Sheath-induced ...

  7. Effect of heat sink layer on ultrafast magnetization recovery of FeCo films

    International Nuclear Information System (INIS)

    Ren, Y; Zhao, J Q; Zhang, Z Z; Jin, Q Y; Hu, H N; Zhou, S M

    2008-01-01

    For FeCo alloy thin films with Ag, Cu, Pt, Ta and Cr as heat sink layers, ultrafast demagnetization and recovery processes of transient magnetization have been studied by the time-resolved magneto-optical Kerr effect. For all samples, the ultrafast demagnetization process is accomplished within almost the same time interval of 500 fs, which is independent of the heat sink layer material and the pump fluence. The recovery rate of the FeCo film grown on the Si(1 0 0) substrate is enhanced with a heat sink layer. In addition, the recovery rate is found to be independent of the heat sink layer thickness; it decreases with increasing pump fluence. Among all heat sink layers, the sample with the Cr layer achieves the highest recovery rate because it has the same bcc structure as that of the FeCo layer and the small lattice mismatch. The sample with the Ta layer, has the largest damage threshold of pump fluence because of the highest melting point

  8. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  9. Magnetic resonance imaging to visualize stroke and characterize stroke recovery: a review

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    2013-05-01

    Full Text Available The global burden of stroke continues to grow. Although stroke prevention strategies (eg. medications, diet and exercise can contribute to risk reduction, options for acute interventions (eg. thrombolytic therapy for ischemic stroke are limited to the minority of patients. The remaining patients are often left with profound neurological disabilities that substantially impact quality of life, economic productivity, and increase caregiver burden. In the last decade, however, the future outlook for such patients has been tempered by movement away from the view that the brain is incapable of reorganizing after injury. Many now view brain recovery after stroke as an area of scientific research with large potential for therapeutic advances, far into the future [1]. As a probe of brain anatomy, function and physiology, magnetic resonance imaging is a noninvasive and highly versatile modality that promises to play a particularly important role in such research, towards improving stroke rehabilitation methods and stroke recovery.

  10. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data

    NARCIS (Netherlands)

    Kusche, J.; Schrama, E.J.O.

    2005-01-01

    Monitoring hydrological redistributions through their integrated gravitational effect is the primary aim of the Gravity Recovery and Climate Experiment (GRACE) mission. Time?variable gravity data from GRACE can be uniquely inverted to hydrology, since mass transfers located at or near the Earth's

  11. The inverse microconglomerate test: Definition and application to the preservation of Paleoarchean to Hadean magnetizations in metasediments of the Jack Hills, Western Australia

    Science.gov (United States)

    Cottrell, Rory; Tarduno, John; Bono, Richard; Dare, Matthew

    2016-04-01

    We introduce a new paleomagnetic field test, the inverse microconglomerate test. In contrast with traditional conglomerate tests, which target specimens that might preserve primary magnetizations, the inverse microconglomerate test focuses on magnetic carriers having unblocking temperatures less than peak metamorphic temperatures. These mineral carriers are expected to carry a consistent direction of remagnetization. Hence, the inverse microconglomerate test evaluates whether coherent magnetizations are retained on a grain/mineral scale in a given sedimentary rock sample. By defining the remagnetization direction, it also serves as a benchmark for comparison of magnetizations from other grains/minerals having unblocking temperatures higher than peak metamorphic conditions (i.e., potential primary magnetizations). We apply this new test to sediments of the Jack Hills (JH), Yilgarn craton, Western Australia. For the JH sediments we focus on fuchsite, a secondary Cr-mica that contains relict Cr-Fe spinels capable of recording remanent magnetizations. We find that JH fuchsite grains retain consistent magnetic directions at unblocking temperatures between ˜270 and 340 oC, which defines a positive test. This direction does not reproduce a nominal 1078-1070 Ma remagnetization reported by Weiss et al. (EPSL, 2015) that we interpret as an artifact of inappropriate use of averaging and statistics. The thermochemical remanent magnetization recorded by the fuchsite was most likely imparted during peak JH metamorphic conditions at ˜2650 Ma. Our inverse microconglomerate test complements a positive microconglomerate test and large scale positive conglomerate test conducted on JH cobbles (Tarduno and Cottrell, EPSL, 2013), further supporting evidence that JH zircons record Paleoarchean to Hadean primary magnetizations at high (greater than 550 oC) unblocking temperatures (Tarduno et al., Science, 2015). More generally, the new inverse microconglomerate test may aid in

  12. Recovery of Terephthalic Acid by employing magnetic nanoparticles as a solid support

    Directory of Open Access Journals (Sweden)

    Elmira Ghamary

    2018-03-01

    Full Text Available Abstract The aim of this research work is focused on the improvement of Terephthalic acid recovery from PET wastes by using organically modified nano-Fe3O4@Cyanuric Chloride as the solid support. The performance of organically modified nano magnetic was examined in detail and the obtained results were compared with the unsupported reaction data. Required reaction time for complete glycolysis of the wastes, consumption of the solvent as well as catalyst decreases up 99%, 37.5% and 40% respectively. Result showed that nano-Fe 3O4@Cyanuric Chloride delivered good performance as solid support in depolymerizing of PET to the terephthalic acid.

  13. Effect of the magnetic isotope of magnesium, 25Mg, on post-radiation recovery of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Grodzinskij, D.M.; Evstyukhina, T.A.; Kol'tover, V.K.; Korolev, V.G.; Kutlakhmedov, Yu.A.; Grodzinskij, D.M.; Evstyukhina, T.A.; Kol'tover, V.K.; Korolev, V.G.; Kutlakhmedov, Yu.A.; Grodzinskij, D.M.; Evstyukhina, T.A.; Kol'tover, V.K.; Korolev, V.G.; Kutlakhmedov, Yu.A.

    2011-01-01

    Among three stable magnesium isotopes, 24 Mg, 25 Mg, and 26 Mg with natural abundance 79, 10, and 11%, only 25 Mg has the nuclear spin (I=5/2) and, therefore, the nuclear magnetic moment. Two other isotopes are spinless (I=0) and, hence, have no magnetic moment. We have revealed that magnetic isotope 25 Mg, by comparison to nonmagnetic isotope 24 Mg, essentially stimulates the recovery process in the yeast cells, Saccharomyces cerevisiae, after UV irradiation. Thus, we have first documented the magnetic isotope effect in radiation biology. This finding opens up the way to the development of novel radio-protectors based on the stable magnetic isotopes.

  14. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state

    Directory of Open Access Journals (Sweden)

    Fernández-Espejo Davinia

    2010-09-01

    Full Text Available Abstract Background The rate of recovery from the vegetative state (VS is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.

  15. ROXIE: Routine for the optimization of magnet X-sections, inverse field calculation and coil end design. Proceedings

    International Nuclear Information System (INIS)

    Russenschuck, S.

    1999-01-01

    The Large Hadron Collider (LHC) will provide proton-proton collisions with a center-of-mass energy of 14 TeV which requires high field superconducting magnets to guide the counter-rotating beams in the existing LEP tunnel with a circumference of about 27 km. The LHC magnet system consists of 1232 superconducting dipoles and 386 main quadrupoles together with about 20 different types of magnets for insertions and correction. The design and optimization of these magnets is dominated by the requirement of a extremely uniform field which is mainly defined by the layout of the superconducting coils. The program package ROXIE (Routine for the Optimization of magnet X-sections, Inverse field calculation and coil End design) has been developed for the design and optimization of the coil geometries in two and three dimensions. Recently it has been extended in a collaboration with the University of Graz, Austria, to the calculation of saturation induced effects using a reduced vector-potential FEM formulation. With the University of Stuttgart, Germany, a collaboration exists fro the application of the BEM-FEM coupling method for the 2D and 3D field calculation. ROXIE now also features a TCL-TK user interface. The growing number of ROXIE users inside and outside CERN gave rise to the idea of organizing the 'First International ROXIE Users Meeting and Workshop' at CERN, March 16-18, 1998 which brought together about 50 researchers in the field. This report contains the contributions to the workshop and describes the features of the program, the mathematical optimization techniques applied and gives examples of the recent design work carried out. It also gives the theoretical background for the field computation methods and serves as a handbook for the installation and application of the program. (orig.)

  16. ROXIE: Routine for the optimization of magnet X-sections, inverse field calculation and coil end design. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Russenschuck, S [ed.

    1999-04-12

    The Large Hadron Collider (LHC) will provide proton-proton collisions with a center-of-mass energy of 14 TeV which requires high field superconducting magnets to guide the counter-rotating beams in the existing LEP tunnel with a circumference of about 27 km. The LHC magnet system consists of 1232 superconducting dipoles and 386 main quadrupoles together with about 20 different types of magnets for insertions and correction. The design and optimization of these magnets is dominated by the requirement of a extremely uniform field which is mainly defined by the layout of the superconducting coils. The program package ROXIE (Routine for the Optimization of magnet X-sections, Inverse field calculation and coil End design) has been developed for the design and optimization of the coil geometries in two and three dimensions. Recently it has been extended in a collaboration with the University of Graz, Austria, to the calculation of saturation induced effects using a reduced vector-potential FEM formulation. With the University of Stuttgart, Germany, a collaboration exists fro the application of the BEM-FEM coupling method for the 2D and 3D field calculation. ROXIE now also features a TCL-TK user interface. The growing number of ROXIE users inside and outside CERN gave rise to the idea of organizing the 'First International ROXIE Users Meeting and Workshop' at CERN, March 16-18, 1998 which brought together about 50 researchers in the field. This report contains the contributions to the workshop and describes the features of the program, the mathematical optimization techniques applied and gives examples of the recent design work carried out. It also gives the theoretical background for the field computation methods and serves as a handbook for the installation and application of the program. (orig.)

  17. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    Science.gov (United States)

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  18. Basement configuration of Visakhapatnam - Paradip continental margin from inversion of magnetic anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.M.M.; Rao, S.J.; Venkateswarlu, K.; Murthy, K.S.R.; Murthy, I.V.R.; Subrahmanyam, A.S.

    . References 1 Curray J R, Emmel F J, Moore D G & Raitt R W, in: Ocean basins and margins, 6 (Plenum, New York) 1982, pp. 399-450. 2 Rao T C S & Murthy K S R, Magnetic surveys over the con- tinental shelf off Visakhapatnam, Mahasagar - Bull Nat Inst... Visakhapatnam, east coast of India, Indian J Earth Sci, 14(1987) 109-113. 8 Murthy K S R, Rao M M M, Rao T C S & Subrahmanyam A S, A comparative study of Werner deconvolution and con- ventional modelling of marine magnetic data, Geophy Res Bull, 25(1987) 152...

  19. An Analytical Approach for Fast Recovery of the LSI Properties in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Hamed Jabbari Asl

    2016-01-01

    Full Text Available Linearity and shift invariance (LSI characteristics of magnetic particle imaging (MPI are important properties for quantitative medical diagnosis applications. The MPI image equations have been theoretically shown to exhibit LSI; however, in practice, the necessary filtering action removes the first harmonic information, which destroys the LSI characteristics. This lost information can be constant in the x-space reconstruction method. Available recovery algorithms, which are based on signal matching of multiple partial field of views (pFOVs, require much processing time and a priori information at the start of imaging. In this paper, a fast analytical recovery algorithm is proposed to restore the LSI properties of the x-space MPI images, representable as an image of discrete concentrations of magnetic material. The method utilizes the one-dimensional (1D x-space imaging kernel and properties of the image and lost image equations. The approach does not require overlapping of pFOVs, and its complexity depends only on a small-sized system of linear equations; therefore, it can reduce the processing time. Moreover, the algorithm only needs a priori information which can be obtained at one imaging process. Considering different particle distributions, several simulations are conducted, and results of 1D and 2D imaging demonstrate the effectiveness of the proposed approach.

  20. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    Science.gov (United States)

    Cady, John W.

    1977-01-01

    An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length.  The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections.  Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973).  They coined the term "2 1/2-dimensional" to describe the geometry.

  1. Counterstreaming ions as evidence of magnetic reconnection in the recovery phase of substorms at the kinetic level

    International Nuclear Information System (INIS)

    Nagai, Tsugunobu; Nakamura, Masao; Shinohara, Iku; Fujimoto, Masaki; Saito, Yoshifumi; Mukai, Toshifumi

    2002-01-01

    Counterstreaming ions embedded in hot isotropic ions are found at the front of fast earthward plasma flows in the recovery phase of substorms in the Earth's magnetotail. The counterstreaming ions are present only when the northward component of the magnetic field increases in the equatorial plane. Hybrid simulations of magnetic reconnection have been carried out. It is found that counterstreaming ions form in the leading edge of jetting plasmas produced with magnetic reconnection, where the magnetic field lines pile up due to the pre-existing stationary plasmas. These counterstreaming ions originate from cold ions on the northern and southern tail lobe field lines, and earthward transport of the reconnected field lines makes these cold ions flow into the equatorial plane. The present observations provide strong evidence of magnetic reconnection in the recovery phase of substorms at the kinetic level

  2. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  3. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  4. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Jhih-Hong Lin

    2016-08-01

    Full Text Available Magnetic shape memory (MSM alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  5. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.

    Science.gov (United States)

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2016-08-25

    Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.

  6. Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-12-01

    Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.

  7. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    Science.gov (United States)

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  8. T-wave inversions related to left ventricular basal hypertrophy and myocardial fibrosis in non-apical hypertrophic cardiomyopathy: A cardiovascular magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuyu, E-mail: cxy0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Zhao, Shihua, E-mail: zhaoshihua0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Zhao, Tao, E-mail: taozhao0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Lu, Minjie, E-mail: lmjkan@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Yin, Gang, E-mail: gangyin0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Jiang, Shiliang, E-mail: jiangsl-2011@163.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Prasad, Sanjay, E-mail: s.prasad@rbht.nhs.uk [NIHR Biomedical Research Unit, Royal Brompton Hospital Sydney Street, London, SW3 6NP (United Kingdom)

    2014-02-15

    Objectives: To investigate the relationship between T-wave inversions and left ventricular (LV) segmental hypertrophy and myocardial fibrosis assessed by cardiovascular magnetic resonance (CMR) in patients with non-apical hypertrophic cardiomyopathy (HCM). Methods: 196 consecutive patients with non-apical HCM underwent late gadolinium enhancement (LGE) CMR and 12-lead electrocardiogram. The distribution and magnitude of LV segmental hypertrophy and LGE were assessed according to the AHA 17-segment model and analyzed in relation to T-wave inversions. Results: Of 196 HCM patients, 144 (73%) exhibited T-wave inversions. 144 (73%) patients had evidence of myocardial fibrosis as defined by LGE, and the prevalence of LGE was significantly higher in patients with T-wave inversions compared with those without T-wave inversions (78% vs. 59%, P = 0.008). T-wave inversions were related to basal anterior and basal anteroseptal LGE (20% vs. 10%, P = 0.04 and 68% vs. 46%, P = 0.005, respectively). In addition, T-wave inversions were associated with greater basal anteroseptal and basal inferior wall thickness (19.5 ± 4.7 mm vs. 16.7 ± 4.5 mm, P < 0.001 and 10.9 ± 3.3 mm vs. 9.6 ± 3.0 mm, P = 0.01, respectively). By logistic regression analysis, basal anteroseptal wall thickness and LGE were independent determinants of T-wave inversions (P = 0.005, P = 0.01, respectively). Conclusions: T-wave inversions in HCM are associated with LGE and wall thickness of the left ventricular basal segments. Moreover, basal anteroseptal wall thickness and LGE are independent determinants of T-wave inversions.

  9. T-wave inversions related to left ventricular basal hypertrophy and myocardial fibrosis in non-apical hypertrophic cardiomyopathy: A cardiovascular magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Chen, Xiuyu; Zhao, Shihua; Zhao, Tao; Lu, Minjie; Yin, Gang; Jiang, Shiliang; Prasad, Sanjay

    2014-01-01

    Objectives: To investigate the relationship between T-wave inversions and left ventricular (LV) segmental hypertrophy and myocardial fibrosis assessed by cardiovascular magnetic resonance (CMR) in patients with non-apical hypertrophic cardiomyopathy (HCM). Methods: 196 consecutive patients with non-apical HCM underwent late gadolinium enhancement (LGE) CMR and 12-lead electrocardiogram. The distribution and magnitude of LV segmental hypertrophy and LGE were assessed according to the AHA 17-segment model and analyzed in relation to T-wave inversions. Results: Of 196 HCM patients, 144 (73%) exhibited T-wave inversions. 144 (73%) patients had evidence of myocardial fibrosis as defined by LGE, and the prevalence of LGE was significantly higher in patients with T-wave inversions compared with those without T-wave inversions (78% vs. 59%, P = 0.008). T-wave inversions were related to basal anterior and basal anteroseptal LGE (20% vs. 10%, P = 0.04 and 68% vs. 46%, P = 0.005, respectively). In addition, T-wave inversions were associated with greater basal anteroseptal and basal inferior wall thickness (19.5 ± 4.7 mm vs. 16.7 ± 4.5 mm, P < 0.001 and 10.9 ± 3.3 mm vs. 9.6 ± 3.0 mm, P = 0.01, respectively). By logistic regression analysis, basal anteroseptal wall thickness and LGE were independent determinants of T-wave inversions (P = 0.005, P = 0.01, respectively). Conclusions: T-wave inversions in HCM are associated with LGE and wall thickness of the left ventricular basal segments. Moreover, basal anteroseptal wall thickness and LGE are independent determinants of T-wave inversions

  10. Proportional-Type Performance Recovery DC-Link Voltage Tracking Algorithm for Permanent Magnet Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Seok-Kyoon Kim

    2017-09-01

    Full Text Available This study proposes a disturbance observer-based proportional-type DC-link voltage tracking algorithm for permanent magnet synchronous generators (PMSGs. The proposed technique feedbacks the only proportional term of the tracking errors, and it contains the nominal static and dynamic feed-forward compensators coming from the first-order disturbance observers. It is rigorously proved that the proposed method ensures the performance recovery and offset-free properties without the use of the integrators of the tracking errors. A wind power generation system has been simulated to verify the efficacy of the proposed method using the PSIM (PowerSIM software with the DLL (Dynamic Link Library block.

  11. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  12. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  13. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  14. Non-contrast-enhanced hepatic MR angiography: Do two-dimensional parallel imaging and short tau inversion recovery methods shorten acquisition time without image quality deterioration?

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Kotaro, E-mail: kotaro@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kamae, Toshikazu, E-mail: toshi13@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Hirokawa, Yuusuke, E-mail: yuusuke@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Shibata, Toshiya, E-mail: ksj@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-01-15

    Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 {+-} 1.0 min (mean {+-} standard deviation), 5.9 {+-} 0.8 min, and 5.8 {+-} 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.

  15. Non-contrast-enhanced hepatic MR angiography: Do two-dimensional parallel imaging and short tau inversion recovery methods shorten acquisition time without image quality deterioration?

    International Nuclear Information System (INIS)

    Shimada, Kotaro; Isoda, Hiroyoshi; Okada, Tomohisa; Kamae, Toshikazu; Arizono, Shigeki; Hirokawa, Yuusuke; Shibata, Toshiya; Togashi, Kaori

    2011-01-01

    Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 ± 1.0 min (mean ± standard deviation), 5.9 ± 0.8 min, and 5.8 ± 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.

  16. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  17. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Exploring the Recovery Lakes region and interior Dronning Maud Land, East Antarctica, with airborne gravity, magnetic and radar measurements

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Ferraccioli, Fausto

    2017-01-01

    for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present...

  19. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  20. Correlation between the Palaeozoic structures from West Iberian and Grand Banks margins using inversion of magnetic anomalies

    Science.gov (United States)

    Silva, Elsa A.; Miranda, J. M.; Luis, J. F.; Galdeano, A.

    2000-05-01

    The Ibero-Armorican Arc (IAA) is a huge geological structure of Pre-Cambrian origin, tightened during hercynian times and deeply affected by the opening of the Atlantic Ocean and the Bay of Biscay. Its remnants now lie in Iberia, north-western France and the Canadian Grand Banks margins. The qualitative correlation between these three blocks has been attempted by several authors (e.g. Lefort, J.P., 1980. Un 'Fit' structural de l'Atlantique Nord: arguments geologiques pour correler les marqueurs geophysiques reconnus sur les deux marges. Mar. Geol. 37, 355-369; Lefort, J.P., 1983. A new geophysical criterion to correlate the Acadian and Hercynian orogenies of Western Europe and Eastern America. Mem. Geol. Soc. Am. 158, 3-18; Galdeano, A., Miranda, J.M., Matte, P., Mouge, P., Rossignol, C., 1990. Aeromagnetic data: A tool for studying the Variscan arc of Western Europe and its correlation with transatlantic structures. Tectonophysics 177, 293-305) using magnetic anomalies, mainly because they seem to preserve the hercynian zonation, in spite of the strong thermal and mechanical processes that took place during rifting and ocean spreading. In this paper, we present a new contribution to the study of the IAA structure based on the processing of a compilation of magnetic data from Iberia and Grand Banks margins. To interpret the magnetic signature, a Fourier-domain-based inversion technique was applied, considering a layer with a constant thickness of 10 km, and taking into account only the induced field. The digital terrain model was derived from ETOPO5 (ETOPO5, 1986. Relief map of the earth's surface. EOS 67, 121) and TerrainBase (TerrainBase, 1995. In: Row III, L.W., Hastings, D.A., Dunbar, P.K. (Eds.), Worldwide Digital Terrain Data, Documentation Manual, CD-ROM Release 1.0. GEODAS-NGDC Key to Geophysical Records. Documentation N. 30, April) databases. The pseudo-susceptibility distribution obtained was repositioned for the 156.5 Ma epoch, using the Srivastava and

  1. Postprandial changes in secretory flow of pancreatic juice in the main pancreatic duct: evaluation with cine-dynamic MRCP with a spatially selective inversion-recovery (IR) pulse

    International Nuclear Information System (INIS)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Torigoe, Teruyuki; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu

    2016-01-01

    To evaluate the influence of oral ingestion on the secretory flow dynamics of physiological pancreatic juice within the main pancreatic duct in healthy subjects by using cine-dynamic MRCP with spatially-selective inversion-recovery (IR) pulse non-invasively. Thirty-eight healthy subjects were investigated. MRCP with spatially-selective IR pulse was repeated every 15 s for 5 min to acquire a total of 20 images (cine-dynamic MRCP). A set of 20 MRCP images was repeatedly obtained before and after liquid oral ingestion every 7 min (including 2-min interval) for 40 min (a total of seven sets). Secretion grade of pancreatic juice on cine-dynamic MRCP was compared before and after oral ingestion using the nonparametric Wilcoxon signed-rank test. Median secretion grades of pancreatic juice at 5 min (score = 2.15), 12 min (score = 1.95) and 19 min (score = 2.05) after ingestion were significantly higher than that before ingestion (score = 1.40) (P = 0.004, P = 0.032, P = 0.045, respectively). Secretion grade of pancreatic juice showed a maximum peak of 2.15 at 5 min after ingestion. Thereafter, the secretion grade of pancreatic juice tended to gradually decline. Non-invasive cine-dynamic MRCP using spatially-selective IR pulse showed potential for evaluating postprandial changes in the secretory flow dynamics of pancreatic juice as a physiological reaction. (orig.)

  2. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study.

    Science.gov (United States)

    Carrete, Henrique; Abdala, Nitamar; Lin, Kátia; Caboclo, Luís Otávio; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Szjenfeld, Jacob; Nogueira, Roberto Gomes; Yacubian, Elza Márcia Targas

    2007-09-01

    To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, chi2 test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved.

  3. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  4. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study

    International Nuclear Information System (INIS)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas

    2007-01-01

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, χ 2 test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  5. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  6. Postprandial changes in secretory flow of pancreatic juice in the main pancreatic duct: evaluation with cine-dynamic MRCP with a spatially selective inversion-recovery (IR) pulse

    Energy Technology Data Exchange (ETDEWEB)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Torigoe, Teruyuki; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu [Kawasaki Medical School, Department of Diagnostic Radiology, Kurashiki, Okayama (Japan)

    2016-12-15

    To evaluate the influence of oral ingestion on the secretory flow dynamics of physiological pancreatic juice within the main pancreatic duct in healthy subjects by using cine-dynamic MRCP with spatially-selective inversion-recovery (IR) pulse non-invasively. Thirty-eight healthy subjects were investigated. MRCP with spatially-selective IR pulse was repeated every 15 s for 5 min to acquire a total of 20 images (cine-dynamic MRCP). A set of 20 MRCP images was repeatedly obtained before and after liquid oral ingestion every 7 min (including 2-min interval) for 40 min (a total of seven sets). Secretion grade of pancreatic juice on cine-dynamic MRCP was compared before and after oral ingestion using the nonparametric Wilcoxon signed-rank test. Median secretion grades of pancreatic juice at 5 min (score = 2.15), 12 min (score = 1.95) and 19 min (score = 2.05) after ingestion were significantly higher than that before ingestion (score = 1.40) (P = 0.004, P = 0.032, P = 0.045, respectively). Secretion grade of pancreatic juice showed a maximum peak of 2.15 at 5 min after ingestion. Thereafter, the secretion grade of pancreatic juice tended to gradually decline. Non-invasive cine-dynamic MRCP using spatially-selective IR pulse showed potential for evaluating postprandial changes in the secretory flow dynamics of pancreatic juice as a physiological reaction. (orig.)

  7. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    International Nuclear Information System (INIS)

    Maeda, M.; Sakuma, H.; Takeda, K.; Yagishita, A.; Yamamoto, T.

    2003-01-01

    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  8. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  9. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    Science.gov (United States)

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  10. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    Science.gov (United States)

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  11. Application of generalized inverse for analysis of magnetic anomalies due to a dyke model - Some numerical experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.M.M.; Murty, T.V.R.; SuryaPrakash, S.; Chandramouli, P.; Murthy, K.S.R.

    . Indust. Appl. Math, 11 (1963) 431-441. 10. Pedersen L B, Interpretation of potential field data – A generalised inverse approach, Geophy. Prosp. 25 (1977) 199-230. 11. Radhakrishna Murthy I V, Swamy K V & Jagannadha Rao S, Automatic inversion... generalised inverse technique in reconstruction of gravity anomalies due to a fault, Indian J. Pure. Appl. Math., 34 (2003) 31-47. 16. Ramana Murty T V, Somayajulu Y K & Murty C S, Reconstruction of sound speed profile through natural generalised inverse...

  12. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsing-Lung Lien

    2013-05-01

    Full Text Available Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV, Au(III and Pd(II, respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.

  13. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-06-15

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  14. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  15. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  16. Novel Application of Time-Spatial Labeling Inversion Pulse Magnetic Resonance Imaging for Diagnosis of External Hydrocephalus.

    Science.gov (United States)

    Nakae, Shunsuke; Murayama, Kazuhiro; Adachi, Kazuhide; Kumai, Tadashi; Abe, Masato; Hirose, Yuichi

    2018-01-01

    Although a subdural fluid collection frequently is observed, diagnostic methods that differentiate between the subdural collection caused by external hydrocephalus and that caused by subdural hygroma have not been established. Here, we report a case of external hydrocephalus caused by Gliadel-induced eosinophilic meningitis that has been previously reported in only 1 case and can be diagnosed by time-spatial labeling inversion pulse magnetic resonance imaging (time-SLIP MRI). A tumor located in the left temporal was detected incidentally in an 81-year-old man by examination of a head injury. The tumor was surgically resected and diagnosed as a high-grade glioma during the surgery; Gliadel wafers subsequently were implanted. Three weeks after the resection, the patient showed disturbed consciousness, and computed tomography revealed a subdural fluid collection. The out-flow of cerebrospinal through the resection cavity was detected by time-SLIP MRI. Cerebrospinal tests indicated high white blood cell counts and high protein levels, with more than 90% of the white blood cell count comprising eosinophils. Therefore, we suspected that the subdural fluid collection was caused by external hydrocephalus because of Gliadel-induced eosinophilic meningitis. We surgically removed the Gliadel wafers and subsequently performed a surgery to insert a ventriculoperitoneal shunt. Histologic examination indicated eosinophilic accumulation around the Gliadel wafers. The patient's symptoms improved after the insertion of a ventriculoperitoneal shunt. In the present case, time-SLIP MRI was a useful and noninvasive method for diagnosing external hydrocephalus which was caused by eosinophilic meningitis because of Gliadel-induced eosinophilic meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. DWI-ASPECTS (Diffusion-Weighted Imaging-Alberta Stroke Program Early Computed Tomography Scores) and DWI-FLAIR (Diffusion-Weighted Imaging-Fluid Attenuated Inversion Recovery) Mismatch in Thrombectomy Candidates: An Intrarater and Interrater Agreement Study.

    Science.gov (United States)

    Fahed, Robert; Lecler, Augustin; Sabben, Candice; Khoury, Naim; Ducroux, Célina; Chalumeau, Vanessa; Botta, Daniele; Kalsoum, Erwah; Boisseau, William; Duron, Loïc; Cabral, Dominique; Koskas, Patricia; Benaïssa, Azzedine; Koulakian, Hasmik; Obadia, Michael; Maïer, Benjamin; Weisenburger-Lile, David; Lapergue, Bertrand; Wang, Adrien; Redjem, Hocine; Ciccio, Gabriele; Smajda, Stanislas; Desilles, Jean-Philippe; Mazighi, Mikaël; Ben Maacha, Malek; Akkari, Inès; Zuber, Kevin; Blanc, Raphaël; Raymond, Jean; Piotin, Michel

    2018-01-01

    We aimed to study the intrarater and interrater agreement of clinicians attributing DWI-ASPECTS (Diffusion-Weighted Imaging-Alberta Stroke Program Early Computed Tomography Scores) and DWI-FLAIR (Diffusion-Weighted Imaging-Fluid Attenuated Inversion Recovery) mismatch in patients with acute ischemic stroke referred for mechanical thrombectomy. Eighteen raters independently scored anonymized magnetic resonance imaging scans of 30 participants from a multicentre thrombectomy trial, in 2 different reading sessions. Agreement was measured using Fleiss κ and Cohen κ statistics. Interrater agreement for DWI-ASPECTS was slight (κ=0.17 [0.14-0.21]). Four raters (22.2%) had a substantial (or higher) intrarater agreement. Dichotomization of the DWI-ASPECTS (0-5 versus 6-10 or 0-6 versus 7-10) increased the interrater agreement to a substantial level (κ=0.62 [0.48-0.75] and 0.68 [0.55-0.79], respectively) and more raters reached a substantial (or higher) intrarater agreement (17/18 raters [94.4%]). Interrater agreement for DWI-FLAIR mismatch was moderate (κ=0.43 [0.33-0.57]); 11 raters (61.1%) reached a substantial (or higher) intrarater agreement. Agreement between clinicians assessing DWI-ASPECTS and DWI-FLAIR mismatch may not be sufficient to make repeatable clinical decisions in mechanical thrombectomy. The dichotomization of the DWI-ASPECTS (0-5 versus 0-6 or 0-6 versus 7-10) improved interrater and intrarater agreement, however, its relevance for patients selection for mechanical thrombectomy needs to be validated in a randomized trial. © 2017 American Heart Association, Inc.

  18. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  19. Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology, Research Institute of Radiology, Seoul (Korea, Republic of); Inje University, Department of Radiology, Busan Paik Hospital, Busan (Korea, Republic of); Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology, Research Institute of Radiology, Seoul (Korea, Republic of); Lee, Jung Kyo [University of Ulsan College of Medicine, Asan Medical Center, Department of Neurosurgery, Seoul (Korea, Republic of); Lee, Chong Sik; Chung, Sun J. [University of Ulsan College of Medicine, Asan Medical Center, Department of Neurology, Seoul (Korea, Republic of); Cho, So Hyun [Department of Radiology, Busan (Korea, Republic of); Lee, Gyoung Ro [Philips HealthCare Korea, Seoul (Korea, Republic of)

    2015-09-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted treatment for advanced Parkinson's disease (PD). However, targeting the STN is difficult due to its relatively small size and variable location. The purpose of this study was to assess which of the following sequences obtained with the 3.0 T MR system can accurately delineate the STN: coronal 3D fluid-attenuated inversion recovery (FLAIR), 2D T2*-weighted fast-field echo (T2*-FFE) and 2D T2-weighted turbo spin-echo (TSE) sequences. We included 20 consecutive patients with PD who underwent 3.0 T MR for DBS targeting. 3D FLAIR, 2D T2*-FFE and T2-TSE images were obtained for all study patients. Image quality and demarcation of the STN were analysed using 4-point scales, and contrast ratio (CR) of the STN and normal white matter was calculated. The Friedman test was used to compare the three sequences. In qualitative analysis, the 2D T2*-FFE image showed more artefacts than 3D FLAIR or 2D T2-TSE, but the difference did not reach statistical significance. 3D FLAIR images showed significantly superior demarcation of the STN compared with 2D T2*-FFE and T2-TSE images (P < 0.001, respectively). The CR of 3D FLAIR was significantly higher than that of 2D T2*-FFE or T2-TSE images in multiple comparison correction (P < 0.001), but there was no significant difference in the CR between 2D T2*-FFE and T2-TSE images. Coronal 3D FLAIR images showed the most accurate demarcation of the STN for DBS targeting among coronal 3D FLAIR, 2D T2*-FFE and T2-TSE images. (orig.)

  20. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions

    International Nuclear Information System (INIS)

    Al-Saeed, O.; Athyal, R. P.; Ismail, M.; Rudwan, M.; Khafajee, S.

    2009-01-01

    Full text: Tl-weighted fluid-attenuated inversion recovery (FLAIR) sequence is a relatively new pulse sequence for intracranial MR imaging. This study was performed to compare the image quality of Tl-weighted FLAIR with the Tl-weighted FSE sequence. Twenty patients with brain lesions underwent Tl-weighted fast spin-echo (FSE) and Tl-weighted FLAIR during the same imaging session. Four quantitative and three qualitative criteria were used to compare the two sequences after contrast. Two of four quantitative criteria pertained to lesion characteristics: lesion to white matter (WM) contrast-to-noise ratio (CNR) and lesion to cerebrospinal fluid (CSF) CNR, and two related to signals from normal tissue: grey matter to WM CNR and WM to CSF CNR. The three qualitative criteria were conspicuousness of the lesion, the presence of image artefacts and the overall image contrast. Both Tl-weighted FSE and FLAIR images were effective in demonstrating lesions. Image contrast was superior in Tl-weighted FLAIR images with significantly improved grey matter-WM CNRs and CSF-WM CNRs. The overall image contrast was judged to be superior on Tl-weighted FLAIR images compared with Tl-weighted FSE images by all neuroradiologists. Two of three reviewers considered that the FLAIR images had slightly increased imaging artefacts that, however, did not interfere with image interpretation. Tl-weighted FLAIR imaging provides improved lesion-to-background and grey to WM contrast-to-noise ratios. Superior conspicuity of lesions and overall image contrast is obtained in comparable acquisition times. These indicate an important role for Tl-weighted FLAIR in intracranial imaging and highlight its advantage over the more widely practiced Tl-weighted FSE sequence

  1. Postprandial changes in secretory flow of pancreatic juice in the main pancreatic duct: evaluation with cine-dynamic MRCP with a spatially selective inversion-recovery (IR) pulse.

    Science.gov (United States)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Torigoe, Teruyuki; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu

    2016-12-01

    To evaluate the influence of oral ingestion on the secretory flow dynamics of physiological pancreatic juice within the main pancreatic duct in healthy subjects by using cine-dynamic MRCP with spatially-selective inversion-recovery (IR) pulse non-invasively. Thirty-eight healthy subjects were investigated. MRCP with spatially-selective IR pulse was repeated every 15 s for 5 min to acquire a total of 20 images (cine-dynamic MRCP). A set of 20 MRCP images was repeatedly obtained before and after liquid oral ingestion every 7 min (including 2-min interval) for 40 min (a total of seven sets). Secretion grade of pancreatic juice on cine-dynamic MRCP was compared before and after oral ingestion using the nonparametric Wilcoxon signed-rank test. Median secretion grades of pancreatic juice at 5 min (score = 2.15), 12 min (score = 1.95) and 19 min (score = 2.05) after ingestion were significantly higher than that before ingestion (score = 1.40) (P = 0.004, P = 0.032, P = 0.045, respectively). Secretion grade of pancreatic juice showed a maximum peak of 2.15 at 5 min after ingestion. Thereafter, the secretion grade of pancreatic juice tended to gradually decline. Non-invasive cine-dynamic MRCP using spatially-selective IR pulse showed potential for evaluating postprandial changes in the secretory flow dynamics of pancreatic juice as a physiological reaction. • Secretion grade of pancreatic juice at cine-dynamic MRCP after ingestion was evaluated. • Secretion grade was significantly increased within 19 min after liquid meal ingestion. • Secretion grade showed maximum peak of 2.15 at 5 min after ingestion. • Postprandial changes in pancreatic juice flow can be assessed by cine-dynamic MRCP.

  2. Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson's disease

    International Nuclear Information System (INIS)

    Heo, Young Jin; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Lee, Jung Kyo; Lee, Chong Sik; Chung, Sun J.; Cho, So Hyun; Lee, Gyoung Ro

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted treatment for advanced Parkinson's disease (PD). However, targeting the STN is difficult due to its relatively small size and variable location. The purpose of this study was to assess which of the following sequences obtained with the 3.0 T MR system can accurately delineate the STN: coronal 3D fluid-attenuated inversion recovery (FLAIR), 2D T2*-weighted fast-field echo (T2*-FFE) and 2D T2-weighted turbo spin-echo (TSE) sequences. We included 20 consecutive patients with PD who underwent 3.0 T MR for DBS targeting. 3D FLAIR, 2D T2*-FFE and T2-TSE images were obtained for all study patients. Image quality and demarcation of the STN were analysed using 4-point scales, and contrast ratio (CR) of the STN and normal white matter was calculated. The Friedman test was used to compare the three sequences. In qualitative analysis, the 2D T2*-FFE image showed more artefacts than 3D FLAIR or 2D T2-TSE, but the difference did not reach statistical significance. 3D FLAIR images showed significantly superior demarcation of the STN compared with 2D T2*-FFE and T2-TSE images (P < 0.001, respectively). The CR of 3D FLAIR was significantly higher than that of 2D T2*-FFE or T2-TSE images in multiple comparison correction (P < 0.001), but there was no significant difference in the CR between 2D T2*-FFE and T2-TSE images. Coronal 3D FLAIR images showed the most accurate demarcation of the STN for DBS targeting among coronal 3D FLAIR, 2D T2*-FFE and T2-TSE images. (orig.)

  3. Fluid-Attenuated Inversion Recovery Hypointensity of the Pulvinar Nucleus of Patients with Alzheimer Disease: Its Possible Association with Iron Accumulation as Evidenced by the T2 Map

    International Nuclear Information System (INIS)

    Moon, Won Jin; Roh, Hong Gee; Choi, Jin Woo; Kim, Hee Jin; Han, Seol Heui

    2012-01-01

    We hypothesized that prominent pulvinar hypointensity in brain MRI represents the disease process due to iron accumulation in Alzheimer disease (AD). We aimed to determine whether or not the pulvinar signal intensity (SI) on the fluid-attenuated inversion recovery (FLAIR) sequences at 3.0T MRI differs between AD patients and normal subjects, and also whether the pulvinar SI is correlated with the T2 map, an imaging marker for tissue iron, and a cognitive scale. Twenty one consecutive patients with AD and 21 age-matched control subjects were prospectively included in this study. The pulvinar SI was assessed on the FLAIR image. We measured the relative SI ratio of the pulvinar to the corpus callosum. The T2 values were calculated from the T2 relaxometry map. The differences between the two groups were analyzed, by using a Student t test. The correlation between the measurements was assessed by the Pearson's correlation test. As compared to the normal white matter, the FLAIR signal intensity of the pulvinar nucleus was significantly more hypointense in the AD patients than in the control subjects (p < 0.01). The pulvinar T2 was shorter in the AD patients than in the control subjects (51.5 ± 4.95 ms vs. 56.5 ± 5.49 ms, respectively, p = 0.003). The pulvinar SI ratio was strongly correlated with the pulvinar T2 (r = 0.745, p < 0.001). When controlling for age, only the pulvinar-to-CC SI ratio was positively correlated with that of the Mini-Mental State Examination (MMSE) score (r = 0.303, p < 0.050). Conversely, the pulvinar T2 was not correlated with the MMSE score (r = 0.277, p = 0.080). The FLAIR hypointensity of the pulvinar nucleus represents an abnormal iron accumulation in AD and may be used as an adjunctive finding for evaluating AD.

  4. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  5. Sensory neuronopathy involves the spinal cord and brachial plexus: a quantitative study employing multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM)

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yi-Fang; Tang, Wei-Jun; Li, Yu-Xin; Geng, Dao-Ying [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Zhu, Dong-Qing; Chen, Xiang-Jun [Fudan University, Department of Neurology, Huashan Hospital, Shanghai (China); Zee, Chi-Shing [University of Southern California Keck School of Medicine, Department of Radiology, Los Angeles, CA (United States)

    2013-01-15

    Sensory neuronopathy (SNN) is a distinctive subtype of peripheral neuropathies, specifically targeting dorsal root ganglion (DRG). We utilized MRI to demonstrate the imaging characteristics of DRG, spinal cord (SC), and brachial plexus at C7 level in SNN. We attempted multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM) methods in nine patients with sensory neuronopathy and compared with those in 16 disease controls and 20 healthy volunteers. All participants underwent MRI for the measurement of DRG, posterior column (PC), lateral column, and spinal cord area (SCA) at C7 level. DRG diameters were obtained through its largest cross section, standardized by dividing sagittal diameter of mid-C7 vertebral canal. We also made comparisons of standardized anteroposterior diameter (APD) and left-right diameters of SC and PC in these groups. Signal intensity and diameter of C7 spinal nerve were assessed on TIRM. Compared to control groups, signal intensities of DRG and PC were higher in SNN patients when using MEDIC, but the standardized diameters were shorter in either DRG or PC. Abnormal PC signal intensities were identified in eight out of nine SNN patients (89 %) with MEDIC and five out of nine (56 %) with T2-weighted images. SCA, assessed with MEDIC, was smaller in SNN patients than in the other groups, with significant reduction of its standardized APD. C7 nerve root diameters, assessed with TIRM, were decreased in SNN patients. MEDIC and TIRM sequences demonstrate increased signal intensities and decreased area of DRG and PC, and decreased diameter of nerve roots in patients with SNN, which can play a significant role in early diagnosis. (orig.)

  6. Sensory neuronopathy involves the spinal cord and brachial plexus: a quantitative study employing multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM)

    International Nuclear Information System (INIS)

    Bao, Yi-Fang; Tang, Wei-Jun; Li, Yu-Xin; Geng, Dao-Ying; Zhu, Dong-Qing; Chen, Xiang-Jun; Zee, Chi-Shing

    2013-01-01

    Sensory neuronopathy (SNN) is a distinctive subtype of peripheral neuropathies, specifically targeting dorsal root ganglion (DRG). We utilized MRI to demonstrate the imaging characteristics of DRG, spinal cord (SC), and brachial plexus at C7 level in SNN. We attempted multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM) methods in nine patients with sensory neuronopathy and compared with those in 16 disease controls and 20 healthy volunteers. All participants underwent MRI for the measurement of DRG, posterior column (PC), lateral column, and spinal cord area (SCA) at C7 level. DRG diameters were obtained through its largest cross section, standardized by dividing sagittal diameter of mid-C7 vertebral canal. We also made comparisons of standardized anteroposterior diameter (APD) and left-right diameters of SC and PC in these groups. Signal intensity and diameter of C7 spinal nerve were assessed on TIRM. Compared to control groups, signal intensities of DRG and PC were higher in SNN patients when using MEDIC, but the standardized diameters were shorter in either DRG or PC. Abnormal PC signal intensities were identified in eight out of nine SNN patients (89 %) with MEDIC and five out of nine (56 %) with T2-weighted images. SCA, assessed with MEDIC, was smaller in SNN patients than in the other groups, with significant reduction of its standardized APD. C7 nerve root diameters, assessed with TIRM, were decreased in SNN patients. MEDIC and TIRM sequences demonstrate increased signal intensities and decreased area of DRG and PC, and decreased diameter of nerve roots in patients with SNN, which can play a significant role in early diagnosis. (orig.)

  7. Revisiting the relationship of three-dimensional fluid attenuation inversion recovery imaging and hearing outcomes in adults with idiopathic unilateral sudden sensorineural hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Wen-Huei [School of Medicine, National Yang Ming University, Taipei, 11221, Taiwan (China); Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Wu, Hsiu-Mei [School of Medicine, National Yang Ming University, Taipei, 11221, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Wu, Hung-Yi [Department of Radiology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Tu, Tzong-Yang; Shiao, An-Suey [School of Medicine, National Yang Ming University, Taipei, 11221, Taiwan (China); Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Castillo, Mauricio [Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599-7510 (United States); Hung, Sheng-Che, E-mail: hsz829@gmail.com [School of Medicine, National Yang Ming University, Taipei, 11221, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, 11221, Taiwan (China)

    2016-12-15

    Background and purpose: Three-dimensional fluid attenuation inversion recovery (3D FLAIR) may demonstrate high signal in the inner ears of patients with idiopathic sudden sensorineural hearing loss (ISSNHL), but the correlations of this finding with outcomes are still controversial. Here we compared 4 3D MRI sequences with the outcomes of patients with ISSNHL. Materials and methods: 77 adult patients with ISSNHL underwent MRI with pre contrast FLAIR, fast imaging employing steady-state acquisition images (FIESTA-C), post contrast T1WI and post contrast FLAIR. The extent and degree of high signal in both cochleas were evaluated in all patients, and asymmetry ratios between the affected ears and the normal ones were calculated. The relationships among MRI findings, including extent and asymmetry of abnormal cochlear high signals, degree of FLAIR enhancement, and clinical information, including age, vestibular symptoms, baseline hearing loss, and final hearing outcomes were analyzed. Results: 54 patients (28 men; age, 52.1 ± 15.5 years) were included in our study. Asymmetric cochlear signal intensities were more frequently observed in pre contrast and post contrast FLAIR (79.6% and 68.5%) than in FIESTA-C (61.1%) and T1WI (51.9%) (p < 0.001). Age, baseline hearing loss, extent of high signal and asymmetry ratios of pre contrast and post contrast FLAIR were all correlated with final hearing outcomes. In multivariate analysis, age and the extent of high signals were the most significant predictors of final hearing outcomes. Conclusion: 3D FLAIR provides a higher sensitivity in detecting the asymmetric cochlear signal abnormality. The more asymmetric FLAIR signals and presence of high signals beyond cochlea indicated a poorer prognosis.

  8. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  9. The selection of a matrix for the recovery of uranium by wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Svoboda, J.

    1985-01-01

    The proper choice of a suitable matrix for high-intensity magnetic separation is of the utmost importance, since the geometry and size of the matrix play decisive roles in the achievement of optimum separation conditions. In relatively simple filtration applications, the matrix must offer a high efficiency of collision with suspended particles, a high probability of retention of intercepted particles, and high loading capacity. Also, it must be easily cleaned. The results obtained by the use of theoretical models of magnetic separation fail to agree with the experimental results for basic parameters like the ratio of particle size to matrix size, the length of the matrix, and the magnetic properties of the matrix material. Preconceived ideas about the matrix often lead to the erroneous choice of a matrix, and hence to its unsatisfactory performance during magnetic separation. The potential value of high-intensity magnetic separation as applied to the recovery of uranium and gold from leach residues and in association with the development of a large-scale magnetic separator to be used for the same purpose led to the present investigation in which a wide spectrum of matrix shapes and sizes were tested. It was found that the optimum recovery and selectivity of separation are obtained at a ratio of particle size to matrix-element size ranging from 200 to 300. The use of these matrices also results in a low degree of mechanical entrapment, particularly of coarser particles, for which straining plays a significant role for fine matrices. It was also found that the magnetization of a matrix plays a minor role, contrary to the theoretical predictions. Furthermore, the effects of matrix height, matrix loading, and scalping of the pulp by paramagnetic matrices were evaluated for various types of matrices

  10. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Leticia Verdugo-Diaz

    2017-01-01

    Full Text Available Traumatic brain injury (TBI represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS. The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.

  11. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting

    OpenAIRE

    Yan Zhou; He Yang; Xiang-xin Xue; Shuai Yuan

    2017-01-01

    A novel approach for recovery of iron and rare earth elements (REEs) from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH4)2SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic conc...

  12. Irreversible magnetic-field dependence of ferromagnetic resonance and inverse spin Hall effect voltage in CoFeB/Pt bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Il [Department of Materials Science and Engineering, Korea University, Seoul, 136-713 (Korea, Republic of); Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Seo, Min-Su [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of)

    2017-01-01

    Magnetic field (H) sweeping direction dependences of the mixed voltage V{sub mix} induced by the inverse-spin Hall effect(ISHE) and spin-rectified effect (SRE) in a CoFeB (5 nm)/Pt (10 nm) bilayer structure are investigated using the ferromagnetic resonance in the TE mode cavities and coplanar waveguide methods. Conventionally, the magnitude of ISHE voltage V{sub ISH} (symmetric) excluding the SRE (antisymmetric component) was unavoidably separated from the fitting curve of V{sub mix} (a sum of a symmetric and an antisymmetric part) for one direction of H-source. By studying the ratio of the two voltage parts with the bi-directional H sweeping, the optimized V{sub ISH} (no SRE condition) value which also include a well-defined spin Hall angle can be obtained via the linear response relation of ISHE and SRE components. - Highlights: • Hysteretic behavior of ferromagnetic resonance spectra in the CoFeB/Pt sample. • Hysteretic behavior of inverse-spin Hall effect voltage in the CoFeB/Pt sample. • Proportion of inverse spin-Hall effect voltage can be determined by the cavity mode. • The hysteretic behavior arise from the unsaturated magnetization limit. • The well-defined spin Hall angle which consider a hysteresis can be obtained.

  13. Application of the inverse estimation method of current distribution from magnetic fields using genetic algorithm to beam profile measurement

    International Nuclear Information System (INIS)

    Kishimoto, M.; Sakasai, K.; Ara, K.

    1994-01-01

    In this paper, the new type of non-invasive beam profile monitor for intense ion accelerator using high-temperature superconductor. We regard the inverse estimation problem of beam profile as the optimum allocation problem of the currents into the cross-section of the beam vacuum pipe and applied genetic algorithm to solve this optimization problem. And we carried out the computer simulation to verify the effectiveness of this inverse estimation method of beam profile. (author)

  14. Observation of magnetically anisotropic defects during stage I recovery in nickel after low-temperature electron irradiation

    International Nuclear Information System (INIS)

    Forsch, K.; Hemmerich, J.; Knoll, H.; Lucki, G.

    1974-01-01

    The measurement of defect-induced changes of magnetic anisotropy in a nickel single crystal after low-temperature electron irradiation was undertaken. A dynamic measuring method was used after reorienting a certain fraction of the radiation-induced defects in an external magnetic field of 5 kOe. In the temperature range of recovery stage I sub(C,D,E) (45 to 60 k) the crystallographic direction dependence of defect-induced anisotropy could be determined. The results show that in this temperature range the (100) split interstitial is mobile and able to reorient. The obtained data are further discussed with respect to existing information on magnetic after effect and resistivity annealing in electron-irradiated nickel

  15. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    OpenAIRE

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural a...

  16. Comparison of T1-weighted fast spin-echo and T1-weighted fluid-attenuated inversion recovery images of the lumbar spine at 3.0 Tesla

    International Nuclear Information System (INIS)

    Lavdas, Eleftherios; Vlychou, Marianna; Arikidis, Nikos; Kapsalaki, Eftychia; Roka, Violetta; Fezoulidis, Ioannis V.

    2010-01-01

    Background: T1-weighted fluid-attenuated inversion recovery (FLAIR) sequence has been reported to provide improved contrast between lesions and normal anatomical structures compared to T1-weighted fast spin-echo (FSE) imaging at 1.5T regarding imaging of the lumbar spine. Purpose: To compare T1-weighted FSE and fast T1-weighted FLAIR imaging in normal anatomic structures and degenerative and metastatic lesions of the lumbar spine at 3.0T. Material and Methods: Thirty-two consecutive patients (19 females, 13 males; mean age 44 years, range 30-67 years) with lesions of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted FSE and fast T1-weighted FLAIR sequences. Both qualitative and quantitative analyses measuring the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and relative contrast (ReCon) between degenerative and metastatic lesions and normal anatomic structures were conducted, comparing these sequences. Results: On quantitative evaluation, SNRs of cerebrospinal fluid (CSF), nerve root, and fat around the root of fast T1-weighted FLAIR imaging were significantly lower than those of T1-weighted FSE images (P<0.001). CNRs of normal spinal cord/CSF and disc herniation/ CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). ReCon of normal spinal cord/CSF, disc herniation/CSF, and vertebral lesions/CSF for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted FSE images (P<0.001). On qualitative evaluation, it was found that CSF nulling and contrast at the spinal cord (cauda equina)/CSF interface for T1-weighted FLAIR images were significantly superior compared to those for T1-weighted FSE images (P<0.001), and the disc/spinal cord (cauda equina) interface was better for T1-weighted FLAIR images (P<0.05). Conclusion: The T1-weighted FLAIR sequence may be considered as the preferred lumbar spine imaging

  17. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Performance of an industrial wet high-intensity magnetic separator for the recovery of gold and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Corrans, I.J.; Liddell, K.S.; Dunne, R.C. (Council for Mineral Technology, Randburg (South Africa). Ore-dressing Div.); Gilbert, W.A. (General Mining Union Corp. Ltd., Johannesburg (South Africa))

    1984-03-01

    After bench-scale and pilot-plant tests in which it was shown that wet high-intensity magnetic separation (WHIMS) can achieve good recoveries of gold and uranium from Witwatersrand residues, a production-size machine was installed at a gold mine. The mechanical and metallurgical performance of this machine have been satisfactory, and the economics of the process are attractive. WHIMS can be combined with other unit operations like flotation for the optimization of overall gold and uranium recoveries. This concept is shown to be relevant, not only to operations for the retreatment of tailings, but to processes for the treatment of coarser material. In the latter, there is a saving in energy consumption compared with the energy required for the fine grinding of the total feed, and a material suitable for underground backfill can be produced. Improved, more cost-effective WHIMS machines currently under development are also described.

  20. 3D inversion and modeling of magnetic and gravimetric data characterizing the geophysical anomaly source in Pratinha I in the southeast of Brazil

    Science.gov (United States)

    Louro, Vinicius Hector Abud; Mantovani, Marta Silvia Maria

    2012-05-01

    The Alto do Paranaíba Igneous Province (APIP) is known for its great mineral exploratory interest in phosphates, niobium, titanium, and diamonds, among others. In the years of 2005 and 2006, the Economic Development Company of Minas Gerais (CODEMIG — http://www.comig.com.br/) performed an airborne magnetic survey over the portion of this igneous province which belongs to Minas Gerais state, denominated Area 7. This survey revealed at the coordinates (19°45'S, 46°10'W) a tripolar anomaly here referred as Pratinha I. This anomaly does not present evidences of outcropping or topographic remodeling. So, boreholes or studies over its sources make the geophysical methods the best and less expensive solution for studying the body in its subsurface. Besides, two gravimetric ground surveys were performed in 2009 and 2010, confirming the existence of a density contrast over the region of the magnetic anomaly. Therefore, through the magnetometry and gravimetry processing, 3D modeling and inversions, it was possible to estimate the geometry, density and magnetic susceptibility, which when analyzed with the regional geology, enabled the proposition of an igneous intrusion of probable alkaline or kamafugitic composition to justify the gravimetric and magnetic response in the region.

  1. Inversion of exchange bias and complex magnetization reversal in full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.R. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, W.B., E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, X.C. [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384, China (China); Bai, H.L. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-01

    Exchange bias has been observed in the full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers. With the increase of temperature, the sign of exchange bias (EB) is inverse, which is independent on the cooling field and training effect. This novel behavior appears in the bilayers with different CoN and γ′-Fe{sub 4}N thicknesses. The inversion of EB sign not only occurs at low temperatures, but also takes place even at 200 K for the 10 and 12 nm thick CoN layer. With the decreased γ′-Fe{sub 4}N layer thickness, the inversion temperature of EB sign shows a roughly increased tendency. For the bilayer with a 4 nm-thick γ′-Fe{sub 4}N, the interfacial magnetization reversal presents a complex trend, which is considered as the combined actions of the disordered ferromagnetic spins and various competed magnetic structures. This new manifestation of EB has been discussed in terms of the complicated interfacial spin structures and frustration effects due to the competition between the ferromagnetic and antiferromagnetic exchange interactions at the interface. - Highlights: • Exchange bias (EB) sign reverses from negative to positive with increasing temperature in epitaxial γ′-Fe{sub 4}N/CoN bilayers. • The positive EB can be attributed to the antiferromagnetic interfacial coupling and frustrated interfacial spin structures. • The EB transition temperature is not monotonically dependent on CoN thickness t{sub CoN}. • For a 4-nm γ′-Fe{sub 4}N, the unusual hysteresis loops are observed.

  2. Magnetic Resonance Elastography: Measurement of Hepatic Stiffness Using Different Direct Inverse Problem Reconstruction Methods in Healthy Volunteers and Patients with Liver Disease.

    Science.gov (United States)

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-02-01

    The purpose of this study was to compare the mean hepatic stiffness values obtained by the application of two different direct inverse problem reconstruction methods to magnetic resonance elastography (MRE). Thirteen healthy men (23.2±2.1 years) and 16 patients with liver diseases (78.9±4.3 years; 12 men and 4 women) were examined for this study using a 3.0 T-MRI. The healthy volunteers underwent three consecutive scans, two 70-Hz waveform and a 50-Hz waveform scans. On the other hand, the patients with liver disease underwent scanning using the 70-Hz waveform only. The MRE data for each subject was processed twice for calculation of the mean hepatic stiffness (Pa), once using the multiscale direct inversion (MSDI) and once using the multimodel direct inversion (MMDI). There were no significant differences in the mean stiffness values among the scans obtained with two 70-Hz and different waveforms. However, the mean stiffness values obtained with the MSDI technique (with mask: 2895.3±255.8 Pa, without mask: 2940.6±265.4 Pa) were larger than those obtained with the MMDI technique (with mask: 2614.0±242.1 Pa, without mask: 2699.2±273.5 Pa). The reproducibility of measurements obtained using the two techniques was high for both the healthy volunteers [intraclass correlation coefficients (ICCs): 0.840-0.953] and the patients (ICC: 0.830-0.995). These results suggest that knowledge of the characteristics of different direct inversion algorithms is important for longitudinal liver stiffness assessments such as the comparison of different scanners and evaluation of the response to fibrosis therapy.

  3. Nondestructive characterization of recovery and recrystallization in cold rolled low carbon steel by magnetic hysteresis loops

    International Nuclear Information System (INIS)

    Martinez-de-Guerenu, A.; Gurruchaga, K.; Arizti, F.

    2007-01-01

    How structure sensitive parameters derived from hysteresis loops can provide nondestructive information about the evolution of the microstructure of cold rolled low carbon steel as a result of recovery and recrystallization processes during the annealing is shown. The coercive field, remanent induction and hysteresis losses can be used to monitor the decrease in the dislocation density during recovery. These parameters are also influenced by the average grain refinement that takes place during recrystallization, which compensates the variation produced by the annihilation of dislocations during recrystallization. The maximum of the induction and of the relative differential permeability are shown to be very sensitive to the onset and to the monitoring of the recrystallization, respectively. The correlations between coercive field and remanent induction and hysteresis losses can also be used to distinguish between recovery and recrystallization

  4. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    Science.gov (United States)

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  5. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH42SO4 Activation Roasting

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2017-05-01

    Full Text Available A novel approach for recovery of iron and rare earth elements (REEs from Bayan Obo tailings of Baotou, China, was developed by combining magnetizing roasting, magnetic separation, (NH42SO4 activation roasting, and water leaching. Thermodynamic analysis of carbothermal reduction was conducted to determine the temperature of magnetizing roasting, and it agreed well with the experimental results. The maximum recovery of Fe reached 77.8% at 600 °C, and the grade of total Fe in the magnetic concentrate was 56.3 wt. %. An innovative approach, using water to leach REEs after (NH42SO4 activation roasting, was used to extract REEs from magnetic separation tailings. The main influence factors of the leaching recovery during (NH42SO4 activation roasting, were investigated with the mass ratio of (NH42SO4 to magnetic separation tailings, roasting temperature and roasting time. The leaching recoveries of La, Ce and Nd reached 83.12%, 76.64% and 77.35%, respectively, under the optimized conditions: a mass ratio of 6:1, a roasting temperature of 400 °C and a roasting time of 80 min. Furthermore, the phase composition and reaction process during the (NH42SO4 activation roasting were analyzed with X-ray diffraction (XRD, energy dispersive X-ray spectroscopy & scanning electron microscopy (EDS-SEM and thermogravimetry & differential scanning calorimetry (TG-DSC, and the leaching solution and leaching residue were also characterized.

  6. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E.

    2013-01-01

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF

  7. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori [Kyoto University Graduate School of Medicine, Department of Diagnostic Imaging and Nuclear Medicine, Kyoto (Japan); Mori, Nobuyuki [Tenri Hospital, Department of Radiology, Tenri, Nara (Japan); Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke [Kyoto University Graduate School of Medicine, Department of Neurology, Kyoto (Japan); Mikuni, Nobuhiro [Sapporo Medical University, Department of Neurosurgery, Sapporo, Hokkaido (Japan); Kunieda, Takeharu; Miyamoto, Susumu [Kyoto University Graduate School of Medicine, Department of Neurosurgery, Kyoto (Japan); Paul, Dominik [Siemens AG Healthcare Sector, Erlangen (Germany)

    2013-01-15

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using {kappa} statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P {<=} 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  8. Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: Experience based on a series of 156 patients.

    Science.gov (United States)

    Zerroug, A; Gabrillargues, J; Coll, G; Vassal, F; Jean, B; Chabert, E; Claise, B; Khalil, T; Sakka, L; Feschet, F; Durif, F; Boyer, L; Coste, J; Lemaire, J-J

    2016-08-01

    Deep brain mapping has been proposed for direct targeting in stereotactic functional surgery, aiming to personalize electrode implantation according to individual MRI anatomy without atlas or statistical template. We report our clinical experience of direct targeting in a series of 156 patients operated on using a dedicated Inversion Recovery Turbo Spin Echo sequence at 1.5-tesla, called White Matter Attenuated Inversion Recovery (WAIR). After manual contouring of all pertinent structures and 3D planning of trajectories, 312 DBS electrodes were implanted. Detailed anatomy of close neighbouring structures, whether gray nuclei or white matter regions, was identified during each planning procedure. We gathered the experience of these 312 deep brain mappings and elaborated consistent procedures of anatomical MRI mapping for pallidal, subthalamic and ventral thalamic regions. We studied the number of times the central track anatomically optimized was selected for implantation of definitive electrodes. WAIR sequence provided high-quality images of most common functional targets, successfully used for pure direct stereotactic targeting: the central track corresponding to the optimized primary anatomical trajectory was chosen for implantation of definitive electrodes in 90.38%. WAIR sequence is anatomically reliable, enabling precise deep brain mapping and direct stereotactic targeting under routine clinical conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

    International Nuclear Information System (INIS)

    Morimoto, Emiko; Kanagaki, Mitsunori; Okada, Tomohisa; Yamamoto, Akira; Togashi, Kaori; Mori, Nobuyuki; Matsumoto, Riki; Ikeda, Akio; Takahashi, Ryosuke; Mikuni, Nobuhiro; Kunieda, Takeharu; Miyamoto, Susumu; Paul, Dominik

    2013-01-01

    To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences. This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using κ statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar's test with multiple comparisons. Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P ≤ 0.031 for each evaluator). The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE. (orig.)

  10. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    Science.gov (United States)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  11. Magnetic resonance imaging in neurologic diseases

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Han, Man Chung; Wan, Chu Wan; Myung, Ho Jin; Choi, Kil Soo; Ahn, Chang Beom; Oh, Chang Hyun; Cho, Zang Hee

    1985-01-01

    Magnetic resonance (MR) imaging with 0.15 Tesla resistive magnet developed by Korea Advanced Institute of Science were performed in 27 patients with various neurologic diseases and compared with x-ray computed tomography (CT). The purpose of the paper is to evaluate the image quality, the diagnostic value and limitation, and the optimal pulse sequence of MR imagings with a resistive magnet. The MR images were obtained by using a variety of pulse sequence with spin echo technique including saturation recovery. T2-weighted spin echo, and/or inversion recovery with various pulse repetition (TR) and echo delay (TE) times. The MR imaging demonstrated the capability of detecting the lesions shown on CT in al cases and also detected an additional finding in one case (multiple sclerosis) which was not seen on CT. The MR imaging appeared to be more useful than CT in the evaluation of syringomyelia of spinal cord and white matter disease, while it failed to demonstrated small calcific lesion or inflammatory nodule (less than 1 cm) shown on CT and has shown somewhat poor contrast resolution in the case of meingloma. The spatial resolution of saturation recovery images was similar or superior to CT, whereas the contrast resolution of saturation recovery was inferior to CT. While the saturation recovery images have shown false negative findings in 5 patients (19%), the inversion recovery and T2-weighted spin echo have shown consistently positive findings. The inversive recovery and T2-weighted spin echo images demonstrated better contrast discrimination between normal and pathologic conditions than the saturation recovery images, but somewhat poorer spatial resolution. Authors suggest that the MR images of both the saturation recovery with 300/30 and T2-weighted spin echo with 1000/90 be used as a routine procedure and additional inversion recovery of 1300/300/30 sequence as a option if white matter disease is suspected

  12. Recovery of cobalt-rare earth alloy particles by hydration-disintegration in a magnetic field

    International Nuclear Information System (INIS)

    McFarland, C.M.; Lerman, T.B.; Rockwood, A.C.

    1975-01-01

    A process for recovering magnetic alloy particles from a reaction product cake. The cake is placed in a reactor where it is contacted with a flowing water vapor-carrying gas which reacts with its calcium content to disintegrate the cake and produce a hydrated powder comprised substantially of calcium hydroxide and the alloy particles. A magnetic zone is generated into a cross-section of the reactor substantially encircling the inside wall thereof. The zone is generated by at least two poles of opposite polarity running the length of the zone. The hydrated powder is fluidized to dissociate and pass the calcium hydroxide out of the reactor. Finer-sized alloy particles carried by the fluidizing gas into the magnetic zone are subjected to the magnetic field where the poles are rotated or reversed at a rate which reverses the positions of the particles sufficiently to release adherent calcium hydroxide leaving the finer-sized alloy particles substantially within the magnetic zone. (auth)

  13. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Satake, Hiroko; Kawamura, Minako; Fukatsu, Hiroshi; Sone, Michihiko; Nakashima, Tsutomu

    2008-01-01

    Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction. (orig.)

  14. Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field

    Directory of Open Access Journals (Sweden)

    Shenzhi Xu

    2007-01-01

    Full Text Available Effects of static magnetic field (SMF on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region. There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone.

  15. Navigated transcranial magnetic stimulation for glioma removal: prognostic value in motor function recovery from postsurgical neurological deficits.

    Science.gov (United States)

    Takakura, Tomokazu; Muragaki, Yoshihiro; Tamura, Manabu; Maruyama, Takashi; Nitta, Masayuki; Niki, Chiharu; Kawamata, Takakazu

    2017-10-01

    OBJECTIVE The aim of the present study was to evaluate the usefulness of navigated transcranial magnetic stimulation (nTMS) as a prognostic predictor for upper-extremity motor functional recovery from postsurgical neurological deficits. METHODS Preoperative and postoperative nTMS studies were prospectively applied in 14 patients (mean age 39 ± 12 years) who had intraparenchymal brain neoplasms located within or adjacent to the motor eloquent area in the cerebral hemisphere. Mapping by nTMS was done 3 times, i.e., before surgery, and 1 week and 3 weeks after surgery. To assess the response induced by nTMS, motor evoked potential (nTMS-MEP) was recorded using a surface electromyography electrode attached to the abductor pollicis brevis (APB). The cortical locations that elicited the largest electromyography response by nTMS were defined as hotspots. Hotspots for APB were confirmed as positive responsive sites by direct electrical stimulation (DES) during awake craniotomy. The distances between hotspots and lesions (D HS-L ) were measured. Postoperative neurological deficits were assessed by manual muscle test and dynamometer. To validate the prognostic value of nTMS in recovery from upper-extremity paresis, the following were investigated: 1) the correlation between D HS-L and the serial grip strength change, and 2) the correlation between positive nTMS-MEP at 1 week after surgery and the serial grip strength change. RESULTS From the presurgical nTMS study, MEPs from targeted muscles were identified in 13 cases from affected hemispheres. In one case, MEP was not evoked due to a huge tumor. Among 9 cases from which intraoperative DES mapping for hand motor area was available, hotspots for APB identified by nTMS were concordant with DES-positive sites. Compared with the adjacent group (D HS-L < 10 mm, n = 6), the nonadjacent group (D HS-L ≥ 10 mm, n = 7) showed significantly better recovery of grip strength at 3 months after surgery (p < 0.01). There were

  16. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    Science.gov (United States)

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Kitagawa, J., E-mail: j-kitagawa@fit.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Ono, T.; Tsubota, M. [Physonit Inc., 6-10 Minami-Horikawa, Kaita Aki, Hiroshima 736-0044 (Japan)

    2015-11-15

    The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn{sub 2}O{sub 3}-type Nd{sub 2}O{sub 3}. The estimated recovery-ratio of Nd reaches to 97%.

  18. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    International Nuclear Information System (INIS)

    Hughes, David G.; Jackson, Alan; Mason, Damon L.; Berry, Elizabeth; Hollis, Sally; Yates, David W.

    2004-01-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  19. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Y. Kataoka

    2015-11-01

    Full Text Available The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn2O3-type Nd2O3. The estimated recovery-ratio of Nd reaches to 97%.

  20. ROXIE the Routine for the Optimization of Magnet X-sections, Inverse Field Computation and Coil End Design

    CERN Document Server

    Russenschuck, Stephan

    1999-01-01

    The ROXIE software program package has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector- optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements. This paper gives an overview of the methods applied in the ROXIE program. (9 refs).

  1. Magnetic hollow poly(N-isopropylacrylamide-co-N,N'-methylenebisacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Horák, Daniel; Petrovský, Eduard; Kovářová, Jana

    2013-01-01

    Roč. 291, č. 1 (2013), s. 205-213 ISSN 0303-402X R&D Projects: GA ČR GAP503/10/0664; GA AV ČR(CZ) KAN401220801 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z30120515 Keywords : magnetic * poly(N-isopropylacrylamide) * particles Subject RIV: EE - Microbiology, Virology Impact factor: 2.410, year: 2013

  2. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians.

    Science.gov (United States)

    Cortes, Mar; Black-Schaffer, Randie M; Edwards, Dylan J

    2012-07-01

    An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged more than two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles and can probe local cortical networks as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood, and the results should to be interpreted along with clinical evaluation in this patient population. In this review, we provide an overview of the rationale, implementation, and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity. © 2012 International Neuromodulation Society.

  3. Inverse photoemission

    International Nuclear Information System (INIS)

    Namatame, Hirofumi; Taniguchi, Masaki

    1994-01-01

    Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)

  4. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  5. Synthesis, structural, magnetic and optical properties of Sr2CoSn based inverse Heusler alloy nanoparticles

    Science.gov (United States)

    Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Ravichandran, K.

    2018-05-01

    The peculiar ternary full Heusler alloy Sr2CoSn nanoparticles are synthesized by co-precipitation method. X- ray diffraction pattern confirms the formation of XA or Xα structure of Sr2CoSn. Using Williamson-Hall plot (W-H plot), we are able to use the uniform deformation model and get low value of strain induced broadening. UV-Visible absorption spectrum shows sharp absorption peak at 210 nm and the estimated band gap energy of Sr2CoSn Heusler alloy nanoparticles is Eg = 4.6 eV (from Tauc plot). The presence of Sr2CoSn with the particle size of approximately 90 nm was observed using high resolution scanning electron microscopy. The magnetization measurements were carried out using VSM and studied M verses H hysteresis studies.

  6. The value of qualitative and quantitative assessment of lesion to cerebral cortex signal ratio on double inversion recovery sequence in the differentiation of demyelinating plaques from non-specific T2 hyperintensities

    Energy Technology Data Exchange (ETDEWEB)

    Hamcan, Salih; Battal, Bilal; Akgun, Veysel; Sari, Sebahattin; Tasar, Mustafa [Gulhane Military Medical School, Department of Radiology, Etlik, Ankara (Turkey); Oz, Oguzhan; Tasdemir, Serdar [Gulhane Military Medical School, Department of Neurology, Ankara (Turkey); Bozkurt, Yalcin [Golcuk Military Hospital, Department of Radiology, Kocaeli (Turkey)

    2017-02-15

    To assess the usefulness of the visual assessment and to determine diagnostic value of the lesion-to-cerebral cortex signal ratio (LCSR) measurement in the differentiation of demyelinating plaques and non-specific T2 hyperintensities on double inversion recovery (DIR) sequence. DIR and fluid-attenuated inversion recovery (FLAIR) sequences of 25 clinically diagnosed multiple sclerosis (MS) patients and 25 non-MS patients with non-specific T2-hyperintense lesions were evaluated visually and LCSRs were measured by two observers independently. On DIR sequence, the calculated mean LCSR ± SD for demyelinating plaques and non-specific T2-hyperintense lesions were 1.60 ± 0.26 and 0.75 ± 0.19 for observer1, and 1.61 ± 0.27 and 0.74 ± 0.19 for observer2. LCSRs of demyelinating plaques were significantly higher than other non-specific T2-hyperintense lesions on DIR sequence. By using the visual assessment demyelinating plaques were differentiated from non-specific T2-hyperintensities with 92.8 % sensitivity, 97.5 % specificity and 95.1 % accuracy for observer1 and 92.8 % sensitivity, 95 % specificity and 93.9 % accuracy for observer2. Visual assessment and LCSR measurement on DIR sequence seems to be useful for differentiating demyelinating MS plaques from supratentorial non-specific T2 hyperintensities. This feature can be used for diagnosis of MS particularly in patients with only supratentorial T2-hyperintense lesions who are categorized as radiologically possible MS. (orig.)

  7. Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm.

    Science.gov (United States)

    Shao, Jiaxin; Rapacchi, Stanislas; Nguyen, Kim-Lien; Hu, Peng

    2016-02-01

    To develop an accurate and precise myocardial T1 mapping technique using an inversion recovery spoiled gradient echo readout at 3.0 Tesla (T). The modified Look-Locker inversion-recovery (MOLLI) sequence was modified to use fast low angle shot (FLASH) readout, incorporating a BLESSPC (Bloch Equation Simulation with Slice Profile Correction) T1 estimation algorithm, for accurate myocardial T1 mapping. The FLASH-MOLLI with BLESSPC fitting was compared with different approaches and sequences with regards to T1 estimation accuracy, precision and image artifact based on simulation, phantom studies, and in vivo studies of 10 healthy volunteers and three patients at 3.0 Tesla. The FLASH-MOLLI with BLESSPC fitting yields accurate T1 estimation (average error = -5.4 ± 15.1 ms, percentage error = -0.5% ± 1.2%) for T1 from 236-1852 ms and heart rate from 40-100 bpm in phantom studies. The FLASH-MOLLI sequence prevented off-resonance artifacts in all 10 healthy volunteers at 3.0T. In vivo, there was no significant difference between FLASH-MOLLI-derived myocardial T1 values and "ShMOLLI+IE" derived values (1458.9 ± 20.9 ms versus 1464.1 ± 6.8 ms, P = 0.50); However, the average precision by FLASH-MOLLI was significantly better than that generated by "ShMOLLI+IE" (1.84 ± 0.36% variance versus 3.57 ± 0.94%, P < 0.001). The FLASH-MOLLI with BLESSPC fitting yields accurate and precise T1 estimation, and eliminates banding artifacts associated with bSSFP at 3.0T. © 2015 Wiley Periodicals, Inc.

  8. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  9. Differentiation between hepatic haemangiomas and cysts with an inversion recovery single-shot turbo spin-echo (SSTSE) sequence using the TI nulling value of hepatic haemangioma with sensitivity encoding

    International Nuclear Information System (INIS)

    Katada, Yoshiaki; Nozaki, Miwako; Yasumoto, Mayumi; Ishii, Chikako; Tanaka, Hiroshi; Nakamoto, Kazuya; Ohashi, Isamu

    2010-01-01

    To evaluate the additional value of inversion recovery (IR) single-shot turbo spin-echo (SSTSE) imaging with sensitivity encoding (SENSE) using the inversion time (TI) value of hepatic haemangioma as a supplement to conventional T2-weighted turbo spin-echo (TSE) imaging for the discrimination of hepatic haemangiomas and cysts. A total of 134 lesions (77 hepatic haemangiomas, 57 hepatic cysts) in 59 patients were evaluated. Three readers evaluated these images and used a five-point scale to evaluate the lesion status. A receiver operating characteristic (ROC) analysis and 2 x 2 table analysis were used. The ROC analysis for all the readers and all the cases revealed a significantly higher area under the curve (AUC) for the combination of moderately and heavily T2-weighted TSE with IR-SSTSE images (0.945) than for moderately and heavily T2-weighted TSE images alone (0.894) (P < 0.001). For the combination of T2-weighted TSE with IR-SSTSE versus T2-weighted TSE alone, the 2 x 2 table analysis revealed a higher true-positive rate; this difference was statistically significant (P < 0.0001). The introduction of IR-SSTSE with SENSE sequences significantly improves the diagnostic accuracy of the differentiation of hepatic haemangioma and cysts while increasing the time required for routine abdominal imaging by only 20 s. (orig.)

  10. Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

    Science.gov (United States)

    Heers, Marcel; Chowdhury, Rasheda A; Hedrich, Tanguy; Dubeau, François; Hall, Jeffery A; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-01-01

    Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

  11. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  12. Determination of avermectins by the internal standard recovery correction - high performance liquid chromatography - quantitative Nuclear Magnetic Resonance method.

    Science.gov (United States)

    Zhang, Wei; Huang, Ting; Li, Hongmei; Dai, Xinhua; Quan, Can; He, Yajuan

    2017-09-01

    Quantitative Nuclear Magnetic Resonance (qNMR) is widely used to determine the purity of organic compounds. For the compounds with lower purity especially molecular weight more than 500, qNMR is at risk of error for the purity, because the impurity peaks are likely to be incompletely separated from the peak of major component. In this study, an offline ISRC-HPLC-qNMR (internal standard recovery correction - high performance liquid chromatography - qNMR) was developed to overcome this problem. It is accurate by excluding the influence of impurity; it is low-cost by using common mobile phase; and it extends the applicable scope of qNMR. In this method, a mix solution of the sample and an internal standard was separated by HPLC with common mobile phases, and only the eluents of the analyte and the internal standard were collected in the same tube. After evaporation and re-dissolution, it was determined by qNMR. A recovery correction factor was determined by comparison of the solutions before and after these procedures. After correction, the mass fraction of analyte was constant and it was accurate and precise, even though the sample loss varied during these procedures, or even in bad resolution of HPLC. Avermectin B 1 a with the purity of ~93% and the molecular weight of 873 was analyzed. Moreover, the homologues of avermectin B 1 a were determined based on the identification and quantitative analysis by tandem mass spectrometry and HPLC, and the results were consistent with the results of traditional mass balance method. The result showed that the method could be widely used for the organic compounds, and could further promote qNMR to become a primary method in the international metrological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Defects/strain influenced magnetic properties and inverse of surface spin canting effect in single domain CoFe_2O_4 nanoparticles

    International Nuclear Information System (INIS)

    Singh, Simrjit; Khare, Neeraj

    2016-01-01

    Graphical abstract: - Highlights: • Synthesized single domain CoFe_2O_4 nanoparticles with different amount of strain. • Demonstrated a correlation between size, strain and magnetic properties of CoFe_2O_4. • Strain induces cationic redistribution at tetrahedral and octahedral sites of CoFe_2O_4. • Inverse of spin canting effect due to the redistribution of Fe"3"+ ions is demonstrated. - Abstract: Single domain CoFe_2O_4 nanoparticles with different amount of defects/strain have been synthesized by varying the growth temperature in the hydrothermal method. Nanoparticles grown at lower temperature are of larger size and exhibit more planar defects and oxygen vacancies as compared to nanoparticles grown at higher temperatures which are of smaller sizes and exhibit less planar defects and oxygen vacancies. The nanoparticles with larger amount of defects also possess a higher value of intrinsic strain as compared to nanoparticles with fewer defects. The presence of intrinsic strain in the nanoparticles is found to shift the cationic distribution at the tetrahedral and octahedral sites. The saturation magnetization (M_s) of the nanoparticles is found to depend upon both the intrinsic strain and size of the nanoparticles. The M_s increases with the decrease in the nanoparticles size from 32 nm to 20 nm, and this is correlated to the inverse of spin canting effect due to decrease in the intrinsic strain which leads to shifting of Co"2"+ ions from tetrahedral to octahedral sites. However, with further decrease in the size of the nanoparticles (16 nm), the size effect dominates over the strain effect leading to decrease in M_s. The coercivity is found to be higher in the nanoparticles with larger amount of defects/strain and has been attributed to strain induced strong spin canting and pinning due to defect sites. The variation of coercivity with particle size (D) exhibits deviation from D"3"/"2 dependence for the nanoparticles with larger amount of strain/defects.

  14. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  15. Recovery of heritage software stored on magnetic tape for Commodore microcomputers

    Directory of Open Access Journals (Sweden)

    Denise de Vries

    2016-12-01

    Full Text Available Digital games make up a significant but little known chapter in the history of the moving image in Australia and New Zealand.  Beginning in the early 1980s, the Australasian software industry developed a remarkable record of content creation. The ``Play It Again'' project is conducting research into the largely unknown histories of 1980s game development in Australia and New Zealand, ensuring that local titles make it into national collections and are documented and preserved, enabling the public to once again play these games. Microcomputers from the 1980s made extensive use of compact audio cassettes to distribute software as an inexpensive alternative to the floppy disk technology available at the time. Media from this era are at risk of degradation and are rapidly approaching the end of their lifespan. As hardware platforms and peripheral devices become obsolete, access to the data for future scholars and other interested parties becomes more difficult. In this article, we present a case study, wherein we investigate the issues involved in making digital copies with a view to the long term preservation of these software artefacts. A video game title stored on standard compact cassette for Commodore's popular VIC-20 machine, ``Dinky Kong'' by Mark Sibley was recorded using both inexpensive amateur and professional playback equipment. The audio files obtained were processed using freely available software, alongside a customised decoder written in MATLAB and Perl. The resulting image files were found to be playable using an emulator. More importantly, the integrity of the data itself was verified, by making use of error detection features inbuilt to the Commodore tape format, which is described in detail. Issues influencing the quality of the recovered image files such as the bit rate of the digital recording are discussed. The phenomenon of audio dropout on magnetic tape is shown be of some concern, however there exist signal processing

  16. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis : effect of a neurotrophic treatment on cortical lesion development

    NARCIS (Netherlands)

    Duckers, H.J.; Muller, H J; Verhaagen, J; Nicolay, K; Gispen, Willem Hendrik

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short tau inversion recovery magnetic resonance imaging were used to assess the effect of a

  17. The defect-induced changes of the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ychenjz@163.com [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Wu, Bo [Department of Physics, Zunyi Normal College, Zunyi 563002 (China); Yuan, Hongkuan; Feng, Yu [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Hong, E-mail: chenh@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2015-01-15

    The first-principles calculations are performed to investigate the effect of swap, antisite and vacancy defects of three classes on the electronic and magnetic properties in the inverse Heusler alloy Ti{sub 2}CoAl of half-metallicity. Our calculations reveal that Ti(A/B)–Co and Co–Al swaps, Ti(A/B) and Al vacancy defects as well as Co{sub Ti(A)/Al} and Al{sub Ti(A)/Ti(B)} antisite defects are likely to form in a concentration as high as 12.5%. Among them, Co{sub Ti(A)} antisite is detected to be the most probable defect. It is shown that the spin polarizations of Ti{sub 2}CoAl are considerably reduced by the Ti(A/B)–Co swap and Ti(B)/Al vacancy defects, while a quite high spin polarization around 95% is observed in Co–Al swap as well as Ti(A) vacancy. Remarkably, all the likely antisite defects almost retain the half-metallic character in a concentration of 12.5% even if they have the possibility to form. However, induced by antisites, the Fermi levels shift to the edge of band gap with small peaks arising just above the Fermi level, which may destroy the half-metallicity by spin-flip excitation. - Graphical abstract: The spin polarization and formation energy of various possible defects in inverse Heusler alloy Ti{sub 2}CoAl. The triangle, star and square represent the swap, antisite and vacancy defects, respectively. - Highlights: • The swap, antisite, and vacancy defects are studied in half-metallic Ti{sub 2}CoAl. • The Co{sub Ti(A)} antisite is the most probable among the studied defects. • The antisite defects almost retain the half-metallicity. • Most of swap and vacancy defects have degraded the half-metallicity. • High spin polarizations are detected in Co–Al swap and Ti(A) vacancy defects.

  18. A prospective comparison study of fast T1 weighted fluid attenuation inversion recovery and T1 weighted turbo spin echo sequence at 3 T in degenerative disease of the cervical spine.

    Science.gov (United States)

    Ganesan, K; Bydder, G M

    2014-09-01

    This study compared T1 fluid attenuation inversion recovery (FLAIR) and T1 turbo spin echo (TSE) sequences for evaluation of cervical spine degenerative disease at 3 T. 72 patients (44 males and 28 females; mean age of 39 years; age range, 27-75 years) with suspected cervical spine degenerative disease were prospectively evaluated. Sagittal images of the spine were obtained using T1 FLAIR and T1 TSE sequences. Two experienced neuroradiologists compared the sequences qualitatively and quantitatively. On qualitative evaluation, cerebrospinal fluid (CSF) nulling and contrast at cord-CSF, disc-CSF and disc-cord interfaces were significantly higher on fast T1 FLAIR images than on T1 TSE images (p degenerative disease, owing to higher cord-CSF, disc-cord and disc-CSF contrast. However, intrinsic cord contrast is low on T1 FLAIR images. T1 FLAIR is more promising and sensitive than T1 TSE for evaluation of degenerative spondyloarthropathy and may provide a foundation for development of MR protocols for early detection of degenerative and neoplastic diseases.

  19. Inverse Kinematics

    Directory of Open Access Journals (Sweden)

    Joel Sereno

    2010-01-01

    Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.

  20. Multidimensional inversion

    International Nuclear Information System (INIS)

    Desesquelles, P.

    1997-01-01

    Computer Monte Carlo simulations occupy an increasingly important place between theory and experiment. This paper introduces a global protocol for the comparison of model simulations with experimental results. The correlated distributions of the model parameters are determined using an original recursive inversion procedure. Multivariate analysis techniques are used in order to optimally synthesize the experimental information with a minimum number of variables. This protocol is relevant in all fields if physics dealing with event generators and multi-parametric experiments. (authors)

  1. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  2. Improved recovery of regional left ventricular function after PCI of chronic total occlusion in STEMI patients: a cardiovascular magnetic resonance study of the randomized controlled EXPLORE trial.

    Science.gov (United States)

    Elias, Joëlle; van Dongen, Ivo M; Hoebers, Loes P; Ouweneel, Dagmar M; Claessen, Bimmer E P M; Råmunddal, Truls; Laanmets, Peep; Eriksen, Erlend; van der Schaaf, René J; Ioanes, Dan; Nijveldt, Robin; Tijssen, Jan G; Hirsch, Alexander; Henriques, José P S

    2017-07-19

    The Evaluating Xience and left ventricular function in PCI on occlusiOns afteR STEMI (EXPLORE) trial did not show a significant benefit of percutaneous coronary intervention (PCI) of the concurrent chronic total occlusion (CTO) in ST-segment elevation myocardial infarction (STEMI) patients on global left ventricular (LV) systolic function. However a possible treatment effect will be most pronounced in the CTO territory. Therefore, we aimed to study the effect of CTO PCI compared to no-CTO PCI on the recovery of regional LV function, particularly in the CTO territory. Using cardiovascular magnetic resonance (CMR) we studied 180 of the 302 EXPLORE patients with serial CMR (baseline and 4 months follow-up). Segmental wall thickening (SWT) was quantified on cine images by an independent core laboratory. Dysfunctional segments were defined as SWT PCI compared to no-CTO PCI (ΔSWT 17 ± 27% vs 11 ± 23%, p = 0.03). This recovery was most pronounced in the dysfunctional but viable segments(TEI PCI compared with no-CTO PCI is associated with a greater recovery of regional systolic function in the CTO territory, especially in the dysfunctional but viable segments. Further research is needed to evaluate the use of CMR in selecting post-STEMI patients for CTO PCI and the effect of regional LV function recovery on clinical outcome. Trialregister.nl NTR1108 , Date registered NTR: 30-okt-2007.

  3. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    Science.gov (United States)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  4. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    Science.gov (United States)

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are

  5. [Effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) in cerebrospinal fluid and effects of IGF-1 on functional recovery].

    Science.gov (United States)

    Song, Cheng-xian; Fan, Jian-zhong; Wu, Hong-ying; Wei, Yi; Zhen, Jian-rong

    2010-10-01

    To study the effects of pulsed magnetic field on insulin-like growth factor-1 (IGF-1) level in the cerebrospinal fluid (CSF) and the association of IGF-1 alterations with the activities of daily living (ADL) of patients with brain injury. Sixty-five patients with brain injury were divided randomly into the control group (n=30) and magnetic therapy group (n=35), both receiving conventional therapy and in the latter group, daily pulsed magnetic field treatment (20-40 mT, 50 Hz, 20 min per time, 1 time per day) for 14 consecutive days were administered. On the first and 14th days of the treatment, 2 ml CSF was collected from the cases patients for IGF-1 measurement by radioimmunoassay, and Barthel index (BI) was used to assess the ADL of the patients. After a 14-day treatment, IGF-1 level in the CSF were significantly increased in the magnetic group in comparison with the level before the treatment and with those in the control group (P0.05). The scores of BI increased significantly in both groups after the treatment (Pmagnetic therapy group (P<0.05). A significant positive correlation was found between IGF-1 level in the CSF and BI in these patients (r=0.283, P=0.022). Pulsed magnetic field might increase IGF-1 level in the CSF of patients with brain injury to promote the recovery of the patients ADL, suggesting its potential clinical value in the treatment of brain injury.

  6. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    International Nuclear Information System (INIS)

    Erdem, L. Oktay; Erdem, C. Zuhal; Acikgoz, Bektas; Gundogdu, Sadi

    2005-01-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times

  7. Degenerative disc disease of the lumbar spine: a prospective comparison of fast T1-weighted fluid-attenuated inversion recovery and T1-weighted turbo spin echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, L. Oktay [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)]. E-mail: sunarerdem@yahoo.com; Erdem, C. Zuhal [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey); Acikgoz, Bektas [Department of Neurosurgery, Zonguldak Karaelmas University, School of Medicine, Zonguldak (Turkey); Gundogdu, Sadi [Department of Radiology, Zonguldak Karaelmas University, School of Medicine, 6700 Kozlu, Zonguldak (Turkey)

    2005-08-01

    Objective: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. Materials and methods: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. Results: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P < 0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P < 0.05). Conclusion: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.

  8. Further technical development in magnetic resonance imaging of the brain in children

    International Nuclear Information System (INIS)

    Young, I.R.; Dubowitz, L.M.S.; Pennock, J.M.; Bydder, G.M.

    1988-01-01

    Further technical developments implemented in magnetic resonance imaging (MRI) of the brain in children are described. These include the use of longer data collection periods, T2-dependent field echoes, susceptibility mapping, short inversion time inversion recovery sequences, very long echo time spin-echo sequences, and phase mapping techniques to detect tissue perfusion. These techniques are illustrated in selected cases and have increased the range of options available in MR examinations of children. (author)

  9. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap : A Critical Review

    NARCIS (Netherlands)

    Yang, Y.; Walton, A; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O; Buchert, M; Steenari, B-M,; Van Gerven, T; Jones, PT; Binnemans, K

    2017-01-01

    NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid

  10. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  11. Recovery of Urinary Function after Radical Prostatectomy: Predictors of Urinary Function on Preoperative Prostate Magnetic Resonance Imaging

    Science.gov (United States)

    von Bodman, Christian; Matsushita, Kazuhito; Savage, Caroline; Matikainen, Mika P.; Eastham, James A.; Scardino, Peter T.; Rabbani, Farhang; Akin, Oguz; Sandhu, Jaspreet S.

    2016-01-01

    Purpose To determine if pelvic soft tissue and bony dimensions on endorectal MRI influence recovery of continence after radical prostatectomy (RP) and whether adding significant MRI variables to a statistical model improves prediction of continence recovery. Materials and Methods Between 2001 and 2004, 967 men undergoing RP had preoperative MRI. Soft tissue and bony dimensions were retrospectively measured by two raters blinded to clinical and pathological data. Patients who received neoadjuvant therapy, were preoperatively incontinent, or had missing followup for continence were excluded, leaving 600 patients eligible for analysis. No pad usage defined continent. Logistic regression was used to identify variables associated with continence recovery at 6 and 12 months. We evaluated whether predictive accuracy of a base model improved by adding independently significant MRI variables. Results Urethral length and urethral volume were both significantly associated with recovery of continence at 6 and 12 months. Larger inner and outer levator distances were significantly associated with a decreased probability of regaining continence at either 6 or 12 months; they did not reach statistical significance for the other time point. Addition of these four MRI variables to a base model including age, clinical stage, PSA and comorbidities marginally improved the discrimination (12 months AUC improved from 0.587 to 0.634). Conclusions Membranous urethral length, urethral volume and an anatomically close relation between the levator muscle and membranous urethra on preoperative MRI are independent predictors of continence recovery after RP. Addition of MRI variables to a base model improved the predictive accuracy for continence recovery but predictive accuracy remains low. PMID:22264458

  12. Inverse Faraday Effect Revisited

    Science.gov (United States)

    Mendonça, J. T.; Ali, S.; Davies, J. R.

    2010-11-01

    The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).

  13. The inverse problem of the magnetostatic nondestructive testing

    International Nuclear Information System (INIS)

    Pechenkov, A.N.; Shcherbinin, V.E.

    2006-01-01

    The inverse problem of magnetostatic nondestructive testing consists in the calculation of the shape and magnetic characteristics of a flaw in a uniform magnetized body with measurement of static magnetic field beyond the body. If the flaw does not contain any magnetic material, the inverse problem is reduced to identification of the shape and magnetic susceptibility of the substance. This case has been considered in the study [ru

  14. Mechanism of magnetic recovery in the disorder-order transformation of Fe70Al30 mechanically deformed alloys

    International Nuclear Information System (INIS)

    Rodriguez, D. Martin; Apinaniz, E.; Plazaola, F.; Garitaonandia, J.S.; Jimenez, J.A.; Schmool, D.S.; Cuello, G.J.

    2005-01-01

    The degree of order in Fe-Al intermetallic alloys has an important influence on their magnetic properties. Moreover, the deformation of ordered alloys causes a dramatic increase of magnetization. If deformed alloys are heated, their magnetic properties decrease again. The reordering process was monitored by neutron diffraction, Moessbauer spectroscopy, and calorimetric measurements on the Fe 70 Al 30 crushed alloy. This indicates that the reordering process occurs in two stages. In the first (150-200 deg. C) new small B2 phase domains are nucleated due to vacancy migration. A second reordering stage occurs between 300 and 450 deg. C, where dislocation motion induces B2 domain growth and A2 phase elimination. The main mechanism responsible for this decrease of magnetization during the reordering process is the decrease of the disordered A2 phase content in the alloy

  15. Measurement of the magnetic moment of the 2$^{+}$ state in neutron-rich radioactive $^{72,74}$Zn using the transient field technique in inverse kinematics

    CERN Multimedia

    Kruecken, R; Speidel, K; Voulot, D; Neyens, G; Gernhaeuser, R A; Fraile prieto, L M; Leske, J

    We propose to measure the sign and magnitude of the g-factors of the first 2$^{+}$ states in radioactive neutron-rich $^{72,74}$Zn applying the transient field (TF) technique in inverse kinematics. The result of this experiment will allow to probe the $\

  16. Three dimensional sampling perfection with application-optimized contrasts by using different flip angle evolutions-short time of the inversion recovery sequence for the post-ganglionic segments of the brachial plexus

    International Nuclear Information System (INIS)

    Fu Naiqi; Zhou Hongyu; Zheng Zhuozhao; Zhao Qiang

    2013-01-01

    Objective: To evaluate the contrast-enhanced 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions-short TI inversion recovery sequence (SPACE-STIR) for the imaging of the post-ganglionic segments of the brachial plexus. Methods: Forty-three patients with suspected brachial plexus lesions were examined with 3D SPACE-STIR and contrast-enhanced 3D SPACE-STIR prospectively. Signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR), and the conspicuousness of roots, trunks,divisions and cords of the brachial plexus of the two 3D sequences were retrospectively compared. Statistical analysis was performed by using student t-test and Wilcoxon rank sum test. Results: Compared with 3D SPACE-STIR, contrast-enhanced 3D SPACE-STIR provided the similar SNRs (left, 37.41 ± 7.34 vs 36.27 ± 7.66, t = 1.574, P = 0.123, right, 43.85 ± 9.56 vs 42.34 ± 9.74, t = 1.937, P = 0.073), but significantly higher nerve-to-muscle CNRs (left, 24.01 ± 6.31 vs 26.39 ± 6.95, right, 29.31 ± 7.84 vs 31.77 ± 8.85, t = -3.278, -3.278, both P < 0.01) and nerve-to-lymph gland CNRs(left, -0.84 ± 10.51 vs 15.35 ± 8.02, right, -8.47 ± 10.85 vs 19.30 ± 10.35, t = -15.984, -15.651, both P < 0.01). The conspicuousness of roots and trunks on contrast-enhanced 3D SPACE-STIR was significantly better than that on 3D SPACE-STIR (Z = -3.606, -4.472, P < 0.01), while the conspicuousness of divisions and cords was similar(Z = -1.732, -1.414, P = 0.083, 0.157). The signal intensity of neoplastic lesions on contrast-enhanced 3D SPACE-STIR tended to decrease rapidly, thus the lesion conspicuousness was worse than that on 3D SPACE-STIR. Conclusions: Contrast-enhanced 3D SPACE-STIR has obvious advantages in displaying normal brachial plexus and revealing non-neoplastic lesions of the brachial plexus, but may be insufficient for the diagnosis of neoplastic lesions of the brachial plexus. (authors)

  17. Superconductivity in Pb inverse opal

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Lee, Sergey B.; Zakhidov, Anvar A.; Baughman, Ray H.

    2007-01-01

    Type-II superconducting behavior was observed in highly periodic three-dimensional lead inverse opal prepared by infiltration of melted Pb in blue (D = 160 nm), green (D = 220 nm) and red (D = 300 nm) opals and followed by the extraction of the SiO 2 spheres by chemical etching. The onset of a broad phase transition (ΔT = 0.3 K) was shifted from T c = 7.196 K for bulk Pb to T c = 7.325 K. The upper critical field H c2 (3150 Oe) measured from high-field hysteresis loops exceeds the critical field for bulk lead (803 Oe) fourfold. Two well resolved peaks observed in the hysteresis loops were ascribed to flux penetration into the cylindrical void space that can be found in inverse opal structure and into the periodic structure of Pb nanoparticles. The red inverse opal shows pronounced oscillations of magnetic moment in the mixed state at low temperatures, T 0.9T c has been observed for all of the samples studied. The magnetic field periodicity of resistivity modulation is in good agreement with the lattice parameter of the inverse opal structure. We attribute the failure to observe pronounced modulation in magneto-resistive measurement to difficulties in the precision orientation of the sample along the magnetic field

  18. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2017-02-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF/tropomyosin-related kinase B (TrkB pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO, following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX, NeuN and glial fibrillary acidic protein (GFAP, and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.

  19. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Aşkın, Ayhan; Tosun, Aliye; Demirdal, Ümit Seçil

    2017-06-01

    Repetitive transcranial magnetic stimulation (rTMS) was suggested as a preconditioning method that would increase brain plasticity and that it would be optimal to combine rTMS with intensive rehabilitation. To assess the efficacy of inhibitory rTMS on upper extremity motor recovery and functional outcomes in chronic ischemic stroke patients. In this randomized controlled trial, experimental group received low-frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT), and control group received PT. No statistically significant difference was found in baseline demographical and clinical characteristics of the subjects including stroke severity or severity of paralysis prior to intervention. There were statistically significant improvements in all clinical outcome measures except for the Brunnstrom Recovery Stages. Fugl-Meyer Assessment, Box and Block test, motor and total scores of Functional Independence Measurement (FIM), and Functional Ambulation Scale (FAS) scores were significantly increased in both groups, however, these changes were significantly greater in the rTMS group except for FAS score. FIM cognitive scores and standardized mini-mental test scores were significantly increased and distal and hand Modified Ashworth Scale scores were significantly decreased only in the rTMS group (p functional, and cognitive deficits in chronic stroke. Further studies with a larger number of patients with longer follow-up periods are needed to establish its effectiveness in stroke rehabilitation.

  20. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  1. Inter-subband optical absorption in an inversion layer on a semiconductor surface in tilted magnetic fields. Progress report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    O'Connell, R.F.

    1981-01-01

    Cyclotron-resonance experiments on inversion layer electrons in Si (001) metal-oxide-semiconductor field-effect transistors (MOSFET's) have produced many surprising and unexplained results. This has motivated the investigation of the use of other magneto-optical phenomena in MOS systems. Emphasis has been on the Faraday rotation effect. The conditions necessary for achieving a null Faraday rotation, as well as a null ellipticity have been examined. The calculation of theta for the Appel-Overhauser model for the surface space-charge layer in Si has also been studied

  2. Cardiovascular Magnetic Resonance T2-STIR Imaging is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2015-01-01

    Recent studies have used cardiovascular magnetic resonance (CMR) and T2-weighted short tau inversion recovery (T2-STIR) imaging to detect intramyocardial haemorrhage (IMH) as a measure of ischemic/reperfusion injury. We investigated the ability of T2-STIR to differentiate between microvascular...

  3. Swarm Level 2 Comprehensive Inversion, 2016 Production

    DEFF Research Database (Denmark)

    Tøffner-Clausen, Lars; Sabaka, Terence; Olsen, Nils

    In the framework of the ESA Earth Observation Magnetic Mapping Mission Swarm, the Expert Support Laboratories (ESL) provides high quality Level 2 Products describing a.o. the magnetic fields of the Earth. This poster provides details of the Level 2 Products from the Comprehensive Inversion chain...

  4. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  5. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.

    Science.gov (United States)

    Wang, Jianye; Zhao, Gang; Zhang, Zhengliang; Xu, Xiaoliang; He, Xiaoming

    2016-03-01

    Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may efficiently suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification. Here we report the successful synthesis and application of Fe3O4 nanoparticles for magnetic induction heating (MIH) to enhance rewarming of vitrification-cryopreserved human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We found that MIH-enhanced rewarming greatly improves the survival of vitrification-cryopreserved hUCM-MSCs. Moreover, the hUCM-MSCs retain their intact stemness and multilineage potential of differentiation post cryopreservation by vitrification with the

  6. Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst

    Science.gov (United States)

    He, Jie; Cheng, Yahui; Wang, Tianzhao; Feng, Deqiang; Zheng, Lingcheng; Shao, Dawei; Wang, Weichao; Wang, Weihua; Lu, Feng; Dong, Hong; Zheng, Rongkun; Liu, Hui

    2018-05-01

    High efficiency, high stability and easy recovery are three key factors for practical photocatalysts. Z-scheme heterostructure is one of the most promising photocatalytic systems to meet all above requirements. However, efficient Z-scheme photocatalysts which could absorb visible light are still few and difficult to implement at present. In this work, the composite photocatalysts ZnFe2O4/AgBr/Ag were prepared through a two-step method. A ∼92% photodegradation rate on methyl orange was observed within 30 min under visible light, which is much better than that of individual ZnFe2O4 or AgBr/Ag. The stability was also greatly improved compared with AgBr/Ag. The increased performance is resulted from the suitable band alignment of ZnFe2O4 and AgBr, and it is defined as Z-scheme mechanism which was demonstrated by detecting active species and electrochemical impedance spectroscopy. Besides, ZnFe2O4/AgBr/Ag is ferromagnetic and can be recycled by magnet. These results show that ZnFe2O4/AgBr/Ag is a potential magnetically recyclable photocatalyst which can be driven by visible light.

  7. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    Science.gov (United States)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  8. Spontaneous Recovery from Unresponsive Wakefulness Syndrome to a Minimally Conscious State: Early Structural Changes Revealed by 7-T Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xufei Tan

    2018-01-01

    Full Text Available BackgroundDetermining the early changes of brain structure that occur from vegetative state/unresponsive wakefulness syndrome (VS/UWS to a minimally conscious state (MCS is important for developing our understanding of the processes underlying disorders of consciousness (DOC, particularly during spontaneous recovery from severe brain damage.ObjectiveThis study used a multi-modal neuroimaging approach to investigate early structural changes during spontaneous recovery from VS/UWS to MCS.MethodsThe Coma Recovery Scale-Revised (CRS-R score, 24-h electroencephalography (EEG, and ultra-high field 7-T magnetic resonance imaging were used to investigate a male patient with severe brain injury when he was in VS/UWS compared to MCS. Using white matter connectometry analysis, fibers in MCS were compared with the same fibers in VS/UWS. Whole-brain analysis was used to compare all fibers showing a 10% increase in density with each other as a population.ResultsBased on connectometry analysis, the number of fibers with increased density, and the magnitude of increase in MCS compared to VS/UWS, was greatest in the area of the temporoparietal junction (TPJ, and was mostly located in the right hemisphere. These results are in accordance with the active areas observed on 24-h EEG recordings. Moreover, analysis of different fibers across the brain, showing at least a 10% increase in density, revealed that altered white matter connections with higher discriminative weights were located within or across visual-related areas, including the cuneus_R, calcarine_R, occipital_sup_R, and occipital_mid_R. Furthermore, the temporal_mid_R, which is related to the auditory cortex, showed the highest increase in connectivity to other areas. This was consistent with improvements in the visual and auditory components of the CRS-R, which were greater than other improvements.ConclusionThese results provide evidence to support the important roles for the TPJ and the visual and

  9. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  10. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  11. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.

    Science.gov (United States)

    Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar

    2018-05-01

    Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  15. Self-contained inflatable penile prosthesis: magnetic resonance appearance

    International Nuclear Information System (INIS)

    Levin, M.F.; Munk, P.L.; Vellet, A.D.; Chin, J.L.

    1994-01-01

    The appearance of an inflatable penile prosthesis, visualized on a short tau inversion recovery sequence, is reported, in a patient who had magnetic resonance imaging for pelvic pain subsequent to radical cystoprostatectomy for bladder carcinoma. With suppression of adjacent fat signal, the prosthesis is well delineated from adjacent structures. The fluid-containing cylinders of the prosthesis are of very bright signal intensity, with the relief valve assembly of low signal intensity. 5 refs., 2 figs

  16. Calorimetric and magnetic study for Ni{sub 50}Mn{sub 36}In{sub 14} and relative cooling power in paramagnetic inverse magnetocaloric systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing-Han, E-mail: jhchen@tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Bruno, Nickolaus M. [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Karaman, Ibrahim [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Huang, Yujin; Li, Jianguo [School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Ross, Joseph H. [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-11-28

    The non-stoichiometric Heusler alloy Ni{sub 50}Mn{sub 36}In{sub 14} undergoes a martensitic phase transformation in the vicinity of 345 K, with the high temperature austenite phase exhibiting paramagnetic rather than ferromagnetic behavior, as shown in similar alloys with lower-temperature transformations. Suitably prepared samples are shown to exhibit a sharp transformation, a relatively small thermal hysteresis, and a large field-induced entropy change. We analyzed the magnetocaloric behavior both through magnetization and direct field-dependent calorimetry measurements. For measurements passing through the first-order transformation, an improved method for heat-pulse relaxation calorimetry was designed. The results provide a firm basis for the analytic evaluation of field-induced entropy changes in related materials. An analysis of the relative cooling power (RCP), based on the integrated field-induced entropy change and magnetizing behavior of the Mn spin system with ferromagnetic correlations, shows that a significant RCP may be obtained in these materials by tuning the magnetic and structural transformation temperatures through minor compositional changes or local order changes.

  17. Growth and in-plane magnetic anisotropy of inverse spinel Co{sub 2}MnO{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Taeyeong; Kim, Jaeyeong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Song, Jonghyun [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    Epitaxial Co{sub 2}MnO{sub 4} thin films were grown on Nb(0.1wt.)-doped SrTiO{sub 3} single-crystal substrates with (100) and (110) crystal orientations by using pulsed laser deposition. Their crystal structures and magnetic properties were investigated. Both samples exhibited ferrimagnetic transitions with enhanced transition temperatures. Isotropic M-H loops were observed on the in-plane surface of Co{sub 2}MnO{sub 4}(00l) grown on Nb(0.1wt)-doped SrTiO{sub 3}(100). Strong magnetic anisotropy was observed on the in-plane surface for Co{sub 2}MnO{sub 4} (ll0) grown on Nb(0.1wt)-doped SrTiO{sub 3}(110). A magnetic easy axis existed along the elongated tetragonal direction. This was attributed to the strong interplay between the spin and lattice degrees of freedom in the Co{sub 2}MnO{sub 4} thin film.

  18. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  19. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  2. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  3. The effect of pressure on the structural, electronic, magnetic, and thermodynamic properties of the Mn{sub 2}RuGe inverse Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting, E-mail: songting_lzjtu@163.com [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wei, Xiao-Ping; Wan, Gui-Xin [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China)

    2017-04-15

    In the frame of density functional theory, first-principles calculations based on generalized gradient approximation and quasi-harmonic Debye approximation model in which the phononic effects are taken into account have been carried out to investigate the structural, electronic, magnetic, and thermodynamic properties of full-Heusler alloy Mn{sub 2}RuGe in CuHg{sub 2}Ti-type structure in the pressure range of 0–50 GPa. Present calculations predict that Mn{sub 2}RuGe is a ferrimagnet with an optimized lattice parameter of 5.854 Å. The calculated total magnetic moment of 2.01 μ{sub B} per formula unit is very close to integer value and agree well with the Slater-Pauling rule, where the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.66 μ{sub B} and −0.90 μ{sub B}, respectively. In the study of the energy band structures and density of states, Mn{sub 2}RuGe exhibits half-metallicity with an indirect gap of 0.235 eV in the spin-down channels, and the shifting of bands towards higher energies in spin-down channel under high pressure. Meanwhile, the high-pressure thermodynamic properties of Mn{sub 2}RuGe, such as the pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, Debye temperature, and Grüneisen parameter are evaluated systematically in the temperature range of 0–900 K. This set of data is considered as the useful information to understand the high-pressure and high-temperature properties for the Mn{sub 2}RuZ-type Heusler alloy family.

  4. Synthesis and Characterization of Novel Magnetic Nano-Materials and Studying Their Potential Application in Recovery of Metal Ions

    International Nuclear Information System (INIS)

    Moussa, S.I.M.

    2013-01-01

    The release of hazardous pollutants and their dispersion in the environment can cause adverse impacts on both environment and public health. These pollutants are more easily controlled when they are generated than after they are dispersed. Therefore, it is necessity of prime to design treatment processes can remove the contaminants at their source. Recently, many industrial and nuclear activities produce large amounts of wastewaters that contains a variety of contaminants. These contaminants may include toxic metals or radioactive isotopes. The efforts in this work are firstly directed to prepare some materials to be used as sorbents for removal of Sr(II), Cd(II) and Eu(III) radionuclide from waste solutions. The study concerned with the characterization of the prepared sorbents using surface area (BET), FTIR, X-Ray, TG/DTA, SEM and magnetic properties to throw light on its sense when practically used as a decontaminating material in aqueous systems. Also, the work involves the sorption of Sr(II), Cd(II) and Eu(III) ions from aqueous solutions under different experimental conditions to clarify the affinity of these sorbents and to assess main factors affecting the sorption behavior of these species. This is to evaluate the efficiency of these sorbents to be used as decontaminating materials for treatment of hazard wastes and finally to judge the criteria of sorbents selectivity towards the studies solutes.

  5. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P <0.05 the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05. Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = -0.856, P < 0.01, and positively correlated with the average combined scores (r = 0.943, P < 0.01, while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = -0.949, P < 0.01. Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury.

  6. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  7. Mid-term follow-up of patients with transposition of the great arteries after atrial inversion operation using two- and three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fogel, Mark A.; Weinberg, Paul M.; Hubbard, Anne

    2002-01-01

    Background: Older patients with transposition of the great arteries who have undergone an atrial inversion procedure (ATRIAL-INV) are difficult to image by echocardiography. The surgical baffles are spatially complex. Objective: To test the hypothesis that two- and three-dimensional MRI can elucidate the spatially complex anatomy in this patient population. Materials and methods; Twelve patients with ATRIAL-INV, ages 16±4.5 years, underwent routine T1-weighted spin-echo axial imaging to obtain a full cardiac volumetric data set. Postprocessing created three-dimensional shaded surface displays and allowed for multiplanar reconstruction. Routine transthoracic echocardiography was available on all patients. Results: Three-dimensional reconstruction enabled complete spatial conceptualization of the venous pathways, and allowed for precise localization of a narrowed region in the upper limb of the systemic venous pathway found in two patients. This was subsequently confirmed on angiography. Routine MRI was able to image the full extent of the venous pathways in all 12 patients. Routine transthoracic echocardiography was able to visualize proximal portions of the venous pathways in eight (67%), the distal upper limb in five (42%), and the distal lower limb in four (33%) patients, and it was able to visualize the outflow tracts in all patients. Conclusion: Three-dimensional reconstruction adds important spatial information, which can be especially important in stenotic regions. Routine MRI is superior to transthoracic echocardiography in delineation of the systemic and pulmonary venous pathway anatomy of ATRIAL-INV patients at mid-term follow-up. Although transesophageal echocardiography is an option, it is more invasive. (orig.)

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  9. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  10. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  11. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  12. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  13. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  14. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  15. Effect of liner non-uniformity on plasma instabilities in an inverse Z-pinch magnetized target fusion system: liner-on-plasma simulations and comparison with linear stability analysis

    International Nuclear Information System (INIS)

    Subhash, P V; Madhavan, S; Chaturvedi, S

    2008-01-01

    Two-dimensional (2D) magneto-hydrodynamic (MHD) liner-on-plasma computations have been performed to study the growth of instabilities in a magnetized target fusion system involving the cylindrical compression of an inverse Z-pinch target plasma by a metallic liner. The growth of modes in the plasma can be divided into two phases. During the first phase, the plasma continues to be Kadomtsev stable. The dominant mode in the liner instability is imposed upon the plasma in the form of a growing perturbation. This mode further transfers part of its energy to its harmonics. During the second phase, however, non-uniform implosion of the liner leads to axial variations in plasma quantities near the liner-plasma interface, such that certain regions of the plasma locally violate the Kadomtsev criteria. Further growth ofthe plasma modes is then due to plasma instability. The above numerical study has been complemented with a linear stability analysis for the plasma, the boundary conditions for this analysis being obtained from the liner-on-plasma simulation. The stability of axisymmetric modes in the first phase is found to satisfy the Kadomtsev condition Q 0 1 modes, using equilibrium profiles from the 2D MHD study, shows that their growth rates can exceed those for m=0 by as much as an order of magnitude

  16. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  17. The magnetization transfer characteristics of human breast tissues: an in vitro NMR study

    Science.gov (United States)

    Callicott, C.; Thomas, J. M.; Goode, A. W.

    1999-05-01

    A series of freshly excised human breast tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histopathology examination. Tissues comprised normal parenchymal, adipose, fibrocystic, fibroadenoma and malignant types. An inversion-recovery sequence performed both with and without magnetization transfer allowed T1, T1, and values to be obtained. From this information, the magnetization transfer rate constant, K, was calculated for each tissue sample. These data show that T1 provided greater discrimination between neoplasic and normal tissues than did T1. However, neither T1 nor K values provided a means of discriminating between benign and malignant disease.

  18. The magnetization transfer characteristics of human breast tissues: an in vitro NMR study

    International Nuclear Information System (INIS)

    Callicott, C.; Thomas, J.M.; Goode, A.W.

    1999-01-01

    A series of freshly excised human breast tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histopathology examination. Tissues comprised normal parenchymal, adipose, fibrocystic, fibroadenoma and malignant types. An inversion-recovery sequence performed both with and without magnetization transfer allowed T1, T1 5 , M o and M 5 values to be obtained. From this information, the magnetization transfer rate constant, K, was calculated for each tissue sample. These data show that T1 5 provided greater discrimination between neoplasic and normal tissues than did T1. However, neither T1 5 nor K values provided a means of discriminating between benign and malignant disease. (author)

  19. Acute puerperal uterine inversion

    International Nuclear Information System (INIS)

    Hussain, M.; Liaquat, N.; Noorani, K.; Bhutta, S.Z; Jabeen, T.

    2004-01-01

    Objective: To determine the frequency, causes, clinical presentations, management and maternal mortality associated with acute puerperal inversion of the uterus. Materials and Methods: All the patients who developed acute puerperal inversion of the uterus either in or outside the JPMC were included in the study. Patients of chronic uterine inversion were not included in the present study. Abdominal and vaginal examination was done to confirm and classify inversion into first, second or third degrees. Results: 57036 deliveries and 36 acute uterine inversions occurred during the study period, so the frequency of uterine inversion was 1 in 1584 deliveries. Mismanagement of third stage of labour was responsible for uterine inversion in 75% of patients. Majority of the patients presented with shock, either hypovolemic (69%) or neurogenic (13%) in origin. Manual replacement of the uterus under general anaesthesia with 2% halothane was successfully done in 35 patients (97.5%). Abdominal hysterectomy was done in only one patient. There were three maternal deaths due to inversion. Conclusion: Proper education and training regarding placental delivery, diagnosis and management of uterine inversion must be imparted to the maternity care providers especially to traditional birth attendants and family physicians to prevent this potentially life-threatening condition. (author)

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  2. Stabilization effect of Weibel modes due to inverse bremsstrahlung ...

    Indian Academy of Sciences (India)

    2016-11-04

    Nov 4, 2016 ... In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma ... pling of self-generated magnetic field with the laser wave field. This is ... To describe fully ionized plasma where the interac-.

  3. A direct sampling method for inverse electromagnetic medium scattering

    KAUST Repository

    Ito, Kazufumi; Jin, Bangti; Zou, Jun

    2013-01-01

    In this paper, we study the inverse electromagnetic medium scattering problem of estimating the support and shape of medium scatterers from scattered electric/magnetic near-field data. We shall develop a novel direct sampling method based

  4. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  5. Inverse logarithmic potential problem

    CERN Document Server

    Cherednichenko, V G

    1996-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  6. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  7. Superconductivity in Mesocrystalline Inverse Opal Structures

    Science.gov (United States)

    Lungu, Anca; Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir

    2000-03-01

    Mesocrystalline inverse opal structures were fabricated by the electrodeposition of metallic lead in synthetic opals. In these structures, the superconducting regions percolate in all directions through the voids in the artificial opals and their size is comparable to the coherence length for bulk lead. The inverse lead opals were proven superconducting, with a transition temperature close to that of bulk lead (between 7.2 K and 7.36 K) and broad transition regions. The magnetic behavior of the inverse opals was very different from that of bulk lead. Due to the reduced dimensonality of the superconducting regions, not surprisingly, the magnetic properties of our samples were found to be similar to those of type II superconductors. The critical magnetic field (or the field at which T_copals was proven at least two times larger than that for bulk lead and (dT_c/dH) was observed 2.7 times smaller. We found a reversible ZFC-FC magnetic behavior in the temperature range between T* and T_c. We also performed magnetic relaxation measurements and studied the fluctuation diamagnetism above T_c.

  8. Cognitive Function and 3-Tesla Magnetic Resonance Imaging Tractography of White Matter Hyperintensities in Elderly Persons

    OpenAIRE

    Reginold, William; Luedke, Angela C.; Tam, Angela; Itorralba, Justine; Fernandez-Ruiz, Juan; Reginold, Jennifer; Islam, Omar; Garcia, Angeles

    2015-01-01

    Background/Aims: This study used 3-Tesla magnetic resonance imaging (MRI) tractography to determine if there was an association between tracts crossing white matter hyperintensities (WMH) and cognitive function in elderly persons. Methods: Brain T2-weighted fluid-attenuated inversion recovery (FLAIR) and diffusion tensor MRI scans were acquired in participants above the age of 60 years. Twenty-six persons had WMH identified on T2 FLAIR scans. They completed a battery of neuropsychological tes...

  9. Self-constrained inversion of potential fields

    Science.gov (United States)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  10. Inverse Faraday effect with plasmon beams

    International Nuclear Information System (INIS)

    Ali, S; Mendonca, J T

    2011-01-01

    The angular momentum conservation equation is considered for an electron gas, in the presence of Laguerre-Gaussian (LG) plasmons propagating along the z-axis. The LG plasmons carry a finite orbital angular momentum despite longitudinal nature, which can be partly transfered to the electrons. For short timescales, such that ion motion can be neglected, plasmons primarily interact with the electrons, creating an azimuthal electric field and generating an axial magnetic field. This effect can be called an inverse Faraday effect due to plasmons. Numerically, it is found that the magnitude of the magnetic field enhances with the plasmon density or with the energy of the electron plasma waves. A comparison of the magnitudes of the axial magnetic field is made for the inverse Faraday effect excited by both plasmons and transverse photons.

  11. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  12. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  13. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  14. Theory of the inverse Faraday effect in metals

    International Nuclear Information System (INIS)

    Hertel, Riccardo

    2006-01-01

    An analytic expression is given for the inverse Faraday effect, i.e., for the magnetization occurring in a transparent medium exposed to a circularly polarized high-frequency electromagnetic wave. Using a microscopic approach based on the Drude approximation of a free-electron gas, the magnetization of the medium due to the inverse Faraday effect is identified as the result of microscopic solenoidal currents generated by the electromagnetic wave. In contrast to the better known phenomenological derivation, this microscopic treatment provides important information on the frequency dependence of the inverse Faraday effect

  15. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  16. Inverse planning IMRT

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)

  17. Basic concepts from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Rodriguez Arroyo, Diego

    2011-01-01

    The use of magnetic resonance imaging (MRI) has grown exponentially, due in part to excellent anatomic and pathologic detail provided by the modality, as recent technological advances that have led to more rapid acquisition times. Radiology residents in different parts of the world now receive training in MR images from their first year of residence, included the pulse sequences training spin-echo, gradient-echo, inversion-recovery, echo-planar image and MR angiographic sequences, commonly used in medical imaging. However, to optimize the use of this type of study, it has been necessary to understand the basic concepts of physics, included the concepts of recovery T1, degradation T2* and T2, repetition time, echo time, and the effects of chemical shift. Additionally, it has been important to understand the contrast weighting for better representation of specific tissues and thus perform an appropriate differential diagnosis of various pathological processes. (author) [es

  18. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  19. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.

    Science.gov (United States)

    Wang, Huan; Gu, Hongcheng; Chen, Zhuoyue; Shang, Luoran; Zhao, Ze; Gu, Zhongze; Zhao, Yuanjin

    2017-04-19

    Enzymatic carriers have a demonstrated value for chemical reactions and industrial applications. Here, we present a novel kind of inverse opal hydrogel particles as the enzymatic carriers. The particles were negatively replicated from spherical colloidal crystal templates by using magnetic nanoparticles tagged acrylamide hydrogel. Thus, they were endowed with the features of monodispersity, small volume, complete penetrating structure, and controllable motion, which are all beneficial for improving the efficiency of biocatalysis. In addition, due to the ordered porous nanostructure, the inverse opal hydrogel particles were imparted with unique photonic band gaps (PBGs) and vivid structural colors for encoding varieties of immobilized enzymes and for constructing a multienzymes biocatalysis system. These features of the inverse opal hydrogel particles indicate that they are ideal enzymatic carriers for biocatalysis.

  20. LHC Report: 2 inverse femtobarns!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total.   In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...

  1. Comparison of effects of angiotensin-converting enzyme inhibition with those of angiotensin II receptor antagonism on functional and metabolic recovery in postischemic working rat heart as studied by [31P] nuclear magnetic resonance.

    Science.gov (United States)

    Werrmann, J G; Cohen, S M

    1994-10-01

    To assess the role of angiotensin II (AII) in development of myocardial injury during ischemia and reperfusion, the effects of short-term treatment with the angiotensin-converting enzyme (ACE) inhibitor lisinopril were compared with the effects of short-term treatment with L-158,338, an AII antagonist, in isolated working rat heart. Myocardial function was assessed and correlated with simultaneous measurement of high-energy phosphate metabolism and intracellular pH by [31P] nuclear magnetic resonance (NMR) before, during, and after global ischemia. Hearts from rats treated with 1 mg/kg lisinopril in vivo recovered substantially more function than those of controls (p effect on functional recovery. A dose-dependent increase in functional recovery was observed in rat heart treated with 0.3, 1, or 3 mg/kg L-158,338 in vivo (p energy phosphate metabolism was essentially unchanged by any treatment regimen. AII antagonism alone resulted in a degree of improvement in functional recovery comparable to that observed with oral ACE inhibitor treatment.

  2. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study; Anormalidade de sinal na imagem por RM do polo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela sequencia inversao recuperacao com supressao da agua livre (FLAIR)

    Energy Technology Data Exchange (ETDEWEB)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Neurologia e Neurocirurgia

    2007-09-15

    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, {chi}{sup 2} test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  3. Particle acceleration by inverse-Weibel instability

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, S [Nagaoka Univ. of Technology (Japan). Dept. of Electrical Engineering

    1997-12-31

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs.

  4. Particle acceleration by inverse-Weibel instability

    International Nuclear Information System (INIS)

    Kawata, S.

    1996-01-01

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs

  5. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....

  6. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  7. Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines

    International Nuclear Information System (INIS)

    Kozyrev, Alexander B.; Weide, Daniel W. van der

    2005-01-01

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator

  8. Generalized inverses theory and computations

    CERN Document Server

    Wang, Guorong; Qiao, Sanzheng

    2018-01-01

    This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.

  9. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  10. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design.

    Science.gov (United States)

    Hamidi, Fatemeh; Hadjmohammadi, Mohammad Reza; Aghaie, Ali B G

    2017-09-15

    The applicability of Amino-functionalized Fe 3 O 4 nanoparticles (NPs) as an effective adsorbent was developed for the extraction and determination of clomipramine (CLP) in plasma sample by ultrasound-assisted dispersive magnetic solid phase extraction (UADM-SPE) and high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Fabrication of the Fe 3 O 4 @SiO 2 -NH 2 magnetic nanoparticles confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different extraction parameters (i.e. pH of the sample solution, the amount of magnetic nanoparticles (MNPs), sample volume, temperature and sonication time) on the extraction recovery of CLP were investigated by response surface methodology through central composite design (CCD). The optimum condition is obtained when the affecting parameters are set to: pH of the sample solution=9, the amount of MNPs=37mg, sample volume=23mL, 25°C temperature and sonication time=1min. Under the optimum condition, extraction recovery was 90.6% with relative standard deviation of 3.5%, and enrichment factor of 117. The linear range for determination of CLP was 0.017-0.70mgL -1 with a determination coefficient (R 2 ) of 0.999. Limit of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.0167mgL -1 , respectively. The established UADM-SPE-HPLC-UV method was rapid, simple and efficient for determination of CLP in human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS

    International Nuclear Information System (INIS)

    Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.

    2012-01-01

    Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.

  12. Performance of Magnetic Filter for Separation of Magnetic Gel Particles

    OpenAIRE

    栗延, 俊太郎; 尾崎, 博明; 渡辺, 恒雄; クリノブ, シュンタロウ; オザキ, ヒロアキ; ワタナベ, ツネオ; Shuntaro, KURINOBU; Hiroaki, OZAKI; Tuneo, WATANABE

    2003-01-01

    We have developed a new wastewater treatment process using magnetic gel particles containing immobilized microorganisms and magnetic particles. The performance of magnetic gel particles using a magnetic filter is very important to control the process. In this study, the performance of a magnetic filter was studied for magnetic gel, particles. Agar particles containing magnetite particles were used as gel particles. The recovery and the relative retention area of magnetic gel particles on the ...

  13. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  14. Joint Inversion of Fracture Model Properties for CO2 Storage Monitoring or Oil Recovery History Matching Inversion conjointe des propriétés d’un modèle de fractures pour le monitoring d’un stockage de CO2 ou le calage d’un historique de production

    Directory of Open Access Journals (Sweden)

    Verscheure M.

    2012-06-01

    Full Text Available For oil recovery or CO2 storage, “reservoirs” are commonly used to designate geological structures where oil can be found or CO2 can be stored. All reservoirs present a heterogeneity in terms of rock type and properties (such as porosity and permeability. In addition, some of these reservoirs present fractures and faults. Fractured reservoirs are an important part of the oil reserves in the world (Middle East, Gulf of Mexico, etc. and some of them are important reservoirs in terms of oil volume and productivity in spite of the fractures. In addition, studies of reservoirs for geologic storage of CO2 have shown the existence of diffuse fractures and faults and their strong impacts on flow. A key point in fractured reservoirs is to understand the geometry and hydraulic conductivity of the network formed by the fractures. This requires the construction of a reservoir model that integrates all available conceptual knowledge and quantitative data. The topic of the present paper deals with a new methodology able to perform the history matching of a fractured reservoir model by adapting the sub-seismic fault properties and positions. The main difficulty of this work is to generate a sub-seismic fault network whose fault positions can be easily modified while respecting the statistical fault model. The sub-seismic fault model we have chosen allows us to obtain a sub-seismic fault network that is consistent with the seismic fault network and that succeeds in capturing the specific spatial organization of the faults. In a first step, the geometry of the seismic fault network is characterized using fractal methods. Sub-seismic faults are then generated according to a stochastic algorithm. Finally, the geometry of this discrete fracture network is optimized in order to match the hydrodynamic data about the reservoir. The optimization algorithm modifies the sub-seismic fault positions, leading to the history matching of the reservoir model. Fractal

  15. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  16. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  17. Studies of magnetic resonance in anemia of hematies falciformes

    International Nuclear Information System (INIS)

    Lores Guevara, Manuel Arsenio; Balcom, Bruce John; Cabal Mirabal, Carlos

    2012-01-01

    Magnetic Resonance applications to the study of Sickle Cell Disease are analyzed using classical procedures and Unilateral Magnetic Resonance. Hemoglobin and whole blood samples were obtained from healthy individual and patients with Sickle Cell Anemia to be used as samples. Classical pulse sequence as spin echo and inversion recovery were used in the experimental studies, the STEPR method was used for EPR spectrometric determinations. The results show the possibility of NMR methods to follow the molecular process causing the disease and allows to present quantitative procedures to estimate the clinical state of the patients and the results of clinical options. We present the Unilateral Magnetic Resonance as a new method to study Sickle Cell disease considering its portability and new possibilities as new image method

  18. Magnetic resonance tomography for focal lesions in the liver using the para-magnetic contrast medium gadolinium DTPA

    International Nuclear Information System (INIS)

    Hamm, B.; Roemer, T.; Felix, R.; Wolf, K.J.; Klinikum Charlottenburg, Berlin

    1986-01-01

    The use of the para-magnetic contrast medium gadolinium DTPA for magnetic resonance tomography of focal lesions in the liver was investigated in 31 patients. Two dosage schedules of the contrast medium (0.1 and 0.2 mmol/kg body weight) were used with field strengths of 0.35 and 0.5 Tesla. Using T 1 sequences, gadolinium DTPA showed increased signal intensity in the liver and in tumours, but this was significantly more marked in the tumour. On T 1 spin-echo sequences, previously iso-intense lesions became visible after administration of contrast. On the other hand, contrast-enhanced lesions were less well seen on inversion recovery sequences because of a reduction in the contrast between tumour and liver tissue. The contrast between tumour and liver tissue was not improved by gadolinium DTPA in comparison with precontrast inversion recovery sequences and T 2 spin-echo sequences. The perfusion of intra-hepatic tumours could be elucidated by magnetic resonance tomography after the administration of gadolinium DTPA. (orig.) [de

  19. Efficient full waveform inversion using the excitation representation of the source wavefield

    KAUST Repository

    Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is an iterative method of data-fitting, aiming at high-resolution recovery of the unknown model parameters. However, its conventional implementation is a cumbersome process, requiring a long computational time and large

  20. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  1. Trimming and procrastination as inversion techniques

    Science.gov (United States)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  2. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, Michail, E-mail: msamouhos@metal.ntua.gr [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Taxiarchou, Maria; Tsakiridis, Petros E. [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Potiriadis, Konstantinos [Greek Atomic Energy Commission (GAEC), Patriarxou Grigoriou and Neapoleos, P.O. Box 60092, 15310 Agia Paraskevi, Athens (Greece)

    2013-06-15

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •{sup 226}Ra, {sup 228}Ra, {sup 238}U, {sup 228}Th, {sup 232}Th, {sup 40}K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% C{sub fix}), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe{sub 2}O{sub 3} → Fe{sub 3}O{sub 4} → FeO → Fe sequence. The dielectric constants [real (ε′) and imaginary (ε″) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  3. Electrochemically driven emulsion inversion

    Science.gov (United States)

    Johans, Christoffer; Kontturi, Kyösti

    2007-09-01

    It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.

  4. 3D stochastic inversion and joint inversion of potential fields for multi scale parameters

    Science.gov (United States)

    Shamsipour, Pejman

    In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel

  5. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  6. Reactivity in inverse micelles

    International Nuclear Information System (INIS)

    Brochette, Pascal

    1987-01-01

    This research thesis reports the study of the use of micro-emulsions of water in oil as reaction support. Only the 'inverse micelles' domain of the ternary mixing (water/AOT/isooctane) has been studied. The main addressed issues have been: the micro-emulsion disturbance in presence of reactants, the determination of reactant distribution and the resulting kinetic theory, the effect of the interface on electron transfer reactions, and finally protein solubilization [fr

  7. Magneto-optical extinction trend inversion in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Shulyma, S.I., E-mail: kiw_88@mail.ru; Tanygin, B.M., E-mail: b.m.tanygin@gmail.com; Kovalenko, V.F.; Petrychuk, M.V.

    2016-10-15

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  8. Magneto-optical extinction trend inversion in ferrofluids

    International Nuclear Information System (INIS)

    Shulyma, S.I.; Tanygin, B.M.; Kovalenko, V.F.; Petrychuk, M.V.

    2016-01-01

    Effects of pulse magnetic field on the optical transmission properties of thin ferrofluid (FF) layers were experimentally investigated. It was observed that, under an influence of an external uniform magnetic field, pulses applied to the samples surfaces in normal direction decrease the optical transmission with further returning it to its original state, even before the end of the field pulse. The dependencies of the observed effects on the magnetic pulse magnitude and the samples thickness were investigated. The experimental results are explained using FF columnar aggregates growth and lateral coalescence under influence of a magnetic field, leading to a light scattering type Rayleigh-to-Mie transition. Further evolution of this process comes to a geometrical optics scale and respective macroscopic observable opaque FF columnar aggregates emergence. These changes of optical transmission are non-monotonic during the magnetic field pulse duration with minimal value in the case of Mie scattering, which is known as a magneto-optical extinction trend inversion. The residual inversion was detected after the external magnetic field pulse falling edge. Using molecular dynamics simulation, we showed that a homogeneous external magnetic field is enough for the formation of columnar aggregates and their fusion. The results clarify the known Li theory (Li et al., 2004, 2007), implying an inhomogeneous field as a required prerequisite for the magneto-optical extinction trend inversion phenomenon. - Highlights: • Ferrofluid columnar aggregates have been observed in a homogeneous magnetic field. • Magneto-optical extinction trend inversion is related to the Mie light scattering. • Crucial role of columnar aggregates growth and lateral coalescence has been revealed. • Residual extinction trend inversion was observed after the field switch off.

  9. Value of Perineural Edema/Inflammation Detected by Fat Saturation Sequences in Lumbar Magnetic Resonance Imaging of Patients with Unilateral Sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Sirvanci, M.; Duran, C. (Dept. of Radiology, Faculty of Medicine, Istanbul Bilim Univ., Istanbul (Turkey)); Kara, B.; Onat, L.; Ulusoy, O.L.; Mutlu, A. (Dept. of Radiology of Florence Nightingale Hospital, Istanbul (Turkey)); Ozturk, E. (Dept. of Radiology, GATA Haydarpasa Teaching Hospital, Istanbul (Turkey)); Karatoprak, O. (Dept. of Orthopeadic Surgery, Kadikoy Florence Nightingale Hospital, Istanbul (Turkey))

    2009-02-15

    Background: Routine lumbar spine magnetic resonance imaging (MRI) may not show any evidence of the cause of sciatica in some cases. The relationship between nerve root compression detected on lumbar MRI and sciatica is also sometimes uncertain. Purpose: To ascertain whether axial (and, when necessary, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted MRI findings can be used to study the level of sciatica in patients with a non-yielding routine MRI examination. Material and Methods: A total of 215 patients with unilateral sciatica underwent MRI. All patients were asked to complete pain drawing forms describing their pain dermatomal distributions. Perineural edema/inflammation corresponding to the pain location indicated by the pain drawings was sought on short-tau inversion recovery or fat-saturated T2-weighted images. Results: Routine MRI findings revealed that 110 of the 215 patients had nerve root compromise related to the patients' symptoms. Routine MRI could not ascertain the cause of these symptoms in the remaining 105 patients. In 31 (29.5%) of these 105 patients, short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images revealed perineural edema/inflammation surrounding the nerve roots related to the pain locations indicated in the pain drawings. Conclusion: Axial (and, when required, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images may be helpful for revealing additional findings in cases of unexplained sciatica in standard magnetic resonance imaging. However, the value of this imaging may be not great enough to justify routine use of these additional sequences to study the level of sciatica

  10. Value of Perineural Edema/Inflammation Detected by Fat Saturation Sequences in Lumbar Magnetic Resonance Imaging of Patients with Unilateral Sciatica

    International Nuclear Information System (INIS)

    Sirvanci, M.; Duran, C.; Kara, B.; Onat, L.; Ulusoy, O.L.; Mutlu, A.; Ozturk, E.; Karatoprak, O.

    2009-01-01

    Background: Routine lumbar spine magnetic resonance imaging (MRI) may not show any evidence of the cause of sciatica in some cases. The relationship between nerve root compression detected on lumbar MRI and sciatica is also sometimes uncertain. Purpose: To ascertain whether axial (and, when necessary, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted MRI findings can be used to study the level of sciatica in patients with a non-yielding routine MRI examination. Material and Methods: A total of 215 patients with unilateral sciatica underwent MRI. All patients were asked to complete pain drawing forms describing their pain dermatomal distributions. Perineural edema/inflammation corresponding to the pain location indicated by the pain drawings was sought on short-tau inversion recovery or fat-saturated T2-weighted images. Results: Routine MRI findings revealed that 110 of the 215 patients had nerve root compromise related to the patients' symptoms. Routine MRI could not ascertain the cause of these symptoms in the remaining 105 patients. In 31 (29.5%) of these 105 patients, short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images revealed perineural edema/inflammation surrounding the nerve roots related to the pain locations indicated in the pain drawings. Conclusion: Axial (and, when required, sagittal and coronal) short-tau inversion recovery or fat-saturated T2-weighted magnetic resonance images may be helpful for revealing additional findings in cases of unexplained sciatica in standard magnetic resonance imaging. However, the value of this imaging may be not great enough to justify routine use of these additional sequences to study the level of sciatica

  11. Inverse transition radiation

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Romea, R.D.; Kimura, W.D.

    1997-01-01

    A new method for laser acceleration is proposed based upon the inverse process of transition radiation. The laser beam intersects an electron-beam traveling between two thin foils. The principle of this acceleration method is explored in terms of its classical and quantum bases and its inverse process. A closely related concept based on the inverse of diffraction radiation is also presented: this concept has the significant advantage that apertures are used to allow free passage of the electron beam. These concepts can produce net acceleration because they do not satisfy the conditions in which the Lawson-Woodward theorem applies (no net acceleration in an unbounded vacuum). Finally, practical aspects such as damage limits at optics are employed to find an optimized set of parameters. For reasonable assumptions an acceleration gradient of 200 MeV/m requiring a laser power of less than 1 GW is projected. An interesting approach to multi-staging the acceleration sections is also presented. copyright 1997 American Institute of Physics

  12. Intersections, ideals, and inversion

    International Nuclear Information System (INIS)

    Vasco, D.W.

    1998-01-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons

  13. Intersections, ideals, and inversion

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    1998-10-01

    Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.

  14. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  15. Major disruptions, inverse cascades, and the Strauss equations

    International Nuclear Information System (INIS)

    Montgomery, D.

    1982-01-01

    Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics

  16. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  17. Ionogram inversion for a tilted ionosphere

    International Nuclear Information System (INIS)

    Wright, J.W.

    1990-01-01

    Digital ionosondes such as the Dynasonde disclose that the ionosphere is seldom horizontal even when it is plane stratified to a good approximation. The local magnetic dip does not then determine correctly the radiowave propagation angle for inversion of the ionogram to a plasma density profile. The measured echo direction of arrival can be used together with the known dip for an improved propagation angle. The effects are small for simple one-parameter laminae but become important when differential (ordinary, extraordinary) retardations are used to aid correction for valley and starting ambiguities. The resulting profile describes the plasma distribution along the direction of observation, rather than the vertical; it thus conveys information about horizontal gradients. Observations suggest that advantages in inversion methods may be practicable for application to modern ionosonde recordings, by which local lateral structure can be described in greater detail. 20 refs

  18. Introduction to Schroedinger inverse scattering

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  19. Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions

    International Nuclear Information System (INIS)

    Baratchart, L; Hardin, D P; Saff, E B; Lima, E A; Weiss, B P

    2013-01-01

    Recently developed scanning magnetic microscopes measure the magnetic field in a plane above a thin-plate magnetization distribution. These instruments have broad applications in geoscience and materials science, but are limited by the requirement that the sample magnetization must be retrieved from measured field data, which is a generically nonunique inverse problem. This problem leads to an analysis of the kernel of the related magnetization operators, which also has relevance to the ‘equivalent source problem’ in the case of measurements taken from just one side of the magnetization. We characterize the kernel of the operator relating planar magnetization distributions to planar magnetic field maps in various function and distribution spaces (e.g., sums of derivatives of L p (Lebesgue spaces) or bounded mean oscillation (BMO) functions). For this purpose, we present a generalization of the Hodge decomposition in terms of Riesz transforms and utilize it to characterize sources that do not produce a magnetic field either above or below the sample, or that are magnetically silent (i.e. no magnetic field anywhere outside the sample). For example, we show that a thin-plate magnetization is silent (i.e. in the kernel) when its normal component is zero and its tangential component is divergence free. In addition, we show that compactly supported magnetizations (i.e. magnetizations that are zero outside of a bounded set in the source plane) that do not produce magnetic fields either above or below the sample are necessarily silent. In particular, neither a nontrivial planar magnetization with fixed direction (unidimensional) compact support nor a bidimensional planar magnetization (i.e. a sum of two unidimensional magnetizations) that is nontangential can be silent. We prove that any planar magnetization distribution is equivalent to a unidimensional one. We also discuss the advantages of mapping the field on both sides of a magnetization, whenever experimentally

  20. The Inverse Faraday Effect In Plasma

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1999-01-01

    The existence of axial magnetic field 1-3 induced by the interaction of circularly polarized laser light with plasma is reported. Axial magnetic fields from 500 Gauss up to 2.17 MegaGauss were measured using a Nd:YAG laser with a pulse duration of 7 ns for irradiance from 10 9 to 10 14 W/cm'2 accordingly. Up to 5 - 10 13 W/cm 2 , the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. Two diagnostic methods were used to measure the axial magnetic field. At low irradiance (10 9 - 10 1 '1 W/cm 2 ) the axial magnetic field induced by the circularly polarized laser light (CPLL) in a ferrite target was measured from the voltage signal induced by the magnetic field in an output coil. At higher irradiance the axial magnetic field was measured using the Faraday rotation diagnostic. The scaling law of the measured axial magnetic field B from the experiments performed with CPLL, in the intensities range of 10 9 - 10 13 W/cm 2 , is B ∼ I / 1/2 . At higher intensities of the order of 3 . 10 1 '4 W/cm 2 a sudden increase of the axial magnetic field beyond the above scaling law is observed in the experiments performed with CPLL. This study might have interesting implications in creating a mini tokamak configuration in laser produced plasmas, with intermediate plasma densities (10 22 cm 3 ) and confinement times (100 ns). Such an approach to fusion circumvents many of the complexities of inertial confinement fusion where very symmetric implosions using many laser beams are required. Intermediate fusion density may also overcome severe requirements of tokamak fusion

  1. Plasma profile recovery by function parameterisation

    International Nuclear Information System (INIS)

    McCarthy, P.J.; Sexton, M.C.

    1986-11-01

    The use of Function Parameterisation for the recovery of plasma profiles as a function of flux surface area from spatial point data directly combined with external magnetic measurements is demonstrated in the case of ASDEX electron temperature and density profiles. The extrapolated temperature on the magnetic axis is shown to be more reliable than that obtained from a conventional fitting procedure. (orig.)

  2. Synthesis and inversion of Stokes spectral profiles. Thesis

    International Nuclear Information System (INIS)

    Murphy, G.A.

    1990-01-01

    Observations of Stokes spectral profiles enable the magnetic fields on the Sun's surface to be determined. Inversion is the process whereby the profiles are reduced to magnetic field vectors. One of the most robust, accurate and rapid methods available for inversion uses the least-squares fitting of analytical Stokes profiles. As this technique is suitable for the automated reduction of large sets of data, it has been adopted for use with the Advanced Stokes Polarimeter, presently under development. The limitations of inversion by analytical profile fitting have not been firmly established. Confident analysis of magnet field vectors depends upon the precise interpretation of reduced data. In this work, a framework is introduced which allows such an assessment to be made. The magnetofluid-static sunspot models presented here provide a self-consistent range of physical conditions similar to those in sunspots. Inversion can then be carried out on Stokes profiles synthesized from these known realistic conditions. The capabilities of an inversion technique can be evaluated by comparison between the models and the deduced values

  3. A passive inverse filter for Green's function retrieval.

    Science.gov (United States)

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe; Campillo, Michel

    2012-01-01

    Passive methods for the recovery of Green's functions from ambient noise require strong hypotheses, including isotropic distribution of the noise sources. Very often, this distribution is nonisotropic, which introduces bias in the Green's function reconstruction. To minimize this bias, a spatiotemporal inverse filter is proposed. The method is tested on a directive noise field computed from an experimental active seismic data set. The results indicate that the passive inverse filter allows the manipulation of the spatiotemporal degrees of freedom of a complex wave field, and it can efficiently compensate for the noise wavefield directivity. © 2012 Acoustical Society of America.

  4. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  5. Inverse plasma equilibria

    International Nuclear Information System (INIS)

    Hicks, H.R.; Dory, R.A.; Holmes, J.A.

    1983-01-01

    We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model

  6. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  7. Transmuted Generalized Inverse Weibull Distribution

    OpenAIRE

    Merovci, Faton; Elbatal, Ibrahim; Ahmed, Alaa

    2013-01-01

    A generalization of the generalized inverse Weibull distribution so-called transmuted generalized inverse Weibull dis- tribution is proposed and studied. We will use the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distributions taking generalized inverse Weibull distribution as the base value distribution by introducing a new parameter that would offer more distributional flexibility. Various structural properties including explicit expression...

  8. Anti-N-methyl-D-aspartate receptor encephalitis concomitant with multifocal subcortical white matter lesions on magnetic resonance imaging: a case report and review of the literature.

    Science.gov (United States)

    Wang, Rui-Jin; Chen, Bu-Dong; Qi, Dong

    2015-07-08

    Anti-N-methyl-D-aspartate receptor encephalitis is a severe autoimmune disorder characterized by severe psychiatric symptoms, seizures, decreased consciousness, autonomic dysregulation, and dyskinesias. Multifocal subcortical white matter lesions on fluid-attenuated inversion recovery and diffuse weighted images have rarely been reported in previous literature, and serial magnetic resonance imaging changes after plasma exchange have not been presented before. A previously healthy 24-year-old Chinese woman presented with acute psychiatric symptoms characterized by fear and agitation followed by decreased consciousness, dyskinesias, and seizures. Magnetic resonance imaging revealed hyperintense lesions on fluid-attenuated inversion recovery and diffuse weighted images in bilateral subcortical white matter. Cerebrospinal fluid analysis revealed a mild pleocytosis with lymphocytic predominance. Protein and glucose levels were normal. Aquaporin-4 antibodies in serum and cerebrospinal fluid were negative. Identification of anti-N-methyl-D-aspartate receptor antibodies in serum and cerebrospinal fluid confirmed the diagnosis of anti-N-methyl-D-aspartate receptor encephalitis. She was initially treated with combined intravenous immunoglobulin and methylprednisolone without improvement. Plasma exchange was then initiated with good response; the patient made a full recovery after several cycles of plasma exchange. Repeat magnetic resonance imaging performed 1 month after plasma exchange showed partial resolution of the hyperintense lesions in bilateral subcortical white matter, and follow-up magnetic resonance imaging 2 months after plasma exchange showed complete resolution. Anti-N-methyl-D-aspartate receptor encephalitis may be concomitant with multifocal subcortical white matter lesions. Such lesions may resolve after appropriate immunotherapy.

  9. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos; Doulgeris, Panagiotis C.; Verschuur, Dirk Jacob Eric

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from

  10. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.

  11. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    Science.gov (United States)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  12. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  13. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  14. Face inversion increases attractiveness.

    Science.gov (United States)

    Leder, Helmut; Goller, Juergen; Forster, Michael; Schlageter, Lena; Paul, Matthew A

    2017-07-01

    Assessing facial attractiveness is a ubiquitous, inherent, and hard-wired phenomenon in everyday interactions. As such, it has highly adapted to the default way that faces are typically processed: viewing faces in upright orientation. By inverting faces, we can disrupt this default mode, and study how facial attractiveness is assessed. Faces, rotated at 90 (tilting to either side) and 180°, were rated on attractiveness and distinctiveness scales. For both orientations, we found that faces were rated more attractive and less distinctive than upright faces. Importantly, these effects were more pronounced for faces rated low in upright orientation, and smaller for highly attractive faces. In other words, the less attractive a face was, the more it gained in attractiveness by inversion or rotation. Based on these findings, we argue that facial attractiveness assessments might not rely on the presence of attractive facial characteristics, but on the absence of distinctive, unattractive characteristics. These unattractive characteristics are potentially weighed against an individual, attractive prototype in assessing facial attractiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Inverse problem in hydrogeology

    Science.gov (United States)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le

  16. Multiples waveform inversion

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.

  17. An interpretation of signature inversion

    International Nuclear Information System (INIS)

    Onishi, Naoki; Tajima, Naoki

    1988-01-01

    An interpretation in terms of the cranking model is presented to explain why signature inversion occurs for positive γ of the axially asymmetric deformation parameter and emerges into specific orbitals. By introducing a continuous variable, the eigenvalue equation can be reduced to a one dimensional Schroedinger equation by means of which one can easily understand the cause of signature inversion. (author)

  18. Inverse problems for Maxwell's equations

    CERN Document Server

    Romanov, V G

    1994-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  19. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  20. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  1. The inference of vector magnetic fields from polarization measurements with limited spectral resolution

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1985-01-01

    A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.

  2. Magnetic resonance imaging of the brain in congenital rubella virus and cytomegalovirus infections

    International Nuclear Information System (INIS)

    Sugita, K.; Ando, M.; Makino, M.; Takanashi, J.; Fujimoto, N.; Niimi, H.

    1991-01-01

    Two children with congenital rubella virus and six with cytomegalovirus (CMV) infections, were examined by magnetic resonance (MR) and CT. Cranial MR imaging (MRI) with T2-weighted spin-echo (SE) and inversion recovery (IR) sequences demonstrated the following: Periventricular hyperintensity (4), subcortical hyperintensity (5), delayed myelination (4), oligo/pachygyria (2), cerebellar hypoplasia (2). This study showed that the more-disabled children had more marked abnormal MRI findings. MRI was more effective in the detection of parenchymal lesion than was CT, although intraventricular calcification was better visualized with CT. (orig.)

  3. Novel diffusion-weighted magnetic resonance imaging findings in leptomeningeal carcinomatosis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.F.; Chang, F.C.; Hu, H.H.; Hsu, L.C. [Taipei Veterans General Hospital, Taiwan (China). Depts. of Internal Medicine and Radiology, and Neurological Inst.

    2006-12-15

    This report presents a rare case of leptomeningeal carcinomatosis initially presenting with mental impairment and rapidly progressing to coma without any history of malignancy. In addition to highlighting the diagnostic difficulties, the linear high signal intensity along the cortex on the diffusion-weighted imaging (DWI) sequence of magnetic resonance (MR) imaging was identified accidentally. High signal change in the corresponding areas was also noted on unenhanced fluid-attenuated inversion recovery (FLAIR) MR imaging, which may be a novel method of diagnosing leptomeningeal carcinomatosis, which should be studied further.

  4. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  5. Examination of the role of magnetic resonance imaging in multiple sclerosis: A problem-orientated approach

    Directory of Open Access Journals (Sweden)

    McFarland Henry

    2009-01-01

    Full Text Available Magnetic Resonance Imaging (MRI has brought in several benefits to the study of Multiple Sclerosis (MS. It provides accurate measurement of disease activity, facilitates precise diagnosis, and aid in the assessment of newer therapies. The imaging guidelines for MS are broadly divided in to approaches for imaging patients with suspected MS or clinically isolated syndromes (CIS or for monitoring patients with established MS. In this review, the technical aspects of MR imaging for MS are briefly discussed. The imaging process need to capture the twin aspects of acute MS viz. the autoimmune acute inflammatory process and the neurodegenerative process. Gadolinium enhanced MRI can identify acute inflammatory lesions precisely. The commonly applied MRI marker of disease progression is brain atrophy. Whole brain magnetization Transfer Ratio (MTR and Magnetic Resonance Spectroscopy (MRS are two other techniques use to monitor disease progression. A variety of imaging techniques such as Double Inversion Recovery (DIR, Spoiled Gradient Recalled (SPGR acquisition, and Fluid Attenuated Inversion Recovery (FLAIR have been utilized to study the cortical changes in MS. MRI is now extensively used in the Phase I, II and III clinical trials of new therapies. As the technical aspects of MRI advance rapidly, and higher field strengths become available, it is hoped that the impact of MRI on our understanding of MS will be even more profound in the next decade.

  6. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  7. Inverse Cerenkov experiment

    International Nuclear Information System (INIS)

    Kimura, W.D.

    1993-01-01

    The final report describes work performed to investigate inverse Cherenkov acceleration (ICA) as a promising method for laser particle acceleration. In particular, an improved configuration of ICA is being tested in a experiment presently underway on the Accelerator Test Facility (ATF). In the experiment, the high peak power (∼ 10 GW) linearly polarized ATF CO 2 laser beam is converted to a radially polarized beam. This is beam is focused with an axicon at the Cherenkov angle onto the ATF 50-MeV e-beam inside a hydrogen gas cell, where the gas acts as the phase matching medium of the interaction. An energy gain of ∼12 MeV is predicted assuming a delivered laser peak power of 5 GW. The experiment is divided into two phases. The Phase I experiments, which were completed in the spring of 1992, were conducted before the ATF e-beam was available and involved several successful tests of the optical systems. Phase II experiments are with the e-beam and laser beam, and are still in progress. The ATF demonstrated delivery of the e-beam to the experiment in Dec. 1992. A preliminary ''debugging'' run with the e-beam and laser beam occurred in May 1993. This revealed the need for some experimental modifications, which have been implemented. The second run is tentatively scheduled for October or November 1993. In parallel to the experimental efforts has been ongoing theoretical work to support the experiment and investigate improvement and/or offshoots. One exciting offshoot has been theoretical work showing that free-space laser acceleration of electrons is possible using a radially-polarized, axicon-focused laser beam, but without any phase-matching gas. The Monte Carlo code used to model the ICA process has been upgraded and expanded to handle different types of laser beam input profiles

  8. A Generalization of the Spherical Inversion

    Science.gov (United States)

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  9. Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation

    Science.gov (United States)

    Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...

  10. Plasma diagnostics by Abel inversion in hyperbolic geometry

    International Nuclear Information System (INIS)

    Alhasi, A.S.; Elliott, J.A.

    1992-01-01

    Plasma confined in the UMIST linear quadrupole adopts a configuration with approximately hyperbolic symmetry. The normal diagnostic is a Langmuir probe, but we have developed an alternative method using optical emission tomography based upon an analytic Abel inversion. Plasma radiance is obtained as a function of a parameter identifying magnetic flux surfaces. The inversion algorithm has been tested using artificial data. Experimentally, the results show that ionizing collisions cause the confined plasma distribution to broaden as the plasma travels through the confining field. This is shown to be a consequence of the approximate incompressibility of the E x B flow. (author)

  11. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  12. Safe Control for Spiral Recovery of Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Chang-Jian Ru

    2014-01-01

    Full Text Available With unmanned aerial vehicles (UAVs widely used in both military and civilian fields, many events affecting their safe flying have emerged. That UAV’s entering into the spiral is such a typical safety issue. To solve this safety problem, a novel recovery control approach is proposed. First, the factors of spiral are analyzed. Then, based on control scheduling of state variables and nonlinear dynamic inversion control laws, the spiral recovery controller is designed to accomplish guidance and control of spiral recovery. Finally, the simulation results have illustrated that the proposed control method can ensure the UAV autonomous recovery from spiral effectively.

  13. The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters

    Directory of Open Access Journals (Sweden)

    Suzanne Phibbs

    2018-05-01

    Full Text Available The Inverse Care Law is principally concerned with the effect of market forces on health care which create inequities in access to health services through privileging individuals who possess the forms of social capital that are valued within health care settings. The fields of disaster risk reduction need to consider the ways in which inequities, driven by economic and social policy as well as institutional decision-making, create vulnerabilities prior to a disaster, which are then magnified post disaster through entrenched structural differences in access to resources. Drawing on key principles within the Inverse Care Law, the Inverse Response Law refers to the idea that people in lower socio-economic groups are more likely to be impacted and to experience disparities in service provision during the disaster response and recovery phase. In a market model of recovery, vulnerable groups struggle to compete for necessary services creating inequities in adaptive capacity as well as in social and wellbeing outcomes over time. Both the Inverse Care Law and the Inverse Response Law focus on the structural organisation of services at a macro level. In this article, the Inverse Care Law is outlined, its application to medical treatment following disasters considered and an explanation of the Inverse Response Law provided. Case studies from recent disasters, in London, New Zealand, Puerto Rico and Mexico City are examined in order to illustrate themes at work relating to the Inverse Response Law.

  14. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...

  15. Size Estimates in Inverse Problems

    KAUST Repository

    Di Cristo, Michele

    2014-01-01

    Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded

  16. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing; Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained

  17. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  18. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  19. An inverse problem approach to pattern recognition in industry

    Directory of Open Access Journals (Sweden)

    Ali Sever

    2015-01-01

    Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.

  20. Inversion Therapy: Can It Relieve Back Pain?

    Science.gov (United States)

    Inversion therapy: Can it relieve back pain? Does inversion therapy relieve back pain? Is it safe? Answers from Edward R. Laskowski, M.D. Inversion therapy doesn't provide lasting relief from back ...

  1. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  2. EDITORIAL: Inverse Problems in Engineering

    Science.gov (United States)

    West, Robert M.; Lesnic, Daniel

    2007-01-01

    Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.

  3. The role of the STIR sequence in magnetic resonance imaging examination of bone tumours

    International Nuclear Information System (INIS)

    Golfieri, R.; Baddeley, H.; Pringle, J.S.; Souhami, R.

    1990-01-01

    Sixty patients with primary bone tumours were evaluated with magnetic resonance imaging (MRI) at 0.5 T with both conventional spin-echo (SE) and short inversion time inversion recovery (STIR) sequences. The STIR sequence with T 1 of 120-130 ms in all cases suppressed the high signal from fatty bone marrow, giving a clear depiction of tumour extent, in both its intramedullary and soft-tissue components, and is superior to conventional SE images. The high sensitivity (100% of our cases) of this technique is counterbalanced by its lack of specificity: on STIR sequences both tumour and peritumorous oedema give an increase of signal intensity, limiting assessment of tumour extent. Peritumoral oedema, only present in this series in malignant neoplasms, may however be differentiated on the basis of the configuration of the abnormal areas, and by comparing STIR images with short repetition time/echo time sequence results. (author)

  4. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  5. Reconstruction Methods for Inverse Problems with Partial Data

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer

    This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...

  6. Inverse isotope effect in iron-based superconductor

    International Nuclear Information System (INIS)

    Shirage, Parasharam M.; Kihou, Kunihiro; Miyazawa, Kiichi; Lee, Chul-Ho; Kito, Hijiri; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Tanaka, Yasumoto; Iyo, Akira

    2010-01-01

    We have found that (Ba, K)Fe 2 As 2 superconductor (a transition temperature, T c ∼ 38 K) shows an inverse Iron isotope effect (α Fe = -0.18 ± 0.03, where T c ∼ M -αFe and M is the iron isotope mass), i.e. the sample containing the larger iron mass depicts higher T c . Systematic studies using three types of Fe-isotopes ( 54 Fe, natural Fe and 57 Fe) reveal a clear inverse shift on T c by measurements of temperature dependent magnetization and resistivity. The inverse isotope effect that is the first case in high-T c superconductors strongly suggests that superconducting mechanism of the iron-based system is not explained by conventional BCS theory mediated by phonons.

  7. Quantum Effects in Inverse Opal Structures

    Science.gov (United States)

    Bleiweiss, Michael; Datta, Timir; Lungu, Anca; Yin, Ming; Iqbal, Zafar; Palm, Eric; Brandt, Bruce

    2002-03-01

    Properties of bismuth inverse opals and carbon opal replicas were studied. The bismuth nanostructures were fabricated by pressure infiltration into porous artificial opal, while the carbon opal replicas were created via CVD. These structures form a regular three-dimensional network in which the bismuth and carbon regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. Static susceptibility of the bismuth inverse opal showed clear deHaas-vanAlphen oscillations. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 200 K. Observations of Shubnikov-deHaas oscillations in magnetoresistance, one-dimensional weak localization, quantum Hall and other effects will be discussed. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. This work was partially supported by grants from DARPA-nanothermoelectrics, NASA-EPSCOR and the USC nanocenter.

  8. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  9. Magnetization of lower oceanic crust and upper mantle

    Science.gov (United States)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  10. ECMOR 4. 4th European conference on the mathematics of oil recovery. Topic E: History match and recovery optimization. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The report with collected proceedings from a conference, deals with mathematics of oil recovery with the focus on history match and recovery optimization. Topics of proceedings are as follow: Calculating optimal parameters for history matching; new technique to improve the efficiency of history matching of full-fi