WorldWideScience

Sample records for inversion enhances thermal

  1. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  2. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  3. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    Sugo, Heber; Kisi, Erich; Cuskelly, Dylan

    2013-01-01

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  4. An inverse heat transfer problem for optimization of the thermal ...

    Indian Academy of Sciences (India)

    This paper takes a different approach towards identification of the thermal process in machining, using inverse heat transfer problem. Inverse heat transfer method allows the closest possible experimental and analytical approximation of thermal state for a machining process. Based on a temperature measured at any point ...

  5. Modelling of thermal conductance during microthermal machining with scanning thermal microscope using an inverse methodology

    International Nuclear Information System (INIS)

    Yang Yuching; Chang Winjin; Fang Tehua; Fang Shihchung

    2008-01-01

    In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems

  6. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  7. Inverse thermal analysis method to study solidification in cast iron

    DEFF Research Database (Denmark)

    Dioszegi, Atilla; Hattel, Jesper

    2004-01-01

    Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....

  8. Thermal properties of carbon inverse opal photonic crystals

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Lee, Sergey B.; Baughman, Ray H.; Zakhidov, Anvar A.

    2007-01-01

    The thermal conductivity of thin-wall glassy carbon and graphitic carbon inverse opals, fabricated by templating of silica opal has been measured in the temperature range 10-400 K using transient pulse method. The heat flow through 100 A-thick layers of graphite sheets tiled on spherical surfaces of empty overlapping spheres arrayed in face-centered-cubic lattices has been analyzed in term of anisotropy factor. Taking into account high anisotropy factor in graphite, γ=342, we found that the thermal conductivity of inverse opal prepared by chemical vapor deposition infiltration is limited by heat flow across the graphitic layers in bottleneck, κ-perpendicular =3.95 W/m K. The electronic contribution to the thermal conductivity, κ e(300K) =3.7x10 -3 W/m K is negligible comparing to the measured value, κ (300K) =0.33 W/m K. The obtained phonon mean free path, l=90 nm is comparable with the graphite segments between hexagonal array of interconnections

  9. Characterisation of a resolution enhancing image inversion interferometer.

    Science.gov (United States)

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  10. Frequency of Thermal Inversions Between Siret and Prut Rivers in 2013

    Directory of Open Access Journals (Sweden)

    Ichim Pavel

    2014-10-01

    Full Text Available Temperature inversions represent complex phenomena, specific for depression forms of relief which introduce changes in vertical zoning (Apăvăloae, Apostle, Pîrvulescu, 1986 by stable air stratification (Erhan, 1981, because of their morphological features, this is due to the interdependence of general movement and characteristics of the active surface, being the cause of their production (Apăvăloae, et. al., 1984, 1986, 1987. The generation of thermal inversions, their intensity and frequency is a consequence of altitude topography, morphology, fragmentation, orientation and degree of closure to external drives. (Apăvăloae, Apostle, Pîrvulescu, 1988. Thermal inversions represent complex phenomena, specific to depression landforms that introduce changes within the vertical zoning (Apăvăloae, Apostol, Pîrvulescu, 1986 by stable air stratification (Matveev, 1958, Erhan, 1981, Yinghui Liu, 2002 where vertical thermal gradient is negative (Matveev, 1958, due to their morphological features, also as a consequence of the interdependance of general circulation and characteristics of the active surface, the cause of their generation (Apăvăloae, et. al., 1984, 1986, 1987.

  11. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  12. Testing models of basin inversion in the eastern North Sea using exceptionally accurate thermal and maturity data

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Clausen, O.R.; Gallagher, Kerry

    2011-01-01

    the thermal history information contained in high quality thermal maturity data comprising temperature profiles, vitrinite reflectance and apatite fission track data. Having remained open for experimental purposes, the data of two of the deep wells (Aars-1 and Farsoe-1) are of exceptionally high quality. Here...... about the magnitude of deposition and erosion during this hiatus. We use Markov Chain Monte Carlo with a transient one-dimensional thermal model to explore the parameter space of potential thermal history solutions, using the different available data as constraints. The variable parameters comprise...... inversion of the STZ. This is in agreement with numerical rheological models of inversion zone dynamics, which explain how marginal trough subsidence occurred as a consequence of late Cretaceous compressional inversion and erosion along the inversion axis (Nielsen et al. 2005, 2007). Following this, the in-plane...

  13. Thermal-hydraulic modeling of flow inversion in a research reactor

    International Nuclear Information System (INIS)

    Kazeminejad, H.

    2008-01-01

    The course of loss of flow accident and flow inversion in a pool type research reactor, with scram enabled under natural circulation condition is numerically investigated. The analyses were performed by a lumped parameters approach for the coupled kinetic-thermal-hydraulics, with continuous feedback due to coolant and fuel temperature effects. A modified Runge-Kutta method was adopted for a better solution to the set of stiff differential equations. Transient thermal-hydraulics during the process of flow inversion and establishment of natural circulation were considered for a 10-MW IAEA research reactor. Some important parameters such as the peak temperatures for the hot channel were obtained for both high-enriched and low enriched fuel. The model prediction is also verified through comparison with other computer code results reported in the literature for detailed simulations of loss of flow accidents (LOFA) and the agreement between the results for the peak clad temperatures and key parameters has been satisfactory. It was found that the flow inversion and subsequent establishment of natural circulation keep the peak cladding surface temperature below the saturation temperature to avoid the escalation of clad temperature to the level of onset of nucleate boiling and sub-cooled void formation to ensure the safe operation of the reactor

  14. New analysis indicates no thermal inversion in the atmosphere of HD 209458b

    International Nuclear Information System (INIS)

    Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L.; Line, Michael R.; Fortney, Jonathan J.

    2014-01-01

    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% ± 0.007%, 0.123% ± 0.006%, 0.134% ± 0.035%, and 0.215% ± 0.008% in the 3.6, 4.5, 5.8, and 8.0 μm bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.

  15. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  16. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-01-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  17. Preparation of multishell ICF target plastic-foam cushion materials by thermally induced phase-inversion processes

    International Nuclear Information System (INIS)

    Young, A.T.; Moreno, D.K.; Marsters, R.G.

    1981-01-01

    Homogenous, low-density plastic foams for ICF targets have been prepared by thermally induced phase inversion processes. Uniform, open cell foams have been obtained by the rapid freezing of water solutions of modified cellulose polymers with densities in the range of 5 mg/cm 3 to 0.7 mg/cm 3 and respective average cell sizes of 2 to 40 micrometers. In addition, low-density, microcellular foams have been prepared from the hydrocarbon polymer poly(4-methyl-l-pentene) via a similar phase inversion process using homogenous solutions in organic solvents. These foams have densities from 2 to 5 mg/cm 3 and average cell sizes of 20 micrometers. The physical-chemical aspects of the thermally induced phase inversion process is presented

  18. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

    Science.gov (United States)

    Nezhad, Mohsen Motahari; Shojaeefard, Mohammad Hassan; Shahraki, Saeid

    2016-02-01

    In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

  19. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  20. CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS?

    International Nuclear Information System (INIS)

    Spiegel, David S.; Silverio, Katie; Burrows, Adam

    2009-01-01

    Spitzer Space Telescope infrared observations indicate that several transiting extrasolar giant planets have thermal inversions in their upper atmospheres. Above a relative minimum, the temperature appears to increase with altitude. Such an inversion probably requires a species at high altitude that absorbs a significant amount of incident optical/UV radiation. Some authors have suggested that the strong optical absorbers titanium oxide (TiO) and vanadium oxide (VO) could provide the needed additional opacity, but if regions of the atmosphere are cold enough for Ti and V to be sequestered into solids they might rain out and be severely depleted. With a model of the vertical distribution of a refractory species in gaseous and condensed form, we address the question of whether enough TiO (or VO) could survive aloft in an irradiated planet's atmosphere to produce a thermal inversion. We find that it is unlikely that VO could play a critical role in producing thermal inversions. Furthermore, we find that macroscopic mixing is essential to the TiO hypothesis; without macroscopic mixing, such a heavy species cannot persist in a planet's upper atmosphere. The amount of macroscopic mixing that is required depends on the size of condensed titanium-bearing particles that form in regions of an atmosphere that are too cold for gaseous TiO to exist. We parameterize the macroscopic mixing with the eddy diffusion coefficient K zz and find, as a function of particle size a, the values that K zz must assume on the highly irradiated planets HD 209458b, HD 149026b, TrES-4, and OGLE-TR-56b to loft enough titanium to the upper atmosphere for the TiO hypothesis to be correct. On these planets, we find that for TiO to be responsible for thermal inversions K zz must be at least a few times 10 7 cm 2 s -1 , even for a = 0.1 μm, and increases to nearly 10 11 cm 2 s -1 for a = 10 μm. Such large values may be problematic for the TiO hypothesis, but are not impossible.

  1. Transient thermal hydraulic analysis of the IAEA 10 MW MTR reactor during Loss of Flow Accident to investigate the flow inversion

    International Nuclear Information System (INIS)

    AL-Yahia, Omar S.; Albati, Mohammad A.; Park, Jonghark; Chae, Heetaek; Jo, Daeseong

    2013-01-01

    Highlights: • Transient analyses of a slow and fast LOFA were investigated. • A reactor kinetic and thermal hydraulic coupled model was developed. • Based on force balance, the flow rate during flow inversion was determined. • Flow inversion in a hot channel occurred earlier than in an average channel. • Two temperature peaks were observed during both slow and fast LOFA. - Abstract: Transient analyses of the IAEA 10 MW MTR reactor are investigated during a fast and slow Loss of Flow Accident (LOFA) with a neutron kinetic and thermal hydraulic coupling model. A spatial-dependent thermal hydraulic technique is adopted for analyzing the local thermal hydraulic parameters and hotspot location during a flow inversion. The flow rate through the channel is determined in terms of a balance between driving and preventing forces. Friction and buoyancy forces act as resistance of the flow before a flow inversion while buoyancy force becomes the driving force after a flow inversion. By taking into account the buoyancy effect to determine the flow rate, the difference in the flow inversion time between hot and average channels is investigated: a flow inversion occurs earlier in the hot channel than in an average channel. Furthermore, the movement of the hotspot location before and after a flow inversion is investigated for a slow and fast LOFA. During a flow inversion, two temperature peaks are observed: (1) the first temperature peak is at the initiation of the LOFA, and (2) the second temperature peak is when a flow inversion occurs. The maximum temperature of the cladding is found at the second temperature peak for both LOFA analyses, and is lower than the saturation temperature

  2. Inverse Thermal Analysis of Ti-6Al-4V Friction Stir Welds Using Numerical-Analytical Basis Functions with Pseudo-Advection

    Science.gov (United States)

    Lambrakos, S. G.

    2018-04-01

    Inverse thermal analysis of Ti-6Al-4V friction stir welds is presented that demonstrates application of a methodology using numerical-analytical basis functions and temperature-field constraint conditions. This analysis provides parametric representation of friction-stir-weld temperature histories that can be adopted as input data to computational procedures for prediction of solid-state phase transformations and mechanical response. These parameterized temperature histories can be used for inverse thermal analysis of friction stir welds having process conditions similar those considered here. Case studies are presented for inverse thermal analysis of friction stir welds that use three-dimensional constraint conditions on calculated temperature fields, which are associated with experimentally measured transformation boundaries and weld-stir-zone cross sections.

  3. Estimation of the thermal properties in alloys as an inverse problem

    International Nuclear Information System (INIS)

    Zueco, J.; Alhama, F.

    2005-01-01

    This paper provides an efficient numerical method for estimating the thermal conductivity and heat capacity of alloys, as a function of the temperature, starting from temperature measurements (including errors) in heating and cooling processes. The proposed procedure is a modification of the known function estimation technique, typical of the inverse problem field, in conjunction with the network simulation method (already checked in many non-lineal problems) as the numerical tool. Estimations only require a point of measurement. The methodology is applied for determining these thermal properties in alloys within ranges of temperature where allotropic changes take place. These changes are characterized by sharp temperature dependencies. (Author) 13 refs

  4. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  5. Enhancement of the Number of Fast Electrons Generated in a Laser Inverse Cone Interaction

    International Nuclear Information System (INIS)

    Yan-Ling, Ji; Gang, Jiang; Wei-Dong, Wu; Ji-Cheng, Zhang; Yong-Jian, Tang

    2010-01-01

    Enhancement of the energy-conversion efficiency from laser to target electrons is demonstrated by two-dimensional particle-in-cell simulations in a laser-inverse cone interaction. When an intense short-pulse laser illuminates the inverse cone target, the electrons at the cone end are accelerated by the ponderomotive force. Then these electrons are guided and confined to transport along the inverse cone walls by the induced electromagnetic fields. A device consisting of inverse hollow-cone and multihole array plasma is proposed in order to increase the energy-conversion efficiency from laser to electrons. Particle-in-cell simulations present that the multiholes transpiercing the cone end help to enhance the number of fast electrons and the maximum electron energy significantly. (physics of gases, plasmas, and electric discharges)

  6. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan, Nikku [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Mousis, Olivier [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, F-25010 Besancon Cedex (France); Johnson, Torrence V. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lunine, Jonathan I., E-mail: nmadhu@astro.princeton.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  7. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    International Nuclear Information System (INIS)

    Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.

    2015-01-01

    Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts

  8. Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions

    DEFF Research Database (Denmark)

    Khan, Amir; Connolly, J.A.D.; Olsen, Nils

    2006-01-01

    We present a general method to constrain planetary composition and thermal state from an inversion of long-period electromagnetic sounding data. As an example of our approach, we reexamine the problem of inverting lunar day-side transfer functions to constrain the internal structure of the Moon. We...... to significantly influence the inversion results. In order to improve future inferences about lunar composition and thermal state, more electrical conductivity measurements are needed especially for minerals appropriate to the Moon, such as pyrope and almandine....

  9. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions...

  10. Splines employment for inverse problem of nonstationary thermal conduction

    International Nuclear Information System (INIS)

    Nikonov, S.P.; Spolitak, S.I.

    1985-01-01

    An analytical solution has been obtained for an inverse problem of nonstationary thermal conduction which is faced in nonstationary heat transfer data processing when the rewetting in channels with uniform annular fuel element imitators is investigated. In solving the problem both boundary conditions and power density within the imitator are regularized via cubic splines constructed with the use of Reinsch algorithm. The solution can be applied for calculation of temperature distribution in the imitator and the heat flux in two-dimensional approximation (r-z geometry) under the condition that the rewetting front velocity is known, and in one-dimensional r-approximation in cases with negligible axial transport or when there is a lack of data about the temperature disturbance source velocity along the channel

  11. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  12. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  13. Composite materials for thermal energy storage: enhancing performance through microstructures.

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.

    Science.gov (United States)

    Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang

    2016-02-01

    The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Thermal performance enhancement in nanofluids containing diamond nanoparticles

    International Nuclear Information System (INIS)

    Xie Huaqing; Yu Wei; Li Yang

    2009-01-01

    Nanofluids, nanoparticle suspensions prepared by dispersing nanoscale particles in a base fluid, have been gaining interest lately due to their potential to greatly outperform traditional thermal transport liquids. Diamond has the highest thermal transport capacity in nature and diamond particles are often used as filler in mixtures for upgrading the performance of a matrix. It is reasonable to expect that the addition of diamond nanoparticles (DNPs) would lead to thermal performance enhancement in a base fluid. In this study, homogeneous and stable nanofluids composed of DNPs as the inclusions and a mixture of ethylene glycol (EG) and water as base fluid have been prepared. Acid mixtures of perchloric acid, nitric acid and hydrochloric acid were employed to purify and tailor the DNPs to eliminate impurities and to enhance their dispersibilty. Ultrasound and the alkalinity of solution are beneficial to the deaggregation of the soft DNP aggregations. The thermal conductivity enhancement of the DNP nanofluids increases with DNP loading and the thermal conductivity enhancement is more than 18.0% for a nanofluid at a DNP volume fraction of 0.02. Viscosity measurements show that the DNP nanofluids demonstrate Newtonian behaviour, and the viscosity significantly decreases with temperature. With increasing volume fraction of DNPs, the convective heat transfer coefficient increases first, and then decreases with a further increase in the volume fraction of DNPs. The nanofluid with a volume fraction of 0.005 has optimal overall thermal performance.

  16. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  17. High C/O Chemistry and Weak Thermal Inversion in the Extremely Irradiated Atmosphere of Exoplanet WASP-12b

    Science.gov (United States)

    Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.; hide

    2010-01-01

    The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.

  18. On Inverse Coefficient Heat-Conduction Problems on Reconstruction of Nonlinear Components of the Thermal-Conductivity Tensor of Anisotropic Bodies

    Science.gov (United States)

    Formalev, V. F.; Kolesnik, S. A.

    2017-11-01

    The authors are the first to present a closed procedure for numerical solution of inverse coefficient problems of heat conduction in anisotropic materials used as heat-shielding ones in rocket and space equipment. The reconstructed components of the thermal-conductivity tensor depend on temperature (are nonlinear). The procedure includes the formation of experimental data, the implicit gradient-descent method, the economical absolutely stable method of numerical solution of parabolic problems containing mixed derivatives, the parametric identification, construction, and numerical solution of the problem for elements of sensitivity matrices, the development of a quadratic residual functional and regularizing functionals, and also the development of algorithms and software systems. The implicit gradient-descent method permits expanding the quadratic functional in a Taylor series with retention of the linear terms for the increments of the sought functions. This substantially improves the exactness and stability of solution of the inverse problems. Software systems are developed with account taken of the errors in experimental data and disregarding them. On the basis of a priori assumptions of the qualitative behavior of the functional dependences of the components of the thermal-conductivity tensor on temperature, regularizing functionals are constructed by means of which one can reconstruct the components of the thermal-conductivity tensor with an error no higher than the error of the experimental data. Results of the numerical solution of the inverse coefficient problems on reconstruction of nonlinear components of the thermal-conductivity tensor have been obtained and are discussed.

  19. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  20. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  1. NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST /WFC3 SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Desert, Jean-Michel [University of Amsterdam (Netherlands); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Diamond-Lowe, Hannah [Department of Astronomy, Harvard Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2016-12-01

    The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2 σ confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1–0.001 bars at 7.7 σ confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06–10 × solar) and carbon-to-oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.

  2. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.

    Science.gov (United States)

    Xiong, Yucheng; Tang, Hao; Wang, Xiaomeng; Zhao, Yang; Fu, Qiang; Yang, Juekuan; Xu, Dongyan

    2017-10-16

    In this work, we experimentally investigated the effect of sulfur passivation on thermal transport in indium arsenide (InAs) nanowires. Our measurement results show that thermal conductivity can be enhanced by a ratio up to 159% by sulfur passivation. Current-voltage (I-V) measurements were performed on both unpassivated and S-passivated InAs nanowires to understand the mechanism of thermal conductivity enhancement. We observed a remarkable improvement in electrical conductivity upon sulfur passivation and a significant contribution of electrons to thermal conductivity, which account for the enhanced thermal conductivity of the S-passivated InAs nanowires.

  3. Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method

    Directory of Open Access Journals (Sweden)

    S.N. Nnamchi

    2010-01-01

    Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.

  4. Enhanced thermal conductivity of nano-SiC dispersed water based ...

    Indian Academy of Sciences (India)

    only 0·1 vol% nanoparticles and inverse dependence of conductivity on ... improvised thermal comparator method (Manna et al 2005). ... 2.1 Preparation of nanofluid and particle characterization ... available in ultrafine particle/crystallite size. ... current. The remaining 30s were used to cool the probe back to the ambient ...

  5. Application of inverse models and XRD analysis to the determination of Ti-17 {beta}-phase coefficients of thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)]. E-mail: freour@crttsn.univ-nantes.fr; Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Guillen, R. [GeM, Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), Universite de Nantes, Ecole Centrale de Nantes, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire cedex (France)

    2006-04-15

    scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 {beta}-phase. A rigorous inverse thermo-elastic self-consistent scale transition micro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied ({alpha} + {beta}) two-phase titanium alloy.

  6. Application of inverse models and XRD analysis to the determination of Ti-17 beta-phase Coefficients of Thermal Expansion

    OpenAIRE

    Fréour , Sylvain; Gloaguen , David; François , Marc; Guillén , Ronald

    2006-01-01

    International audience; The scope of this work is the determination of the coefficients of thermal expansion of the Ti-17 beta-phase. A rigorous inverse thermo-elastic self-consistent scale transition inicro-mechanical model extended to multi-phase materials was used. The experimental data required for the application of the inverse method were obtained from both the available literature and especially dedicated X-ray diffraction lattice strain measurements performed on the studied (alpha + b...

  7. Large-scale control of the Arabian Sea monsoon inversion in August

    Science.gov (United States)

    Wu, Chi-Hua; Wang, S.-Y. Simon; Hsu, Huang-Hsiung

    2017-12-01

    The summer monsoon inversion in the Arabian Sea is characterized by a large amount of low clouds and August as the peak season. Atmospheric stratification associated with the monsoon inversion has been considered a local system influenced by the advancement of the India-Pakistan monsoon. Empirical and numerical evidence from this study suggests that the Arabian Sea monsoon inversion is linked to a broader-scale monsoon evolution across the African Sahel, South Asia, and East Asia-Western North Pacific (WNP), rather than being a mere byproduct of the India-Pakistan monsoon progression. In August, the upper-tropospheric anticyclone in South Asia extends sideways corresponding with the enhanced precipitation in the subtropical WNP, equatorial Indian Ocean, and African Sahel while the middle part of this anticyclone weakens over the Arabian Sea. The increased heating in the adjacent monsoon systems creates a suppression effect on the Arabian Sea, suggesting an apparent competition among the Africa-Asia-WNP monsoon subsystems. The peak Sahel rainfall in August, together with enhanced heating in the equatorial Indian Ocean, produces a critical effect on strengthening the Arabian Sea thermal inversion. By contrast, the WNP monsoon onset which signifies the eastward expansion of the subtropical Asian monsoon heating might play a secondary or opposite role in the Arabian Sea monsoon inversion.

  8. Minor Actinide Burn in Thermal Spectrum with Enhanced Moderation

    International Nuclear Information System (INIS)

    Petrovic, B.; Huang, L. M.

    2010-01-01

    Resolving the issue of spent nuclear fuel and nuclear waste management is the necessary condition for long-term sustainability of nuclear power, and requires addressing plutonium, minor actinides (MA) and fission products. Various strategies from once-through homogeneous burn to partitioning and transmutation, and from thermal to fast systems, are being considered. The optimum system-level performance will likely require advanced critical or subcritical systems with a range of neutron spectra. Thermal systems, while not optimum, may be deployed sooner, and may provide mid-term amelioration of the issue. This paper examines burn of MA in thermal systems. One specific concern in this case is deterioration of safety parameters due to a high thermal absorption cross section of MA. Enhanced moderation has potential to at least partly remedy this concern. Therefore, we have evaluated adopting the IRIS neutronic design to MA burn. The IRIS reactor design offers enhanced safety margin, due to its fully passive safety systems and safety-by-design approach. Also, in addition to the standard UO 2 fuel (reference IRIS design), an alternative core with enhanced moderation fuel was considered. These two features (safety margin, enhanced moderation) provide a good starting point for MA burn in a thermal system. Further modifications to accommodate MA-bearing rods will be discussed. The paper will examine the benefit of the enhanced moderation in comparison to homogeneous MA burn in a typical PWR reactor.(author).

  9. Optimal enhancement in conversion efficiency of crystalline Si solar cells using inverse opal photonic crystals as back reflectors

    International Nuclear Information System (INIS)

    Chaouachi, A; M’nif, A; Hamzaoui, A H; Chtourou, R

    2015-01-01

    The effect of using inverse opal photonic crystals as back reflectors on the power conversion efficiency of c-Si solar cells is investigated. The reflection spectra of inverse opal photonic crystals with different diameters of air spheres are simulated using the finite difference time domain (FDTD) method. The reflection peaks are correlated with photonic band gaps present in the photonic band gap diagram. Significant improvement in the optical absorption of the crystalline silicon layer is recorded when inverse opal photonic crystals are considered. Physical mechanisms which may contribute to the enhancement of the light absorption are underlined. With higher short-circuit current enhancement possible, and with no corresponding degradation in open-circuit voltage V oc or the fill factor, the power conversion efficiency is increased significantly when inverse opal photonic crystals are used as back reflectors with optimized diameter of air spheres. (paper)

  10. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    International Nuclear Information System (INIS)

    Costagli, Mauro; Tiberi, Gianluigi; Kelley, Douglas A.C.; Symms, Mark R.; Biagi, Laura; Tosetti, Michela; Stara, Riccardo; Cosottini, Mirco; Maggioni, Eleonora; Barba, Carmen; Guerrini, Renzo

    2014-01-01

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  11. Tissue Border Enhancement by inversion recovery MRI at 7.0 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Biagi, Laura; Tosetti, Michela [IRCCS Stella Maris, Pisa (Italy); Stara, Riccardo; Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Pisa (Italy); Maggioni, Eleonora [IRCCS Scientific Institute E. Medea, Bosisio Parini, Lecco (Italy); Politecnico di Milano, Milan (Italy); Barba, Carmen [Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy); Guerrini, Renzo [IRCCS Stella Maris, Pisa (Italy); Children' s Hospital A. Meyer - University of Florence, Neuroscience Department, Florence (Italy)

    2014-07-15

    This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation. (orig.)

  12. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  13. Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data

    DEFF Research Database (Denmark)

    Khan, Amir; Connolly, J.A.D.; Olsen, Nils

    2006-01-01

    We reexamine the problem of inverting C responses, covering periods between 1 month and 1 year collected from 42 European observatories, to constrain the internal structure of the Earth. Earlier studies used the C responses, which connect the magnetic vertical component and the horizontal gradient...... of the horizontal components of electromagnetic variations, to obtain the conductivity profile of the Earth's mantle. Here, we go beyond this approach by inverting directly for chemical composition and thermal state of the Earth, rather than subsurface electrical conductivity structure. The primary inversion...... of geophysical data for compositional parameters, planetary composition, and thermal state is feasible. The inversion indicates most probable lower mantle geothermal gradients of similar to 0.58 K/km, core mantle boundary temperatures of similar to 2900 degrees C, bulk Earth molar Mg/Si ratios of similar to 1...

  14. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Malanushenko, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Testa, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chen, F.; Peter, H., E-mail: cheung@lmsal.com [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-07-10

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.

  15. Focal hepatic lesions: contrast-enhancement patterns at pulse-inversion harmonic US using a microbubble contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-A; Yoon, Kwon-Ha; Lee, Young-Hwan; Kim, Hye-Won; Juhng, Seon-Kwan; Won, Jong-Jin [Wonkwang University, Iksan (Korea, Republic of)

    2003-12-15

    To analyze the contrast-enhancement patterns obtained at pulse-inversion harmonic imaging (PIHI) of focal hepatic lesions, and to thus determine tumor vascularity and the acoustic emission effect. We reviewed pulse-inversion images in 90 consecutive patients with focal hepatic lesions, namely hepatocellular carcinoma (HHC) (n=43), metastases (n=30), and hemangioma (n=17). Vascular and delayed phase images were obtained immediately and five minutes following the injection of a microbubble contrast agent. Tumoral vascularity at vascular phase imaging and the acoustic emission effect at delayed phase imaging were each classified as one of four patterns. Vascular phase images depicted internal vessels in 93% of HCCs, marginal vessels in 83% of metastases, and peripheral enhancement in 71% of hemangiomas. Delayed phase images showed inhomogeneous enhancement in 86% of HCCs; hypoechoic, decreased enhancement in 93% of metastases; and hypoechoic and reversed echogenicity in 65% of hemangiomas. Vascular and delayed phase enhancement patterns were associated with a specificity of 91% or greater, and 92% or greater, respectively, and with positive predictive values of 71% or greater, and 85% or greater, respectively. Contrast-enhancement patterns depicting tumoral vascularity and the acoustic emission effect at PIHI can help differentiate focal hepatic lesions.

  16. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  17. Using Nanoparticles for Enhance Thermal Conductivity of Latent Heat Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Baydaa Jaber Nabhan

    2015-06-01

    Full Text Available Phase change materials (PCMs such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.% of (TiO2 nano-particles with about (10nm diameter. It is found that the phase change temperature varies with adding (TiO2 nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity has been found to increase by about (10% at nanoparticles loading (5wt.% and 15oC.

  18. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Science.gov (United States)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  19. Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    Directory of Open Access Journals (Sweden)

    A. P. Tran

    2017-09-01

    Full Text Available Quantitative characterization of soil organic carbon (OC content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid water content, temperature and electrical resistivity tomography (ERT data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and

  20. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling

    Science.gov (United States)

    Cogné, Nathan; Gallagher, Kerry; Cobbold, Peter R.; Riccomini, Claudio; Gautheron, Cecile

    2012-11-01

    The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 ± 1.9 Ma to 129.3 ± 4.3 Ma, mean track lengths from 11.41 ± 0.23 μm to 14.31 ± 0.24 μm and a subset of the (U-Th)/He ages range from 45.1 ± 1.5 to 122.4 ± 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubaté Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubaté Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.

  1. SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy

    International Nuclear Information System (INIS)

    Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT

    2014-01-01

    Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physics model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, μ-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for μ-eff were 1470 m −1 mean, 1360 m −1 median, 369 m −1 standard deviation, 933 m −1 minimum and 2260 m −1 maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This investigation

  2. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO_4 inverse opals

    International Nuclear Information System (INIS)

    Fang, Liang; Nan, Feng; Yang, Ying; Cao, Dawei

    2016-01-01

    BiVO_4 photonic crystal inverse opals (io-BiVO_4) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO_4 inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO_4 sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: one is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.

  3. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  4. Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b

    Science.gov (United States)

    Sheppard, Kyle; Mandell, Avi M.; Tamburo, Patrick; Gandhi, Siddarth; Pinhas, Arazi; Madhusudhan, Nikku; Deming, Drake

    2018-01-01

    Hot Jupiters have been vital in revealing the structural and atmospheric diversity of gas-rich planets. Since they are exposed to extreme conditions and relatively easy to observe through transit and eclipse spectroscopy, hot Jupiters provide a window into a unique part of parameter space, allowing us to better understand both atmospheric physics and planetary structure. Additionally, constraints on the structure and composition of exoplanetary atmospheres allow us to test and generalize planetary formation models. We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (Teq=2400K, M=10MJ) based on Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We report a 4.7σ detection of CO, and a non-detection of water vapor as well as all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and an extremely high metallicity (C/H=~283x solar). If confirmed with future observations, WASP-18b would be the first example of a planet with a non-oxide driven thermal inversion and an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets.

  5. Thermal stability engineering of Glomerella cingulata cutinase.

    Science.gov (United States)

    Chin, Iuan-Sheau; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad; Nathan, Sheila; Abu Bakar, Farah Diba

    2013-05-01

    Cutinase has been ascertained as a biocatalyst for biotechnological and industrial bioprocesses. The Glomerella cingulata cutinase was genetically modified to enhance its enzymatic performance to fulfill industrial requirements. Two sites were selected for mutagenesis with the aim of altering the surface electrostatics as well as removing a potentially deamidation-prone asparagine residue. The N177D cutinase variant was affirmed to be more resilient to temperature increase with a 2.7-fold increase in half-life at 50°C as compared with wild-type enzyme, while, the activity at 25°C is not compromised. Furthermore, the increase in thermal tolerance of this variant is accompanied by an increase in optimal temperature. Another variant, the L172K, however, exhibited higher enzymatic performance towards phenyl ester substrates of longer carbon chain length, yet its thermal stability is inversely affected. In order to restore the thermal stability of L172K, we constructed a L172K/N177D double variant and showed that these two mutations yield an improved variant with enhanced activity towards phenyl ester substrates and enhanced thermal stability. Taken together, our study may provide valuable information for enhancing catalytic performance and thermal stability in future engineering endeavors.

  6. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  7. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids.

    Science.gov (United States)

    Li, Yanjiao; Zhou, Jing'en; Luo, Zhifeng; Tung, Simon; Schneider, Eric; Wu, Jiangtao; Li, Xiaojing

    2011-07-09

    The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

  8. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.

    Science.gov (United States)

    Bhanushali, Sushrut; Jason, Naveen Noah; Ghosh, Prakash; Ganesh, Anuradda; Simon, George P; Cheng, Wenlong

    2017-06-07

    Nanofluids are colloidal dispersions that exhibit enhanced thermal conductivity at low filler loadings and thus have been proposed for heat transfer applications. Here, we systematically investigate how particle shape determines the thermal conductivity of low-cost copper nanofluids using a range of distinct filler particle shapes: nanospheres, nanocubes, short nanowires, and long nanowires. To exclude the potential effects of surface capping ligands, all the filler particles are kept with uniform surface chemistry. We find that copper nanowires enhanced the thermal conductivity up to 40% at 0.25 vol % loadings; while the thermal conductivity was only 9.3% and 4.2% for the nanosphere- and nanocube-based nanofluids, respectively, at the same filler loading. This is consistent with a percolation mechanism in which a higher aspect ratio is beneficial for thermal conductivity enhancement. To overcome the surface oxidation of the copper nanomaterials and maintain the dispersion stability, we employed polyvinylpyrrolidone (PVP) as a dispersant and ascorbic acid as an antioxidant in the nanofluid formulations. The thermal performance of the optimized fluid formulations could be sustained for multiple heating-cooling cycles while retaining stability over 1000 h.

  9. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Chukwu, Sam; Khaliq, Abdul; Weiss, Leland

    2014-01-01

    Highlights: • Useful thermal conductivity envelope established for small scale TES. • Paraffin conductivity enhanced from .5 to 3.8 W/m K via low-cost copper insert. • Conductivity increase beyond 5 W/m K shows diminished returns. • Storage with increased conductivity lengthened thermoelectric output up to 247 s. - Abstract: The operation and useful operating parameters of a small-scale Thermal Energy Storage (TES) device that collects and stores heat in a Phase Change Material (PCM) is explored. The PCM utilized is an icosane wax. A physical device is constructed on the millimeter scale to examine specific effects of low-cost thermal conductivity enhancements that include copper foams and other metallic inserts. Numerical methods are utilized to establish useful operating range of small-scale TES devices in general, and the limits of thermal conductivity enhancement on thermoelectric operation specifically. Specific attention is paid to the manufacturability of the various constructs as well as the resulting thermal conductivity enhancement. A maximum thermal conductivity of 3.8 W/m K is achieved in experimental testing via copper foam enhancement. A simplified copper matrix achieves conductivity of 3.7 W/m K and allows significantly reduced fabrication effort. These results compare favorably to baseline wax conductivity of .5 W/m K. Power absorption is recorded of about 900 W/m 2 . Modeling reveals diminishing returns beyond 4–6 W/m K for devices on this scale. Results show the system capable of extending thermoelectric operation several minutes through the use of thermal energy storage techniques within the effective conductivity ranges

  10. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    Directory of Open Access Journals (Sweden)

    Wu Jiangtao

    2011-01-01

    Full Text Available Abstract The thermal conductivity of boron nitride/ethylene glycol (BN/EG nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm which is higher than that synthesized with small BN nanoparticles (70 nm. The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

  11. Combination of aquifer thermal energy storage and enhanced bioremediation

    NARCIS (Netherlands)

    Ni, Zhuobiao; Gaans, van Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-01-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not

  12. Solar Thermal Enhanced Oil Recovery, (STEOR) Volume 1: Executive summary

    Science.gov (United States)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P.; Shaw, H.

    1980-11-01

    Thermal enhanced oil recovery is widely used in California to aid in the production of heavy oils. Steam injection either to stimulate individual wells or to drive oil to the producing wells, is by far the major thermal process today and has been in use for over 20 years. Since steam generation at the necessary pressures (generally below 4000 kPa (580 psia)) is within the capabilities of present day solar technology, it is logical to consider the possibilities of solar thermal enhanced oil recovery (STEOR). The present project consisted of an evaluation of STEOR. Program objectives, system selection, trade-off studies, preliminary design, cost estimate, development plan, and market and economic analysis are summarized.

  13. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  14. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  15. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  16. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    Science.gov (United States)

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  17. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  18. When to fill a tube with thermal enhancers and when to leave it empty

    International Nuclear Information System (INIS)

    Gosselin, Louis; Silva, Alexandre K. da

    2007-01-01

    The present paper answers the fundamental question of when to use thermal enhancers in a heat transfer system such as an externally heated pipe and when to leave it empty. The objective is to maximize the heat transfer rate from the pipe to the cold fluid drawn into the pipe by a fixed pressure drop. Three types of thermal enhancers are considered: (i) porous medium fillings, (ii) internal fins and (iii) insertion of high conductivity solid particles (i.e. solid-liquid mixture). The performance of each thermal enhancer technique is compared with the performance of the empty pipe subject to the same pumping power. The results show that the use of thermal enhancers is not always profitable in terms of increasing the heat transfer rate. The analysis leads to novel limits in which the use of thermal enhancers are recommended so that the heat transfer rate increases for all three types of fillings. It is shown that these limits are related to the properties of the solid enhancer and also to the pressure drop availability. In the case of porous filling, for example, the profitability in terms of heat transfer gain is strongly related to the thermal conductivity of the filling and its permeability

  19. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Zhao-Jiang, Chen; Shu-Yi, Zhang

    2010-01-01

    A new hybrid inversion method for depth profiling reconstruction of thermal conductivities of inhomogeneous solids is proposed based on multilayer quadrupole formalism of thermal waves, particle swarm optimization and sequential quadratic programming. The reconstruction simulations for several thermal conductivity profiles are performed to evaluate the applicability of the method. The numerical simulations demonstrate that the precision and insensitivity to noise of the inversion method are very satisfactory. (condensed matter: structure, mechanical and thermal properties)

  20. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  1. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  2. Development of the fabrication of ultra-low density ploy (4-methyl-1-pentene) (PMP) foams by thermal induced phase-inversion technique

    International Nuclear Information System (INIS)

    Zhang Lin; Wang Chaoyang; Luo Xuan; Du Kai; Tu Haiyan; Fan Hong; Luo Qing; Yuan Guanghui; Huang Lizhen

    2003-01-01

    By thermally induced phase-inversion technique, ploy (4-methyl-1-pentene) (PMP) foams are successfully prepared; the density and pore size are 3-80 mg/cm 3 and 1-20 μm respectively. Durene/naphthalene (60/40) is confirmed as the suitable solvent/nonsolvent binary system. The PMP's thermal properties are characterized by TG-DSC system. It is found that the foams thermal properties depend on the density. The thermal analysis method is utilized to measure the gelation of PMP in the binary solvent/nonsolvent system. The range of gelation temperature is preliminarily determined. The influence of mixture system composition and the cooling rate during the making of foams is discussed. TG-DSC is applied to determine the thermal properties of low-density PMP foams prepared in the laboratory. And the effect of density change on the thermal stability of foams are studied. The thermal analysis data play a great role in improving the foam quality. (authors)

  3. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  4. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    Science.gov (United States)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  5. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    Science.gov (United States)

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  6. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  7. Large-Scale Control of the Arabian Sea Summer Monsoon Inversion and Low Clouds: A New Perspective

    Science.gov (United States)

    Wu, C. H.; Wang, S. Y.; Hsu, H. H.; Hsu, P. C.

    2016-12-01

    The Arabian Sea undergoes a so-called summer monsoon inversion that reaches the maximum intensity in August associated with a large amount of low-level clouds. The formation of inversion and low clouds was generally thought to be a local system influenced by the India-Pakistan monsoon advancement. New empirical and numerical evidence suggests that, rather than being a mere byproduct of the nearby monsoon, the Arabian Sea monsoon inversion is coupled with a broad-scale monsoon evolution connected across the Africa Sahel, South Asia, and the East Asia-western North Pacific (WNP). Several subseasonal variations occur in tandem: The eastward expansion of the Asian-Pacific monsoonal heating likely suppresses the India-Pakistan monsoon while enhancing low-level thermal inversion of Arabian Sea; the upper-tropospheric anticyclone in South Asia weakens in August smoothing zonal contrast in geopotential heights (10°N-30°N); the subtropical WNP monsoon trough in the lower troposphere that signals the revival of East Asian summer monsoon matures in August; the Sahel rainfall peaks in August accompanied by an intensified tropical easterly jet. The occurrence of the latter two processes enhances upper-level anticyclones over Africa and WNP and this, in turn, induces subsidence in between over the Arabian Sea. Numerical experiments demonstrate the combined effect of the African and WNP monsoonal heating on the enhancement of the Arabian Sea monsoon inversion. Connection is further found in the interannual and decadal variations between the East Asian-WNP monsoon and the Arabian Sea monsoon inversion. In years with reduced low clouds of Arabian Sea, the East Asian midlatitude jet stream remains strong in August while the WNP monsoon trough appears to be weakened. The Arabian Sea inversion (ridge) and WNP trough pattern which forms a dipole structure, is also found to have intensified since the 21st century.

  8. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  9. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  10. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  11. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  12. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  13. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  14. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    Science.gov (United States)

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  15. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.

    2018-01-01

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  16. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  17. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    Science.gov (United States)

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  18. Importance of contrast-enhanced fluid-attenuated inversion reconvery magnetic resonance imaging in various intracranial pathologic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung; Lee, Eun Ja; Kim, Sung Won; Lee, Yong Seok [Dept. of Radiology, Dongguk University Ilsan Hospital, Goyang(Korea, Republic of)

    2016-02-15

    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.

  19. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  20. Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method

    Science.gov (United States)

    Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng

    2018-02-01

    The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.

  1. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2011-01-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation

  2. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  3. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  4. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).

    Science.gov (United States)

    Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique; Cabeza, Luisa F

    2017-07-10

    Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/ solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  6. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  7. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  8. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhao Yongxun; Yang Beifang; Xu Jiao; Fu Zhengping; Wu Min; Li Feng

    2012-01-01

    TiO 2 inverse opal films loaded with silver nanoparticles (ATIO) were synthesized on glass substrates. TiO 2 inverse opal (TIO) films were prepared via a sol–gel process using self-assembly of SiO 2 colloidal crystal template and a facile wet chemical route featuring an AgNO 3 precursor solution to fabricate silver nanoparticles on the TIO films. The inverse opal structure and Ag deposition physically and chemically modify titania, respectively. The catalysts were characterized by Raman spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), UV–vis absorption spectra, X-ray photoelectron spectroscopy and photoluminescence spectroscopy. The HRTEM results show that Ag nanoparticles measuring 5–10 nm were evenly distributed on TIO. Both the UV- and visible-light photocatalytic activities of the samples were evaluated by analyzing the degradation of methylene blue (MB) in aqueous solution. The results reveal that the apparent reaction rate constant (k app ) of MB degradation of the sample ATIO under UV-light irradiation is approximately 1.5 times that of the conventional Ag-loaded TiO 2 film (ATF) without an ordered porous structure at an AgNO 3 concentration of 5 mM in the precursor solution. At an AgNO 3 concentration of 10 mM, the sample exhibits a k app value approximately 4.2 times that of ATF under visible-light irradiation. This enhanced visible-light photocatalytic performance can be attributed to the synergistic effect of optimized Ag nanoparticle deposition and an ordered macroporous TIO structure. Repeated cycling tests revealed that the samples showed stable photocatalytic activity, even after six repeated cycles. - Highlights: ►TiO 2 inverse opal films loaded with silver nanoparticles were synthesized. ►Physical and chemical modifications of TiO 2 were achieved simultaneously. ►The catalysts exhibited enhanced visible-light photocatalytic activity. ►The mechanism for enhanced

  10. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  11. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    Science.gov (United States)

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic

  12. Determination of the optimum temperature history of inlet water for minimizing thermal stresses in a pipe by the multiphysics inverse analysis

    International Nuclear Information System (INIS)

    Kubo, S; Uchida, K; Ishizaka, T; Ioka, S

    2008-01-01

    It is important to reduce the thermal stresses for managing and extending the lives of pipes in plants. In this problem, heat conduction, elastic deformation, heat transfer, liquid flow should be considered, and therefore the problem is of a multidisciplinary nature. An inverse method was proposed by the present authors for determining the optimum thermal load history which reduced transient thermal stress considering the multidisciplinary physics. But the obtained solution had a problem that the temperature increasing rate of inner surface of the pipe was discontinuous at the end time of heat up. In this study we introduce temperature history functions that ensure the continuity of the temperature increasing rate. The multidisciplinary complex problem is decomposed into a heat conduction problem, a heat transfer problem, and a thermal stress problem. An analytical solution of the temperature distribution of radial thickness and thermal hoop stress distribution is obtained. The maximum tensile and compressive hoop stresses are minimized for the case where inner surface temperature T s (t) is expressed in terms of the 4th order polynomial function of time t. Finally, from the temperature distributions, the optimum fluid temperature history is obtained for reducing the thermal stresses.

  13. Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain

    Science.gov (United States)

    Yin, Xingyao; Li, Kun; Zong, Zhaoyun

    2016-10-01

    AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.

  14. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications

    International Nuclear Information System (INIS)

    Madathil, Pramod Kandoth; Balagi, Nagaraj; Saha, Priyanka; Bharali, Jitalaxmi; Rao, Peddy V.C.; Choudary, Nettem V.; Ramesh, Kanaparthi

    2016-01-01

    Highlights: • Prepared and characterized inorganic ternary molten salt based nanothermic fluids. • MoS_2 and CuO nanoparticles incorporated ternary molten salts have been prepared. • Thermal properties enhanced by the addition of MoS_2 and CuO nanoparticles. • The amount of nanoparticles has been optimized. - Abstract: In the current energy scenario, solar energy is attracting considerable attention as a renewable energy source with ample research and commercial opportunities. The novel and efficient technologies in the solar energy are directed to develop methods for solar energy capture, storage and utilization. High temperature thermal energy storage systems can deal with a wide range of temperatures and therefore they are highly recommended for concentrated solar power (CSP) applications. In the present study, a systematic investigation has been carried out to identify the suitable inorganic nanoparticles and their addition in the molten salt has been optimized. In order to enhance the thermo-physical properties such as thermal conductivity and specific heat capacity of molten salt based HTFs, we report the utilization of MoS_2 and CuO nanoparticles. The enhancement in the above mentioned thermo-physical properties has been demonstrated for optimized compositions and the morphologies of nanoparticle-incorporated molten salts have been studied by scanning electron microscopy (SEM). Nanoparticle addition to molten salts is an efficient method to prepare thermally stable molten salt based heat transfer fluids which can be used in CSP plants. It is also observed that the sedimentation of nanoparticles in molten salt is negligible compared to that in organic heat transfer fluids.

  15. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials

    International Nuclear Information System (INIS)

    Sarı, Ahmet

    2016-01-01

    Graphical abstract: In this work, novel bentonite-based and form-stable composite phase change materials (Bb-FSPCMs) were produced for LHTES in buildings by impregnation of CA, PEG600, DD and HD with bentonite clay. The microstructures of the compatibility of the Bb-FSPCMs were by using SEM and FT-IR techniques. The DSC results indicated that the produced Bb-FSPCMs composites had suitable phase change temperature of 4–30 °C and good latent heat capacity between 38 and 74 J/g. The TG results demonstrated that all of the fabricated Bb-FSPCMs had good thermal resistance. The Bb-FSPCMs maintained their LHTES properties even after 1000 heating–cooling cycling. The total heating times of the prepared Bb-FSPCMs were reduced noticeably due to their enhanced thermal conductivity after EG (5 wt%) addition. - Highlights: • Bb-FSPCMs were produced by impregnation of CA, PEG600, DD and HD with bentonite. • DSC analysis indicated that Bb-FSPCMs had melting temperature in range of 4–30 °C. • DSC analysis also showed that Bb-FSPCMs had latent heat between 38 and 74 J/g. • The TG analysis demonstrated that Bb-FSPCMs had good thermal resistance. • Thermal conductivity of Bb-FSPCMs were enhanced noticeably with EG (5 wt%) addition. - Abstract: In this work, for latent heat thermal energy storage (LHTES) applications in buildings, bentonite-based form-stable composite phase change materials (Bb-FSPCMs) were produced by impregnation of capric acid (CA), polyethylene glycol (PEG600), dodecanol (DD) and heptadecane (HD) into bentonite clay. The morphological characterization results obtained by scanning electron microscopy (SEM) showed that the bentonite acted as good structural barrier for the organic PCMs homogenously dispersed onto its surface and interlayers. The chemical investigations made by using fourier transform infrared (FT-IR) technique revealed that the attractions between the components of the composites was physical in nature and thus the PCMs were hold

  16. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  17. Resolution enhancement of pump-probe microscope with an inverse-annular filter

    Science.gov (United States)

    Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki

    2018-04-01

    Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The

  18. Hospital-acquired legionellosis originating from a cooling tower during a period of thermal inversion.

    Science.gov (United States)

    Engelhart, Steffen; Pleischl, Stefan; Lück, Christian; Marklein, Günter; Fischnaller, Edith; Martin, Sybille; Simon, Arne; Exner, Martin

    2008-07-01

    A case of hospital-acquired legionellosis occurred in a 75-year-old male patient who underwent surgery due to malignant melanoma. Legionellosis was proven by culture of Legionella pneumophila serogroup 1 from bronchoalveolar lavage (BAL) fluid. Being a chronic smoker the patient used to visit the sickroom balcony that was located about 90 m to the west of a hospital cooling tower. Routine cooling tower water samples drawn during the presumed incubation period revealed 1.0x10(4) CFU/100 ml (L. pneumophila serogroup 1). One of three isolates from the cooling tower water matched the patient's isolate by monoclonal antibody (mab)- and genotyping (sequence-based typing). Horizontal transport of cooling tower aerosols probably was favoured by meteorological conditions with thermal inversion. The case report stresses the importance of routine maintenance and microbiological control of hospital cooling towers.

  19. Identification of strain-rate and thermal sensitive material model with an inverse method

    CERN Document Server

    Peroni, L; Peroni, M

    2010-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...

  20. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  1. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  2. Identification of strain-rate and thermal sensitive material model with an inverse method

    Directory of Open Access Journals (Sweden)

    Peroni M.

    2010-06-01

    Full Text Available This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena. Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  3. Contrast-enhanced fast fluid-attenuated inversion recovery MR imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Na, Dong Gyu; Ryoo, Wook Jae; Byun Hong Sik; Yoon, Hye Kyung; Kim, Jong hyun

    2000-01-01

    To assess the feasibility of contrast-enhanced fast fluid-attenuated inversion recovery (fast FLAIR) MR imaging in patients with brain tumors. This study involved 31 patients with pathologically proven brain tumors and nine with clinically diagnosed metastases. In all patients, T2-weighted, fast FLAIR, images were visual contrast-enhanced T1-weighted MR images were obtained. Contrast-enhanced fast FLAIR images were visually compared with other MR sequences in terms of tumor conspicuity. In order to distinguish tumor and surrounding edema, contrast-enhanced fast FLAIR images were compared with fast FLAIR and T2-weighted images. The tumor-to- white matter contrast-to-noise ratios (CNRs), as demonstrated by T2-weighted, fast FLAIR, contrast-enhanced fast FLAIR and contrast-enhanced T1-weighted imaging, were quantitatively assessed and compared. For the visual assessment of tumor conspicuity, contrast-enhanced fast FLAIR image imaging superior to fast FLAIR in 60% of cases (24/40), and superior to T2-weighted in 70% (28/40). Contrast-enhanced fast FLAIR imaging was inferior to contrast-enhanced T1-weighted in 58% of cases (23/40). For distinguishing between tumor and surrounding edema, contrast-enhanced fast FLAIR imaging was superior to fast FLAIR or T2-weighted in 22 of 27 tumors with peritumoral edema (81%). Quantitatively, CNR was the highest on contrast-enhanced fast FLAIR image and the lowest on fast FLAIR. For the detection of leptomeningeal metastases, contrast-enhanced fast FLAIR was partially superior to contrast-enhanced T1-weighted imaging in two of three high-grade gliomas. Although contrast-enhanced fast FLAIR imaging should not be seen as a replacement for conventional modalities, it provides additional informaton for assessment of the extent of glial cell tumors and leptomeningeal metastases in patients with brain tumors. (author)

  4. Enhancement of natural ventilation in buildings using a thermal chimney

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [University of California at Berkeley, Berkeley, CA (United States); Strand, Richard K. [University of Illinois at Urbana-Champaign, Champaign, IL (United States)

    2009-06-15

    A new module was developed for and implemented in the EnergyPlus program for the simulation and determination of the energy impact of thermal chimneys. This paper describes the basic concepts, assumptions, and algorithms implemented into the EnergyPlus program to predict the performance of a thermal chimney. Using the new module, the effects of the chimney height, solar absorptance of the absorber wall, solar transmittance of the glass cover and the air gap width are investigated under various conditions. Chimney height, solar absorptance and solar transmittance turned out to have more influence on the ventilation enhancement than the air gap width. The potential energy impacts of a thermal chimney under three different climate conditions are also investigated. It turned out that significant building cooling energy saving can be achieved by properly employing thermal chimneys and that they have more potential for cooling than for heating. In addition, the performance of a thermal chimney was heavily dependent on the climate of the location. (author)

  5. Age-related change in renal corticomedullary differentiation: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with spatially selective inversion pulse using variable inversion time.

    Science.gov (United States)

    Noda, Yasufumi; Kanki, Akihiko; Yamamoto, Akira; Higashi, Hiroki; Tanimoto, Daigo; Sato, Tomohiro; Higaki, Atsushi; Tamada, Tsutomu; Ito, Katsuyoshi

    2014-07-01

    To evaluate age-related change in renal corticomedullary differentiation and renal cortical thickness by means of noncontrast-enhanced steady-state free precession (SSFP) magnetic resonance imaging (MRI) with spatially selective inversion recovery (IR) pulse. The Institutional Review Board of our hospital approved this retrospective study and patient informed consent was waived. This study included 48 patients without renal diseases who underwent noncontrast-enhanced SSFP MRI with spatially selective IR pulse using variable inversion times (TIs) (700-1500 msec). The signal intensity of renal cortex and medulla were measured to calculate renal corticomedullary contrast ratio. Additionally, renal cortical thickness was measured. The renal corticomedullary junction was clearly depicted in all patients. The mean cortical thickness was 3.9 ± 0.83 mm. The mean corticomedullary contrast ratio was 4.7 ± 1.4. There was a negative correlation between optimal TI for the best visualization of renal corticomedullary differentiation and age (r = -0.378; P = 0.001). However, there was no significant correlation between renal corticomedullary contrast ratio and age (r = 0.187; P = 0.20). Similarly, no significant correlation was observed between renal cortical thickness and age (r = 0.054; P = 0.712). In the normal kidney, noncontrast-enhanced SSFP MRI with spatially selective IR pulse can be used to assess renal corticomedullary differentiation and cortical thickness without the influence of aging, although optimal TI values for the best visualization of renal corticomedullary junction were shortened with aging. © 2013 Wiley Periodicals, Inc.

  6. Enhancement of thermal stability of silver(I) acetylacetonate by platinum(II) acetylacetonate

    Czech Academy of Sciences Publication Activity Database

    Křenek, T.; Kovářík, T.; Pola, M.; Jakubec, Ivo; Bezdička, Petr; Bastl, Zdeněk; Pokorná, Dana; Urbanová, Markéta; Galíková, Anna; Pola, Josef

    2013-01-01

    Roč. 554, FEB (2013), s. 1-7 ISSN 0040-6031 Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:67985858 Keywords : thermal gravimetric analysis * differential scanning calorimetry * silver(I) acetylacetonate * platinum(II) acetylacetonate * enhancement of thermal stability Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.105, year: 2013

  7. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (China)

    2011-02-15

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO{sub x} formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO{sub x} emission under rich conditions. The comparison of EINO{sub x} and EICO shows that the PMF-s has lower level of NO{sub x} emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF

  8. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    International Nuclear Information System (INIS)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S.

    2011-01-01

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO x formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO x emission under rich conditions. The comparison of EINO x and EICO shows that the PMF-s has lower level of NO x emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF-s has higher overall

  9. Non-contrast MRA using an inflow-enhanced, inversion recovery SSFP technique in pediatric abdominal imaging

    International Nuclear Information System (INIS)

    Serai, Suraj; Towbin, Alexander J.; Podberesky, Daniel J.

    2012-01-01

    Abdominal contrast-enhanced MR angiography (CE-MRA) is routinely performed in children. CE-MRA is challenging in children because of patient motion, difficulty in obtaining intravenous access, and the inability of young patients to perform a breath-hold during imaging. The combination of pediatric-specific difficulties in imaging and the safety concerns regarding the risk of gadolinium-based contrast agents in patients with impaired renal function has renewed interest in the use of non-contrast (NC) MRA techniques. At our institution, we have optimized 3-D NC-MRA techniques for abdominal imaging. The purpose of this work is to demonstrate the utility of an inflow-enhanced, inversion recovery balanced steady-state free precession-based (b-SSFP) NC-MRA technique. (orig.)

  10. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    Directory of Open Access Journals (Sweden)

    Sahin Huseyin

    2011-01-01

    Full Text Available Abstract We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB. Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS, and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

  11. Thermalization in nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F.; Lynch, W.G.; Bowman, D.R.; De Souza, R.T.; Gelbke, C.K.; Kim, Y.D.; Phair, L.; Tsang, M.B.; Williams, C.; Xu, H.M.; Dinius, J. (Dept. of Physics and Astronomy, Michigan State Univ., East Lansing, MI (United States) National Superconducting Cyclotron Lab., Michigan State Univ., East Lansing, MI (United States))

    1992-05-28

    Impact parameter dependent excited state populations of intermediate mass fragments are investigated for {sup 36}Ar induced reactions on {sup 197}Au at E/A=35 MeV. Population inversions, indicative of non-thermal excitation mechanisms, are observed in peripheral collisions characterized by low associated charged particle multiplicities. These population inversions disappear for collisions with larger associated charged particle multiplicities, consistent with a more complete thermalization for more complex final states. Discrepancies, observed in central collisions, suggest that the limit of local thermal equilibrium has not yet been observed. (orig.).

  12. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  13. Diagnostic accuracy of segmental enhancement inversion for diagnosis of renal oncocytoma at biphasic contrast enhanced CT: systematic review

    International Nuclear Information System (INIS)

    Schieda, Nicola; McInnes, Matthew D.F.; Cao, Lilly

    2014-01-01

    To use systematic review to evaluate the diagnostic accuracy of segmental enhancement inversion (SEI) at contrast-enhanced biphasic multi-detector computed tomography (MDCT) for the diagnosis of renal oncocytoma. Several electronic databases were searched through October 2013. Two reviewers independently selected studies that met the inclusion criteria and extracted data. Study quality was assessed with the QUADAS-2 tool. The primary 2 x 2 data were investigated with forest plot and ROC plot of sensitivity and specificity. Four studies met the inclusion criteria (307 patients). Considerable heterogeneity between studies precluded meta-analysis. Two studies from the same group of investigators demonstrated reasonable diagnostic accuracy (sensitivity 59-80 % and specificity 87-99 %), while two others did not (sensitivity 0-6 %, specificity 93-100 %). Possible reasons for this include timing of biphasic MDCT and methods of interpretation but not size of lesion. SEI is a specific imaging finding of renal oncocytoma with highly variable sensitivity. This substantial heterogeneity across studies and between institutions suggests that further validation of this imaging finding is necessary prior to application in clinical practice. (orig.)

  14. Diagnostic accuracy of segmental enhancement inversion for diagnosis of renal oncocytoma at biphasic contrast enhanced CT: systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; McInnes, Matthew D.F.; Cao, Lilly [Ottawa Hospital Research Institute, Department of Medical Imaging, Ottawa, ON (Canada)

    2014-06-15

    To use systematic review to evaluate the diagnostic accuracy of segmental enhancement inversion (SEI) at contrast-enhanced biphasic multi-detector computed tomography (MDCT) for the diagnosis of renal oncocytoma. Several electronic databases were searched through October 2013. Two reviewers independently selected studies that met the inclusion criteria and extracted data. Study quality was assessed with the QUADAS-2 tool. The primary 2 x 2 data were investigated with forest plot and ROC plot of sensitivity and specificity. Four studies met the inclusion criteria (307 patients). Considerable heterogeneity between studies precluded meta-analysis. Two studies from the same group of investigators demonstrated reasonable diagnostic accuracy (sensitivity 59-80 % and specificity 87-99 %), while two others did not (sensitivity 0-6 %, specificity 93-100 %). Possible reasons for this include timing of biphasic MDCT and methods of interpretation but not size of lesion. SEI is a specific imaging finding of renal oncocytoma with highly variable sensitivity. This substantial heterogeneity across studies and between institutions suggests that further validation of this imaging finding is necessary prior to application in clinical practice. (orig.)

  15. Interatomic potentials for PuC by Chen–Möbius multiple lattice inversion

    International Nuclear Information System (INIS)

    Huang, H.; Meng, D.Q.; Lai, X.C.; Li, G.; Long, Y.

    2013-01-01

    The atomic interactions of PuC with B1 structure were described by Chen–Möbius lattice inversion combined with first-principle calculations. In order to obtain the inversion potential parameters of PuC, three different structures including two virtual crystals were built and the Morse function plus a modified term was adopted to fit the pair-potential curves. The reliability of the inversion potential was tested by checking the stability of the transition of PuC from disordered to ordered state and comparing the calculated and experimental physical and thermal properties of PuC. All the results show that the inversion potential could give a stable and accurate description of the atomic interactions in PuC and the physical and thermal properties of PuC are well reproduced by the potential

  16. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  17. An inverse method for radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, J. A. (Jeffrey A.); Sanchez, R. (Richard)

    2004-01-01

    Adjoint functions have been used with forward functions to compute gradients in implicit (iterative) solution methods for inverse problems in optical tomography, geoscience, thermal science, and other fields, but only once has this approach been used for inverse solutions to the Boltzmann transport equation. In this paper, this approach is used to develop an inverse method that requires only angle-independent flux measurements, rather than angle-dependent measurements as was done previously. The method is applied to a simplified form of the transport equation that does not include scattering. The resulting procedure uses measured values of gamma-ray fluxes of discrete, characteristic energies to determine interface locations in a multilayer shield. The method was implemented with a Newton-Raphson optimization algorithm, and it worked very well in numerical one-dimensional spherical test cases. A more sophisticated optimization method would better exploit the potential of the inverse method.

  18. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  19. Enhancement of thermal photon production in event-by-event hydrodynamics

    International Nuclear Information System (INIS)

    Chatterjee, Rupa; Holopainen, Hannu; Renk, Thorsten; Eskola, Kari J.

    2011-01-01

    Thermal photon emission is widely believed to reflect properties of the earliest, hottest evolution stage of the medium created in ultrarelativistic heavy-ion collisions. Previous computations of photon emission have been carried out using a hydrodynamical medium description with smooth, averaged initial conditions. Recently, more sophisticated hydrodynamical models that calculate observables by averaging over many evolutions with event-by-event fluctuating initial conditions (ICs) have been developed. Given their direct connection to the early time dynamics, thermal photon emission appears to be an ideal observable to probe fluctuations in the medium initial state. In this work, we demonstrate that including fluctuations in the ICs may lead to an enhancement of the thermal photon yield of about a factor of 2 in the region 2 T <4 GeV/c (where thermal photon production dominates the direct photon yield) compared to a scenario using smooth, averaged ICs. Consequently, a much better agreement with PHENIX data is found. This can be understood in terms of the strong temperature dependence of thermal photon production, translating into a sensitivity to the presence of hotspots in an event and thus establishing thermal photons as a suitable probe to characterize IC fluctuations.

  20. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  1. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  2. Subspace-based Inverse Uncertainty Quantification for Nuclear Data Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Khuwaileh, B.A., E-mail: bakhuwai@ncsu.edu; Abdel-Khalik, H.S.

    2015-01-15

    Safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. An inverse problem can be defined and solved to assess the sources of uncertainty, and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this work a subspace-based algorithm for inverse sensitivity/uncertainty quantification (IS/UQ) has been developed to enable analysts account for all sources of nuclear data uncertainties in support of target accuracy assessment-type analysis. An approximate analytical solution of the optimization problem is used to guide the search for the dominant uncertainty subspace. By limiting the search to a subspace, the degrees of freedom available for the optimization search are significantly reduced. A quarter PWR fuel assembly is modeled and the accuracy of the multiplication factor and the fission reaction rate are used as reactor attributes whose uncertainties are to be reduced. Numerical experiments are used to demonstrate the computational efficiency of the proposed algorithm. Our ongoing work is focusing on extending the proposed algorithm to account for various forms of feedback, e.g., thermal-hydraulics and depletion effects.

  3. Constructing inverse V-type TiO{sub 2}-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang, E-mail: txfan@sjtu.edu.cn; Zhang, Di

    2015-08-30

    Graphical abstract: Inverse V-type TiO{sub 2}-based photocatalyst was synthesized by using cross-linked titanium precursor to duplicate bio-template. - Highlights: • Cross-linked titanium precursor can facilitate an accurate duplication of templates. • In situ deposition of Ag{sup 0} from AgBr can maintain the completeness of surface structure. • Perfect inverse V-type Ag{sup 0}/TiO{sub 2} can achieve efficient water oxidation. - Abstract: Bio-template approach was employed to construct inverse V-type TiO{sub 2}-based photocatalyst with well distributed AgBr in TiO{sub 2} matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO{sub 2}/AgBr can be turned into inverse V-type TiO{sub 2}/Ag{sup 0} from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag{sup 0} in TiO{sub 2} matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO{sub 2}/Ag{sup 0} microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO{sub 2}/Ag{sup 0} and TiO{sub 2}/Ag{sup 0} without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag{sup 0} might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  4. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    Science.gov (United States)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  5. Correction: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Correction to Kleinstreuer C, Feng Y: Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Research Letters 2011, 6:229.

  6. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  7. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  8. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  9. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.

    Science.gov (United States)

    Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk

    2013-05-21

    We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis.

  10. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  11. Multidimensional inverse heat conduction problem: optimization of sensor locations and utilization of thermal-strain measurements

    International Nuclear Information System (INIS)

    Blanc, Gilles

    1996-01-01

    This work is devoted to the solution of the inverse multidimensional heat conduction problem. The first part is the determination of a methodology for determining the minimum number of sensors and the best sensor locations. The method is applied to a 20 problem but the extension to 30 problems is quite obvious. This methodology is based on the study of the rate of representation. This new concept allows to determine the quantity and the quality of the information obtain from the various sensors. The rate of representation is a useful tool for experimental design. lt can be determined very quickly by the transposed matrix method. This approach was validated with an experimental set-up. The second part is the development of a method that uses thermal strain measurement instead of temperature measurements to estimate the unknown thermal boundary conditions. We showed that this new sensor has two advantages in comparison with the classical temperature measurements: higher frequency can be estimated and smaller number of sensors can be used for 20 problems. The main weakness is, presently, the fact that the method can only be applied to beams. The results obtained from the numerical simulations were validated by the analysis of experimental data obtained on an experimental set-up especially designed and built for this study. (author) [fr

  12. A transient divided-bar method for simultaneous measurements of thermal conductivity and thermal diffusivity

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels

    2016-01-01

    and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...... and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties. The developed methodology was applied to laboratory measurements of various materials, including a standard ceramic material......-3 %, and for diffusivity uncertainty may be reduced to about 3-5 %. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces of the bar. They are not resolved during inversion, and it is highly important that they are minimized by careful sample preparation....

  13. Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses

    Science.gov (United States)

    Mahato, K. K.; Fulmali, A. O.; Kattaguri, R.; Dutta, K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    Fiber reinforced polymeric (FRP) composite materials are exposed to diverse changing environmental temperatures during their in-service period. Current investigation is aimed to investigate the influence of thermal-shock exposure on the mechanical behavior of multiwalled carbon nanotube (MWCNT) enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were exposed to +70°C for 36 hrs followed by further exposure to ‑ 60°C for the similar interval of time. Tensile tests were conducted in order to evaluate the results of thermal-shock on the mechanical behavior of the neat and conditioned samples at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with various MWCNT content. The ultimate tensile strength (UTS) was raised by 15.11 % with increase in the 0.1 % MWCNT content GFRP as related to the thermal-shocked neat GFRP conditioned samples. The possible reason may be attributed to the variation in the coefficients of thermal expansion at the time of conditioning. Also, upto some extent the pre-existing residual stresses allows uniform distribution of stress and hence the reason in enhanced mechanical properties of GFRP and MWCNT filled composites. In order to access the modifications in the glass transition temperature (Tg) due to the addition of MWCNT in GFRP composite and also due to the thermal shock temperature modulated differential scanning calorimeter (TMDSC) measurements are carried out. Scanning electron microscopy(SEM) was carried out to identify different modes of failures and strengthening morphology in the composites.

  14. Enhanced lepton flavour violation in the supersymmetric inverse seesaw

    International Nuclear Information System (INIS)

    Weiland, C

    2013-01-01

    In minimal supersymmetric seesaw models, the contribution to lepton flavour violation from Z-penguins is usually negligible. In this study, we consider the supersymmetric inverse seesaw and show that, in this case, the Z-penguin contribution dominates in several lepton flavour violating observables due to the low scale of the inverse seesaw mechanism. Among the observables considered, we find that the most constraining one is the μ-e conversion rate which is already restricting the otherwise allowed parameter space of the model. Moreover, in this framework, the Z-penguins exhibit a non-decoupling behaviour, which has previously been noticed in lepton flavour violating Higgs decays

  15. Thermal sensitivity and thermally enhanced radiosensitivity of murine bone marrow granulocyte-macrophage colony-forming units (CFU-GM)

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi

    1994-01-01

    This study was to evaluate thermal response of granulocyte-macrophage colony-forming unit (CFU-GM) in vitro and to investigate the difference of thermally enhanced radiosensitivity on cell survivals of CFU-GM between in vitro and in vivo. In in vitro heating exposure, bone marrow suspensions, obtained from mouse femora or tibiae, were incubated; and in vivo heating exposure, the lower half-body of mice were immersed in a circulating hot water bath. For irradiation schedules, cell suspensions were irradiated in vitro or in vivo (whole-body irradiation). Thermal sensitivity curve, obtained by in vivo heating exposure, showed a shoulder region at short exposures followed by an exponential decline during longer heating exposures. The Arrhenius curve showed a break at 42.3deg C and inactivation enthalpy was 1836 kJ/mol (438 kcal/mole) below the break point and 704 kJ/mole (168 kcal/mole) above the point. When bone marrow suspensions, obtained after either in vitro or in vivo irradiation, were heated in vitro at 42deg C for 60 min, supura-additive effect on cell survivals was observed by in vivo irradiation, but not observed by in vitro irradiation. Thermal enhancement ratio (TER), defined as D 0 of combined in vivo irradiation and in vitro heating divided by D 0 of the sole in vivo irradiation, was 1.12. In vivo heating following in vivo irradiation also showed supra-additive effect, giving TER of 1.66. These findings indicated that murine marrow CFU-GM is sensitive to hyperthermia and that thermal radiosensitization is never negligible when hyperthermia is employed with preceding X-irradiation. Thus, combined use of radiotherapy and hyperthermia may decrease bone marrow function. (N.K.)

  16. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Varga-Szemes, Akos; Schoepf, U.J.; De Cecco, Carlo N.; Fuller, Stephen R.; Suranyi, Pal [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Geest, Rob J. van der [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Spottiswoode, Bruce S. [Siemens Medical Solutions, Chicago, IL (United States); Muscogiuri, Giuseppe [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Bambino Gesu Children' s Hospital IRCCS, Department of Imaging, Rome (Italy); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Maurovich-Horvat, Pal; Merkely, Bela [Semmelweis University, MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Budapest (Hungary); Litwin, Sheldon E. [Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Vliegenthart, Rozemarijn [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands)

    2017-08-15

    To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). Fifty-three patients with suspected prior MI underwent 1.5-T cardiac MRI with conventional magnitude (MagIR) and phase-sensitive IR (PSIR) LGE imaging and T1 mapping at 15 min post-contrast. T1-based synthetic MagIR and PSIR images were calculated with a TI ranging from -100 to +150 ms at 5-ms intervals relative to the optimal TI (TI{sub 0}). LGE was quantified using a five standard deviation (5SD) and full width at half-maximum (FWHM) thresholds. Measurements were compared using one-way analysis of variance. The MagIR{sub sy} technique provided precise assessment of LGE area at TIs ≥ TI{sub 0}, while precision was decreased below TI{sub 0}. The LGE area showed significant differences at ≤ -25 ms compared to TI{sub 0} using 5SD (P < 0.001) and at ≤ -65 ms using the FWHM approach (P < 0.001). LGE measurements did not show significant difference over the analysed TI range in the PSIR{sub sy} images using either of the quantification methods. T1 map-based PSIR{sub sy} images provide precise quantification of MI independent of TI at the investigated time point post-contrast. MagIR{sub sy}-based MI quantification is precise at TI{sub 0} and at longer TIs while showing decreased precision at TI values below TI{sub 0}. (orig.)

  17. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    Science.gov (United States)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal

  18. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  19. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  20. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  1. Application of homotopy analysis method and inverse solution of a rectangular wet fin

    International Nuclear Information System (INIS)

    Panda, Srikumar; Bhowmik, Arka; Das, Ranjan; Repaka, Ramjee; Martha, Subash C.

    2014-01-01

    Highlights: • Solution of a wet fin with is obtained by homotopy analysis method (HAM). • Present HAM results have been well-validated with literature results. • Inverse analysis is done using genetic algorithm. • Measurement error of ±10–12% (approx.) is found to yield satisfactory reconstructions. - Abstract: This paper presents the analytical solution of a rectangular fin under the simultaneous heat and mass transfer across the fin surface and the fin tip, and estimates the unknown thermal and geometrical configurations of the fin using inverse heat transfer analysis. The local temperature field is obtained by using homotopy analysis method for insulated and convective fin tip boundary conditions. Using genetic algorithm, the thermal and geometrical parameters, viz., thermal conductivity of the material, surface heat transfer coefficient and dimensions of the fin have been simultaneously estimated for the prescribed temperature field. Earlier inverse studies on wet fin have been restricted to the analysis of nonlinear governing equation with either insulated tip condition or finite tip temperature only. The present study developed a closed-form solution with the consideration of nonlinearity effects in both governing equation and boundary condition. The study on inverse optimization leads to many feasible combination of fin materials, thermal conditions and fin dimensions. Thus allows the flexibility for designing a fin under wet conditions, based on multiple combinations of fin materials, fin dimensions and thermal configurations to achieve the required heat transfer duty. It is further determined that the allowable measurement error should be limited to ±10–12% in order to achieve satisfactory reconstruction

  2. An inverse optimal control problem in the electrical discharge ...

    Indian Academy of Sciences (India)

    Marin Gostimirovic

    2018-05-10

    May 10, 2018 ... Keywords. EDM process; discharge energy; heat source parameters; inverse problem; optimization. 1. Introduction .... ation, thermal modeling of the EDM process would become ..... simulation of die-sinking EDM. CIRP Ann.

  3. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  4. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  5. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.

    Science.gov (United States)

    Wei, Xingfei; Zhang, Teng; Luo, Tengfei

    2017-10-04

    Thermal transport across hard-soft interfaces is critical to many modern applications, such as composite materials, thermal management in microelectronics, solar-thermal phase transition, and nanoparticle-assisted hyperthermia therapeutics. In this study, we use equilibrium molecular dynamics (EMD) simulations combined with the Green-Kubo method to study how molecularly heterogeneous structures of the self-assembled monolayer (SAM) affect the thermal transport across the interfaces between the SAM-functionalized gold and organic liquids (hexylamine, propylamine and hexane). We focus on a practically synthesizable heterogeneous SAM featuring alternating short and long molecular chains. Such a structure is found to improve the thermal conductance across the hard-soft interface by 46-68% compared to a homogeneous nonpolar SAM. Through a series of further simulations and analyses, it is found that the root reason for this enhancement is the penetration of the liquid molecules into the spaces between the long SAM molecule chains, which increase the effective contact area. Such an effect is similar to the fins used in macroscopic heat exchanger. This "molecular fin" structure from the heterogeneous SAM studied in this work provides a new general route for enhancing thermal transport across hard-soft material interfaces.

  6. An inverse method for non linear ablative thermics with experimentation of automatic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr

    2008-11-01

    Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.

  7. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    Science.gov (United States)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  8. Methods for enhancing mapping of thermal fronts in oil recovery

    Science.gov (United States)

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  9. Coupled thermo-geophysical inversion for permafrost monitoring

    DEFF Research Database (Denmark)

    Tomaskovicova, Sona

    temperature dataset within ±0.55 ◦C, provided that the freeze-thaw water content hysteresis was accounted for. The calibrated model predicted the temperature variation in two testing datasets within ±0.32 to ±0.62 ◦C, depending on length of the testing timeseries. The coupled inversion approach showed...... on borehole temperatures. Thermal parameters optimized in coupled inversion predicted the temperature variation in the two testing datasets within ±0 ◦C to 0 ◦C. A number of possibilities and paths for improvement of both coupled and uncoupled optimization approaches has been identified and identification...

  10. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  11. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  12. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    Science.gov (United States)

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  13. Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance

    International Nuclear Information System (INIS)

    Amama, Placidus B; Cola, Baratunde A; Sands, Timothy D; Xu, Xianfan; Fisher, Timothy S

    2007-01-01

    Multi-walled carbon nanotubes (MWCNTs) with systematically varied diameter distributions and defect densities were reproducibly grown from a modified catalyst structure templated in an amine-terminated fourth-generation poly(amidoamine) (PAMAM) dendrimer by microwave plasma-enhanced chemical vapor deposition. Thermal interface resistances of the vertically oriented MWCNT arrays as determined by a photoacoustic technique reveal a strong correlation with the quality as assessed by Raman spectroscopy. This study contributes not only to the development of an active catalyst via a wet chemical route for structure-controlled MWCNT growth, but also to the development of efficient and low-cost MWCNT-based thermal interface materials with thermal interface resistances ≤10 mm 2 K W -1

  14. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  15. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    Science.gov (United States)

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  16. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  17. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Shujie; Tang, Rui; Yin, Longwei

    2017-11-01

    All-inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar-architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD-) sensitized all-inorganic CsPbBr 3 perovskite inverse opal (IO) films via a template-assisted, spin-coating method. CsPbBr 3 IO introduces slow-photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr 3 , slow-photon effect of CsPbBr 3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron-hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double-boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon-to-electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr 3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Numerical characterization of micro-cell UO{sub 2}−Mo pellet for enhanced thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heung Soo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Dong-Joo [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Sun Woo [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Yang, Jae Ho; Koo, Yang-Hyun [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-08-15

    Metallic micro-cell UO{sub 2} pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO{sub 2} fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO{sub 2}−Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO{sub 2}−Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO{sub 2} pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm. - Highlights: • Thermal conductivities of micro-cell UO{sub 2}−Mo pellets were numerically studied in terms of their unit cell geometries. • Numerical calculations qualitatively well agreed with experimental measurements. • Optimizing the unit cell geometries of the micro-cell pellets could greatly enhance their thermal conductivities.

  19. Delamination detection in reinforced concrete using thermal inertia

    International Nuclear Information System (INIS)

    Del Grande, N K; Durbin, P F.

    1998-01-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  20. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  1. Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites

    International Nuclear Information System (INIS)

    Kim, Jaewoo; Lee, Byung-Chul; Uhm, Young Rang; Miller, William H.

    2014-01-01

    Highlights: • Preparation of B 4 C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B 4 C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B 4 C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption

  2. An inverse heat transfer problem for optimization of the thermal ...

    Indian Academy of Sciences (India)

    Department of Production Engineering, Faculty of Technical Science, ... ductivity of manufacturing and high levels of machining quality and accuracy, are the most ... inverse problems are today successfully applied in identification, design, control and optimiza- ...... of Machine Tools and Manufacture, 35(5): 751–760.

  3. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    Science.gov (United States)

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  4. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  5. Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization

    Science.gov (United States)

    Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.

    2018-05-01

    The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.

  6. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  7. Effect of prior hyperthermia on subsequent thermal enhancement of radiation damage in mouse intestine

    International Nuclear Information System (INIS)

    Marigold, J.C.L.; Hume, S.P.

    1982-01-01

    Hyperthermia given in conjunction with X-rays results in a greater level of radiation injury than following X-rays alone, giving a thermal enhancement ratio (TER). The effect of prior hyperthermia ('priming') on TER was studied in the small intestine of mouse by giving 42.0 deg C for 1 hour at various times before the combined heat and X-ray treatments. Radiation damage was assessed by measuring crypt survival 4 days after radiation. TER was reduced when 'priming' hyperthermia was given 24-48 hours before the combined treatments. The reduction in effectiveness of the second heat treatment corresponded to a reduction in hyperthermal temperature of approximately 0.5 deg C, a value similar to that previously reported for induced resistance to heat given alone ('thermotolerance') (Hume and Marigold 1980). However, the time courses for development and decay of the TER response were much longer than those for 'thermotolerance', suggesting that different mechanisms are involved in thermal damage following heat alone and thermal enhancement of radiation damage

  8. Measurement of population inversions and gain in carbon fiber plasmas

    International Nuclear Information System (INIS)

    Milchberg, H.; Skinner, C.H.; Suckewer, S.; Voorhees, D.

    1985-10-01

    A CO 2 laser (approx.0.5 kJ energy, 70 nsec pulse width) was focussed onto the end of an axially oriented, thick (35 to 350 μ) carbon fiber with or without a magnetic field present along the laser-fiber axis. We present evidence for axial-to-transverse enhancement of the CVI 182A (n = 3 → 2) transition, which is correlated with the appearance of a population inversion between levels n = 3 and 2. For the B = 0 kG, zero field case, the maximum gain-length product of kl approx. =3 (k approx. =6 cm -1 ) was measured for a carbon fiber coated with a thin layer of aluminum (for additional radiation cooling). The results are interpreted in terms of fast recombination due mostly to thermal conduction from the plasma to the cold fiber core

  9. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    Science.gov (United States)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere

  10. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  11. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  12. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  13. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  14. Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids

    Science.gov (United States)

    Sundar, L. Syam; Singh, Manoj K.; Ramana, E. Venkata; Singh, Budhendra; Grácio, José; Sousa, Antonio C. M.

    2014-01-01

    We report a new type of magnetic nanofluids, which is based on a hybrid composite of nanodiamond and nickel (ND-Ni) nanoparticles. We prepared the nanoparticles by an in-situ method involving the dispersion of caboxylated nanodiamond (c-ND) nanoparticles in ethylene glycol (EG) followed by mixing of nickel chloride and, at the reaction temperature of 140°C, the use of sodium borohydrate as the reducing agent to form the ND-Ni nanoparticles. We performed their detailed surface and magnetic characterization by X-ray diffraction, micro-Raman, high-resolution transmission electron microscopy, and vibrating sample magnetometer. We prepared stable magnetic nanofluids by dispersing ND-Ni nanoparticles in a mixture of water and EG; we conducted measurements to determine the thermal conductivity and viscosity of the nanofluid with different nanoparticles loadings. The nanofluid for a 3.03% wt. of ND-Ni nanoparticles dispersed in water and EG exhibits a maximum thermal conductivity enhancement of 21% and 13%, respectively. For the same particle loading of 3.03% wt., the viscosity enhancement is 2-fold and 1.5-fold for water and EG nanofluids. This particular magnetic nanofluid, beyond its obvious usage in heat transfer equipment, may find potential applications in such diverse fields as optics and magnetic resonance imaging. PMID:24509508

  15. Thermal duality and Hagedorn transition from p-adic strings.

    Science.gov (United States)

    Biswas, Tirthabir; Cembranos, Jose A R; Kapusta, Joseph I

    2010-01-15

    We develop the finite temperature theory of p-adic string models. We find that the thermal properties of these nonlocal field theories can be interpreted either as contributions of standard thermal modes with energies proportional to the temperature, or inverse thermal modes with energies proportional to the inverse of the temperature, leading to a thermal duality at leading order (genus one) analogous to the well-known T duality of string theory. The p-adic strings also recover the asymptotic limits (high and low temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings surrounding the nature of the Hagedorn transition.

  16. Image enhancement using thermal-visible fusion for human detection

    Science.gov (United States)

    Zaihidee, Ezrinda Mohd; Hawari Ghazali, Kamarul; Zuki Saleh, Mohd

    2017-09-01

    An increased interest in detecting human beings in video surveillance system has emerged in recent years. Multisensory image fusion deserves more research attention due to the capability to improve the visual interpretability of an image. This study proposed fusion techniques for human detection based on multiscale transform using grayscale visual light and infrared images. The samples for this study were taken from online dataset. Both images captured by the two sensors were decomposed into high and low frequency coefficients using Stationary Wavelet Transform (SWT). Hence, the appropriate fusion rule was used to merge the coefficients and finally, the final fused image was obtained by using inverse SWT. From the qualitative and quantitative results, the proposed method is more superior than the two other methods in terms of enhancement of the target region and preservation of details information of the image.

  17. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    Science.gov (United States)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  18. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  19. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  20. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  1. Thermal conductivity enhancement and sedimentation reduction of magnetorheological fluids with nano-sized Cu and Al additives

    Science.gov (United States)

    Rahim, M. S. A.; Ismail, I.; Choi, S. B.; Azmi, W. H.; Aqida, S. N.

    2017-11-01

    This work presents enhanced material characteristics of smart magnetorheological (MR) fluids by utilizing nano-sized metal particles. Especially, enhancement of thermal conductivity and reduction of sedimentation rate of MR fluids those are crucial properties for applications of MR fluids are focussed. In order to achieve this goal, a series of MR fluid samples are prepared using carbonyl iron particles (CIP) and hydraulic oil, and adding nano-sized particles of copper (Cu), aluminium (Al), and fumed silica (SiO2). Subsequently, the thermal conductivity is measured by the thermal property analyser and the sedimentation of MR fluids is measured using glass tubes without any excitation for a long time. The measured thermal conductivity is then compared with theoretical models such as Maxwell model at various CIP concentrations. In addition, in order to show the effectiveness of MR fluids synthesized in this work, the thermal conductivity of MRF-132DG which is commercially available is measured and compared with those of the prepared samples. It is observed that the thermal conductivity of the samples is much better than MRF-132DG showing the 148% increment with 40 vol% of the magnetic particles. It is also observed that the sedimentation rate of the prepared MR fluid samples is less than that of MRF-132DG showing 9% reduction with 40 vol% of the magnetic particles. The mixture optimized sample with high conductivity and low sedimentation was also obtained. The magnetization of the sample recorded an enhancement of 70.5% when compared to MRF-132DG. Furthermore, the shear yield stress of the sample were also increased with and without the influence of magnetic field.

  2. Enhancement of thermal neutron attenuation of nano-B{sub 4}C, -BN dispersed neutron shielding polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaewoo, E-mail: kimj@kaeri.re.kr [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States); Lee, Byung-Chul [Nuclear Reactor Core Design Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Uhm, Young Rang [Radioisotopes Research Division, Korea Atomic Energy Research Institute, 111-989 Daeduck-daero, Yuseong-gu, Daejeon-si 305-353 (Korea, Republic of); Miller, William H. [Missouri University Research Reactor, University of Missouri-Columbia, Columbia, MO 65211 (United States)

    2014-10-15

    Highlights: • Preparation of B{sub 4}C and BN nanopowders using a simple ball milling process. • Homogeneous dispersion and strong adhesion of nano-B{sub 4}C and -BN with polymer matrix. • Enhancement of mechanical properties of the nanocomposites compared to their micro counterparts. • Enhancement of thermal neutron attenuation of the nanocomposites. - Abstract: Nano-sized boron carbide (B{sub 4}C) and boron nitride (BN) powder were prepared using ball milling. Micro- and milled nano-powders were melt blended with high density polyethylene (HDPE) using a polymer mixer followed by hot pressing to fabricate sheet composites. The tensile and flexural strengths of HDPE nanocomposites were ∼20% higher than their micro counterparts, while those for latter decreased compared to neat HDPE. Thermal neutrons attenuation of the prepared HDPE nanocomposites was evaluated using a monochromatic ∼0.025 eV neutron beam. Thermal neutron attenuation of the HDPE nanocomposites was greatly enhanced compared to their micro counterparts at the same B-10 areal densities. Monte Carlo n-Particles (MCNP) simulations based on the lattice structure modeling also shows the similar filler size dependent thermal neutron absorption.

  3. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  4. Enhancement of terahertz radiation in a Smith-Purcell backward-wave oscillator by an inverse wet-etched grating

    International Nuclear Information System (INIS)

    Kim, Jung-Il; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jaehong

    2011-01-01

    A terahertz (THz) Smith-Purcell (SP) backward-wave oscillator with an inverse wet-etched grating based on silicon has been proposed to enhance radiation intensity. This grating strengthens the interactions between an electron beam and the evanescent wave due to the adjacent surface structure between gratings that improves the magnitude of the electric field up to 1.7 times compared to the conventional rectangular gratings. A two-dimensional particle-in-cell (PIC) simulation shows that the radiated power is increased up to 2.3 times higher at the radiated frequency of 0.66 THz for an electron-beam energy of 30 keV.

  5. Moebius inverse problem for distorted black holes

    International Nuclear Information System (INIS)

    Rosu, H.

    1993-01-01

    Hawking ''thermal'' radiation could be a means to detect black holes of micron sizes, which may be hovering through the universe. We consider these micro-black holes to be distorted by the presence of some distribution of matter representing a convolution factor for their Hawking radiation. One may hope to determine from their Hawking signals the temperature distribution of their material shells by the inverse black body problem. In 1990, Nan-xian Chen has used a so-called modified Moebius transform to solve the inverse black body problem. We discuss and apply this technique to Hawking radiation. Some comments on supersymmetric applications of Moebius function and transform are also added. (author). 22 refs

  6. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  7. Upper air thermal inversion and their impact on the summer monsoon rainfall over Goa - A case study

    Science.gov (United States)

    Swathi, M. S.; Muraleedharan, P. M.; Ramaswamy, V.; Rameshkumar, M. R.; Aswini, Anirudhan

    2018-04-01

    Profiles of periodic GPS Radiosonde ascends collected from a station at the west coast of India (Goa) during summer monsoon months (June to September) of 2009 and 2013 have been used to analyze the thermal inversion statistics at various heights and their repercussions on the regional weather is studied. The interaction of contrasting air masses over the northern Arabian Sea often produces a two layer structure in the lower 5000 m close to the coastal station with warm and dusty air (Summer Shamal) occupying the space above the cool and moist Low Level Jet (LLJ) by virtue of their density differences. The warm air intrusion creates low lapse rate pockets above LLJ and modifies the gravitational stability strong enough to inhibit convection. It is observed that the inversion occurring in the lower 3000 m layer with an optimum layer thickness of 100-200 m has profound influence on the weather beneath it. We demonstrated the validity of the proposed hypothesis by analyzing the collocated data from radiosonde, lidar and the rain gauge during 16th July 2013 as a case study. The lidar depolarization ratio provides evidence to support the two layer structure in the lidar backscatter image. The presence of dust noticed in the two layer interface hints the intrusion of warm air that makes the atmosphere stable enough to suppress convection. The daily rainfall record of 2013 surprisingly coincides with the patterns of a regional break like situation centered at 16th July 2013 in Goa.

  8. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  9. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  10. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  11. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification of the Thermophysical Properties of the Soil by Inverse Problem

    OpenAIRE

    Mansour , Salwa; Canot , Édouard; Muhieddine , Mohamad

    2016-01-01

    International audience; This paper introduces a numerical strategy to estimate the thermophysical properties of a saturated porous medium (volumetric heat capacity (ρC)s , thermal conductivity λs and porosity φ) where a phase change problem (liquid/vapor) appears due strong heating. The estimation of these properties is done by inverse problem knowing the heating curves at selected points of the medium. To solve the inverse problem, we use both the Damped Gauss Newton and the Levenberg Marqua...

  13. An advanced joint inversion system for CO2 storage modeling with large date sets for characterization and real-time monitoring-enhancing storage performance and reducing failure risks under uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kitanidis, Peter [Stanford Univ., CA (United States)

    2016-04-30

    As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic, tracer and thermal tests before CO2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO2 storage examples.

  14. Improving waveform inversion using modified interferometric imaging condition

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  15. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Science.gov (United States)

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  16. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube

    International Nuclear Information System (INIS)

    Li, Min; Chen, Meirong; Wu, Zhishen

    2014-01-01

    Highlights: • Carbon nanotubes was grafted and used to enhance the thermal conductivities of the microcapsules. • The average particle size of the prepared MicroPCMs/CNTs-SA is 0.1 μm. • The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. • MicroPCMs/CNTs-SA has better durability and thermal stability compared to the original MicroPCMs. - Abstract: Carbon nanotubes grafted with stearyl alcohol (CNTs-SA) was used in synthesizing phase change microcapsules (MicroPCMs) in order to enhance the thermal conductivities of the microcapsules. Urea–formaldehyde resin (UFR) was used as wall material. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) are employed to characterize the prepared MicroPCMs containing the grafted CNTs (MicroPCMs/CNTs-SA). The results indicated that CNTs improved the performance of microcapsules. The average particle diameter of MicroPCMs/CNTs-SA is much smaller than that of MicroPCMs. There was no chemical reaction among paraffin, CNTs and UFR. The phase change temperature and latent heat of MicroPCMs/CNTs-SA was 26.2 °C and 47.7 J/g, respectively. The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. The initial decomposition temperature of MicroPCMs/CNTs-SA is 38 °C higher than that of MicroPCMs. After 100 heating and cooling cycles, MicroPCMs/CNTs-SA still has good durability and thermal stability

  17. Polyphased Inversions of an Intracontinental Rift: Case Study of the Marrakech High Atlas, Morocco

    Science.gov (United States)

    Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Jouvie, I.; Saddiqi, O.

    2018-03-01

    The High and Middle Atlas intraplate belts in Morocco correspond to Mesozoic rifted basins inverted during the Cenozoic during Africa/Eurasia convergence. The Marrakech High Atlas lies at a key location between Atlantic and Tethyan influences during the Mesozoic rifting phase but represents today high reliefs. Age and style of deformation and the mechanisms underlying the Cenozoic inversion are nevertheless still debated. To solve this issue, we produced new low-temperature thermochronology data (fission track and [U-Th]/He on apatite). Two cross sections were investigated in the western and eastern Marrakech High Atlas. Results of inverse modeling allow recognizing five cooling events attributed to erosion since Early Jurassic. Apart from a first erosional event from Middle/Late Jurassic to Early Cretaceous, four stages can be related to the convergence processes between Africa and Europe since the Late Cretaceous. Our data and thermal modeling results suggest that the inversion processes are guided at first order by the fault network inherited from the rifting episodes. The sedimentary cover and the Neogene lithospheric thinning produced a significant thermal weakening that facilitated the inversion of this ancient rift. Our data show that the Marrakech High Atlas has been behaving as a giant pop-up since the beginning of Cenozoic inversion stages.

  18. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  19. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  20. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    Science.gov (United States)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  1. Thermal conductivity and expansion enhancement associated with formation of the superionic state in SrCl2

    International Nuclear Information System (INIS)

    Moore, J.P.; Weaver, F.J.; Graves, R.S.; McElroy, D.L.

    1983-01-01

    A second-order phase transition in SrCl 2 near 1000 K produces superionic conduction and is often called the Bredig transition. Fine-grained, 99% dense, SrCl 2 samples containing three volume percent TiO 2 to reduce radiant transport were used to measure the differential thermal expansion coefficient (α) by push-rod dilatometry and the thermal conductivity (lambda) by a radial heat flow method. Both properties show maxima near the Bredig transition. The peak α-value is over 75 x 10 -6 K -1 . The data obtained from the radial heat flow method show good agreement with earlier tests at low temperatures, and the high temperature results show a local enhancement of lambda if about 0.06 W/m.K. This enhancement cannot be attributed to electronic or radiant transport, but is due to a new mechanism of thermal diffusion of vacancy-anion interstitial pairs in the superionic state

  2. Inverse transport theory of photoacoustics

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jollivet, Alexandre; Jugnon, Vincent

    2010-01-01

    We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high-frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of photons, such as the anisotropy coefficient g(x) in a Henyey–Greenstein phase function model. Finally, we derive stability estimates for the reconstructions

  3. Thermal grill-evoked sensations of heat correlate with cold pain threshold and are enhanced by menthol and cinnamaldehyde.

    Science.gov (United States)

    Averbeck, B; Rucker, F; Laubender, R P; Carr, R W

    2013-05-01

    Thunberg's thermal grill produces a sensation of strong heat upon skin contact with spatially interlaced innocuous warm and cool stimuli. To examine the classes of peripheral axons that might contribute to this illusion, the effects of topical l-menthol, an activator of TRPM8, and cinnamaldehyde, a TRPA1 agonist, on the magnitude of thermal sensations were examined during grill stimulation in healthy volunteers. Under control conditions, cutaneous grill stimulation (interlaced 20/40 °C) evoked a sensation of heat, and for individual subjects, the magnitude of this heat sensation was positively correlated with cold pain threshold (CPT). Menthol increased the CPT and enhanced the magnitude of grill-evoked heat. Cinnamaldehyde intensified warm sensations, reduced heat pain threshold and also enhanced grill-evoked heat. Both TRPM8-expressing and TRPA1-expressing afferent axons can affect grill-evoked thermal sensations. The enhancement of grill-evoked sensations of temperature with menthol and cinnamaldehyde may provide an additional clinically relevant means of testing altered thermal sensitivity, which is often affected in neuropathic patient groups. © 2012 European Federation of International Association for the Study of Pain Chapters.

  4. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  5. On the controlled isotropic shrinkage induced fine-tuning of photo-luminescence in terbium ions embedded silica inverse opal films

    Science.gov (United States)

    Shrivastava, Vishnu Prasad; Kumar, Jitendra; Sivakumar, Sri

    2017-12-01

    Tb3+ embedded silica inverse opal structures with different photonic stop bands have been fabricated by annealing the SiO2-polystyrene spheres (diameter 390 nm) opal template at 320-650 oC. The PSB tuning realized in the wavelength range 498 - 600 nm is shown to depend on annealing temperature and impending isotropic shrinkage of silica matrix. The impact of wide PSB shift on four Tb3+ ion emission bands (blue, green, yellow, and red at 486, 545, 580, and 620 nm, respectively) corresponding to 5D4→7Fj (j = 6,5,4,3) transitions have been investigated. The effect amounts to significant suppression of emission bands at 586, 545 and 486 nm in inverse opals, obtained by annealing opal template at 350, 400, and 650 oC, respectively. Further, luminescence lifetime of Tb3+ ion 5D4 state increases with shrinkage induced in inverse opal progressively and get enhanced up to 2.3 times vis-à-vis reference silica. The changes in refractive index caused by thermal annealing of opal template is found to be responsible for the observed improvement in 5D4 state lifetime.

  6. THE EFFECT OF IMAGE ENHANCEMENT METHODS DURING FEATURE DETECTION AND MATCHING OF THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    O. Akcay

    2017-05-01

    Full Text Available A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER and Speeded Up Robust Features (SURF algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.

  7. Conjugate heat transfer analysis of an energy conversion device with an updated numerical model obtained through inverse identification

    International Nuclear Information System (INIS)

    Hey, Jonathan; Malloy, Adam C.; Martinez-Botas, Ricardo; Lamperth, Michael

    2015-01-01

    Highlights: • Conjugate heat transfer analysis of an electric machine. • Inverse identification method for estimating the model parameters. • Experimentally determined thermal properties and electromagnetic losses. • Coupling of inverse identification method with a numerical model. • Improved modeling accuracy through introduction of interface material. - Abstract: Energy conversion devices undergo thermal loading during their operation as a result of inefficiencies in the energy conversion process. This will eventually lead to degradation and possible failure of the device if the heat generated is not properly managed. The ability to accurately predict the thermal behavior of such a device during the initial developmental stage is an important requirement. However, accurate predictions of critical temperature is challenging due to the variation of heat transfer parameters from one device to another. The ability to determine the model parameters is key to accurately representing the heat transfer in such a device. This paper presents the use of an inverse identification technique to estimate the model parameters of an energy conversion device designed for vehicular applications. To simulate the imperfect contact and the presence of insulating materials in the permanent magnet electric machine, thin material are introduced at the component interface of the numerical model. The proposed inverse identification method is used to estimate the equivalent thermal conductance of the thin material. In addition, the electromagnetic losses generated in the permanent magnet is also derived indirectly from the temperature measurement using the same method. With the thermal properties and input parameters of the numerical model obtained from the inverse identification method, the critical temperature of the device can be predicted more accurately. The deviation between the maximum measured and predicted winding temperature is less than 2.4%

  8. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-06-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity ( k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  9. Thermal conductivity enhancements and viscosity properties of water based Nanofluid containing carbon nanotubes decorated with ag nanoparticles

    Science.gov (United States)

    Gu, Yanni; Xu, Sheng; Wu, Xiaoshan

    2018-01-01

    The water based nanofluid containing carbon nanotube (CNT) decorated with Ag nanoparticles (Ag/CNT) is prepared. Its thermal conductivity (k) enhancement increases with the thermal filler loading and the decoration quantity of Ag nanoparticles. The low absolute CNT content will decrease the tangles or aggregations among the CNTs, and it will be good at the Brownian motion of CNTs in the water. It has positive effects on the thermal conductivity of nanofluid. With the increase of Ag loading, the average size of Ag nanoparticles increased, and further results in the decrease of dispersing amount of Ag/CNT as the weight of Ag/CNT is fixed. Little dispersing quantity of Ag/CNT makes it possible that the Ag/CNT particles disperse well in the fluid. So it is not easy for CNTs to form aggregation. The high intrinsic k of CNT and the effective thermal conductive networks forming by CNTs and Ag nanoparticles are good at the k enhancement. With temperature increase the k of Ag/CNT nanofluid appears improvement. The study results make it possible to develop high-efficiency nanofluid for advanced thermal management regions.

  10. Thermal and Field Enhanced Photoemission Comparison of Theory to Experiment

    CERN Document Server

    Lynn-Jensen, Kevin

    2004-01-01

    Photocathodes are a critical component of high-gain FEL’s and the analysis of their emission is complex. Relating their performance under laboratory conditions to conditions of an rf photoinjector is difficult. Useful models must account for cathode surface conditions and material properties, as well as drive laser parameters. We have developed a time-dependent model accounting for the effects of laser heating and thermal propagation on photoemission. It accounts for surface conditions (coating, field enhancement, reflectivity), laser parameters (duration, intensity, wavelength), and material characteristics (reflectivity, laser penetration depth, scattering rates) to predict current distribution and quantum efficiency. The applicatIon will focus on photoemission from metals and, in particular, dispenser photocathodes: the later introduces complications such as coverage non-uniformity and field enhancement. The performance of experimentally characterized photocathodes will be extrapolated to 0.1 - 1 nC bunch...

  11. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    Science.gov (United States)

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guo-Ping; Hou, Xinmei; Chou, Kuo-Chih

    2018-06-04

    In this paper, the fabrication and thermal conductivity of water-based nanofluids using boron (B) doped SiC as dispersions are reported. Doping B into β-SiC phase leads to the shrinkage of SiC lattice due to the substitution of Si atoms (radius: 0.134 nm) by smaller B atoms (radius: 0.095 nm). The presence of B in SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B doped SiC nanoparticles are beneficial for the thermal conductivity improvement of the nanofluids by using them as dispersions. Serving B doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement of the stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. Dispersing B doped SiC nanoparticles in water based fluids, the thermal conductivity of the as prepared nanofluids containing only 0.3 vol. % SiC-B6 nanoparticles is remarkably raised up to 39.3 % at 30 °C compared to the base fluids and is further enhanced with the increased temperature. The main reasons for the improvement of thermal conductivity of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced thermal conductivity of the SiC-B dispersions. © 2018 IOP Publishing Ltd.

  12. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  13. Enhanced bioremediation as a cost effective approach following thermally enhanced soil vapour extraction for sites requiring remediation of chlorinated solvents - 16296

    International Nuclear Information System (INIS)

    Kozlowska, Anna-Maria; Kahlon, Manjit S.; Langford, Steve R.; Williams, Haydn G.

    2009-01-01

    Thermally enhanced bioremediation can be a more cost-effective alternative to full scale in-situ thermal treatment especially for sites contaminated with chlorinated solvents, where reductive dechlorination is or might be a dominant biological step. The effect of Thermally Enhanced Soil Vapour Extraction (TESVE) on indigenous microbial communities and the potential for subsequent biological polishing of chlorinated solvents was investigated in field trials at the Western Storage Area (WSA) - RSRL (formerly United Kingdom Atomic Energy Authority - UKAEA) Oxfordshire, UK. The WSA site had been contaminated with various chemicals including mineral oil, chloroform, trichloroethane (TCA), carbon tetrachloride and tetrachloroethene (PCE). The contamination had affected the unsaturated zone, groundwater in the chalk aquifer and was a continuing source of groundwater contamination below the WSA. During TESVE the target treatment zone was heated to above the boiling point of water increasing the degree of volatilization of contaminants of concern (CoC), which were mobilised and extracted in the vapour phase. A significant reduction of concentrations of chlorinated solvent in the unsaturated zone was achieved by the full-scale application of TESVE - In Situ Thermal Desorption (ISTD) technology. The rock mass temperature within target treatment zone remained in the range of 35 deg. - 44 deg. C, 6 months after cessation of heating. The concentration of chlorinated ethenes and other CoC were found to be significantly lower adjacent to the thermal treatment area and 1 to 2 orders of magnitude lower within the thermal treatment zone. Samples were collected within and outside the thermal treatment zone using BioTraps R (passive, in- situ microbial samplers) from which the numbers of specific bacteria were measured using quantitative polymerase chain reaction (qPCR) methods of analysis. High populations of reductive de-chlorinators such as Dechalococcoides spp. and Dehalobacter spp

  14. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  15. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  16. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  17. Macroporous Inverse Opal-like MoxC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution.

    Science.gov (United States)

    Li, Feng; Zhao, Xianglong; Mahmood, Javeed; Okyay, Mahmut Sait; Jung, Sun-Min; Ahmad, Ishfaq; Kim, Seok-Jin; Han, Gao-Feng; Park, Noejung; Baek, Jong-Beom

    2017-07-25

    The hydrogen evolution reaction (HER) is one of the most important pathways for producing pure and clean hydrogen. Although platinum (Pt) is the most efficient HER electrocatalyst, its practical application is significantly hindered by high-cost and scarcity. In this work, an Mo x C with incorporated Mo vacancies and macroporous inverse opal-like (IOL) structure (Mo x C-IOL) was synthesized and studied as a low-cost efficient HER electrocatalyst. The macroporous IOL structure was controllably fabricated using a facile-hard template strategy. As a result of the combined benefits of the Mo vacancies and structural advantages, including appropriate hydrogen binding energy, large exposed surface, robust IOL structure and fast mass/charge transport, the synthesized Mo x C-IOL exhibited significantly enhanced HER electrocatalytic performance with good stability, with performance comparable or superior to Pt wire in both acidic and alkaline solutions.

  18. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  19. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors

    Science.gov (United States)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.

    2017-08-01

    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  20. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    Science.gov (United States)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  1. All-dry transferred single- and few-layer MoS2 field effect transistor with enhanced performance by thermal annealing

    Science.gov (United States)

    Islam, Arnob; Lee, Jaesung; Feng, Philip X.-L.

    2018-01-01

    We report on the experimental demonstration of all-dry stamp transferred single- and few-layer (1L to 3L) molybdenum disulfide (MoS2) field effect transistors (FETs), with a significant enhancement of device performance by employing thermal annealing in moderate vacuum. Three orders of magnitude reduction in both contact and channel resistances have been attained via thermal annealing. We obtain a low contact resistance of 22 kΩ μm after thermal annealing of 1L MoS2 FETs stamp-transferred onto gold (Au) contact electrodes. Furthermore, nearly two orders of magnitude enhancement of field effect mobility are also observed after thermal annealing. Finally, we employ Raman and photoluminescence measurements to reveal the phenomena of alloying or hybridization between 1L MoS2 and its contacting electrodes during annealing, which is responsible for attaining the low contact resistance.

  2. arXiv Dynamics of Finite-Temperature CFTs from OPE Inversion Formulas

    CERN Document Server

    Petkou, Anastasios C.

    We apply the OPE inversion formula to thermal two-point functions of bosonic and fermionic CFTs in general odd dimensions. This allows us to analyze in detail the operator spectrum of these theories. We find that nontrivial thermal CFTs arise when the thermal mass satisfies an algebraic transcendental equation that ensures the absence of an infinite set of operators from the spectrum. The solutions of these gap equations for general odd dimensions are in general complex numbers and follow a particular pattern. We argue that this pattern unveils the large-$N$ vacuum structure of the corresponding theories at zero temperature.

  3. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation.

    Science.gov (United States)

    Graja, S; Chauzy, J; Fernandes, P; Patria, L; Cretenot, D

    2005-01-01

    The objective of the study presented here was to investigate the performance of an enhanced two-step anaerobic process for the treatment of WWTP sludge. This process was developed to answer the urgent need currently faced by WWTP operators to reduce the production of biosolids, for which disposal pathways are facing increasing difficulties. A pilot plant was operated on a full-scale WWTP (2,500 p.e.) over a period of 4 months. It consisted of a thermal pre-treatment of excess sludge at 175 degrees C and 40 min, followed by dewatering and methanisation of the centrate in a fixed-film reactor. The thermal lysis had a two-fold enhancing effect on sludge reduction efficiency: firstly, it allowed a decrease of the HRT in the methaniser to 2.9 days and secondly, it yielded biosolids with a high dewaterability. This contributed to further reductions in the final volume of sludge to be disposed of. The two-step process achieved a sludge reduction efficiency of 65% as TSS, thus giving an interesting treatment option for WWTP facing sludge disposal problems.

  4. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  5. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  6. Inverse geothermal modelling applied to Danish sedimentary basins

    Science.gov (United States)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  7. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  8. Enhanced thermo-spin effects in iron-oxide/metal multilayers

    Science.gov (United States)

    Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Uchida, K.; Saitoh, E.; Ibarra, M. R.

    2018-06-01

    Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.

  9. Inverse photoemission

    International Nuclear Information System (INIS)

    Namatame, Hirofumi; Taniguchi, Masaki

    1994-01-01

    Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)

  10. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  12. Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Hui; Fu, Yanqing [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Li, Guojian; Liu, Tie [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Cui, Weibin, E-mail: cuiweibin@epm.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Liu, Wei; Zhang, Zhidong [Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    A proposed Nd{sub 2}Fe{sub 14}B-core/Nd{sub 2}(Fe, Co){sub 14}B-shell microstructure was realized by diffusion-processing textured Nd{sub 14}Fe{sub 77}B{sub 9} single-layer film with Nd{sub 100−x}Co{sub x} (x=10, 20 and 40) alloys to improve the coercivity thermal stability. The ambient coercivity was increased from around 1 T in single-layer film to nearly 2 T in diffusion-processed films, which was due to the Nd-rich grain boundaries as seen from transmission electron microscopy (TEM) images. The coercivity thermal stability was improved by the core/shell microstructure because Nd-rich grain boundaries provided the high ambient coercivity and Co-rich shell provided the improved coercivity stability. - Highlights: • Core–shell microstructure proposed for enhancing the coercivity thermal stability. • Coercivity enhanced to nearly 2 T by diffusion-processing with Nd–Co alloy. • Good squareness and highly textured microstructure obtained. • Nd-rich phases observed by TEM after diffusion process. • Coercivity thermal stability improved with minor Co addition in grain boundary regions.

  13. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  14. Luminescence and scintillation enhancement of Y2O3:Tm transparent ceramic through post-fabrication thermal processing

    International Nuclear Information System (INIS)

    Chapman, M.G.; Marchewka, M.R.; Roberts, S.A.; Schmitt, J.M.; McMillen, C.; Kucera, C.J.; DeVol, T.A.; Ballato, J.; Jacobsohn, L.G.

    2015-01-01

    The effects of post-fabrication thermal processing in O 2 flux on the luminescence and scintillation of a Y 2 O 3 :Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y 2 O 3 :Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y 2 O 3 :Tm above room temperature. • Observation of correlation between TL and scintillation light yield results

  15. Decreasing the Thermal Load on the Environment with the Help of Thermal Pumps in the Sewage Treatment System

    Science.gov (United States)

    Lozovetskii, V. V.; Lebedev, V. V.; Cherkina, V. M.; Ivanchuk, M. S.

    2018-05-01

    We propose designs for practical use of residual heat of sewage by means of thermal-pump transformation of thermal energy in plants operating on inverse Rankine and Lorentz cycles, as well as a method for sewage heat removal in drainage canals of water removal systems based on the application of double-pipe heat exchangers known as Field tubes.

  16. Modulating light propagation in ZnO-Cu₂O-inverse opal solar cells for enhanced photocurrents.

    Science.gov (United States)

    Yantara, Natalia; Pham, Thi Thu Trang; Boix, Pablo P; Mathews, Nripan

    2015-09-07

    The advantages of employing an interconnected periodic ZnO morphology, i.e. an inverse opal structure, in electrodeposited ZnO/Cu2O devices are presented. The solar cells are fabricated using low cost solution based methods such as spin coating and electrodeposition. The impact of inverse opal geometry, mainly the diameter and thickness, is scrutinized. By employing 3 layers of an inverse opal structure with a 300 nm pore diameter, higher short circuit photocurrents (∼84% improvement) are observed; however the open circuit voltages decrease with increasing interfacial area. Optical simulation using a finite difference time domain method shows that the inverse opal structure modulates light propagation within the devices such that more photons are absorbed close to the ZnO/Cu2O junction. This increases the collection probability resulting in improved short circuit currents.

  17. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  18. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibing; Wang, Jun; Wang, Yan

    2012-01-01

    Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability. -- Highlights: ► GnPs were employed to simultaneously enhance the k and σ of organic FSPCMs. ► PEG/PMMA/GnPs composite FSPCMs were prepared by in situ polymerization method. ► The composite FSPCMs exhibited well package and self-supporting properties. ► GnPs additives effectively enhanced the k and σ of composite FSPCMs. ► All the composites possessed available thermal storage density and thermal stability.

  19. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  20. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity

    Science.gov (United States)

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells. PMID:24648728

  1. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.

    Science.gov (United States)

    Bhattacharya, Soumya; Dhar, Purbarun; Das, Sarit K; Ganguly, Ranjan; Webster, Thomas J; Nayar, Suprabha

    2014-01-01

    In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed "biomimetic". Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.

  2. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  3. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  4. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Directory of Open Access Journals (Sweden)

    Shanguo Zhao

    2018-01-01

    Full Text Available The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  5. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  6. Application of Extreme Learning Machines to inverse neutron kinetics

    International Nuclear Information System (INIS)

    Picca, Paolo; Furfaro, Roberto

    2017-01-01

    Highlights: • The paper applies the Extreme Learning Machines (ELMs) to inverse reactor problems. • Multi-group transport model is used for the inversion as opposed to point kinetics. • ELMs are compared against Artificial Neural Networks (ANNs). • Various options are tested to improve the reliability of the estimation. • Results highlight the potential of the ELM approach. - Abstract: The paper presents the application of Extreme Leaning Machines (ELMs) for inverse reactor kinetic applications. ELMs were proposed by Huang and co-workers (2004, 2006a,b, 2015), which showed their enhances capabilities in terms of training speed and generalization with respect to classical Artificial Neural Networks (ANNs). ELMs are here implemented for reactivity determination as an alternative to ANNs (e.g. Picca et al. (2008)) and Gaussian Processes (Picca and Furfaro, 2012). After a review of the main features of ELMs, their application to inverse kinetic problems is proposed. The ELMs performance is tested on a typical accelerator drive system configuration (Yalina reactor) and the inversion is carried out on an accurate kinetic model (multi-group transport).

  7. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    Science.gov (United States)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  8. Indium oxide inverse opal films synthesized by structure replication method

    Science.gov (United States)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  9. Angle dependence in slow photon photocatalysis using TiO2 inverse opals

    Science.gov (United States)

    Curti, Mariano; Zvitco, Gonzalo; Grela, María Alejandra; Mendive, Cecilia B.

    2018-03-01

    The slow photon effect was studied by means of the photocatalytic degradation of stearic acid over TiO2 inverse opals. The comparison of the degradation rates over inverse opals with those obtained over disordered structures at different irradiation angles showed that the irradiation at the blue edge of the stopband leads to the activation of the effect, evidenced by an improvement factor of 1.8 ± 0.6 in the reaction rate for irradiation at 40°. The rigorous coupled-wave analysis (RCWA) method was employed to confirm the source of the enhancement; simulated spectra showed an enhancement in the absorption of the TiO2 matrix that composes the inverse opal at a 40° irradiation angle, owing to an appropriate position of the stopband in relation to the absorption onset of TiO2.

  10. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    Science.gov (United States)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  11. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  12. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  13. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    International Nuclear Information System (INIS)

    Aarssen, Laura Gusta van den

    2013-04-01

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of ΛCDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity profiles of

  14. Thermal evolution and small scale structure of Sommerfeld enhanced dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aarssen, Laura Gusta van den

    2013-04-15

    Although the existence of Dark Matter (DM) has been confirmed by many independent observations on various scales, its nature still remains a mystery. Leading candidates for the cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well motivated from particle physics and naturally explain the observed relic density by their thermal production mechanism. In this thesis we focus on a particular class of WIMP models in which the Sommerfeld effect has to be taken into account. This is a quantum mechanical phenomenon that can significantly enhance the annihilation cross section in the non-relativistic limit. To describe the non-perturbative effect, we use a non-relativistic effective field theory derived from the full quantum field theory. We include a detailed discussion of the calculation for the righthanded sneutrino, which is the superpartner of the neutrino and a viable DM candidate. The Sommerfeld enhancement can have a profound influence on the thermal evolution of the DM, which can no longer be described by the standard scenario. We introduce a framework to correctly take this effect into account and apply it to a simple leptophilic DM model. A new era of annihilations can decrease the DM density even after usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large, even continue until after matter-radiation equality. The effect on the asymptotic WIMP temperature, which can be directly related to a small scale cutoff in the matter density fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than expected from standard calculations. Furthermore we study the effect of velocity dependent DM self-scattering in relation to the small scale structure formation. Numerical simulations of {Lambda}CDM have shown a remarkable agreement with the large scale structure of the Universe. However, the simulations are in tension with observed abundances, inner densities and velocity

  15. Detection of hepatic VX2 tumors in rabbits: comparison of conventional US and phase- inversion harmonic US during the liver- specific late phase of contrast enhancement

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Youk, Ji Hyun; Lee, Young Hwan; Kim, Young Kon; Kim, Chong Soo; Li, Chun Ai

    2003-01-01

    To compare phase-inversion sonography during the liver-specific phase of contrast enhancement using a microbubble contrast agent with conventional B-mode sonography for the detection of VX2 liver tumors. Twenty-three rabbits, 18 of which had VX2 liver tumor implants, received a bolus injection of 0.6 g of Levovist (200 mg/ml). During the liver-specific phase of this agent, they were evaluated using both conventional sonography and contrast-enhanced phase-inversion harmonic imaging (CEPIHI). Following sacrifice of the animals, pathologic analysis was performed and the reference standard thus obtained. The conspicuity, size and number of the tumors before and after contrast administration, as determined by a sonographer, were compared between the two modes and with the pathologic findings. CE-PIHI demonstrated marked hepatic parenchymal enhancement in all rabbits. For VX2 tumors detected at both conventional US and CE- PIHI, conspicuity was improved by contrast-enhanced PIHI. On examination of gross specimens, 52 VX2 tumors were identified. Conventional US correctly detected 18 of the 52 (34.6%), while PIHI detected 35 (67.3%) (p < 0.05). In particular, conventional US detected only three (8.3%) of the 36 tumors less than 10 mm in diameter, but CE-PIHI detected 19 such tumors (52.8%) (p < 0.05). Compared to conventional sonography, PIHI performed during the liver-specific phase after intravenous injection of Levovist is markedly better at detecting VX2 liver tumors

  16. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Science.gov (United States)

    F. Deng; J.M. Chen; Y. Pan; W. Peters; R. Birdsey; K. McCullough; J. Xiao

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2...

  17. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  19. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    Science.gov (United States)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  20. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    International Nuclear Information System (INIS)

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Toulhoat, Nelly; Barthe, Marie France; Desgardin, Pierre; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-01-01

    Chlorine is present as an impurity in the UO 2 nuclear fuel. 35 Cl is activated into 36 Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragments or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the 36 Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, 37 Cl has been implanted into sintered depleted UO 2 pellets (mean grain size around 18 μm). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of 37 Cl implanted UO 2 pellets (implantation fluence of 10 13 ions.cm -2 ) show that it is mobile from temperatures as low as 1273 K (E a =4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E a =0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10 -14 cm 2 .s -1 ). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L=(Dt)1/2, the diffusion distance after 3 years is L=17 μm. It results that

  1. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  2. Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation

    Science.gov (United States)

    Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...

  3. Line-breaking algorithm enhancement in inverse typesetting paradigma

    Directory of Open Access Journals (Sweden)

    Jan Přichystal

    2007-01-01

    Full Text Available High quality text preparing using computer desktop publishing systems usually uses line-breaking algorithm which cannot make provision for line heights and typeset paragraph accurately when composition width, page break, line index or other object appears. This article deals with enhancing of line-breaking algorithm based on optimum-fit algorithm. This algorithm is enhanced with calculation of immediate typesetting width and thus solves problem of forced change. Line-breaking algorithm enhancement causes expansion potentialities of high-quality typesetting in cases that have not been yet covered with present typesetting systems.

  4. Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement

    Science.gov (United States)

    Vinod, Sithara; Philip, John

    2017-12-01

    Magnetic nanofluids or ferrofluids exhibit extraordinary field dependant tunable thermal conductivity (k), which make them potential candidates for microelectronic cooling applications. However, the associated viscosity enhancement under an external stimulus is undesirable for practical applications. Further, the exact mechanism of heat transport and the role of field induced nanostructures on thermal transport is not clearly understood. In this paper, through systematic thermal, rheological and microscopic studies in 'model ferrofluids', we demonstrate for the first time, the conditions to achieve very high thermal conductivity to viscosity ratio. Highly stable ferrofluids with similar crystallite size, base fluid, capping agent and magnetic properties, but with slightly different size distributions, are synthesized and characterized by X-ray diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometer, Fourier transform infrared spectroscopy and thermo-gravimetry. The average hydrodynamic diameters of the particles were 11.7 and 10.1 nm and the polydispersity indices (σ), were 0.226 and 0.151, respectively. We observe that the system with smaller polydispersity (σ = 0.151) gives larger k enhancement (130% for 150 G) as compared to the one with σ = 0.226 (73% for 80 G). Further, our results show that dispersions without larger aggregates and with high density interfacial capping (with surfactant) can provide very high enhancement in thermal conductivity, with insignificant viscosity enhancement, due to minimal interfacial losses. We also provide experimental evidence for the effective heat conduction (parallel mode) through a large number of space filling linear aggregates with high aspect ratio. Microscopic studies reveal that the larger particles act as nucleating sites and facilitate lateral aggregation (zippering) of linear chains that considerably reduces the number density of space

  5. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar [SGRR Institute of Medical and Health Sciences, Patel Nagar, Dehradun (India)

    2017-11-15

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.

  6. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    International Nuclear Information System (INIS)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar

    2017-01-01

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol

  7. Inverse Faraday effect with plasmon beams

    International Nuclear Information System (INIS)

    Ali, S; Mendonca, J T

    2011-01-01

    The angular momentum conservation equation is considered for an electron gas, in the presence of Laguerre-Gaussian (LG) plasmons propagating along the z-axis. The LG plasmons carry a finite orbital angular momentum despite longitudinal nature, which can be partly transfered to the electrons. For short timescales, such that ion motion can be neglected, plasmons primarily interact with the electrons, creating an azimuthal electric field and generating an axial magnetic field. This effect can be called an inverse Faraday effect due to plasmons. Numerically, it is found that the magnitude of the magnetic field enhances with the plasmon density or with the energy of the electron plasma waves. A comparison of the magnitudes of the axial magnetic field is made for the inverse Faraday effect excited by both plasmons and transverse photons.

  8. Contributions of an adiabatic initial inversion pulse and K-space Re-ordered by inversion-time at each slice position (KRISP) to control of CSF artifacts and visualization of the brain in FLAIR magnetic resonance imaging

    International Nuclear Information System (INIS)

    Curati, Walter L.; Oatridge, Angela; Herlihy, Amy H.; Hajnal, Joseph V.; Puri, Basant K.; Bydder, Graeme M.

    2001-01-01

    AIM: The aim of this study was to compare the performance of three fluid attenuated inversion recovery (FLAIR) pulse sequences for control of cerebrospinal fluid (CSF) and blood flow artifacts in imaging of the brain. The first of these sequences had an initial sinc inversion pulse which was followed by conventional k-space mapping. The second had an initial sinc inversion pulse followed by k-space re-ordered by inversion time at each slice position (KRISP) and the third had an adiabatic initial inversion pulse followed by KRISP. MATERIALS AND METHODS: Ten patients with established disease were studied with all three pulse sequences. Seven were also studied with the adiabatic KRISP sequence after contrast enhancement. Their images were evaluated for patient motion artifact, CSF and blood flow artifact as well as conspicuity of the cortex, meninges, ventricular system, brainstem and cerebellum. The conspicuity of lesions and the degree of enhancement were also evaluated. RESULTS: Both the sinc and adiabatic KRISP FLAIR sequences showed better control of CSF and blood flow artifacts than the conventional FLAIR sequence. In addition the adiabatic KRISP FLAIR sequence showed better control of CSF artifact at the inferior aspect of the posterior fossa. The lesion conspicuity was similar for each of the FLAIR sequences as was the degree of contrast enhancement to that shown with a T 1 weighted spin echo sequence. CONCLUSION: The KRISP FLAIR sequence controls high signal artifacts from CSF flow and blood flow and the adiabatic pulse controls high signal artifacts due to inadequate inversion of the CSF magnetization at the periphery of the head transmitter coil. The KRISP FLAIR sequence also improves cortical and meningeal definition as a result of an edge enhancement effect. The effects are synergistic and can be usefully combined in a single pulse sequence. Curati, W.L. et al. (2001)

  9. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  10. Enhanced interfacial Dzyaloshinskii-Moriya interaction and isolated skyrmions in the inversion-symmetry-broken Ru/Co/W/Ru films

    Science.gov (United States)

    Samardak, Alexander; Kolesnikov, Alexander; Stebliy, Maksim; Chebotkevich, Ludmila; Sadovnikov, Alexandr; Nikitov, Sergei; Talapatra, Abhishek; Mohanty, Jyoti; Ognev, Alexey

    2018-05-01

    An enhancement of the spin-orbit effects arising on an interface between a ferromagnet (FM) and a heavy metal (HM) is possible through the strong breaking of the structural inversion symmetry in the layered films. Here, we show that an introduction of an ultrathin W interlayer between Co and Ru in Ru/Co/Ru films enables to preserve perpendicular magnetic anisotropy (PMA) and simultaneously induce a large interfacial Dzyaloshinskii-Moriya interaction (iDMI). The study of the spin-wave propagation in the Damon-Eshbach geometry by Brillouin light scattering spectroscopy reveals the drastic increase in the iDMI value with the increase in W thickness (tW). The maximum iDMI of -3.1 erg/cm2 is observed for tW = 0.24 nm, which is 10 times larger than for the quasi-symmetrical Ru/Co/Ru films. We demonstrate the evidence of the spontaneous field-driven nucleation of isolated skyrmions supported by micromagnetic simulations. Magnetic force microscopy measurements reveal the existence of sub-100-nm skyrmions in the zero magnetic field. The ability to simultaneously control the strength of PMA and iDMI in quasi-symmetrical HM/FM/HM trilayer systems through the interface engineered inversion asymmetry at the nanoscale excites new fundamental and practical interest in ultrathin ferromagnets, which are a potential host for stable magnetic skyrmions.

  11. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond.

    Science.gov (United States)

    Song, Na; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-11-22

    High thermal conductive nanofibrillated cellulose (NFC) hybrid films based on nanodiamond (ND) were fabricated by a facile vacuum filtration technique. In this issue, the thermal conductivity (TC) on the in-plane direction of the NFC/ND hybrid film had a significant enhancement of 775.2% at a comparatively low ND content (0.5 wt %). The NFC not only helps ND to disperse in the aqueous medium stably but also plays a positive role in the formation of the hierarchical structure. ND could form a thermal conductive pathway in the hierarchical structures under the intermolecular hydrogen bonds. Moreover, the hybrid films composed of zero-dimensional ND and one-dimensional NFC exhibit remarkable mechanical properties and optical transparency. The NFC/ND hybrid films possessing superior TC, mechanical properties, and optical transparency can open applications for portable electronic equipment as a lateral heat spreader.

  12. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; RameshBabu, V.; Chandramohan, P.

    relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column...

  13. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model

    International Nuclear Information System (INIS)

    Yu, W; Choi, S.U.S.

    2004-01-01

    We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton--Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity

  14. Thermal gravitational waves in accelerating universe

    Directory of Open Access Journals (Sweden)

    B Ghayour

    2013-10-01

    Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out

  15. Heat flux estimation in an infrared experimental furnace using an inverse method

    International Nuclear Information System (INIS)

    Le Bideau, P.; Ploteau, J.P.; Glouannec, P.

    2009-01-01

    Infrared emitters are widely used in industrial furnaces for thermal treatment. In these processes, the knowledge of the incident heat flux on the surface of the product is a primary step to optimise the command emitters and for maintenance shift. For these reasons, it is necessary to develop autonomous flux meters that could provide an answer to these requirements. These sensors must give an in-line distribution of infrared irradiation in the tunnel furnace and must be able to measure high heat flux in severe thermal environments. In this paper we present a method for in-line assessments solving an inverse heat conduction problem. A metallic mass is instrumented by thermocouples and an inverse method allows the incident heat flux to be estimated. In the first part, attention is focused on a new design tool, which is a numerical code, for the evaluation of potential options during captor conception. In the second part we present the realization and the test of this 'indirect' flux meter and its associated inverse problem. 'Direct' detectors based on thermoelectric devices are compared with this new flux meter in the same conditions in the same furnace. Results prove that this technique is a reliable method, appropriate for high temperature ambiances. This technique can be applied to furnaces where the heat flux is inaccessible to 'direct' measurements.

  16. Angle-domain inverse scattering migration/inversion in isotropic media

    Science.gov (United States)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  17. Protein-based inverse opals: A novel support for enzyme immobilization.

    Science.gov (United States)

    Jiang, Yanjun; Sun, Wenya; Wang, Yaping; Wang, Lihui; Zhou, Liya; Gao, Jing; He, Ying; Ma, Li; Zhang, Xu

    2017-01-01

    In this study, protein-based inverse opals were prepared for the first time by using the colloidal crystal templating method. The preparation process involved three steps including filling the templates with protein molecules, crosslinking, and template removal. The obtained inverse opals were used to immobilize Penicillin G acylase (PGA) because of its intrinsic biocompatible property. The immobilization process was optimized and the properties of the immobilized PGA (PGA@IO) were investigated. PGA@IO exhibited improved thermal and pH stability compared with its free counterpart. After reusing nine times, it retained 70% of the initial activity. Besides, the PGA@IO retained high activity during the hydrolysis reactions in continuous catalysis in packed-bed reactor (PBR) after 15 days. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    International Nuclear Information System (INIS)

    Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima

    2016-01-01

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  19. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    Energy Technology Data Exchange (ETDEWEB)

    Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti; Rashidin, Reyima [School of Physics Science and Technology, Xinjiang University, Urumqi 830046 (China)

    2016-08-15

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  20. Numerical investigation of the inverse blackbody radiation problem

    International Nuclear Information System (INIS)

    Xin Tan, Guo-zhen Yang, Ben-yuan Gu

    1994-01-01

    A numerical algorithm for the inverse blackbody radiation problem, which is the determination of the temperature distribution of a thermal radiator (TDTR) from its total radiated power spectrum (TRPS), is presented, based on the general theory of amplitude-phase retrieval. With application of this new algorithm, the ill-posed nature of the Fredholm equation of the first kind can be largely overcome and a convergent solution to high accuracy can be obtained. By incorporation of the hybrid input-output algorithm into our algorithm, the convergent process can be substantially expedited and the stagnation problem of the solution can be averted. From model calculations it is found that the new algorithm can also provide a robust reconstruction of the TDTR from the noise-corrupted data of the TRPS. Therefore the new algorithm may offer a useful approach to solving the ill-posed inverse problem. 18 refs., 9 figs

  1. Luminescence and scintillation enhancement of Y{sub 2}O{sub 3}:Tm transparent ceramic through post-fabrication thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, M.G.; Marchewka, M.R. [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); Roberts, S.A.; Schmitt, J.M. [COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); McMillen, C. [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Kucera, C.J. [COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); DeVol, T.A. [Environmental Engineering and Earth Sciences Department, Clemson University, Clemson, SC 29625 (United States); Ballato, J. [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); Jacobsohn, L.G., E-mail: luiz@clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States)

    2015-09-15

    The effects of post-fabrication thermal processing in O{sub 2} flux on the luminescence and scintillation of a Y{sub 2}O{sub 3}:Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y{sub 2}O{sub 3}:Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y{sub 2}O{sub 3}:Tm above room temperature. • Observation of correlation between TL and scintillation light yield results.

  2. Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings

    International Nuclear Information System (INIS)

    Apostolaki, Angeliki; Kalosakas, George

    2011-01-01

    We mapped promoter regions of double-stranded DNA with respect to the probabilities of appearance of relatively large bubble openings exclusively due to thermal fluctuations at physiological temperatures. We analyzed five well-studied promoter regions of procaryotic type and found a spatial correlation between the binding sites of transcription factors and the position of peaks in the probability pattern of large thermal openings. Other distinct peaks of the calculated patterns correlate with potential binding sites of DNA-binding proteins. These results suggest that a DNA molecule would more frequently expose the bases that participate in contacts with proteins, which would probably enhance the probability of the latter to reach their targets. It also stands for using this method as a means to analyze DNA sequences based on their intrinsic thermal properties

  3. Studies of thermal annealing and dope composition on the enhancement of separation performance cellulose acetate membrane for brackish water treatment from Jepara

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-08-01

    Full Text Available Membrane is an alternative technology of water treatment with filtration principle that is being widely developed and used for water treatment. The main objective of this study was to make an asymmetric membrane using cellulose acetate polymer and study the effect of additive and annealing treatment on the morphology structure and performance of cellulose acetate membranes in brackish water treatment. Asymmetric membranes for brackish water treatment were casted using a casting machine process from dope solutions containing cellulose acetates and acetone as a solvent. Membranes was prepared by phase inversion method  with variation of polyethylene glycol (PEG concentration of 1 and 5 wt% and with thermal annealing at 60 oC in 10 seconds and without thermal annealing behavior. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed from Jepara. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The more added concentration of PEG will be resulted the larger pore of membrane. Meanwhile the higher temperature and the longer time of annealing treatment, the skin layer of membrane become denser. Membrane with the composition of 18 wt% cellulose acetate, 5 wt% PEG, 1 wt% distilled water, with heat treatment at temperature of 60 oC for 10 seconds is obtained optimal performance.

  4. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  5. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    Science.gov (United States)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  6. Quasiparticles in leptogenesis. A hard-thermal-loop study

    Energy Technology Data Exchange (ETDEWEB)

    Kiessig, Clemens Paul

    2011-06-29

    We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed propagators in the imaginary time formalism of thermal field theory. We perform our analysis in a leptogenesis toy model with three right-handed heavy neutrinos N{sub 1}, N{sub 2} and N{sub 3}. We consider decays and inverse decays and work in the hierarchical limit where the mass of N{sub 2} is assumed to be much larger than the mass of N{sub 1}, that is M{sub 2} >> M{sub 1}. We neglect flavour effects and assume that the temperatures are much smaller than M{sub 2} and M{sub 3}. We pay special attention to the influence of fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction, for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop lepton propagators with zero-temperature propagators, where we replace the zero-temperature mass by the thermal mass of the leptons m{sub l}(T) in one case and the asymptotic mass of the positive-helicity mode {radical}(2)m{sub l}(T) in the other case. We calculate all relevant decay rates and CP-asymmetries and solve the corresponding Boltzmann equations we derived. We compare the final lepton asymmetry of the four thermal cases and the vacuum case for three different initial neutrino abundances; zero, thermal and dominant abundance. The final asymmetries of the thermal cases differ considerably from the vacuum case and from each other in the weak washout regime for zero abundance and in the intermediate regime for dominant abundance. In the strong washout regime, where no influences from thermal corrections are commonly expected, the final lepton asymmetry can be enhanced by a factor of two by hiding part of the lepton asymmetry in the quasi-sterile minus-mode in the case of strongly interacting lepton modes. (orig.)

  7. Application of decomposition method and inverse prediction of parameters in a moving fin

    International Nuclear Information System (INIS)

    Singla, Rohit K.; Das, Ranjan

    2014-01-01

    Highlights: • Adomian decomposition is used to study a moving fin. • Effects of different parameters on the temperature and efficiency are studied. • Binary-coded GA is used to solve an inverse problem. • Sensitivity analyses of important parameters are carried out. • Measurement error up to 8% is found to be tolerable. - Abstract: The application of the Adomian decomposition method (ADM) is extended to study a conductive–convective and radiating moving fin having variable thermal conductivity. Next, through an inverse approach, ADM in conjunction with a binary-coded genetic algorithm (GA) is also applied for estimation of unknown properties in order to satisfy a given temperature distribution. ADM being one of the widely-used numerical methods for solving non-linear equations, the required temperature field has been obtained using a forward method involving ADM. In the forward problem, the temperature field and efficiency are investigated for various parameters such as convection–conduction parameter, radiation–conduction parameter, Peclet number, convection sink temperature, radiation sink temperature, and dimensionless thermal conductivity. Additionally, in the inverse problem, the effect of random measurement errors, iterative variation of parameters, sensitivity coefficients of unknown parameters are investigated. The performance of GA is compared with few other optimization methods as well as with different temperature measurement points. It is found from the present study that the results obtained from ADM are in good agreement with the results of the differential transformation method available in the literature. It is also observed that for satisfactory reconstruction of the temperature field, the measurement error should be within 8% and the temperature field is strongly dependent on the speed than thermal parameters of the moving fin

  8. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    Science.gov (United States)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  9. Inverse spiking filter based acquisition enhancement in software based global positioning system receiver

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2015-01-01

    Full Text Available The lower visibility of the satellite in the acquisition stage of a GPS receiver under worst noisy situation leads to reacquisition of the data and thereby takes a longer time to obtain the first position fix. If the impulse noise affects the GPS signal, the conventional ways of acquiring the satellites do not guarantee to meet the minimum requirement of four satellites to find the user position. The performance of GPS receiver acquisition can be improved in the low SNR level using inverse spiking filtering technique. In the proposed method, the estimate of the desired GPS L1 signal corrupted by impulse noise (gn is obtained by the prediction error filter (hopt, which is the optimum inverse filter that reshapes the noisy signal (yn into a desired GPS signal (xn. In the proposed method, to detect the visible satellites under weak signal conditions the traditional differential coherent approach is combined with the inverse spiking filter method to increase the number of visible satellites and to avoid the reacquisition process. Montecarlo simulation is carried out to assess the performance of the proposed method for C/N0 of 20 dB-Hz and results indicate that the modified differential coherent method effectively excises the noise with 90% probability of detection. Subsequently tracking operation is also tested to confirm the acquisition performance by demodulating the navigation data successfully.

  10. Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Dannemand, Mark; Kong, Weiqiang

    2015-01-01

    . The graphite powder was stabilized using carboxymetyl cellulose and successfully tested in heating and supercooling cycles with no loss of performance. Thermal conductivity enhancing properties of graphite powder was shown in samples. Since the experiments were conducted in small scale, at 200 g per sample......, large scale experiments are required to validate graphite as a thermo conductivity enhancing agent, suitable for use in seasonal heat storage applications utilizing SAT....

  11. Chromospheric Inversions of a Micro-flaring Region

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Henriques, V.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Doyle, J. G. [Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG (United Kingdom); Ray, T., E-mail: aaron.reid@qub.ac.uk [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2017-08-20

    We use spectropolarimetric observations of the Ca ii 8542 Å line, taken from the Swedish 1 m Solar Telescope, in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of ∼1000 K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5–10 km s{sup −1}. This heating also extends along a nearby chromospheric fibril, which is co-spatial to 10–15 km s{sup −1} downflows. Strong magnetic flux cancellation is also apparent in one of the footpoints, and is concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb, though placed slightly higher in the atmosphere than what is typically observed.

  12. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    NARCIS (Netherlands)

    Deng, F.; Chen, J.M.; Pan, Y.; Peters, W.; Birdsey, R.; McCullough, K.; Xiao, J.

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an

  13. Inverse Faraday Effect Revisited

    Science.gov (United States)

    Mendonça, J. T.; Ali, S.; Davies, J. R.

    2010-11-01

    The inverse Faraday effect is usually associated with circularly polarized laser beams. However, it was recently shown that it can also occur for linearly polarized radiation [1]. The quasi-static axial magnetic field by a laser beam propagating in plasma can be calculated by considering both the spin and the orbital angular momenta of the laser pulse. A net spin is present when the radiation is circularly polarized and a net orbital angular momentum is present if there is any deviation from perfect rotational symmetry. This orbital angular momentum has recently been discussed in the plasma context [2], and can give an additional contribution to the axial magnetic field, thus enhancing or reducing the inverse Faraday effect. As a result, this effect that is usually attributed to circular polarization can also be excited by linearly polarized radiation, if the incident laser propagates in a Laguerre-Gauss mode carrying a finite amount of orbital angular momentum.[4pt] [1] S. ALi, J.R. Davies and J.T. Mendonca, Phys. Rev. Lett., 105, 035001 (2010).[0pt] [2] J. T. Mendonca, B. Thidé, and H. Then, Phys. Rev. Lett. 102, 185005 (2009).

  14. GePb Alloy Growth Using Layer Inversion Method

    Science.gov (United States)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-04-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  15. GePb Alloy Growth Using Layer Inversion Method

    Science.gov (United States)

    Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.

    2018-07-01

    Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

  16. New RADIOM algorithm using inverse EOS

    Science.gov (United States)

    Busquet, Michel; Sokolov, Igor; Klapisch, Marcel

    2012-10-01

    The RADIOM model, [1-2], allows one to implement non-LTE atomic physics with a very low extra CPU cost. Although originally heuristic, RADIOM has been physically justified [3] and some accounting for auto-ionization has been included [2]. RADIOM defines an ionization temperature Tz derived from electronic density and actual electronic temperature Te. LTE databases are then queried for properties at Tz and NLTE values are derived from them. Some hydro-codes (like FAST at NRL, Ramis' MULTI, or the CRASH code at U.Mich) use inverse EOS starting from the total internal energy Etot and returning the temperature. In the NLTE case, inverse EOS requires to solve implicit relations between Te, Tz, and Etot. We shall describe these relations and an efficient solver successively implemented in some of our codes. [4pt] [1] M. Busquet, Radiation dependent ionization model for laser-created plasmas, Ph. Fluids B 5, 4191 (1993).[0pt] [2] M. Busquet, D. Colombant, M. Klapisch, D. Fyfe, J. Gardner. Improvements to the RADIOM non-LTE model, HEDP 5, 270 (2009).[0pt] [3] M.Busquet, Onset of pseudo-thermal equilibrium within configurations and super-configurations, JQSRT 99, 131 (2006)

  17. Photothermal radiometric determination of thermal diffusivity depth profiles in a dental resin

    International Nuclear Information System (INIS)

    MartInez-Torres, P; Alvarado-Gil, J J; Mandelis, A

    2010-01-01

    The depth of curing due to photopolymerization in a commercial dental resin is studied using photothermal radiometry. The sample consists of a thick layer of resin on which a thin metallic layer is deposited guaranteeing full opacity of the sample. In this case, purely thermal-wave inverse problem techniques without the interference of optical profiles can be used. Thermal profiles are obtained by heating the coating with a modulated laser beam and performing a modulation frequency scan. Before each frequency scan, photopolymerization was induced using a high power blue LED. However due to the fact that dental resins are highly light dispersive materials, the polymerization process depends strongly on the optical absorption coefficient inducing a depth dependent thermal diffusion in the sample. It is shown that using a robust depth profilometric inverse method one can reconstruct the thermal diffusivity profile of the photopolymerized resin.

  18. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    Science.gov (United States)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  19. The Swift BAT Perspective on Non-Thermal Emission in HIFLUGCS Galaxy Clusters

    Science.gov (United States)

    Wik, Daniel R.

    2011-01-01

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. Until recently, comprehensive surveys of hard X-ray emission from clusters were not possible; instead, individually proposed-for. long observations would be collated from the archive. With the advent of the Swift BAT all sky survey, any c1u,;ter's emission above 14 keV can be probed with nearly uniform sensitivity. which is comparable to that of RXTE, Beppo-SAX, and Suzaku with the 58-month version of the survey. In this work. we search for non-thermal excess emission above the exponentially decreasing, high energy thermal emission in the flux-limited HIFLUGCS sample. The BAT emission from many of the detected clusters is marginally extended; we are able to extract the total flux for these clusters using fiducial models for their spatial extent. To account for thermal emission at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both the thermal and non-thermal spectral components can be determined simultaneou,;ly in joint fits. We find marginally significant IC components in 6 clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single temperature

  20. Thermal Properties of Jojoba Oil Between 20°C and 45°C

    Science.gov (United States)

    Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.

    2017-08-01

    Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.

  1. Inversions

    Science.gov (United States)

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  2. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    Science.gov (United States)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  3. Thermal properties and heat storage analysis of palmitic acid-TiO_2 composite as nano-enhanced organic phase change material (NEOPCM)

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2016-01-01

    Highlights: • Novel composite of palmitic acid and TiO_2 nanoparticles with enhanced thermal energy storage capabilities • The composite is thermally reliable and chemically stable. • Thermal conductivity of the composite increases significantly with the loading. - Graphical Abstract: - Abstract: In the present study, the phase change behavior of prepared novel composites of palmitic acid and solid nanoparticles of titanium dioxide (TiO_2) for thermal energy storage has been investigated. The nanoparticles are dispersed into the base fluid in various mass fractions (0.5, 1, 3, and 5%), and their effects on the thermo-physical properties have been investigated. Structural analysis has been carried out by using FESEM, and crystallography was checked by XRD technique. The chemical/functional groups of the base fluid and composite PCMs have been analyzed by using FT-IR spectrum. The observations showed that the TiO_2 nanoparticles do not affect the chemical structure of palmitic acid; however they improve the chemical stability. The phase transition temperature and latent heat of fusion has shown the significant stability with the increase in nanoparticle weight fractions. The accelerated thermal cycle test of the composite shows good thermal reliability for 1500 melt/freeze cycles. Thermal conductivity of palmitic acid increased gradually by 12.7, 20.6, 46.6, and 80% for the nanoparticle weight fractions of 0.5, 1, 3, and 5% respectively. Based on the results, it can be mentioned that the prepared palmitic acid based nano-enhanced organic phase change composite materials can be very well used as potential solar thermal energy storage materials.

  4. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  5. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    Full Text Available In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  6. The possibilities of linearized inversion of internally scattered seismic data

    KAUST Repository

    Aldawood, Ali

    2014-08-05

    Least-square migration is an iterative linearized inversion scheme that tends to suppress the migration artifacts and enhance the spatial resolution of the migrated image. However, standard least-square migration, based on imaging single scattering energy, may not be able to enhance events that are mainly illuminated by internal multiples such as vertical and nearly vertical faults. To alleviate this problem, we propose a linearized inversion framework to migrate internally multiply scattered energy. We applied this least-square migration of internal multiples to image a vertical fault. Tests on synthetic data demonstrate the ability of the proposed method to resolve a vertical fault plane that is poorly resolved by least-square imaging using primaries only. We, also, demonstrate the robustness of the proposed scheme in the presence of white Gaussian random observational noise and in the case of imaging the fault plane using inaccurate migration velocities.

  7. The possibilities of linearized inversion of internally scattered seismic data

    KAUST Repository

    Aldawood, Ali; Alkhalifah, Tariq Ali; Hoteit, Ibrahim; Zuberi, Mohammad; Turkiyyah, George

    2014-01-01

    Least-square migration is an iterative linearized inversion scheme that tends to suppress the migration artifacts and enhance the spatial resolution of the migrated image. However, standard least-square migration, based on imaging single scattering energy, may not be able to enhance events that are mainly illuminated by internal multiples such as vertical and nearly vertical faults. To alleviate this problem, we propose a linearized inversion framework to migrate internally multiply scattered energy. We applied this least-square migration of internal multiples to image a vertical fault. Tests on synthetic data demonstrate the ability of the proposed method to resolve a vertical fault plane that is poorly resolved by least-square imaging using primaries only. We, also, demonstrate the robustness of the proposed scheme in the presence of white Gaussian random observational noise and in the case of imaging the fault plane using inaccurate migration velocities.

  8. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    Science.gov (United States)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  9. Inverse analysis of a rectangular fin using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Bamdad, Keivan; Ashorynejad, Hamid Reza

    2015-01-01

    Highlights: • Lattice Boltzmann method is used to study a transient conductive-convective fin. • LBM and Conjugate Gradient Method (CGM) are used to solve an inverse problem in fins. • LBM–ACGM estimates the unknown boundary conditions of fins accurately. • The accuracy and CPU time of LBM–ACGM are compared to IFDM–ACGM. • LBM–ACGM could be a good alternative for the conventional inverse methods. - Abstract: Inverse methods have many applications in determining unknown variables in heat transfer problems when direct measurements are impossible. As most common inverse methods are iterative and time consuming especially for complex geometries, developing more efficient methods seems necessary. In this paper, a direct transient conduction–convection heat transfer problem (fin) under several boundary conditions was solved by using lattice Boltzmann method (LBM), and then the results were successfully validated against both the finite difference method and analytical solution. Then, in the inverse problem both unknown base temperatures and heat fluxes in the rectangular fin were estimated by combining the adjoint conjugate gradient method (ACGM) and LBM. A close agreement between the exact values and estimated results confirmed the validity and accuracy of the ACGM–LBM. To compare the calculation time of ACGM–LBM, the inverse problem was solved by implicit finite difference methods as well. This comparison proved that the ACGM–LBM was an accurate and fast method to determine unknown thermal boundary conditions in transient conduction–convection heat transfer problems. The findings can efficiently determine the unknown variables in fins when a desired temperature distribution is available

  10. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  11. Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco

    Science.gov (United States)

    Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine

    2018-07-01

    This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.

  12. Vascularization of liver tumors - preliminary results with Coded Harmonic Angio (CHA), phase inversion imaging, 3D power Doppler and contrast medium-enhanced B-flow with second generation contrast agent (Optison).

    Science.gov (United States)

    Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A

    2006-01-01

    To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85

  13. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  14. Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting.

    Science.gov (United States)

    Boppella, Ramireddy; Kochuveedu, Saji Thomas; Kim, Heejun; Jeong, Myung Jin; Marques Mota, Filipe; Park, Jong Hyeok; Kim, Dong Ha

    2017-03-01

    In this contribution we have developed TiO 2 inverse opal based photoelectrodes for photoelectrochemical (PEC) water splitting devices, in which Au nanoparticles (NPs) and reduced graphene oxide (rGO) have been strategically incorporated (TiO 2 @rGO@Au). The periodic hybrid nanostructure showed a photocurrent density of 1.29 mA cm -2 at 1.23 V vs RHE, uncovering a 2-fold enhancement compared to a pristine TiO 2 reference. The Au NPs were confirmed to extensively broaden the absorption spectrum of TiO 2 into the visible range and to reduce the onset potential of these photoelectrodes. Most importantly, TiO 2 @rGO@Au hybrid exhibited a 14-fold enhanced PEC efficiency under visible light and a 2.5-fold enrichment in the applied bias photon-to-current efficiency at much lower bias potential compared with pristine TiO 2 . Incident photon-to-electron conversion efficiency measurements highlighted a synergetic effect between Au plasmon sensitization and rGO-mediated facile charge separation/transportation, which is believed to significantly enhance the PEC activity of these nanostructures under simulated and visible light irradiation. Under the selected operating conditions the incorporation of Au NPs and rGO into TiO 2 resulted in a remarkable boost in the H 2 evolution rate (17.8 μmol/cm 2 ) compared to a pristine TiO 2 photoelectrode reference (7.6 μmol/cm 2 ). In line with these results and by showing excellent stability as a photoelectrode, these materials are herin underlined to be of promising interest in the PEC water splitting reaction.

  15. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils.

    Science.gov (United States)

    Li, Wei; Wu, Qiong; Zhao, Xin; Huang, Zhanhua; Cao, Jun; Li, Jian; Liu, Shouxin

    2014-11-26

    Long filamentous nanocellulose fibrils (NCFs) were prepared from chemical-thermomechanical pulps (CTMP) using ultrasonication. Their contribution to enhancements in thermal stability and mechanical properties of poly(vinyl alcohol) films were investigated. The unique chemical pretreatment and mechanical effects of CTMP loosen and unfold fibers during the pulping process, which enables further chemical purification and subsequent ultrasound treatment for formation of NCFs. The NCFs exhibited higher crystallinity (72.9%) compared with that of CTMP (61.5%), and had diameters ranging from 50 to 120 nm. A NCF content of 6 wt% was found to yield the best thermal stability, light transmittance, and mechanical properties in the PVA/NCF composites. The composites also exhibited a visible light transmittance of 73.7%, and the tensile strength and Young's modulus were significantly improved, with values 2.8 and 2.4 times larger, respectively, than that of neat PVA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  17. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-12-01

    The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.

  18. Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations

    Science.gov (United States)

    Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed

    2018-01-01

    We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon

  19. Inversion approach for thermal data from a convecting hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1983-08-01

    Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.

  20. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  1. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  2. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs.

    Science.gov (United States)

    Qiao, Zhen; Mao, Jian

    2017-02-01

    In this study, compact urea-formaldehyde microcapsules containing paraffin (UFP) phase change materials (PCMs) were prepared via in situ polymerisation. The thermal conductivity of the PCMs was enhanced without influencing their enthalpy by adding graphene oxide (GO). Two modification methods were investigated: One in which GO is added to the inside of microcapsules, defined as "paraffin/GO@UF composite"; and another in which GO is coated onto the surface of shell, defined as "paraffin@UF/GO composite". The GO sheets were visible in scanning electron microscope (SEM) images of paraffin@UF/GO composite. The thermal conductivity was 0.2236 ± 0.0003 W/(m·K) for UFP particles, was 0.2517 ± 0.0003 W/(m·K) for the paraffin/GO@UF composite (10 wt%), and was 1.0670 ± 0.0020 W/(m·K) for paraffin@UF/GO composite (10 wt%), respectively. The encapsulation efficiency of all samples exceeded 80% (w/w) and all samples exhibited favourable thermal stability and reliability. The IR emissivity of paraffin@UF/GO was lower than that of paraffin/GO@UF when the same GO amount was added to the composite.

  3. Effect of templates on inverse opals fabricated through annular self-assembly/sol-gel method

    International Nuclear Information System (INIS)

    Ge Dengteng; Yang Lili; Fan Zeng; Zhao Jiupeng; Li Yao

    2011-01-01

    Highlights: → Flexible inverse opals could be facilely prepared through annular growth method. → The infiltrated materials are highly densified due to the existence of templates. → The crystalline grains are refined due to the the existence of templates. - Abstract: There is a strong interest in simple preparation of flexible inverse opals for applications. In this article, indium tin oxides (ITO) flexible inverse opals were prepared through annular growth of templates and sol-gel process. It is shown that this method provides a facile route for large scale flexible inverse opals with excellent ordered structures. ITO materials are found much denser in inverse opals, which is due to the increased capillary force during drying process and enhanced shrinkage during annealing process. It is also found that the crystalline grains are refined and the photoluminescence performance is strengthened in low frequency.

  4. Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION

    International Nuclear Information System (INIS)

    Rogers, Justin C.; Apai, Daniel; Lopez-Morales, Mercedes; Sing, David K.; Burrows, Adam

    2009-01-01

    We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b from time series photometry with the ARC 3.5 m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336 ± 0.042% and is centered at phase 0.5022 +0.0023 -0.0027 , consistent with a zero eccentricity orbit (e cos ω = 0.0035 +0.0036 -0.0042 ). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanet's atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 μm secondary eclipse detections by Snellen et al., Gillon et al., and Alonso et al. Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2460 +80 -160 K; a very low Bond albedo A B = 0.000 +0.081 -0.000 ; and an energy redistribution parameter P n = 0.1, indicating a small but nonzero amount of heat transfer from the day to nightside. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity κ e = 0.05 cm 2 g -1 , placed near the 0.1 bar atmospheric pressure level. This inversion layer is located 10 times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.

  5. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Estochen, E.G. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)

  6. Dynamical Dark Matter from thermal freeze-out

    Science.gov (United States)

    Dienes, Keith R.; Fennick, Jacob; Kumar, Jason; Thomas, Brooks

    2018-03-01

    In the Dynamical Dark-Matter (DDM) framework, the dark sector comprises a large number of constituent dark particles whose individual masses, lifetimes, and cosmological abundances obey specific scaling relations with respect to each other. In particular, the most natural versions of this framework tend to require a spectrum of cosmological abundances which scale inversely with mass, so that dark-sector states with larger masses have smaller abundances. Thus far, DDM model-building has primarily relied on nonthermal mechanisms for abundance generation such as misalignment production, since these mechanisms give rise to abundances that have this property. By contrast, the simplest versions of thermal freeze-out tend to produce abundances that increase, rather than decrease, with the mass of the dark-matter component. In this paper, we demonstrate that there exist relatively simple modifications of the traditional thermal freeze-out mechanism which "flip" the resulting abundance spectrum, producing abundances that scale inversely with mass. Moreover, we demonstrate that a far broader variety of scaling relations between lifetimes, abundances, and masses can emerge through thermal freeze-out than through the nonthermal mechanisms previously considered for DDM ensembles. The results of this paper thus extend the DDM framework into the thermal domain and essentially allow us to "design" our resulting DDM ensembles at will in order to realize a rich array of resulting dark-matter phenomenologies.

  7. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  8. Thermal loading studies using cooling enhancement and ventilation

    International Nuclear Information System (INIS)

    Danko, G.

    1993-01-01

    Thermal loading studies are presented for short vertical emplacement, application of cooling enhancement, and drift ventilation. Two 25-m-long heat pipes upward oriented at 45 deg are installed at each emplacement borehole to promote heat transport into the pillar area. In addition, ventilation of the emplacement drifts is assumed for a 2- to 20-yr period. It is concluded that the maximum borehole temperature can be reduced from 230 to 136 C using only the heat pipes, and to 110 C applying the heat pipes together with moderate air cooling. The ventilation along without heat pipes can reduce the temperature to only ∼200 C. It is also demonstrated that the heat transferred from the container area to farther distances into the pillar raises rock temperatures significantly, by 10 to 20 C, and the increase in temperature remains noticeable for at least 1,000 yr. In addition, because of the more efficient heat distribution caused by the heat pipes, lower temperatures will be achieved in the container area together with improved drying and permanent as well as temporary water removal in the pillar area

  9. Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method

    International Nuclear Information System (INIS)

    Lachheb, Mohamed; Karkri, Mustapha; Albouchi, Fethi; Mzali, Foued; Nasrallah, Sassi Ben

    2014-01-01

    Highlights: • Preparation of paraffin/graphite composites by uni-axial compression technique. • Measurement of thermophysical properties of paraffin/graphite using the periodic method. • Measurement of the experimental densities of paraffin/graphite composites. • Prediction of the effective thermal conductivity using analytical models. - Abstract: In this paper, two types of graphite were combined with paraffin in an attempt to improve thermal conductivity of paraffin phase change material (PCM): Synthetic graphite (Timrex SFG75) and graphite waste obtained from damaged Tubular graphite Heat Exchangers. These paraffin/graphite phase change material (PCM) composites are prepared by the cold uniaxial compression technique and the thermophysical properties were estimated using a periodic temperature method and an inverse technique. Results showed that the thermal conductivity and thermal diffusivity are greatly influenced by the graphite addition

  10. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    Science.gov (United States)

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  11. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Science.gov (United States)

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-01-01

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:26307983

  12. Enhanced Thermal Performance of Mosques in Qatar

    Science.gov (United States)

    Touma, A. Al; Ouahrani, D.

    2017-12-01

    Qatar has an abundance of mosques that significantly contribute to the increasing energy consumption in the country. Little attention has been given to providing mitigation methods that limit the energy demands of mosques without violating the worshippers’ thermal comfort. Most of these researches dealt with enhancing the mosque envelope through the addition of insulation layers. Since most mosque walls in Qatar are mostly already insulated, this study proposes the installation of shading on the mosque roof that is anticipated to yield similar energy savings in comparison with insulated roofs. An actual mosque in Qatar, which is a combination of six different spaces consisting of men and women’s prayer rooms, ablutions and toilets, was simulated and yielded a total annual energy demand of 619.55 kWh/m2. The mosque, whose walls are already insulated, yielded 9.1% energy savings when an insulation layer was added to its roof whereas it produced 6.2% energy savings when a shading layer was added above this roof. As the reconstruction of the roof envelope is practically unrealistic in existing mosques, the addition of shading to the roof was found to produce comparable energy savings. Lastly, it was found that new mosques with thin-roof insulation and shading tend to be more energy-efficient than those with thick-roof insulation.

  13. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  14. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    International Nuclear Information System (INIS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-01-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human–robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as α f + ξ f and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, α f + ξ f has a non-linear dependence on temperature and varies from 6.0 × 10 −6  °C −1 (20 °C) to 10.6 × 10 −6  °C −1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C. (paper)

  15. Smouldering Combustion of Soil Organic Matter: Inverse Modelling of the Thermal and Oxidative Degradation Kinetics

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2013-04-01

    Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.

  16. Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties.

    Science.gov (United States)

    Marroquin, Jason B; Rhee, K Y; Park, S J

    2013-02-15

    A novel, high-performance Fe(3)O(4)/MWNT/Chitosan nanocomposite has been prepared by a simple solution evaporation method. A significant synergistic effect of Fe(3)O(4) and MWNT provided enhanced electrical conductivity, mechanical properties, and thermal stability on the nanocomposites. A 5% (wt) loading of Fe(3)O(4)/MWNT in the nanocomposite increased conductivity from 5.34×10(-5) S/m to 1.49×10(-2) S/m compared to 5% (wt) MWNT loadings. The Fe(3)O(4)/MWNT/Chitosan films also exhibited increases in tensile strength and modulus of 70% and 155%, respectively. The integral procedure decomposition temperature (IPDT) was enhanced from 501 °C to 568 °C. These effects resulted from a number of factors: generation of a greater number of conductive channels through interactions between MWNT and Fe(3)O(4) surfaces, a higher relative crystallinity, the antiplasticizing effects of Fe(3)O(4), a restricted mobility and hindrance of depolymerization of the Chitosan chain segments, as well as uniform distribution, improved dispersion, and strong interfacial adhesion between the MWNT and Chitosan matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Directory of Open Access Journals (Sweden)

    Kleinstreuer Clement

    2011-01-01

    Full Text Available Abstract Nanofluids, i.e., well-dispersed (metallic nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets.

  18. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Science.gov (United States)

    2011-01-01

    Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. PMID:21711739

  19. Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties

    Science.gov (United States)

    Gamini, Suresh; Vasu, V.; Bose, Suryasarathi

    2017-04-01

    In the current study, PTFE (polytetrafluroethylene) matrix is reinforced with different wt% (2%-10%) of Halloysite nanotubes (HNTs). PTFE samples are fabricated with 2 wt% increment and are designated from ‘B’to ‘F’ and designation ‘A’ refers to neat PTFE. Thermal and mechanical characterization of the fabricated composites is studied. The calorimetric measurements showed enhanced degree of crystallinity of the nanocomposites, which is from 57.83% to 74.7%. The dynamic mechanical analysis results have shown enhanced storage modulus and loss modulus and reduced damping behaviour, without affecting glass transition temperature. Moreover, significant improvements in mechanical properties are observed from the experimental results. The results are discussed and validated with the existing literature. The phase and the fracture morphology of the nanocomposites is studied using scanning electron microscope and discussed herein.

  20. Estimates of error introduced when one-dimensional inverse heat transfer techniques are applied to multi-dimensional problems

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Razani, A.

    2000-01-01

    A study of the errors introduced when one-dimensional inverse heat conduction techniques are applied to problems involving two-dimensional heat transfer effects was performed. The geometry used for the study was a cylinder with similar dimensions as a typical container used for the transportation of radioactive materials. The finite element analysis code MSC P/Thermal was used to generate synthetic test data that was then used as input for an inverse heat conduction code. Four different problems were considered including one with uniform flux around the outer surface of the cylinder and three with non-uniform flux applied over 360 deg C, 180 deg C, and 90 deg C sections of the outer surface of the cylinder. The Sandia One-Dimensional Direct and Inverse Thermal (SODDIT) code was used to estimate the surface heat flux of all four cases. The error analysis was performed by comparing the results from SODDIT and the heat flux calculated based on the temperature results obtained from P/Thermal. Results showed an increase in error of the surface heat flux estimates as the applied heat became more localized. For the uniform case, SODDIT provided heat flux estimates with a maximum error of 0.5% whereas for the non-uniform cases, the maximum errors were found to be about 3%, 7%, and 18% for the 360 deg C, 180 deg C, and 90 deg C cases, respectively

  1. Shrinkage-thresholding enhanced born iterative method for solving 2D inverse electromagnetic scattering problem

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST

  2. Generalized inverses theory and computations

    CERN Document Server

    Wang, Guorong; Qiao, Sanzheng

    2018-01-01

    This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.

  3. Numerical modelling of multi-pass solar dryer filled with granite pebbles for thermal storage enhancement

    International Nuclear Information System (INIS)

    Kareem, M W; Habib, K; Ruslan, M H

    2015-01-01

    In this paper, a theoretical modelling of a cheap solar thermal dryer for small and medium scale farmers with multi-pass approach has been investigated. Comsol Multiphysics modelling tool was employed using numerical technique. The rock particles were used to enhance the thermal storage of the drying system. The local weather data were used during the simulation while parameters and coefficients were sourced from literature. An improvement on efficiency of up to 7% was recorded with error of 10 -5 when compared with the reported double pass solar collector. A fair distribution of hot air within the cabinets was also achieved. Though the modelling tool used was robust but the characterization of the system materials need to be done to improve the system accuracy and better prediction. (paper)

  4. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  5. Dye-enhanced laser welding for skin closure.

    Science.gov (United States)

    DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R

    1992-01-01

    The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.

  6. Significant enhancement of metal heat dissipation from mechanically exfoliated graphene nanosheets through thermal radiation effect

    Directory of Open Access Journals (Sweden)

    Junxiong Hu

    2017-05-01

    Full Text Available We demonstrate a facile approach to significantly enhance the heat dissipation potential of conventional aluminum (Al heat sinks by mechanically coating graphene nanosheets. For Al and graphene-coated Al heat sinks, the change in temperature with change in coating coverage, coating thickness and heat flux are studied. It is found that with the increase in coating coverage from 0 to 100%, the steady-state temperature is decreased by 5 °C at a heat flux of 1.8 W cm-1. By increasing the average thickness of graphene coating from 480 nm to 1900 nm, a remarkable temperature reduction up to 7 °C can be observed. Moreover, with the increase in heat flux from 1.2 W cm-1 to 2.4 W cm-1, the temperature difference between uncoated and graphene-coated samples increases from 1 °C to 6 °C. The thermal analysis and finite element simulation reveal that the thermal radiation plays a key role in enhancing the heat dissipation performance. The effect of heat convection remains weak owing to the low air velocity at surface-air boundary. This work provides a technological innovation in improving metal heat dissipation using graphene nanosheets.

  7. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  8. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    Science.gov (United States)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  9. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    Science.gov (United States)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  10. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos; Doulgeris, Panagiotis C.; Verschuur, Dirk Jacob Eric

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from

  11. Full waveform inversion using envelope-based global correlation norm

    Science.gov (United States)

    Oh, Ju-Won; Alkhalifah, Tariq

    2018-05-01

    To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.

  12. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  13. Inverse Raman scattering in silicon: A free-carrier enhanced effect

    International Nuclear Information System (INIS)

    Solli, D. R.; Koonath, P.; Jalali, B.

    2009-01-01

    Stimulated Raman scattering has been harnessed to produce the first silicon lasers and amplifiers. The Raman effect can also produce intensity-dependent nonlinear loss through a corollary process, inverse Raman scattering (IRS). This process has never been observed in a semiconductor. We demonstrate IRS in silicon--a process that is substantially modified by optically generated free carriers--achieving attenuation levels >15 dB with a pump intensity of 4 GW/cm 2 . Surprisingly, free-carrier absorption, the detrimental effect that generally suppresses nonlinear effects in silicon, actually facilitates IRS by delaying the onset of contamination from coherent anti-Stokes Raman scattering. Silicon-based IRS could be a valuable tool for chip-scale signal processing.

  14. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Salama, Amgad

    2011-01-01

    Highlights: → The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. → The different flow and heat transfer mechanisms involved in this process were elucidated. → The transition between these mechanisms during the course of FLOFA is discussed and investigated. → The interesting inversion process upon the transition from downward flow to upward flow is shown. → The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.

  15. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  16. A study on the characteristics of temperature inversions in active and break phases of Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Mohankumar, K.; Sivakumar, K.U.

    The thermal inversion characteristics during active and break cycles of two consecutive and contrasting monsoon years were studied using GPS radiosonde profiles in Goa (15 degrees 46′ N; 73 degrees 08′ E), located on the west coast of India...

  17. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  18. Acute puerperal uterine inversion

    International Nuclear Information System (INIS)

    Hussain, M.; Liaquat, N.; Noorani, K.; Bhutta, S.Z; Jabeen, T.

    2004-01-01

    Objective: To determine the frequency, causes, clinical presentations, management and maternal mortality associated with acute puerperal inversion of the uterus. Materials and Methods: All the patients who developed acute puerperal inversion of the uterus either in or outside the JPMC were included in the study. Patients of chronic uterine inversion were not included in the present study. Abdominal and vaginal examination was done to confirm and classify inversion into first, second or third degrees. Results: 57036 deliveries and 36 acute uterine inversions occurred during the study period, so the frequency of uterine inversion was 1 in 1584 deliveries. Mismanagement of third stage of labour was responsible for uterine inversion in 75% of patients. Majority of the patients presented with shock, either hypovolemic (69%) or neurogenic (13%) in origin. Manual replacement of the uterus under general anaesthesia with 2% halothane was successfully done in 35 patients (97.5%). Abdominal hysterectomy was done in only one patient. There were three maternal deaths due to inversion. Conclusion: Proper education and training regarding placental delivery, diagnosis and management of uterine inversion must be imparted to the maternity care providers especially to traditional birth attendants and family physicians to prevent this potentially life-threatening condition. (author)

  19. From thermal boredom to thermal pleasure: a brief literature review

    Directory of Open Access Journals (Sweden)

    Christhina Candido

    Full Text Available The most recent review of the ASHRAE Standard 55 (2010 incorporates the dialectic between static and adaptive approaches to thermal comfort by proposing different recommendations for airconditioned and naturally ventilated buildings. Particularly in naturally ventilated buildings, this standard aligns with three important topics in research field of thermal comfort during the last decades: (i air movement enhancement versus draft, (ii control availability and its impact on occupants' satisfaction, and (iii the search for thermal pleasure. This paper presents the rationale behind these three research topics and discusses its positive influence when moving from thermal comfort towards thermal pleasure.

  20. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  1. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.).

    Science.gov (United States)

    Degenhardt, Andreas Georg; Hofmann, Thomas

    2010-12-22

    Sequential application of solvent extraction and RP-HPLC in combination with taste dilution analyses (TDA) and comparative TDA, followed by LC-MS and 1D/2D NMR experiments, led to the discovery of 10 C(17)-C(21) oxylipins with 1,2,4-trihydroxy-, 1-acetoxy-2,4-dihydroxy-, and 1-acetoxy-2-hydroxy-4-oxo motifs, respectively, besides 1-O-stearoyl-glycerol and 1-O-linoleoyl-glycerol as bitter-tasting compounds in thermally processed avocado (Persea americana Mill.). On the basis of quantitative data, dose-over-threshold (DoT) factors, and taste re-engineering experiments, these phytochemicals, among which 1-acetoxy-2-hydroxy-4-oxo-octadeca-12-ene was found with the highest taste impact, were confirmed to be the key contributors to the bitter off-taste developed upon thermal processing of avocado. For the first time, those C(17)-C(21) oxylipins exhibiting a 1-acetoxy-2,4-dihydroxy- and a 1-acetoxy-2-hydroxy-4-oxo motif, respectively, were discovered to induce a mouthfulness (kokumi)-enhancing activity in sub-bitter threshold concentrations.

  2. Thermal adaptation in North American cicadas (Hemiptera: Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Heath, James E; Heath, Maxine S; Phillips, Polly K

    2017-10-01

    We determine and summarize the thermal responses for 118 species and subspecies of North American cicadas representing more than 50 years of fieldwork and experimentation. We investigate the role that habitat and behavior have on the thermal adaptation of the North American cicadas. There are general patterns of increasing thermal responses in warmer floristic provinces and increasing maximum potential temperature within a habitat. Altitude shows an inverse relationship with thermal responses. Comparison of thermal responses of species emerging early or late in the season within the same habitat show increases in the thermal responses along with the increasing environmental temperatures late in the summer. However, behavior, specifically the use of endothermy as a thermoregulatory strategy, can influence the values determined in a particular habitat. Subspecies generally do not differ in their thermal tolerances and thermal tolerances are consistent within a species over distances of more than 7600km. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.

    Science.gov (United States)

    Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon

    2017-12-21

    Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm -2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.

  4. Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide

    Directory of Open Access Journals (Sweden)

    B. Qi

    2014-07-01

    Full Text Available Graphene oxide (GO sheets were chemically grafted with thermotropic liquid crystalline epoxy (TLCP. Then we fabricated composites using TLCP-g-GO as reinforcing filler. The mechanical properties and thermal properties of composites were systematically investigated. It is found that the thermal and mechanical properties of the composites are enhanced effectively by the addition of fillers. For instance, the composites containing 1.0 wt% of TLCP-g-GO present impact strength of 51.43 kJ/m2, the tensile strength of composites increase from 55.43 to 80.85 MPa, the flexural modulus of the composites increase by more than 48%. Furthermore, the incorporation of fillers is effective to improve the glass transition temperature and thermal stability of the composites. Therefore, the presence of the TLCP-g-GO in the epoxy matrix could make epoxy not only stronger but also tougher.

  5. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.

  6. The inverse thermal spin–orbit torque and the relation of the Dzyaloshinskii–Moriya interaction to ground-state energy currents

    International Nuclear Information System (INIS)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-01-01

    Using the Kubo linear-response formalism we derive expressions to calculate the electronic contribution to the heat current generated by magnetization dynamics in ferromagnetic metals with broken inversion symmetry and spin–orbit interaction (SOI). The effect of producing heat currents by magnetization dynamics constitutes the Onsager reciprocal of the thermal spin–orbit torque (TSOT), i.e. the generation of torques on the magnetization due to temperature gradients. We find that the energy current driven by magnetization dynamics contains a contribution from the Dzyaloshinskii–Moriya interaction (DMI), which needs to be subtracted from the Kubo linear response of the energy current in order to extract the heat current. We show that the expressions of the DMI coefficient can be derived elegantly from the DMI energy current. Guided by formal analogies between the Berry phase theory of DMI on the one hand and the modern theory of orbital magnetization on the other hand we are led to an interpretation of the latter in terms of energy currents as well. Based on ab initio calculations we investigate the electronic contribution to the heat current driven by magnetization dynamics in Mn/W(0 0 1) magnetic bilayers. We predict that fast domain walls drive strong heat currents. (paper)

  7. Inverse diffusion theory of photoacoustics

    International Nuclear Information System (INIS)

    Bal, Guillaume; Uhlmann, Gunther

    2010-01-01

    This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions

  8. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success

    Czech Academy of Sciences Publication Activity Database

    Knief, U.; Forstmeier, W.; Pei, Y.; Ihle, M.; Wang, D.; Martin, K.; Opatová, Pavlína; Albrechtová, Jana; Wittig, M.; Franke, A.; Albrecht, Tomáš; Kempenaers, B.

    2017-01-01

    Roč. 1, č. 8 (2017), s. 1177-1184 E-ISSN 2397-334X R&D Projects: GA ČR(CZ) GAP506/12/2472 Institutional support: RVO:68081766 Keywords : Finch Taeniopygia guttata * mixed-effects models * zebra finch * pericentric inversions * fitness consequences * genetic parameters Subject RIV: EG - Zoology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

  9. Differential effect of prior heat treatment on the thermal enhancement of radiation damage in the ear of the mouse

    International Nuclear Information System (INIS)

    Law, M.P.; Ahier, R.G.

    1982-01-01

    The effect of prior heat treatment on thermal enhancement of radiodermatitis was investigated in the ear of the mouse. Ears were heated by immersion in hot water. A priming treatment of 43.5 0 C for 30 min (H) was given at various times before a second combined treatment of hypethermia at 43.5 0 C (h) given immediately before (hX) or after (Xh) a dose of X rays (X). The effect of H was measured in two ways. The heating time h, required to cause a given enhancement of radiodermatitis was estimated by fixing X and varying the duration of h. The thermal enhancement ratio, defined as the dose of X rays alone divided by the dose of X rays with heat required to cause a given reaction, was measured by fixing h and varying X. The priming treatment H reduced the skin response to hX. This effect was such that at 24 to 96 hr after H, the heating time h, had to be increased to about 1.5 times that required without prior hyperthermia. In contrast, the priming treatment had no effect on the response to Xh

  10. An improved method for upscaling borehole thermal energy storage using inverse finite element modelling

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Søren Erbs; Bjørn, Henrik

    2017-01-01

    Dimensioning of large-scale borehole thermal energy storage (BTES) is inherently uncertain due to the natural variability of thermal conductivity and heat capacity in the storage volume. We present an improved method for upscaling a pilot BTES to full scale and apply the method to an operational...

  11. Multisensor data fusion for enhanced respiratory rate estimation in thermal videos.

    Science.gov (United States)

    Pereira, Carina B; Xinchi Yu; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-08-01

    Scientific studies have demonstrated that an atypical respiratory rate (RR) is frequently one of the earliest and major indicators of physiological distress. However, it is also described in the literature as "the neglected vital parameter", mainly due to shortcomings of clinical available monitoring techniques, which require attachment of sensors to the patient's body. The current paper introduces a novel approach that uses multisensor data fusion for an enhanced RR estimation in thermal videos. It considers not only the temperature variation around nostrils and mouth, but the upward and downward movement of both shoulders. In order to analyze the performance of our approach, two experiments were carried out on five healthy candidates. While during phase A, the subjects breathed normally, during phase B they simulated different breathing patterns. Thoracic effort was the gold standard elected to validate our algorithm. Our results show an excellent agreement between infrared thermography (IRT) and ground truth. While in phase A a mean correlation of 0.983 and a root-mean-square error of 0.240 bpm (breaths per minute) was obtained, in phase B they hovered around 0.995 and 0.890 bpm, respectively. In sum, IRT may be a promising clinical alternative to conventional sensors. Additionally, multisensor data fusion contributes to an enhancement of RR estimation and robustness.

  12. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    Science.gov (United States)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  13. Using copper substrate to enhance the thermal conductivity of top-emission organic light-emitting diodes for improving the luminance efficiency and lifetime

    Science.gov (United States)

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Chuan-Hung; Cheng, Chien-Lung; Liao, Teh-Chao

    2009-12-01

    The influence of heat dissipation on the performances of organic light-emitting diode (OLED) is investigated by measuring junction temperature and by calculating the rate of heat flow. The calculated rate of heat flow reveals that the key factors include the thermal conductivity, the substrate thickness, and the UV glue. Moreover, the use of copper substrate can effectively dissipate the joule heat, which then reduces the temperature gradient. Finally, it is shown that the use of a high thermal conductivity thinner substrate can enhance the thermal conductivity of OLED and the luminance efficiency as well.

  14. Enhancement of thermal blooming effect on free space propagation of high power CW laser beam

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.

  15. Thermal enhanced oil recovery in Indonesia. Prospect of HTGR application

    International Nuclear Information System (INIS)

    Rahman, M.; Sumardiono; Lasman, A.N.; Sudarto; Prihardany, D.

    1997-01-01

    In the next future, Indonesia will face oil scarcity. The present reserves are estimated to be depleted in 20 years. However, after primary and secondary recovery processes, there are still more than 50% of original oil in place remaining in the reservoir, and this could be recovered by using tertiary recovery method or which is known as enhanced oil recovery (EOR) processes. Among the three major methods of EOR, steam flooding is a thermal recovery method into which High Temperature Reactor (HTR) module can be integrated for producing steam. However, the feasibility of application of HTR as an alternative to conventional oil-fired steam generator will depend strongly on the price of oil. This paper discusses EOR screening for Indonesian oil fields to identify the appropriate oil reservoirs for steam flooding application as well as the possibility of steam supply by HTR module. Also reviewed is the previous study on HTR application for Duri Steam Flood Project. (author). 8 refs, 6 figs, 5 tabs

  16. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  17. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chen-Chen Kuo

    2015-08-01

    Full Text Available We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  18. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T B [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  19. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    Science.gov (United States)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  20. A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index

    Directory of Open Access Journals (Sweden)

    Zunjian Bian

    2017-07-01

    Full Text Available The inversion of land surface component temperatures is an essential source of information for mapping heat fluxes and the angular normalization of thermal infrared (TIR observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations. In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely considered during the inversion process. Therefore, we introduced a simple inversion procedure that uses gap frequency with a clumping index (GCI for leaf and soil temperatures over both crop and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops and randomly distributed forest were generated using a radiosity model and were used to test the proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both crop and forest canopies, with root mean squared errors of less than 1.0 °C against simulated values. The proposed inversion algorithm was also validated using measured datasets over orchard, maize and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation for future satellite-based applications due to its straightforward form and robust performance for both crop and forest canopies using the vegetation clumping index.

  1. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    Science.gov (United States)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  2. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    International Nuclear Information System (INIS)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-01-01

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: → SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. → The dopped MCM-41 materials show a wormhole-like mesoporous structure. → The thermal stability of the dopped materials have an increment of almost 100 o C compared with the pure MCM-41. → The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N 2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 o C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  3. Thermal conductivity of electrospun polyethylene nanofibers.

    Science.gov (United States)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu

    2015-10-28

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  4. Nanodomain Engineered (K, Na)NbO3 Lead-Free Piezoceramics: Enhanced Thermal and Cycling Reliabilities

    DEFF Research Database (Denmark)

    Yao, Fang-Zhou; Wang, Ke; Cheng, Li-Qian

    2015-01-01

    - based materials, accepting the drawbacks of high temperature and cycling instabilities. Here, we present that CaZrO3-modified (K, Na)NbO3 piezoceramics not only possess excellent performance at ambient conditions benefiting from nanodomain engineering, but also exhibit superior stability against......The growing environmental concerns have been pushing the development of viable green alternatives for lead-based piezoceramics to be one of the priorities in functional ceramic materials. A polymorphic phase transition has been utilized to enhance piezoelectric properties of lead-free (K, Na)NbO3...... temperature fluctuation and electrical fatigue cycling. It was found that the piezoelectric coefficient d33 is temperature independent under 4 kV/mm, which can be attributed to enhanced thermal stability of electric field engineered domain configuration; whereas the electric field induced strain exhibits...

  5. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    Science.gov (United States)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  6. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  7. Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal

    International Nuclear Information System (INIS)

    Goh, K. E. J.; Augarten, Y.; Oberbeck, L.; Simmons, M. Y.

    2008-01-01

    We address the use of rapid thermal anneal (RTA) to enhance electron mobility and phase coherent transport in Si:P δ-doped devices encapsulated by low temperature Si molecular beam epitaxy while minimizing dopant diffusion. RTA temperatures of 500-700 deg. C were applied to δ-doped layers encapsulated at 250 deg. C. From 4.2 K magnetotransport measurements, we find that the improved crystal quality after RTA increases the mobility/mean free path by ∼40% and the phase coherence length by ∼25%. Our results suggest that the initial capping layer has near optimal crystal quality and transport improvement achieved by a RTA is limited

  8. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    Science.gov (United States)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  9. Studies on Enhancing Transverse Thermal Conductivity Carbon/Carbon Composites

    National Research Council Canada - National Science Library

    Manocha, Lalit M; Manocha, Satish M; Roy, Ajit

    2007-01-01

    The structure derived potential properties of Graphite such as high stiffness coupled with high thermal conductivity and low coefficient of thermal expansion have been better achieved in Carbon fibers...

  10. Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din

    2010-01-01

    Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested. (orig.)

  11. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  12. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  13. Synthesis of a Novel Polyethoxysilsesquiazane and Thermal Conversion into Ternary Silicon Oxynitride Ceramics with Enhanced Thermal Stability.

    Science.gov (United States)

    Iwase, Yoshiaki; Horie, Yoji; Daiko, Yusuke; Honda, Sawao; Iwamoto, Yuji

    2017-12-05

    A novel polyethoxysilsesquiazane ([EtOSi(NH) 1.5 ] n , EtOSZ) was synthesized by ammonolysis at -78 °C of ethoxytrichlorosilane (EtOSiCl₃), which was isolated by distillation as a reaction product of SiCl₄ and EtOH. Attenuated total reflection-infra red (ATR-IR), 13 C-, and 29 Si-nuclear magnetic resonance (NMR) spectroscopic analyses of the ammonolysis product resulted in the detection of Si-NH-Si linkage and EtO group. The simultaneous thermogravimetric and mass spectrometry analyses of the EtOSZ under helium revealed cleavage of oxygen-carbon bond of the EtO group to evolve ethylene as a main gaseous species formed in-situ, which lead to the formation at 800 °C of quaternary amorphous Si-C-N with an extremely low carbon content (1.1 wt %) when compared to the theoretical EtOSZ (25.1 wt %). Subsequent heat treatment up to 1400 °C in N₂ lead to the formation of X-ray amorphous ternary Si-O-N. Further heating to 1600 °C in N₂ promoted crystallization and phase partitioning to afford Si₂N₂O nanocrystallites identified by the XRD and TEM analyses. The thermal stability up to 1400 °C of the amorphous state achieved for the ternary Si-O-N was further studied by chemical composition analysis, as well as X-ray photoelectron spectroscopy (XPS) and 29 Si-NMR spectroscopic analyses, and the results were discussed aiming to develop a novel polymeric precursor for ternary amorphous Si-O-N ceramics with an enhanced thermal stability.

  14. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    Science.gov (United States)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  15. Inverse modelling of thermal histories with apatite fission tracks

    International Nuclear Information System (INIS)

    El Lmrani, A.; Zine El Abidine, H.; Limouri, M.; Essaid, A.; POupeau, G.

    1998-01-01

    The problem of modelling thermal histories lies in the exploration of a time-temperature space, usually so broad, in order to identify the optimal paths. For overcoming this difficulty, many approaches were proposed, using linear and non-linear optimisation algorithms. Generally, these approaches do not take into account the experimental data (fission track age [FTA] and fission track length distribution [FTLD]) to better aim the search strategy. The present work shows that experimental data hold some precious information, for which it should be known how to extract it. In fact, it allows us to tighten the time-temperature space of search, supposed to contain the optimal solutions. A genetic algorithm is also used in this work to perform the search for these optimal solutions. (authors)

  16. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system

    Directory of Open Access Journals (Sweden)

    Lin Mark

    2011-01-01

    Full Text Available Abstract In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu, copper oxide (CuO, and multi-walled carbon nanotube (MWNT are investigated using both physical mixing method (two-step method and chemical reduction method (one-step method. The chemical reduction method is, however, used only for nanofluid containing Cu nanoparticle in water. The thermal conductivities of the nanofluids are measured by a modified transient hot wire method. Experimental results show that nanofluids with low concentration of Cu, CuO, or carbon nanotube (CNT have considerably higher thermal conductivity than identical base liquids. For CuO-ethylene glycol suspensions at 5 vol.%, MWNT-ethylene glycol at 1 vol.%, MWNT-water at 1.5 vol.%, and MWNT-synthetic engine oil at 2 vol.%, thermal conductivity is enhanced by 22.4, 12.4, 17, and 30%, respectively. For Cu-water at 0.1 vol.%, thermal conductivity is increased by 23.8%. The thermal conductivity improvement for CuO and CNT nanofluids is approximately linear with the volume fraction. On the other hand, a strong dependence of thermal conductivity on the measured time is observed for Cu-water nanofluid. The system performance of a 10-RT water chiller (air conditioner subject to MWNT/water nanofluid is experimentally investigated. The system is tested at the standard water chiller rating condition in the range of the flow rate from 60 to 140 L/min. In spite of the static measurement of thermal conductivity of nanofluid shows only 1.3% increase at room temperature relative to the base fluid at volume fraction of 0.001 (0.1 vol.%, it is observed that a 4.2% increase of cooling capacity and a small decrease of power consumption about 0.8% occur for the nanofluid system at a flow rate of 100 L/min. This result clearly indicates that the enhancement of cooling capacity is not just related to thermal conductivity alone. Dynamic effect, such as

  18. Thermal Properties of Polymethyl Methacrylate Composite Containing Copper Nanoparticles.

    Science.gov (United States)

    Yu, Wei; Xie, Huaqing; Xin, Sha; Yin, Junshan; Jiang, Yitong; Wang, Mingzhu

    2015-04-01

    Thermal functional Materials have wide applications in thermal management fields, and inserting highly thermal conductive materials is effective in enhancing thermal conductivity of matrix. In this paper, copper nanoparticles were selected as the additive to prepare polymethyl methacrylate (PMMA) based nanocomposite with enhanced thermal properties. Uniform copper nanoparticles with pure face-centered lattice were prepared by liquid phase reduction method. Then, they were added into PMMA/N, N-Dimethylmethanamide (DMF) solution according to the different mass fraction for uniform dispersion. After DMF was evaporated, Cu-PMMA nanocomposites were gained. The thermal analysis measurement results showed that the decomposition temperature of nanocomposites decreased gradually with the increasing particle loadings. The thermal conductivity of the Cu-PMMA nanocomposites rose with the increasing contents of copper nanoparticles. With a 20 vol.% addition, the thermal conductivity was up to 1.2 W/m · K, a 380.5% increase compared to the pure PMMA. The results demonstrate that copper nanoparticles have great potential in enhancing thermal transport properties of polymer.

  19. Spectral Inverse Quantum (Spectral-IQ Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2012-11-01

    Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.

  20. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  1. Stratigraphic inversion of pre-stack multicomponent data; Inversion stratigraphique multicomposante avant sommation

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Y.

    2005-09-15

    This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)

  2. A novel louvered fin design to enhance thermal and drainage performances during periodic frosting/defrosting conditions

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Kim, Hisuk; Kim, Dong Rip; Lee, Kwan-Soo

    2016-01-01

    Highlights: • Thermal and drainage performances of a novel design louvered fin were investigated. • The thermal performance of the asymmetric fin was improved in the re-frosting cycle. • The asymmetric louvered fin exhibited better drainage on the leading edge of fins. • Lower surface tension between fin surface and water droplet improved the drainage. - Abstract: The retention water on fin surface can significantly degrade the thermal performance of heat exchangers under periodic frosting/defrosting conditions, which also leads to a decrease in the energy efficiency of air-source heat pumps. A novel louvered fin design was suggested to improve the drainage and the thermal performance of heat exchanger. The novel louvered fin had an asymmetric louver arrangement by flattening two louvers on the leading edge. The retention water formed on fin surface markedly decreased the heat transfer rate of the conventional symmetric louvered fins in re-frosting cycles. On the other hand, the asymmetric louvered fins improved the drainage performance of the retention water, which enhanced the heat transfer rate. To identify the reason of the difference in drainage performance between two fin geometries, additional experiments were carried out with enlargement models. The improvement in drainage performance of the asymmetric fin design originated from the lowered surface tension between the fin surface and water droplet.

  3. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  4. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    Science.gov (United States)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  5. Inverse planning IMRT

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: Optimizing radiotherapy dose distribution; IMRT contributes to optimization of energy deposition; Inverse vs direct planning; Main steps of IMRT; Background of inverse planning; General principle of inverse planning; The 3 main components of IMRT inverse planning; The simplest cost function (deviation from prescribed dose); The driving variable : the beamlet intensity; Minimizing a 'cost function' (or 'objective function') - the walker (or skier) analogy; Application to IMRT optimization (the gradient method); The gradient method - discussion; The simulated annealing method; The optimization criteria - discussion; Hard and soft constraints; Dose volume constraints; Typical user interface for definition of optimization criteria; Biological constraints (Equivalent Uniform Dose); The result of the optimization process; Semi-automatic solutions for IMRT; Generalisation of the optimization problem; Driving and driven variables used in RT optimization; Towards multi-criteria optimization; and Conclusions for the optimization phase. (P.A.)

  6. The use of Acoustic Radiation Force decorrelation-weighted pulse inversion (ADW-PI) for enhanced ultrasound contrast imaging

    Science.gov (United States)

    Herbst, Elizabeth; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2016-01-01

    Objectives The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and “contrast pulse sequences” (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false positive detection and potential misdiagnosis. In this study, a novel Acoustic Radiation Force (ARF) based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF-decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Materials and Methods Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with inter-frame signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Results Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, p < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, p < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio (CTR) when compared to corresponding CPS or PI images (n = 9, p < 0.001). CTR improved with ADW-PI by approximately 3 dB compared to PI images and 2 dB compared to CPS images. Conclusions Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with pulse inversion

  7. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  8. Impact of personal factors and furniture arrangement on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Popiolek, Zbigniew J.; Melikov, Arsen Krikor

    2007-01-01

    . The results reveal that the convective heat loss from the body changes inverse proportionally to the clothing thermal insulation and affects the enthalpy excess in the plume. Chair design changes the ratio between convection and radiation heat losses from the body and has significant impact on the thermal...

  9. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  10. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    Science.gov (United States)

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An inverse diffusivity problem for the helium production–diffusion equation

    International Nuclear Information System (INIS)

    Bao, Gang; Xu, Xiang

    2012-01-01

    Thermochronology is a technique for the extraction of information about the thermal history of rocks. Such information is crucial for determining the depth below the surface at which rocks were located at a given time (Bao G et al 2011 Commun. Comput. Phys. 9 129). Mathematically, extracting the time–temperature path can be formulated as an inverse diffusivity problem for the helium production–diffusion equation which is the underlying process of thermochronology. In this paper, to reconstruct the diffusivity which depends on space only and accounts for the structural information of rocks, a local Hölder conditional stability is obtained by a Carleman estimate. A uniqueness result is also proven for extracting the thermal history, i.e. identifying the time-dependant part of the diffusion coefficient, provided that it is analytical with respect to time. Numerical examples are presented to illustrate the validity and effectiveness of the proposed regularization scheme. (paper)

  12. The effect of Lyman α self-absorption on population inversions between quantum states 2 and 3 of hydrogen-like ions in recombining plasmas

    International Nuclear Information System (INIS)

    Tallents, G.J.

    1978-01-01

    The effect in recombining plasmas of Lyman α self-absorption on quasi-steady-state population inversions between quantum states n = 2 and 3 of hydrogen-like ions is theoretically investigated. It is shown how the electron density range over which population inversion is possible diminishes as Lyman α self-absorption increases. The highest degree of absorption which can be tolerated and still achieve an inversion is shown to occur when the thermal limit corresponds to n approximately equal to 4. The results of the computations are related to the conditions to be found in the expansion plume of laser-produced plasmas. (author)

  13. Green Color Purification in Tb(3+) Ions through Silica Inverse Opal Heterostructure.

    Science.gov (United States)

    Shrivastava, Vishnu Prasad; Sivakumar, Sri; Kumar, Jitendra

    2015-06-10

    The ordered SiO2:Tb(3+) inverse opal heterostructure films are fabricated through polystyrene spheres hetero-opal template using the convective self-assembly method to examine their potential for color purification. Their optical properties and photoluminescence have been investigated and compared with individual single inverse opals and reference (SiO2:Tb(3+) powder). The heterostructures are shown to possess two broad photonic stop bands separated by an effective pass band, causing suppression of blue, orange, and red emission bands corresponding to (5)D4 → (7)F(j); j = 6, 4, 3 transitions, respectively and an enhancement of green emission (i.e., (5)D4 → (7)F5). Although the suppression of various emission occurs because of its overlap with the photonic band gaps (PSBs), the enhancement of green radiation is observed because of its location matching with the pass band region. The Commission International de l'Eclairage (CIE) chromaticity coordinates of the emission spectrum of the heterostructure based on polystyrene sphere of 390 and 500 nm diameter are x = 0.2936, y = 0.6512 and lie closest to those of standard green color (wavelength 545 nm). In addition, a significant increase observed in luminescence lifetime for (5)D4 level of terbium in inverse opal heterostructures vis-à-vis reference (SiO2:Tb(3+) powder) is attributed to the change in the effective refractive index.

  14. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking

    Science.gov (United States)

    Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.

    2017-09-01

    Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  16. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  17. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  18. Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.

    Science.gov (United States)

    Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang

    2018-05-02

    Graphene has been combined with molybdenum disulfide (MoS 2 ) to ameliorate the poor cycling stability and rate performance of MoS 2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS 2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS 2 . Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS 2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

  19. Introduction to Schroedinger inverse scattering

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  20. A Generalization of the Spherical Inversion

    Science.gov (United States)

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  1. Results of measurements of thermal interaction between molten metal and water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-10-01

    The report describes results of an experimental investigation into thermal interaction of molten metals with water. The experiments were performed in two stages: the aim of the first stage was to study the general character of thermal interaction between molten metal and water and to measure the Leidenfrost temperature of the inverse Leidenfrost phenomenon. The second stage was directed to the experimental study of the triggering mechanism of thermal explosion. The experimental material gathered in this study includes: 1) transient temperature measurements in the hot material and in water, 2) measurements of pressure and reactive force combined with thermal explosion, 3) high-speed films of thermal interaction, 4) investigation results of thermal explosion debris (microscopic, mechanical, metallographical and chemical). The most significant observation is, that small jets from the main particle mass occuring 1 to 10 msec before, precede thermal explosion. (orig.) [de

  2. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species

    DEFF Research Database (Denmark)

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy

    2016-01-01

    across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth.......The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response...

  3. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  4. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    International Nuclear Information System (INIS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-01-01

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  5. New Methods of Enhancing the Thermal Durability of Silica Optical Fibers.

    Science.gov (United States)

    Wysokiński, Karol; Stańczyk, Tomasz; Gibała, Katarzyna; Tenderenda, Tadeusz; Ziołowicz, Anna; Słowikowski, Mateusz; Broczkowska, Małgorzata; Nasiłowski, Tomasz

    2014-10-13

    Microstructured optical fibers can be precisely tailored for many different applications, out of which sensing has been found to be particularly interesting. However, placing silica optical fiber sensors in harsh environments results in their quick destruction as a result of the hydrolysis process. In this paper, the degradation mechanism of bare and metal-coated optical fibers at high temperatures under longitudinal strain has been determined by detailed analysis of the thermal behavior of silica and metals, like copper and nickel. We furthermore propose a novel method of enhancing the lifetime of optical fibers by the deposition of electroless nickel-phosphorous alloy in a low-temperature chemical process. The best results were obtained for a coating comprising an inner layer of copper and outer layer of low phosphorous nickel. Lifetime values obtained during the annealing experiments were extrapolated to other temperatures by a dedicated model elaborated by the authors. The estimated copper-coated optical fiber lifetime under cycled longitudinal strain reached 31 h at 450 °C.

  6. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    Directory of Open Access Journals (Sweden)

    Huang Can

    2014-08-01

    Full Text Available In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation (MTI is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.

  7. Red photoluminescent property and modification of WO3:Eu3+ inverse opal for blue light converted LEDs

    Science.gov (United States)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Chai, Zhuangzhuang; Qiu, Jianbei; Song, Zhiguo

    2018-01-01

    Blue light converted light-emitting diodes is of great significance as a candidate for next generation lighting. In this work, the WO3:Eu3+ inverse opal photonic crystals were prepared and their luminescence properties were studied. The results demonstrated that the main excitation peak of WO3:Eu3+ inverse opals were located at 465 nm. The red luminescence peak at the 613 nm was observed in the WO3:Eu3+ inverse opal upon 465 nm excitation, exhibiting better red color purity. The influence of photonic band gap on the photoluminescence of WO3:Eu3+ inverse opal was obtained. When the red luminescence peak is in the regions of the photonic band gap and the edge of the band-gap, the red luminescence suppression and enhancement was observed respectively. The WO3:Eu3+ inverse opals may be a promising candidate for the blue light converted LEDs.

  8. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Yang, Hwi Soo; Kim, Sang-Hyung; Kannan, Aravindaraj G; Kim, Seon Kyung; Park, Cheolho; Kim, Dong-Won

    2016-04-05

    The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al-Fe matrix phases. Poly(amide imide)s, (PAI)s, with different thermal treatments were used as polymer binders in the silicon alloy-based electrodes. A systematic study demonstrated that the thermal treatment of the silicon alloy electrodes at high temperature made the electrodes mechanically strong and remarkably enhanced the cycling stability compared to electrodes without thermal treatment. The silicon alloy electrode thermally treated at 400 °C initially delivered a discharge capacity of 1084 mAh g(-1) with good capacity retention and high Coulombic efficiency. This superior cycling performance was attributed to the strong adhesion of the PAI binder resulting from enhanced secondary interactions, which maintained good electrical contacts between the active materials, electronic conductors, and current collector during cycling. These findings are supported by results from X-ray photoelectron spectroscopy, scanning electron microscopy, and a surface and interfacial cutting analysis system.

  9. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    International Nuclear Information System (INIS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-01-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe_2O_3, Fe_3O_4, NiO and Co_3O_4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe_3O_4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe_3O_4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co_3O_4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  10. Supporting technology for enhanced oil recovery for thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  11. Least squares inversion of Stokes profiles in the presence of velocity gradients

    International Nuclear Information System (INIS)

    Skumanich, A.; Rees, D.E.; Lites, B.W.; Sacramento Peak Observatory, Sunspot, NM)

    1985-01-01

    The Auer, Heasley and House Stokes inversion procedure in use at High Altitude Observatory is based on the analytic solution of the equation of transfer for polarized light where the representation of the thermodynamic and magnetic structure of the atmosphere is assumed to have a high degree of invariance, namely, a Milne-Eddington (ME) structure with a constant magnetic field. In the presence of invariance breaking gradients the resultant Stokes profiles are represented only approximately, if at all, by analytic forms. The accuracy of the inversion parameters and their significance as measures of actual structure are explored for the ME and the Landman-Finn sunspot models under the effects of velocity gradients. The resulting field parameters are good to a few percent and prove to be insensitive to the errors committed by the use of a ME-representation, but the resulting ME parameters yield a less precise measure of thermal structure

  12. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  13. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  14. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.; Kucukcoban, Sezgin; Kallivokas, Loukas F.

    2014-01-01

    to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem

  15. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    Science.gov (United States)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  16. MINERAL INFORMATION EXTRACTION BASED ON GAOFEN-5’S THERMAL INFRARED DATA

    Directory of Open Access Journals (Sweden)

    L. Liu

    2018-04-01

    Full Text Available Gaofen-5 carries six instruments aimed at various land and atmosphere applications, and it’s an important unit of China High-resolution Earth Observation System. As Gaofen-5’s thermal infrared payload is similar to that of ASTER, which is widely used in mineral exploration, application of Gaofen-5’s thermal infrared data is discussed regarding its capability in mineral classification and silica content estimation. First, spectra of silicate, carbonate, sulfate minerals from a spectral library are used to conduct spectral feature analysis on Gaofen-5’s thermal infrared emissivities. Spectral indices of band emissivities are proposed, and by setting thresholds of these spectral indices, it can classify three types of minerals mentioned above. This classification method is tested on a simulated Gaofen-5 emissivity image. With samples acquired from the study area, this method is proven to be feasible. Second, with band emissivities of silicate and their silica content from the same spectral library, correlation models have been tried to be built for silica content inversion. However, the highest correlation coefficient is merely 0.592, which is much lower than that of correlation model built on ASTER thermal infrared emissivity. It can be concluded that GF-5’s thermal infrared data can be utilized in mineral classification but not in silica content inversion.

  17. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes

    International Nuclear Information System (INIS)

    Karaipekli, Ali; Biçer, Alper; Sarı, Ahmet; Tyagi, Vineet Veer

    2017-01-01

    Highlights: • Expanded perlite/n-eicosane composite for thermal energy storage was prepared. • Addition of CNTs increases considerably the thermal conductivity of the composite. • The composite PCM including 1 wt% CNTs is promising material. - Abstract: Paraffins constitute a class of solid-liquid organic phase change materials (PCMs). However, low thermal conductivity limits their feasibility in thermal energy storage (TES) applications. Carbon nano tubes (CNTs) are one of the best materials to increase the thermal conductivity of paraffins. In this regard, the present study is focus on the preparation, characterization, and improvement of thermal conductivity using CNTs as well as determination of TES properties of expanded perlite (ExP)/n-eicosane (C20) composite as a novel type of form-stable composite PCM (F-SCPCM). It was found that the ExP could retain C20 at weight fraction of 60% without leakage. The SEM and FTIR analyses were carried out to characterize the microstructure and chemical properties of the composite PCM. The TES properties of the prepared F-SCPCM were determined using DSC and TG analyses. The analysis results showed that the components of the composite are in good compatibleness and C20 used as PCM are well-infiltrated into the structure of ExP/CNTs matrix. The DSC analysis indicated that the ExP/C20/CNTs (1 wt%) composite has a melting point of 36.12 °C and latent heat of 157.43 J/g. The TG analysis indicated that the F-SCPCM has better thermal durability compared with pure C20 and also it has good long term-TES reliability. In addition, the effects of CNTs on the thermal conductivity of the composite PCM were investigated. Compared to ExP/C20 composite, the use of CNTs has apparent improving effect for the thermal conductivity without considerably affecting the compatibility of components, TES properties, and thermal stability.

  18. Transient enhanced diffusion in preamorphized silicon: the role of the surface

    Science.gov (United States)

    Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.

    1999-01-01

    Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.

  19. Anatomy of Higgs mass in supersymmetric inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-07

    We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.

  20. A modular approach to inverse modelling of a district heating facility with seasonal thermal energy storage

    DEFF Research Database (Denmark)

    Tordrup, Karl Woldum; Poulsen, Uffe Vestergaard; Nielsen, Carsten

    2017-01-01

    We use a modular approach to develop a TRNSYS model for a district heating facility by applying inverse modelling to one year of operational data for individual components. We assemble the components into a single TRNSYS model for the full system using the accumulation tanks as a central hub conn...

  1. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material

    International Nuclear Information System (INIS)

    Tao, Y.B.; Lin, C.H.; He, Y.L.

    2015-01-01

    Highlights: • Nanocomposite phase change materials were prepared and characterized. • Larger specific surface area is more efficient to enhance specific heat. • Columnar structure is more efficient to enhance thermal conductivity. • Thermal conductivity enhancement is the key. • Single walled carbon nanotube is the optimal nanomaterial additive. - Abstract: To enhance the performance of high temperature salt phase change material, four kinds of carbon nanomaterials with different microstructures were mixed into binary carbonate eutectic salts to prepare carbonate salt/nanomaterial composite phase change material. The microstructures of the nanomaterial and composite phase change material were characterized by scanning electron microscope. The thermal properties such as melting point, melting enthalpy, specific heat, thermal conductivity and total thermal energy storage capacity were characterized. The results show that the nanomaterial microstructure has great effects on composite phase change material thermal properties. The sheet structure Graphene is the best additive to enhance specific heat, which could be enhanced up to 18.57%. The single walled carbon nanotube with columnar structure is the best additive to enhance thermal conductivity, which could be enhanced up to 56.98%. Melting point increases but melting enthalpy decreases with nanomaterial specific surface area increase. Although the additives decrease the melting enthalpy of composite phase change material, they also enhance the specific heat. As a combined result, the additives have little effects on thermal energy storage capacity. So, for phase change material performance enhancement, more emphasis should be placed on thermal conductivity enhancement and single walled carbon nanotube is the optimal nanomaterial additive

  2. Thermal expansion of crystals of the N2 type

    International Nuclear Information System (INIS)

    Tolkachev, A.M.; Manzhelii, V.G.; Azarenkov, V.P.; Jezowski, A.; Kosobutskaya, E.A.

    1981-01-01

    Linear expansion coefficients of low temperature crystals with linear molecules and Pa3 lattice N 2 (2-21 K), CO(2-28 K), CO 2 (2-25 K), N 2 O(2-90 K) were measured. A version of the law of corresponding states to describe the translational component of the thermal expansion of the substances studied and other low temperature crystals with close-packed lattices is proposed. In the thermal properties of crystals consisting of molecules without inversion centre, we have found anomalies interpreted as the evidence of a partial dipole ordering. (orig.)

  3. Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4T

    Directory of Open Access Journals (Sweden)

    Herlihy Amy H

    2008-01-01

    Full Text Available Abstract Purpose To demonstrate the feasibility of using an inversion recovery pulse sequence and to define the optimal inversion time (TI to assess myocardial infarction in mice by late gadolinium enhancement (LGE MRI at 9.4T, and to obtain the maximal contrast between the infarcted and the viable myocardium. Methods MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4. For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR and signal-to-noise ratio (SNR were measured and compared for each myocardial region of interest (ROI. Results The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006 leading to a maximal relative SI (Signal Intensity between those two areas (344.9 ± 60.4. Conclusion Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.

  4. Valuation of European Call Option via Inverse Fourier Transform

    Directory of Open Access Journals (Sweden)

    Rubenis Oskars

    2017-12-01

    Full Text Available Very few models allow expressing European call option price in closed form. Out of them, the famous Black- Scholes approach sets strong constraints - innovations should be normally distributed and independent. Availability of a corresponding characteristic function of log returns of underlying asset in analytical form allows pricing European call option by application of inverse Fourier transform. Characteristic function corresponds to Normal Inverse Gaussian (NIG probability density function. NIG distribution is obtained based on assumption that time series of log returns follows APARCH process. Thus, volatility clustering and leptokurtic nature of log returns are taken into account. The Fast Fourier transform based on trapezoidal quadrature is numerically unstable if a standard cumulative probability function is used. To solve the problem, a dampened cumulative probability is introduced. As a computation tool Matlab framework is chosen because it contains many effective vectorization tools that greatly enhance code readability and maintenance. The characteristic function of Normal Inverse Gaussian distribution is taken and exercised with the chosen set of parameters. Finally, the call price dependence on strike price is obtained and rendered in XY plot. Valuation of European call option with analytical form of characteristic function allows further developing models with higher accuracy, as well as developing models for some exotic options.

  5. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Science.gov (United States)

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  6. Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation.

    Science.gov (United States)

    Tian, Huafeng; Wang, Kai; Liu, Di; Yan, Jiaan; Xiang, Aimin; Rajulu, A Varada

    2017-08-01

    Poly (vinyl alcohol) (PVA)/corn starch blend films with enhanced properties were fabricated by melt processing and montmorillonite (MMT) reinforcing. It was revealed that strong hydrogen bonding occurred between the abundant OH groups of the matrix and polar SiOSi and OH groups of MMT. The highly exfoliated MMT nanolayers were randomly dispersed in the matrix containing MMT lower than 10wt%, whereas the intercalated structure was predominant with MMT content higher than 10wt%. With the increase of MMT, the glass transition temperature as well as equilibrium torque increased. The water sorption decreased and water resistant properties were improved with the incorporation of MMT due to the restricted swelling of the matrix by MMT nanolayers. Significant improvement in strength and flexibility were observed due to the fine dispersion of the MMT layers and the strong interaction between MMT and the matrix. The thermal stability was also improved. The MMT nanolayers could act as the heat and mass transport barriers and retard the thermal decomposition of the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sensitivity study on hydraulic well testing inversion using simulated annealing

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion

  8. Sensitivity study on hydraulic well testing inversion using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

  9. Factors affecting particle retention in thermal field-flow fractionation

    African Journals Online (AJOL)

    colloidal material is illustrated through the evaluation of thermal diffusion coefficient of PS ... Field-flow fractionation (FFF) is a separation method introduced by Giddings in 1966 [1]. It is a ... no stationary phase is used in FFF. .... that the inversion diameter (diameter at which order of retention changes) can be shifted up or.

  10. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  11. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  12. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_cim@rediffmail.com [Research and Innovation Centre (DRDO), Indian Institute of Technology Madras Research Park, Chennai 600 113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Dhar, Purbarun, E-mail: purbarun@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Nandi, Tandra, E-mail: tandra_n@rediffmail.com [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208 013 (India); Das, Sarit K., E-mail: skdas@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, NiO and Co{sub 3}O{sub 4} dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe{sub 3}O{sub 4}/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe{sub 3}O{sub 4}/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co{sub 3}O{sub 4} nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  13. Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation

    Science.gov (United States)

    Khaniani, Hassan

    additional linear time shift. The normal hyperbolic shape of travel time in a CSP gather becomes tilted, causing inaccuracy in velocity analysis. The focusing of the separated energy in the semblance plots is enhanced by removing the tilt effects. As a result, the accuracy of migration velocity inversion is enhanced and the focusing of output images of time migration is improved.

  14. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.

    2014-12-28

    © 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.

  15. Enhancing the thermal stability of natural rubber/recycled ethylene–propylene–diene rubber blends by means of introducing pre-vulcanised ethylene–propylene–diene rubber and electron beam irradiation

    International Nuclear Information System (INIS)

    Nabil, H.; Ismail, H.

    2014-01-01

    Highlights: • New route of processing was introduced to optimise the thermal stability of NR/R-EPDM blends. • Pre-vulcanised EPDM and EB irradiation were introduced into NR/R-EPDM blends. • Thermal stability is obviously enhanced by applying these two techniques. • Applying new route of processing methods is clearly successful to NR/R-EPDM blends. - Abstract: Most rubber materials are subjected to oxidation. The rate of oxidation depends on the type of rubber, processing method, and end-use conditions. The oxidation of rubber can result in the loss of physical properties, such as tensile strength, elongation, and flexibility. Hence, the service life is determined by oxidation stability. Thermal properties are relevant to the potential use of polymeric materials in many consumer oriented applications. Thermo-oxidative ageing and thermogravimetric analysis (TGA) have been proven to be successful techniques in determining the thermal stability of polymers and polymer blends. In this article, preparation of a series of natural rubber/recycled ethylene–propylene–diene rubber (NR/R-EPDM) blends is described. Processing of the blends, by means of introducing pre-vulcanised EPDM and electron beam (EB) irradiation, was carried out. Two thermal analysis methods, namely thermo-oxidative ageing and thermogravimetric analysis, were conducted. The results indicated that pre-vulcanising EPDM for 1.45 min (ts − 2) is sufficient to gain the optimum retained tensile and elongation at break. It was simultaneously observed that the introduction of pre-vulcanised EPDM increased decomposition temperature and activation energy by showing optimum values at a pre-vulcanising time of 3.45 min (ts). In the latter study, the retained properties increased after EB irradiation. The results can be verified by the thermal decomposition temperature and their activation energy. The obtained TG profiles and the calculated kinetic parameters indicated that introducing EB irradiation

  16. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications

    International Nuclear Information System (INIS)

    Cao, Vinh Duy; Pilehvar, Shima; Salas-Bringas, Carlos; Szczotok, Anna M.; Rodriguez, Juan F.; Carmona, Manuel; Al-Manasir, Nodar; Kjøniksen, Anna-Lena

    2017-01-01

    Highlights: • Microencapsulated phase change materials give high energy storage capacity concrete. • Microcapsule addition increases the porosity of concrete. • Thermal and mechanical properties are linked to the enhanced concrete porosity. • Agglomerated microcapsules have strong impact on the concrete properties. • Microcapsules caused geopolymer to become more energy efficient than Portland cement. - Abstract: Concretes with a high thermal energy storage capacity were fabricated by mixing microencapsulated phase change materials (MPCM) into Portland cement concrete (PCC) and geopolymer concrete (GPC). The effect of MPCM on thermal performance and compressive strength of PCC and GPC were investigated. It was found that the replacement of sand by MPCM resulted in lower thermal conductivity and higher thermal energy storage, while the specific heat capacity of concrete remained practically stable when the phase change material (PCM) was in the liquid or solid phase. Furthermore, the thermal conductivity of GPC as function of MPCM concentration was reduced at a higher rate than that of PCC. The power consumption needed to stabilize a simulated indoor temperature of 23 °C was reduced after the addition of MPCM. GPC exhibited better energy saving properties than PCC at the same conditions. A significant loss in compressive strength was observed due to the addition of MPCM to concrete. However, the compressive strength still satisfies the mechanical European regulation (EN 206-1, compressive strength class C20/25) for concrete applications. Finally, MPCM-concrete provided a good thermal stability after subjecting the samples to 100 thermal cycles at high heating/cooling rates.

  17. Salt-induced effects on natural and inverse DPPC lipid membranes: Molecular dynamics simulation.

    Science.gov (United States)

    Rezaei Sani, Seyed Mojtaba; Akhavan, Mojdeh; Jalili, Seifollah

    2018-08-01

    Molecular dynamics (MD) simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer and its neutral inverse-phosphocholine equivalent (DPCPe) were performed to find salt-induced effects on their surface structure and the nature of ion-lipid interactions. We found that the area per lipid is not considerably affected by the inversion, but the deuterium order parameter of carbon atoms in the region of carbonyl carbons changes dramatically. MD simulations indicate that Ca 2+ ions can bind to the surface of both DPPC and DPCPe membranes, but K + ions do not bind to them. In the case of Na + , however, the ions can bind to natural lipids but not to the inverse ones. Also, our results demonstrate that the hydration level of CPe bilayers is substantially lower than PC bilayers and the averaged orientation of water dipoles in the region of CPe headgroups is effectively inverted compared to PC lipids. This might be important in the interaction of the bilayer with its biological environment. Furthermore, it was found for the CPe bilayers that the enhanced peaks of the electrostatic potential profiles shift further away from the bilayer center relative to those of PC bilayers. This behavior makes the penetration of cations into the bilayer more difficult and possibly explains the experimentally observed enhanced release rates of anionic compounds in the CPe membrane. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage

    Directory of Open Access Journals (Sweden)

    Jackie D. Renteria

    2014-11-01

    Full Text Available We review the thermal properties of graphene, few-layer graphene and graphene nanoribbons, and discuss practical applications of graphene in thermal management and energy storage. The first part of the review describes the state-of-the-art in the graphene thermal field focusing on recently reported experimental and theoretical data for heat conduction in graphene and graphene nanoribbons. The effects of the sample size, shape, quality, strain distribution, isotope composition, and point-defect concentration are included in the summary. The second part of the review outlines thermal properties of graphene-enhanced phase change materials used in energy storage. It is shown that the use of liquid-phase-exfoliated graphene as filler material in phase change materials is promising for thermal management of high-power-density battery parks. The reported experimental and modeling results indicate that graphene has the potential to outperform metal nanoparticles, carbon nanotubes, and other carbon allotropes as filler in thermal management materials.

  19. Interplay of Nitrogen-Atom Inversion and Conformational Inversion in Enantiomerization of 1H-1-Benzazepines.

    Science.gov (United States)

    Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M

    2016-04-15

    A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.

  20. Inverse modeling as a step in the calibration of the LBL-USGS site-scale model of Yucca Mountain

    International Nuclear Information System (INIS)

    Finsterle, S.; Bodvarsson, G.S.; Chen, G.

    1995-05-01

    Calibration of the LBL-USGS site-scale model of Yucca Mountain is initiated. Inverse modeling techniques are used to match the results of simplified submodels to the observed pressure, saturation, and temperature data. Hydrologic and thermal parameters are determined and compared to the values obtained from laboratory measurements and conventional field test analysis

  1. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-01-01

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intent is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application

  2. Effective thermal conductivity of nanofluids: the effects of microstructure

    International Nuclear Information System (INIS)

    Fan Jing; Wang Liqiu

    2010-01-01

    We examine numerically the effects of particle-fluid thermal conductivity ratio, particle volume fraction, particle size distribution and particle aggregation on macroscale thermal properties for seven kinds of two-dimensional nanofluids. The results show that the radius of gyration and the non-dimensional particle-fluid interfacial area are two important parameters in characterizing the geometrical structure of nanoparticles. A non-uniform particle size is found to be unfavourable for the conductivity enhancement, while particle-aggregation benefits the enhancement especially when the radius of gyration of aggregates is large. Without considering the interfacial thermal resistance, a larger non-dimensional particle-fluid interfacial area between the base fluid and the nanoparticles is also desirable for enhancing thermal conductivity. The nanofluids with nanoparticles of connected cross-shape show a much higher (lower) effective thermal conductivity when the particle-fluid conductivity ratio is larger (smaller) than 1.

  3. Enhanced thermal conduction -- An alternative solution for removing a broad range of hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.C.

    1999-07-01

    This paper presents an overview of Enhanced Thermal Conduction (ETC), an ex-situ soil remediation process. A review of a practical demonstration of this process which was conducted by Woodward-Clyde Consultants to determine the capability of the technology for remediating soils from gasworks sites that have been contaminated with petroleum hydrocarbons, polynuclear hydrocarbons (PAHs) and cyanide is also presented in this paper. Projections for using this process to treat soils contaminated with other hazardous materials such as TCE PCE and PCB's are discussed as well.

  4. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  5. Thermal Efficiency Degradation Diagnosis Method Using Regression Model

    International Nuclear Information System (INIS)

    Jee, Chang Hyun; Heo, Gyun Young; Jang, Seok Won; Lee, In Cheol

    2011-01-01

    This paper proposes an idea for thermal efficiency degradation diagnosis in turbine cycles, which is based on turbine cycle simulation under abnormal conditions and a linear regression model. The correlation between the inputs for representing degradation conditions (normally unmeasured but intrinsic states) and the simulation outputs (normally measured but superficial states) was analyzed with the linear regression model. The regression models can inversely response an associated intrinsic state for a superficial state observed from a power plant. The diagnosis method proposed herein is classified into three processes, 1) simulations for degradation conditions to get measured states (referred as what-if method), 2) development of the linear model correlating intrinsic and superficial states, and 3) determination of an intrinsic state using the superficial states of current plant and the linear regression model (referred as inverse what-if method). The what-if method is to generate the outputs for the inputs including various root causes and/or boundary conditions whereas the inverse what-if method is the process of calculating the inverse matrix with the given superficial states, that is, component degradation modes. The method suggested in this paper was validated using the turbine cycle model for an operating power plant

  6. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  7. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  8. An application of sparse inversion on the calculation of the inverse data space of geophysical data

    KAUST Repository

    Saragiotis, Christos

    2011-07-01

    Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.

  9. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  10. A coupled thermo-mechanical pseudo inverse approach for preform design in forging

    Science.gov (United States)

    Thomas, Anoop Ebey; Abbes, Boussad; Li, Yu Ming; Abbes, Fazilay; Guo, Ying-Qiao; Duval, Jean-Louis

    2017-10-01

    Hot forging is a process used to form difficult to form materials as well as to achieve complex geometries. This is possible due to the reduction of yield stress at high temperatures and a subsequent increase in formability. Numerical methods have been used to predict the material yield and the stress/strain states of the final product. Pseudo Inverse Approach (PIA) developed in the context of cold forming provides a quick estimate of the stress and strain fields in the final product for a given initial shape. In this paper, PIA is extended to include the thermal effects on the forging process. A Johnson-Cook thermo-viscoplastic material law is considered and a staggered scheme is employed for the coupling between the mechanical and thermal problems. The results are compared with available commercial codes to show the efficiency and the limitations of PIA.

  11. Method and apparatus for implementing material thermal property measurement by flash thermal imaging

    Science.gov (United States)

    Sun, Jiangang

    2017-11-14

    A method and apparatus are provided for implementing measurement of material thermal properties including measurement of thermal effusivity of a coating and/or film or a bulk material of uniform property. The test apparatus includes an infrared camera, a data acquisition and processing computer coupled to the infrared camera for acquiring and processing thermal image data, a flash lamp providing an input of heat onto the surface of a two-layer sample with an enhanced optical filter covering the flash lamp attenuating an entire infrared wavelength range with a series of thermal images is taken of the surface of the two-layer sample.

  12. Identification of polymorphic inversions from genotypes

    Directory of Open Access Journals (Sweden)

    Cáceres Alejandro

    2012-02-01

    Full Text Available Abstract Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data 1, utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS. Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model 2. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU and Yoruba (YRI HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions

  13. A DSC analysis of inverse salt-pair explosive composition

    Energy Technology Data Exchange (ETDEWEB)

    Babu, E. Suresh; Kaur, Sukhminder [Central Forensic Science Laboratory, Explosives Division, Ramanthapur, Hyderabad 500013 (India)

    2004-02-01

    Alkali nitrates are used as an ingredient in low explosive compositions and pyrotechnics. It has been suggested that alkali nitrates can form inverse salt-pair explosives with the addition of ammonium chloride. Therefore, the thermal behavior of low explosive compositions containing potassium nitrate mixed with ammonium chloride has been studied using Differential Scanning Calorimetry (DSC). Results provide information about the ion exchange reaction between these two chemical substances and the temperature region at which the formation of a cloud of salt particles of potassium chloride takes place. Furthermore, the addition of ammonium chloride quenches the flame of deflagrating compositions and causes the mixture to undergo explosive decomposition at relatively low temperatures. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  14. ORINC: a one-dimensional implicit approach to the inverse heat conduction problem. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.J.; Hedrick, R.A.

    1977-10-18

    The report develops an implicit solution technique to determine both the transient surface temperature and the transient surface heat flux of electrically heated rods given the power input and an ''indicated'' internal temperature during a simulated loss-of-coolant accident. A digital computer program ORINC (ORNL Inverse Code) is developed which solves a one-dimensional, transient, lumped parameter, implicit formulation of the conduction equation at each bundle thermocouple position in the Thermal-Hydraulic Test Facility (THTF).

  15. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Yaojie; Su, Di; Huang, Xiang; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2016-01-01

    Highlights: • MA/HDPE composites with nano-additives were prepared for thermal conductivity enhancement. • Microstructure and chemical structure of the FSPCM were analyzed. • Thermal properties and thermal reliability of the FSPCM were investigated. • Thermal conductivity of the FSPCM can be enhanced by adding NAO and NG. - Abstract: For the purpose of improving the thermal conductivity of the form–stable phase change materials (FSPCM), two types of nano–powders with high thermal conductivity were added into the samples. In the modified FSPCM, myristic acid (MA) was used as a solid–liquid phase change material (PCM), high density polyethylene (HDPE) acted as supporting material to prevent the leakage of the melted MA. Nano–Al 2 O 3 (NAO) and nano–graphite (NG) were the additives for thermal conductivity enhancement. Scanning electronic microscope (SEM), Fourier transformation infrared spectroscope (FT–IR) and X-ray diffractometer (XRD) were used to analyze the microstructure, chemical structure and crystalline phase of the samples, respectively. Furthermore, the specific latent heat and phase transition temperature, thermal conductivity and thermal reliability were investigated using differential scanning calorimeter (DSC), thermal conductivity meter and thermo–gravimetric analyzer (TGA). The results showed that the MA was uniformly absorbed in the HDPE matrices and there was no leakage during the melting process when the mass fraction of the MA in the MA/HDPE composite was less than 70%. The DSC results revealed that the modified FSPCM have a constant phase change temperature and high specific latent heat. The thermal conductivity of the FSPCM was measured in the solid (30 °C) and liquid (60 °C) states of the MA. When the mass fraction of nano–powder additives is 12%, the thermal conductivities of the FSPCM increase by 95% (NAO) and 121% (NG) at 30 °C. It is anticipated that the FSPCM possess a potential application for thermal energy

  16. Study of optimal flip angle for inversion-recovery gradient echo method in delayed contrast-enhanced cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ogawa, Masashi; Matsumura, Yoshio; Tsuchihashi, Toshio

    2013-01-01

    Delayed contrast-enhanced cardiac magnetic resonance imaging (MRI) is a valuable tool for detecting myocardial infarction and assessing myocardial viability. The standard viability MRI technique is the inversion-recovery gradient echo (IR-GRE) method. Several previous studies have demonstrated that this imaging technique provides superior image quality at high magnetic field strengths, e.g., 3.0 T. However, there are numerous possible flip angles. We investigated the optimal flip angle of IR-GRE in delayed contrast-enhanced cardiac MRI. Phantoms were made that modeled infarcted myocardium and normal myocardium after administration of contrast agent. To determine optimal flip angle, we compared the contrast-to-noise ratio (CNR) among these phantoms and evaluated the degree of artifacts induced by increased flip angle. The flip angle that showed the highest CNR for 2D IR-GRE and 3D IR-GRE was 30deg/15deg at 1.5 T and 25deg/15deg at 3.0 T. The flip angle that showed the highest CNR was independent of R-R interval. Streak artifacts induced by increased flip angle tended to occur more readily at 3.0 T than 1.5 T. The optimal flip angle for 2D IR-GRE and 3D IR-GRE at 1.5 T was 30deg and 15deg, respectively. At 3.0 T, taking into account the results for both CNR and streak artifacts, we concluded the optimal flip angle of 2D IR-GRE to be 15-20deg. (author)

  17. Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted β-SiC nanowires with chemical vapor deposition method

    Science.gov (United States)

    Yin, Zhaoyu; Zhang, Xiaoguang; Huang, Zhaohui; Liu, Silin; Zhang, Weiyi; Liu, Yan'gai; Wu, Xiaowen; Fang, Minghao; Min, Xin

    2018-02-01

    Expanded graphite/β-SiC nanowires composites (ESNC) were prepared through chemical vapor deposition, and paraffin/expanded graphite/β-SiC nanowires composites (PESNC) were made through vacuum impregnation to overcome liquid leakage during phase transition and enhance the thermal conductivity of paraffin. Fourier transform infrared spectroscopy showed no chemical interactions between the paraffin and ESNC. Differential scanning calorimetry estimated the temperature and latent heat of PESNC during melting to 45.73 °C and 124.31 J g-1, respectively. The respective values of these quantities during freezing were recorded as 48.93 °C and 124.14 J g-1. The thermal conductivity of PESNC was estimated to 0.75 W mK-1, which was 3.26-folds that of pure paraffin (0.23 W mK-1). PESNC perfectly maintained its phase transition after 200 melting-freezing cycles. The resulting ideal thermal conductivity, good chemical stability, thermal properties and thermal reliability of PESNC are promising for use in energy efficient buildings and solar energy systems.

  18. Thermal effects on decays of a metastable brane configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Yuichiro, E-mail: ynakai@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Ookouchi, Yutaka [Faculty of Arts and Science & Department of Physics, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-11-10

    We study thermal effects on a decay process of a false vacuum in type IIA string theory. At finite temperature, the potential of the theory is corrected and also thermally excited modes enhance the decay rate. The false vacuum can accommodate a string-like object. This cosmic string makes the bubble creation rate much larger and causes an inhomogeneous vacuum decay. We investigate thermal corrections to the DBI action for the bubble/string bound state and discuss a thermally assisted tunneling process. We show that thermally excited states enhance the tunneling rate of the decay process, which makes the life-time of the false vacuum much shorter.

  19. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    Directory of Open Access Journals (Sweden)

    Brian Ford

    2017-04-01

    Full Text Available The following study focuses on the photoluminescence (PL enhancement of chemically synthesized silicon oxycarbide (SiCxOy thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD, and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2 ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield.

  20. Meson thermalization by baryon injection in D4/D6 model

    Science.gov (United States)

    Rezaei, Z.

    2016-12-01

    We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.