WorldWideScience

Sample records for inverse isotope effect

  1. Modeling the isotope effect in Walden inversion reactions

    Science.gov (United States)

    Schechter, Israel

    1991-05-01

    A simple model to explain the isotope effect in the Walden exchange reaction is suggested. It is developed in the spirit of the line-of-centers models, and considers a hard-sphere collision that transfers energy from the relative translation to the desired vibrational mode, as well as geometrical properties and steric requirements. This model reproduces the recently measured cross sections for the reactions of hydrogen with isotopic silanes and older measurements of the substitution reactions of tritium atoms with isotopic methanes. Unlike previously given explanations, this model explains the effect of the attacking atom as well as of the other participating atoms. The model provides also qualitative explanation of the measured relative yields and thresholds of CH 3T and CH 2TF from the reaction T + CH 3F. Predictions for isotope effects and cross sections of some unmeasured reactions are given.

  2. Ionic liquids as novel stationary phases in gas liquid chromatography: inverse or normal isotope effect?

    Science.gov (United States)

    Schmarr, Hans-Georg; Slabizki, Petra; Müntnich, Sabrina; Metzger, Carmen; Gracia-Moreno, Elisa

    2012-12-28

    The separation of deuterated and non-deuterated compounds in gas liquid partitioning chromatography (GLC) on silicone type stationary phase usually results in the inverse isotope effect. With ionic liquids (ILs) as stationary phase, however, this may show a totally different nature. The inverse isotope effect, in which heavier (deuterated) isotopic compounds (isotopologues) elute earlier, is to be expected when van der Waals (London) dispersion forces play a dominant role in the solute-stationary phase interaction. Such (apolar) interactions seem to play only a minor role when ILs are the stationary phases, leading to only a marginal inverse isotope effect, e.g. for the separation of 2,4,6-trichloroanisole and its [(2)H(5)]-isotopologue on 1,12-di(tripropylphosphonium) dodecane bis(trifluoromethansulfonyl) amide (commercialized as SLB-IL59, Supelco). Indeed, with the most polar stationary phase available (commercialized as SLB-IL111; Supelco), this separation showed a normal isotope effect. Further examples are presented and the nature of the isotope effect observed is discussed.

  3. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H

    2017-02-22

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  4. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.

  5. The effect of isotopic splitting on the bisector and inversions of the solar Ca II 854.2 nm line

    CERN Document Server

    Leenaarts, Jorrit; Kochukhov, Oleg; Carlsson, Mats

    2014-01-01

    The Ca II 854.2 nm spectral line is a common diagnostic of the solar chromosphere. The average line profile shows an asymmetric core, and its bisector shows a characteristic inverse-C shape. The line actually consists of six components with slightly different wavelengths depending on the isotope of calcium. This isotopic splitting of the line has been taken into account in studies of non-solar stars, but never for the Sun. We performed non-LTE radiative transfer computations from three models of the solar atmosphere and show that the asymmetric line-core and inverse C-shape of the bisector of the 854.2 nm line can be explained by isotopic splitting. We confirm this finding by analysing observations and showing that the line asymmetry is present irrespective of conditions in the solar atmosphere. Finally, we show that inversions based on the Ca II 854.2 nm line should take the isotopic splitting into account, otherwise the inferred atmospheres will contain erroneous velocity gradients and temperatures.

  6. THERMAL DECOMPOSITION REACTION IN ETHANOL SOLUTION OF DEUTERATED ACETONE CYCLIC DIPEROXIDE AND ACETONE DIPEROXIDE. SECONDARY INVERSE ISOTOPIC EFFECT

    Directory of Open Access Journals (Sweden)

    Karina Nesprias

    Full Text Available The characterization by mass spectrometry and the kinetic study of the thermal decomposition reaction of deuterated acetone diperoxide (dACDP was studied in ethanol in the 140-165 ºC temperature range. The comparison with the non deuterated species (ACDP was also made. The kinetic behavior observed for both compounds follows a pseudo first order kinetic law up to at least 86 % peroxide conversions. It could be observed that under the established experimental conditions, the dACDP decomposes ca. 1.2 times faster than the ACDP. The activation parameters were calculated for both peroxides and allowed to postulate a single process initial step, the unimolecular thermal decomposition through the O-O bond cleavage to form an intermediate biradical. The products of the acetone derived peroxides thermal decomposition support a radical-based decomposition mechanism. The changes in kinetic parameters between dACDP and ACDP were justified attending to differences in ring substituents sizes. A secondary inverse kinetic isotope effect is observed (kH/kD <1.

  7. Inverse methods for estimating primary input signals from time-averaged isotope profiles

    Science.gov (United States)

    Passey, Benjamin H.; Cerling, Thure E.; Schuster, Gerard T.; Robinson, Todd F.; Roeder, Beverly L.; Krueger, Stephen K.

    2005-08-01

    Mammalian teeth are invaluable archives of ancient seasonality because they record along their growth axes an isotopic record of temporal change in environment, plant diet, and animal behavior. A major problem with the intra-tooth method is that intra-tooth isotope profiles can be extremely time-averaged compared to the actual pattern of isotopic variation experienced by the animal during tooth formation. This time-averaging is a result of the temporal and spatial characteristics of amelogenesis (tooth enamel formation), and also results from laboratory sampling. This paper develops and evaluates an inverse method for reconstructing original input signals from time-averaged intra-tooth isotope profiles. The method requires that the temporal and spatial patterns of amelogenesis are known for the specific tooth and uses a minimum length solution of the linear system Am = d, where d is the measured isotopic profile, A is a matrix describing temporal and spatial averaging during amelogenesis and sampling, and m is the input vector that is sought. Accuracy is dependent on several factors, including the total measurement error and the isotopic structure of the measured profile. The method is shown to accurately reconstruct known input signals for synthetic tooth enamel profiles and the known input signal for a rabbit that underwent controlled dietary changes. Application to carbon isotope profiles of modern hippopotamus canines reveals detailed dietary histories that are not apparent from the measured data alone. Inverse methods show promise as an effective means of dealing with the time-averaging problem in studies of intra-tooth isotopic variation.

  8. Inverse Doppler Effects in Flute

    CERN Document Server

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  9. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  10. Inverse Gibbs-Thomson effect

    Science.gov (United States)

    Gershanov, V. Yu.; Garmashov, S. I.

    2015-01-01

    We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.

  11. Deformation of Ne isotopes in the island-of-inversion region

    CERN Document Server

    Sumi, Takenori; Tagami, Shingo; Kimura, Masaaki; Matsumoto, Takuma; Ogata, Kazuyuki; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2012-01-01

    The deformation of Ne isotopes in the island-of-inversion region is determined by the double-folding model with the Melbourne $g$-matrix and the density calculated by the antisymmetrized molecular dynamics (AMD). The double-folding model reproduces, with no adjustable parameter, the measured reaction cross sections for the scattering of $^{28-32}$Ne from $^{12}$C at 240MeV/nucleon. The quadrupole deformation thus determined is around 0.4 in the island-of-inversion region and $^{31}$Ne is a halo nuclei with large deformation. We propose the Woods-Saxon model with a suitably chosen parameterization set and the deformation given by the AMD calculation as a convenient way of simulating the density calculated directly by the AMD. The deformed Woods-Saxon model provides the density with the proper asymptotic form. The pairing effect is investigated, and the importance of the angular momentum projection for obtaining the large deformation in the island-of-inversion region is pointed out.

  12. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    Energy Technology Data Exchange (ETDEWEB)

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  13. Isotope Effects in ESR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Werner Herrmann

    2013-06-01

    Full Text Available In order to present the relationship between ESR spectroscopy and isotope effects three levels are considered: (i ESR spectroscopy is described on a general level up to the models for interpretation of the experimental spectra, which go beyond the usually used time and mass independent spin-Hamilton operator, (ii the main characteristics of the generalized isotope effects are worked out, and finally (iii the basic, mainly quantum mechanical effects are used to describe the coupling of electron spins with the degrees of freedom, which are accessible under the selected conditions, of the respective paramagnetic object under investigation. The ESR parameters and the respective models are formalized so far, that they include the time and mass depending influences and reflect the specific isotope effects. Relations will be established between the effects in ESR spectra to spin relaxation, to spin exchange, to the magnetic isotope effect, to the Jahn-Teller effects, as well as to the influence of zero-point vibrations. Examples will be presented which demonstrate the influence of isotopes as well as the kind of accessible information. It will be differentiated with respect to isotope effects in paramagnetic centres itself and in the respective matrices up to the technique of ESR imaging. It is shown that the use of isotope effects is indispensable in ESR spectroscopy.

  14. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...

  15. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  16. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  17. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    National Research Council Canada - National Science Library

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    .... With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally...

  18. Heavy atom isotope effects on enzymatic reactions

    Science.gov (United States)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  19. Inversion of Stokes Profiles with Systematic Effects

    CERN Document Server

    Ramos, A Asensio; Gonzalez, M J Martinez; Yabar, A Pastor

    2016-01-01

    Quantitative thermodynamical, dynamical and magnetic properties of the solar and stellar plasmas are obtained by interpreting their emergent non-polarized and polarized spectrum. This inference requires the selection of a set of spectral lines particularly sensitive to the physical conditions in the plasma and a suitable parametric model of the solar/stellar atmosphere. Nonlinear inversion codes are then used to fit the model to the observations. However, the presence of systematic effects like nearby or blended spectral lines, telluric absorption or incorrect correction of the continuum, among others, can strongly affect the results. We present an extension to current inversion codes that can deal with these effects in a transparent way. The resulting algorithm is very simple and can be applied to any existing inversion code with the addition of a few lines of code as an extra step in each iteration.

  20. Inverse Vernier effect in coupled lasers

    Science.gov (United States)

    Ge, Li; Türeci, Hakan E.

    2015-07-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  1. Supersymmetric inversion of effective-range expansions

    OpenAIRE

    Midya, Bikashkali; Evrard, Jérémie; Abramowicz, Sylvain; Ramirez Suarez, Oscar Leonardo; Sparenberg, Jean-Marc

    2015-01-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Thir...

  2. Inverse Faraday Effect driven by Radiation Friction

    CERN Document Server

    Liseykina, T V; Macchi, A

    2015-01-01

    In the interaction of extremely intense ($>10^{23}~\\mbox{W cm}^{-2}$), circularly polarized laser pulses with thick targets, theory and simulations show that a major fraction of the laser energy is converted into incoherent radiation because of collective electron motion during the "hole boring" dynamics. The effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of an axial magnetic field of tens of gigagauss value. This peculiar "inverse Faraday effect" is demonstrated in three-dimensional simulations including radiation friction.

  3. Inverse Vernier Effects in Coupled Lasers

    CERN Document Server

    Ge, Li

    2015-01-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at the overlapping resonances of the coupled cavities have the lowest thresholds and lase first as previously suggested, leading to a manifestation of the typical Vernier effect now in an active system; these supermodes can also have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. We attribute this effect to detuning-dependent Q-spoiling, and it can lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings of several previous work. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  4. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  5. Observation of the inverse Doppler effect.

    Science.gov (United States)

    Seddon, N; Bearpark, T

    2003-11-28

    We report experimental observation of an inverse Doppler shift, in which the frequency of a wave is increased on reflection from a receding boundary. This counterintuitive effect has been produced by reflecting a wave from a moving discontinuity in an electrical transmission line. Doppler shifts produced by this system can be varied in a reproducible manner by electronic control of the transmission line and are typically five orders of magnitude greater than those produced by solid objects with kinematic velocities. Potential applications include the development of tunable and multifrequency radiation sources.

  6. Effects of size, fixation location, and inversion on face identification

    National Research Council Canada - National Science Library

    Sekuler, Allison; Pachai, Matthew; Hashemi, Ali; Bennett, Patrick

    2015-01-01

    One possible explanation for the face inversion effect (FIE) is that inversion swaps the eye and mouth locations relative to fixation, and attention typically is directed to the top of a stimulus for faces...

  7. Anomalous isotopic effect on electron-directed reactivity by a 3-{\\mu}m midinfrared pulse

    CERN Document Server

    Liu, Kunlong; Lan, Pengfei; Lu, Peixiang

    2012-01-01

    We have theoretically studied the effect of nuclear mass on electron localization in dissociating H_2^+ and its isotopes subjected to a few-cycle 3-{\\mu}m laser pulse. Compared to the isotopic trend in the near-infrared regime, our results reveal an inverse isotopic effect in which the degree of electron-directed reactivity is even higher for heavier isotopes. With the semi-classical analysis, we find, for the first time, the pronounced electron localization is established by the interferences through different channels of one- and, more importantly, higher-order photon coupling. Interestingly, due to the enhanced high-order above-threshold dissociation of heavier isotopes, the interference maxima gradually become in phase with growing mass and ultimately lead to the anomalous isotopic behavior of the electron localization. This indicates that the multi-photon coupling channels will play an important role in controlling the dissociation of larger molecules with midinfrared pulses.

  8. Isotope effects of hydrogen and atom tunnelling

    Science.gov (United States)

    Buchachenko, A. L.; Pliss, E. M.

    2016-06-01

    The abnormally high mass-dependent isotope effects in liquid-phase hydrogen (deuterium) atom transfer reactions, which are customarily regarded as quantum effects, are actually the products of two classical effects, namely, kinetic and thermodynamic ones. The former is determined by the rate constants for atom transfer and the latter is caused by nonbonded (or noncovalent) isotope effects in the solvation of protiated and deuterated reacting molecules. This product can mimic the large isotope effects that are usually attributed to tunnelling. In enzymatic reactions, tunnelling is of particular interest; its existence characterizes an enzyme as a rigid molecular machine in which the residence time of reactants on the reaction coordinate exceeds the waiting time for the tunnelling event. The magnitude of isotope effect becomes a characteristic parameter of the internal dynamics of the enzyme catalytic site. The bibliography includes 61 references.

  9. Supersymmetric inversion of effective-range expansions

    CERN Document Server

    Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc

    2015-01-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

  10. The isotope effect: Prediction, discussion, and discovery

    CERN Document Server

    Kragh, Helge

    2011-01-01

    The precise position of a spectral line emitted by an atomic system depends on the mass of the atomic nucleus and is therefore different for isotopes belonging to the same element. The possible presence of an isotope effect followed from Bohr's atomic theory of 1913, but it took several years before it was confirmed experimentally. Its early history involves the childhood not only of the quantum atom, but also of the concept of isotopy. Bohr's prediction of the isotope effect was apparently at odds with early attempts to distinguish between isotopes by means of their optical spectra. However, in 1920 the effect was discovered in HCl molecules, which gave rise to a fruitful development in molecular spectroscopy. The first detection of an atomic isotope effect was no less important, as it was by this means that the heavy hydrogen isotope deuterium was discovered in 1932. The early development of isotope spectroscopy illustrates the complex relationship between theory and experiment, and is also instructive with...

  11. Newtonian kinetic isotope effects. Observation, prediction, and origin of heavy-atom dynamic isotope effects.

    Science.gov (United States)

    Kelly, Kelmara K; Hirschi, Jennifer S; Singleton, Daniel A

    2009-06-24

    Intramolecular (13)C kinetic isotope effects were determined for the dimerization of cyclopentadiene. Substantial isotope effects were observed in three positions, despite the C(2) symmetry of the cycloaddition transition state and the absence of dynamical bottlenecks after this transition state. The observed isotope effects were predicted well from trajectory studies by extrapolating the outcomes of trajectories incorporating superheavy isotopes of carbon, ranging from (20)C to (140)C. Trajectory studies suggest that the isotope effects are unrelated to zero-point energy or the geometrical and momentum properties of the transition state. However, steepest-descent paths in mass-weighted coordinates correctly predict the direction of the isotope effects, supporting a novel origin in Newton's second law of motion.

  12. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    The isotopic fractionation associated with photodissociation of N2O, OCS and CO2, at different altitudes in Earth’s atmosphere, is investigated theoretically using constructed quantum mechanical models of the dissociation processes (i.e. potential energy surfaces and relevant coupling elements...... or moderate, and overall sulfur fractionation in the stratosphere is very weak which does not exclude OCS from being an acceptable background the Stratospheric Sulfate Aerosol layer. (iii) CO2 photolysis in the upper stratosphere and lower mesosphere is highly fractionating in both isotopes, enriching...

  13. Hydrogen isotope effect on the Dimits shift

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2016-10-01

    The hydrogen isotope effect on the Dimits shift in drift wave turbulence (Dimits et al 2000 Phys. Plasmas 7 969) is discussed using the theory of zonal flows, in which the nonlinear damping rate of zonal flows is taken into account. The up-shift of the critical linear growth rate of the drift waves, above which drift wave fluctuations develop, is investigated. The dependence on the mass number of the hydrogen isotope is discussed.

  14. Inverse Magnus effect on a rotating sphere

    Science.gov (United States)

    Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul

    2011-11-01

    In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.

  15. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    The relative molar flame ionization detecton (FID) response (RMR) for a hydrocarbon does not change when deuterium is substituted for hydrogen. The exception is methane for which an inverse deuterium effect of 3..5% is observed for tetradeuteriomethane. [13C]Methane shows an inverse isotope effect...... of 2%. The reason for the small or non-existent isotope effects is that H/2H exchange takes place in the pre-combustion hydrogenolysis in the flame. This was shown by taking samples from the lower part of the flame by means of a fused silica capillary probe. By the same technique the hydrogenolytic...... reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  16. Isotopic Yield Distributions of Transfer- and Fusion-Induced Fission from 238U+12C Reactions in Inverse Kinematics

    CERN Document Server

    Caamaño, M; Farget, F; Derkx, X; Schmidt, K -H; Audouin, L; Bacri, C -O; Barreau, G; Benlliure, J; Casarejos, E; Chbihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Navin, A; Rejmund, M; Roger, T; Shrivastava, A; Schmitt, C

    2013-01-01

    A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinematics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.

  17. Isotope effects of hafnium in solvent extraction using crown ethers

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki; Moriyama, Hirotake [Research Reactor Institute, Kyoto University, Osaka (Japan); Hirata, Takafumi [Laboratory for Planetary Sciences, Tokyo Institute of Technology, Tokyo (Japan); Nishizawa, Kazushige [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Osaka (Japan)

    2001-06-01

    Hafnium isotopes were fractionated in a liquid-liquid extraction system by using seven types of crown ethers, tributyl phosphate, or {omicron}-diethoxybenzene. The largest isotope effect was observed in the isotope pair of {sup 177}Hf-{sup 179}Hf with dibenzo-24-crown-8; the isotope enrichment factor was observed to be 0.0129{+-}0.0032. (author)

  18. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  19. Temperature dependence of isotopic quantum effects in water.

    Science.gov (United States)

    Hart, R T; Benmore, C J; Neuefeind, J; Kohara, S; Tomberli, B; Egelstaff, P A

    2005-02-04

    The technique of high energy x-ray diffraction has been used to measure the temperature variation of hydrogen versus deuterium isotopic quantum effects on the structure of water. The magnitude of the effect is found to be inversely proportional to the temperature, varying by a factor of 2.5 over the range 6 to 45 degrees C. In addition, the H216O versus H218O effect has been measured at 26 degrees C and the structural difference shown to be restricted to the nearest neighbor molecular interactions. The results are compared to recent simulations and previously measured isochoric temperature differentials; additionally, implications for H/D substitution experiments are considered.

  20. Identification of dominant hydrogeochemical processes for groundwaters in the Algerian Sahara supported by inverse modeling of chemical and isotopic data

    Science.gov (United States)

    Slimani, Rabia; Guendouz, Abdelhamid; Trolard, Fabienne; Souffi Moulla, Adnane; Hamdi-Aïssa, Belhadj; Bourrié, Guilhem

    2017-03-01

    Unpublished chemical and isotopic data taken in November 1992 from the three major Saharan aquifers, namely the Continental Intercalaire (CI), the Complexe Terminal (CT) and the phreatic aquifer (Phr), were integrated with original samples in order to chemically and isotopically characterize the largest Saharan aquifer system and investigate the processes through which groundwaters acquire their mineralization. Instead of classical Debye-Hückel extended law, a specific interaction theory (SIT) model, recently incorporated in PHREEQC 3.0, was used. Inverse modeling of hydrochemical data constrained by isotopic data was used here to quantitatively assess the influence of geochemical processes: at depth, the dissolution of salts from the geological formations during upward leakage without evaporation explains the transitions from CI to CT and to a first end member, a cluster of Phr (cluster I); near the surface, the dissolution of salts from sabkhas by rainwater explains another cluster of Phr (cluster II). In every case, secondary precipitation of calcite occurs during dissolution. All Phr waters result from the mixing of these two clusters together with calcite precipitation and ion exchange processes. These processes are quantitatively assessed by the PHREEQC model. Globally, gypsum dissolution and calcite precipitation were found to act as a carbon sink.

  1. The effect of dipolar interaction on the magnetic isotope effect

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pedersen, Jørgen Boiden; Lukzen, Nikita

    2010-01-01

    A multi-channel kinetic description is used to study the magnetic isotope effect (MIE) in zero magnetic field. The maximal isotope effect is equal to the number of channels, two for the hyperfine interaction but four for the electron spin dipole–dipole interaction of the intermediate radical pair....... Quantum mechanical calculations agree with these conclusion and show that large MIE may be obtained even in the presence of a strong exchange interaction. The observed magnesium isotope effect on the rate of enzymatic synthesis of adenosine triphosphate (ATP) is approximately 3 implying that the dipolar...

  2. Oxygen isotope effect in cuprates results from polaron-induced superconductivity

    OpenAIRE

    Weyeneth, S.; Müller, K. A.

    2011-01-01

    The planar oxygen isotope effect coefficient measured as a function of hole doping in the Pr- and La-doped YBa2Cu3O7 (YBCO) and the Ni-doped La1.85Sr0.15CuO4 (LSCO) superconductors quantitatively and qualitatively follows the form originally proposed by Kresin and Wolf [Phys. Rev. B 49, 3652 (1994)], which was derived for polarons perpendicular to the superconducting planes. Interestingly, the inverse oxygen isotope effect coefficient at the pseudogap temperature also obeys the...

  3. Isotopic effects on the phonon modes in boron carbide.

    Science.gov (United States)

    Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O

    2010-10-01

    The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.

  4. Isotope Inversion Experiment evaluating the suitability of calibration in surrogate matrix for quantification via LC-MS/MS-Exemplary application for a steroid multi-method.

    Science.gov (United States)

    Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H

    2016-05-30

    For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays

  5. Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect

    KAUST Repository

    Demetrius, Lloyd A.

    2015-01-14

    Epidemiological and biochemical studies show that the sporadic forms of Alzheimer\\'s disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events—mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  6. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M.; Kondo, M.; Noda, N. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan); Tanaka, M.; Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu (Japan)

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  7. Inverse Target- and Cue-Priming Effects of Masked Stimuli

    Science.gov (United States)

    Mattler, Uwe

    2007-01-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses…

  8. Comparing the face inversion effect in crows and humans.

    Science.gov (United States)

    Brecht, Katharina F; Wagener, Lysann; Ostojić, Ljerka; Clayton, Nicola S; Nieder, Andreas

    2017-09-13

    Humans show impaired recognition of faces that are presented upside down, a phenomenon termed face inversion effect, which is thought to reflect the special relevance of faces for humans. Here, we investigated whether a phylogenetically distantly related avian species, the carrion crow, with similar socio-cognitive abilities to human and non-human primates, exhibits a face inversion effect. In a delayed matching-to-sample task, two crows had to differentiate profiles of crow faces as well as matched controls, presented both upright and inverted. Because crows can discriminate humans based on their faces, we also assessed the face inversion effect using human faces. Both crows performed better with crow faces than with human faces and performed worse when responding to inverted pictures in general compared to upright pictures. However, neither of the crows showed a face inversion effect. For comparative reasons, the tests were repeated with human subjects. As expected, humans showed a face-specific inversion effect. Therefore, we did not find any evidence that crows-like humans-process faces as a special visual stimulus. Instead, individual recognition in crows may be based on cues other than a conspecific's facial profile, such as their body, or on processing of local features rather than holistic processing.

  9. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  10. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    Science.gov (United States)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  11. The effect of collisions in ionogram inversion

    CERN Document Server

    Scotto, Carlo

    2012-01-01

    The results of this paper demonstrate how the effect of collisions on the group refraction index is small, when the ordinary ray is considered. If, however, in order to improve the performance of a system for automatic interpretation of ionograms, the information contained in ordinary and extraordinary traces is combined, the effect of collisions between the electrons and neutral molecules should be taken into account for the extraordinary ray.

  12. Solvent effect in the Walden inversion reactions

    Science.gov (United States)

    Jaume, J.; Lluch, J. M.; Oliva, A.; Bertrán, J.

    1984-04-01

    The solvent effect on the fluoride exchange reaction has been studied by means of ab initio calculations using the 3-21G basis set. It is shown that the motion of the solvent molecules is an important part of the reaction coordinate.

  13. Isotope Effects of Solid Hydrogenic Pellet Ablation in Fusion Plasma

    Institute of Scientific and Technical Information of China (English)

    PENGLilin; DENGBaiquan; YANJiancheng; WANGXiaoyu

    2003-01-01

    The isotope effects of ablation processes in fusion plasma for five combinations of solid isotopic hydrogenic pellets H2, HD, D2,DT, T2 have been first time studied. The resuits show that the modifications caused by isotope effects for pellet erosion speeds range from 1 for hydrogen pellet down to 0. 487 for tritium pellet and are not negligible in ablation rate calculations. These effects lead to deeper mass deposition and improved core fueling efficiency.

  14. Coulomb breakup of neutron-rich $^{29,30}$Na isotopes near the island of inversion

    CERN Document Server

    Rahaman, A; Aumann, T; Beceiro-Novo, S; Boretzky, K; Caesar, C; Carlson, B V; Catford, W N; Chakraborty, S; Chartier, M; Cortina-Gil, D; Angelis, G De; Gonzalez-Diaz, D; Emling, H; Fernandez, P Diaz; Fraile, L M; Ershova, O; Geissel, H; Jonson, B; Johansson, H; Kalantar-Nayestanaki, N; Krücken, R; Kröll, T; Kurcewicz, J; Langer, C; Bleis, T Le; Leifels, Y; Münzenberg, G; Marganiec, J; Nilsson, T; Nociforo, C; Nowacki, F; Najafi, A; Panin, V; Paschalis, S; Plag, R; Poves, A; Ray, I; Reifarth, R; Rigollet, C; Ricciardi, V; Rossi, D; Scheit, H; Simon, H; Scheidenberger, C; Typel, S; Taylor, J; Togano, Y; Volkov, V; Weick, H; Wagner, A; Wamers, F; Weigand, M; Winfield, J S; Yakorev, D; Zoric, M

    2016-01-01

    First results are reported on the ground state configurations of the neutron-rich $^{29,30}$Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a $^{208}Pb$ target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 $(7)$ mb and 167 $(13)$ mb up to excitation energy of 10 MeV for one neutron removal from $^{29}$Na and $^{30}$Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of $^{29}$Na${(3/2^+)}$ and $^{30}$Na${(2^+)}$ is the $d$ orbital with small contribution in the $s$-orbital which are coupled with ground ...

  15. Inverse spin Hall effect in Pt/(Ga,Mn)As

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H. [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Chen, L. [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Chang, H. W. [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ohno, H.; Matsukura, F., E-mail: f-matsu@wpi-aimr.tohoku.ac.jp [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  16. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  17. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-12-01

    The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.

  18. Quantum and isotope effects in lithium metal

    Science.gov (United States)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  19. Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jing

    2010-04-05

    Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].

  20. Inverse relation between summer and winter monsoon strength during late Holocene: continental molecular isotopic record from the Indian subcontinent

    Science.gov (United States)

    Sanyal, P.; Basu, S.; Pillai, A.; Singh, P.; Ratnam, J.; Sankaran, M.; Amibili, A.

    2015-12-01

    The Indian monsoon shapes the livelihood of ca. 40% of world's population. Despite dedicated efforts, comprehensive picture of monsoon variability has proved elusive largely due to the absence of long-term qualitative high-resolution record from key climatic zones and variability of monsoon with respect to various forcing mechanisms (e.g., solar insolation) and teleconnections (e.g., El Niño-Southern Oscillation, Indian Ocean Dipole). In this study, high-resolution molecular (n-alkane) isotopic (δD and δ13C ratios) reconstruction of mid-late Holocene (~5.0 cal ka) climate has been undertaken using lacustrine sediments from two climatically sensitive regions; (i) Arid Banni grasslands, western India with dominant moisture source derived from Indian summer monsoon (June-September) and (ii) Semi-arid Ennamangalam lake, south India with significant fraction of rainfall received during winter period (October to December) from Northeast (NE) monsoon. The climate reconstruction from western India based on δDn-alkane values shows prevalence of intensified monsoon until ca. 3 cal ka followed by gradual decrease in the precipitation. In contrast, climate reconstruction from south India is characterized by more negative δDn-alkane (intensified precipitation) values during late Holocene (~2.5 cal ka). The compilation of paleoclimate records shows that the precipitation pattern in Banni region responded linearly to gradually changing insolation and additionally amplified by climate systems like ENSO. However, intensified monsoon in South India shows strengthened NE monsoonal precipitation during late Holocene. The spatial inhomogeneity in the palaeohydrological record can be attributed to the persistence of inverse relationship between summer and winter monsoon. In addition, strong positive correlation between δDn-alkane and δ13Cn-alkane values from both region shows that the relative abundance of C3-C4 plants in the contemporary ecosystems are governed by rainfall

  1. The solar chromosphere as induction disk and the inverse Joule-Thomson effect

    CERN Document Server

    Vita-Finzi, Claudio

    2016-01-01

    The connection between nuclear fusion in the Sun's core and solar irradiance is obscured among other things by uncertainty over the mechanism of coronal heating. Data for solar wind density and velocity, sunspot number, and EUV flux suggest that electromagnetic energy from the Sun's convection zone is converted by induction through the chromosphere into thermal energy. The helium and hydrogen mixture exhaled by the Sun is then heated by the inverse Joule-Thomson effect when it expands via the corona into space. The almost complete shutdown of the solar wind on 10-11 May 1999 demonstrated that its velocity is a more faithful indicator of solar activity than are sunspots as it reflects short-term variations in coronal heating rather than quasicyclical fluctuations in the Sun's magnetism. Its reconstruction from the cosmic ray flux using isotopes spanning over 800,000 yr should therefore benefit the analysis and long-term forecasting of Earth and space weather.

  2. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  3. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    Science.gov (United States)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  4. Effects of anisotropy on the two-dimensional inversion procedure

    Science.gov (United States)

    Heise, Wiebke; Pous, Jaume

    2001-12-01

    In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.

  5. Medical applications of Cu, Zn, and S isotope effects.

    Science.gov (United States)

    Albarede, Francis; Télouk, Philippe; Balter, Vincent; Bondanese, Victor P; Albalat, Emmanuelle; Oger, Philippe; Bonaventura, Paola; Miossec, Pierre; Fujii, Toshiyuki

    2016-10-01

    This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The (65)Cu/(63)Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. (66)Zn/(64)Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine

  6. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.; Nilekar, Anand U.; Mavrikakis, Manos; Iglesia, Enrique

    2010-11-25

    H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.

  7. Kinetic 15N-isotope effects on algal growth

    Science.gov (United States)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  8. Unified picture of the oxygen isotope effect in cuprate superconductors.

    Science.gov (United States)

    Chen, Xiao-Jia; Struzhkin, Viktor V; Wu, Zhigang; Lin, Hai-Qing; Hemley, Russell J; Mao, Ho-kwang

    2007-03-06

    High-temperature superconductivity in cuprates was discovered almost exactly 20 years ago, but a satisfactory theoretical explanation for this phenomenon is still lacking. The isotope effect has played an important role in establishing electron-phonon interaction as the dominant interaction in conventional superconductors. Here we present a unified picture of the oxygen isotope effect in cuprate superconductors based on a phonon-mediated d-wave pairing model within the Bardeen-Cooper-Schrieffer theory. We show that this model accounts for the magnitude of the isotope exponent as functions of the doping level as well as the variation between different cuprate superconductors. The isotope effect on the superconducting transition is also found to resemble the effect of pressure on the transition. These results indicate that the role of phonons should not be overlooked for explaining the superconductivity in cuprates.

  9. Inverse design of nanostructured surfaces for color effects

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Johansen, Villads Egede; Friis, Kasper Storgaard;

    2014-01-01

    We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization...... is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can...

  10. Inverse spin Hall effect in a closed loop circuit

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  11. Ground state properties of neutron-rich Mg isotopes the "island of inversion" studied with laser and $\\beta$-NMR spectroscopy

    CERN Document Server

    Kowalska, M

    2006-01-01

    Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N=20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable $^{24-26}$Mg, as well as spins and magnetic moments of short-lived $^{29,31}$Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and $\\beta$-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280 nm transition from the atomic ground state $^2\\!$S$_{1/2}$ to one of the two lowest excited states $^2\\!$P$_{1/2 ,\\,3/2}$ using continuous wave laser beams. The isotope-shift measurements with fluor...

  12. H/D Isotope Effects in Hydrogen Bonded Systems

    Directory of Open Access Journals (Sweden)

    Aleksander Filarowski

    2013-04-01

    Full Text Available An extremely strong H/D isotope effect observed in hydrogen bonded A-H…B systems is connected with a reach diversity of the potential shape for the proton/deuteron motion. It is connected with the anharmonicity of the proton/deuteron vibrations and of the tunneling effect, particularly in cases of short bridges with low barrier for protonic and deuteronic jumping. Six extreme shapes of the proton motion are presented starting from the state without possibility of the proton transfer up to the state with a full ionization. The manifestations of the H/D isotope effect are best reflected in the infra-red absorption spectra. A most characteristic is the run of the relationship between the isotopic ratio nH/nD and position of the absorption band shown by using the example of NHN hydrogen bonds. One can distinguish a critical range of correlation when the isotopic ratio reaches the value of ca. 1 and then increases up to unusual values higher than . The critical range of the isotope effect is also visible in NQR and NMR spectra. In the critical region one observes a stepwise change of the NQR frequency reaching 1.1 MHz. In the case of NMR, the maximal isotope effect is reflected on the curve presenting the dependence of Δd (1H,2H on d (1H. This effect corresponds to the range of maximum on the correlation curve between dH and ΔpKa that is observed in various systems. There is a lack in the literature of quantitative information about the influence of isotopic substitution on the dielectric properties of hydrogen bond except the isotope effect on the ferroelectric phase transition in some hydrogen bonded crystals.

  13. H/D isotope effects in high temperature proton conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Huijser, A.; Poulsen, Finn Willy

    2015-01-01

    The atomic mass ratio of ca. 2 between deuterium and hydrogen is the highest for any pair of stable isotopes and results in significant and measurable H/D isotope effects in high temperature proton conductors containing these species. This paper discusses H/D isotope effects manifested in O......-H/O-D vibration frequencies, the mobility of H+/D+ carriers, the kinetics of the electrochemical oxidation of H2/D2, the solubilities of H2O/D2O and, finally, the spontaneous electromotive force that appears across H2/D2 cells with proton conducting electrolytes. Comparable work on tritium-exchanged materials...... is also discussed. The results highlight the usefulness of isotope effects in the study of high temperature proton conductors....

  14. Magnetoelectric tuning of the inverse spin-Hall effect

    Science.gov (United States)

    Vargas, José M.; Gómez, Javier E.; Avilés-Félix, Luis; Butera, Alejandro

    2017-05-01

    We demonstrate in this article that the magnetoelectric (ME) mechanism can be exploited to control the spin current emitted in a spin pumping experiment using moderate electric fields. Spin currents were generated at the interface of a ferromagnet/metal bilayer by driving the system to the ferromagnetic resonance condition at X-Band (9.78 GHz) with an incident power of 200 mW. The ME structure, a thin (20 nm) FePt film grown on top of a polished 011-cut single crystal lead magnesium niobate-lead titanate (PMN-PT) slab, was prepared by dc magnetron sputtering. The PMN-PT/FePt was operated in the L-T mode (longitudinal magnetized-transverse polarized). This hybrid composite showed a large ME coefficient of 140 Oe cm/kV, allowing to easily tune the ferromagnetic resonance condition with electric field strengths below 4 kV/cm. A thin layer of Pt (10 nm) was grown on top of the PMN-PT/FePt structure and was used to generate and detect the spin current by taking advantage of its large spin-orbit coupling that produces a measurable signal via the inverse spin-Hall effect. These results proved an alternative way to tune the magnetic field at which the spin current is established and consequently the inverse spin-Hall effect signal, which can promote advances in hybrid spintronic devices.

  15. Intensity Effects on the Inverse Bremsstrahlung Electron Accelerator

    Science.gov (United States)

    Pakter, Renato

    1998-11-01

    In the inverse bremsstrahlung electron acceleration(S. Kawatana, et al., Phys. Rev. Lett. 66), 2072 (1991); M. S. Hussein and M. P. Pato, ibid. 68, 1136 (1992)., where electrons interact with both an electrostatic wiggler and a large amplitude electromagnetic wave, high particle densities are necessary in order to obtain efficient energy transfer between the laser and the beam. However, beam plasma effects become pronounced at high densities, imposing a limitation on particle energy gain. In this paper, we analyze beam current effects in this acceleration scheme. In particular, a self-consistent Hamiltonian formalism that takes into account both particle and wave dynamics is developed(R. Pakter, Phys. Rev. E, to appear) (1998). A method is presented to overcome the limitation on particle energy gain imposed by beam plasma effects.

  16. Isotope and density profile effects on pedestal neoclassical transport

    Science.gov (United States)

    Buller, S.; Pusztai, I.

    2017-10-01

    Cross-field neoclassical transport of heat, particles and momentum is studied in sharp density pedestals, with a focus on isotope and profile effects, using a radially global approach. Global effects—which tend to reduce the peak ion heat flux, and shift it outward—increase with isotope mass for fixed profiles. The heat flux reduction exhibits a saturation with a favorable isotopic trend. A significant part of the heat flux can be convective even in pure plasmas, unlike in the plasma core, and it is sensitive to how momentum sources are distributed between the various species. In particular, if only ion momentum sources are allowed, in global simulations of pure plasmas the ion particle flux remains close to its local value, while this may not be the case for simulations with isotope mixtures or electron momentum sources. The radial angular momentum transport that is a finite orbit width effect, is found to be strongly correlated with heat sources.

  17. Heat Capacity of PbS: Isotope Effects

    OpenAIRE

    Cardona, M.; Kremer, R. K.; Lauck, R.; Siegle, G.; Serrano, J.; Romero, A. H.

    2007-01-01

    In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of the specific heat ($C_p$, $C_v$) of monatomic crystals such as diamond, silicon, and germanium, similar investigations have been undertaken for the tetrahedral diatomic systems ZnO and GaN (wurtzite structure), for which the effect of the mass of...

  18. A Unified Picture of the FIP and Inverse FIP Effects

    CERN Document Server

    Laming, J M

    2004-01-01

    We discuss models for coronal abundance anomalies observed in the coronae of the sun and other late-type stars following a scenario first introduced by Schwadron, Fisk & Zurbuchen of the interaction of waves at loop footpoints with the partially neutral gas. Instead of considering wave heating of ions in this location, we explore the effects on the upper chromospheric plasma of the wave ponderomotive forces. These can arise as upward propagating waves from the chromosphere transmit or reflect upon reaching the chromosphere-corona boundary, and are in large part determined by the properties of the coronal loop above. Our scenario has the advantage that for realistic wave energy densities, both positive and negative changes in the abundance of ionized species compared to neutrals can result, allowing both FIP and Inverse FIP effects to come out of the model. We discuss how variations in model parameters can account for essentially all of the abundance anomalies observed in solar spectra. Expected variations...

  19. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  20. Secondary. beta. -deuterium isotope effects in decarboxylation and elimination reactions of. cap alpha. -lactylthiamin: intrinsic isotope effects of pyruvate decarboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, R.; Brandl, M.

    1986-11-26

    The reactions of the adduct of pyruvate and thiamine, lactylthiamin (2-(lact-2-yl)thiamine), are accurate nonenzymic models for reactions of intermediates formed during catalysis by pyruvate decarboxylase. The enzymatic reaction generates lactylthiamin diphosphate from pyruvate and thiamine diphosphate. ..beta..-Deuterium isotope effects were determined for the nonenzymic reactions, and the results were related to isotope effects on the enzymic reaction. 2-(Lact-2-yl-..beta..-d/sub 3/) thiamine was prepared by condensation of methyl pyruvate-d/sub 3/ with thiamine followed by hydrolysis. The isotope effect for decarboxylation of lactylthiamin in acidic solution at 25/sup 0/C (k/sub H3//k/sub D3/) is 1.09 (standard deviation (SD) 0.015) in pH 3.8, 0.5 M sodium acetate: isotope effect = 1.095 (SD 0.014) in 0.001 M HCl. The reaction was also studied using 38% ethanolic aqueous sodium acetate (pH 3.8 before mixing with ethanol) since the enzymic sites are less polar than water and the reaction is significantly accelerated by the cosolvent. The isotope effect is within statistical range of that for the reaction in water, 1.105 (SD 0.016), indicating that acceleration by the solvent does not change the extent of hyperconjugative stabilization of the transition state relative to the ground state. The isotope effect for the base-catalyzed elimination of pyruvate from lactylthiamin was determined from kinetic studies by using multiwavelength analysis for reactions in pH 11 sodium carbonate solution. The isotope effect (k/sub H3//k/sub D3/) is 1.12 (SD 0.01), which is slightly higher than the effect on decarboxylation.

  1. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements.

    Science.gov (United States)

    von Ranke, P J; de Oliveira, N A; Alho, B P; Plaza, E J R; de Sousa, V S R; Caron, L; Reis, M S

    2009-02-04

    The inverse magnetocaloric effect occurs when a magnetic material cools down under applied magnetic field in an adiabatic process. Although the existence of the inverse magnetocaloric effect was recently reported experimentally, a theoretical microscopic description is almost nonexistent. In this paper we theoretically describe the inverse magnetocaloric effect in antiferro- and ferrimagnetic systems. The inverse magnetocaloric effects were systematically investigated as a function of the model parameters. The influence of the Néel and the compensation temperature on the magnetocaloric effect is also analyzed using a microscopic model.

  2. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    Science.gov (United States)

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  3. Boron isotope effect in superconducting MgB2.

    Science.gov (United States)

    Bud'ko, S L; Lapertot, G; Petrovic, C; Cunningham, C E; Anderson, N; Canfield, P C

    2001-02-26

    We report the preparation method of and boron isotope effect for MgB2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature T(c)(10B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in T(c) between Mg11B2 and Mg10B2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2 is consistent with the material being a phonon-mediated BCS superconductor.

  4. Microscale reservoir effects on microbial sulfur isotope fractionation

    Science.gov (United States)

    Louca, Stilianos; Crowe, Sean A.

    2017-04-01

    Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO42- over the heavier 34SO42-. The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfate-limited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and

  5. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    Science.gov (United States)

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-03

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

  6. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  7. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  8. Identifying vital effects in Halimeda algae with Ca isotopes

    Directory of Open Access Journals (Sweden)

    C. L. Blättler

    2014-12-01

    Full Text Available Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater, resulting in experimental samples with somewhat malformed skeletons. The Ca-isotope fractionation of the algal calcite (−0.6‰ appears to be much smaller than that for the algal aragonite (−1.4‰, similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda has higher Ca-isotope ratios than inorganic forms by approximately 0.25‰, likely because of Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the marine Ca-isotope cycle.

  9. Inverse Scattering Method and Soliton Solution Family for String Effective Action

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-Jun

    2009-01-01

    A modified Hauser-Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb-Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained.

  10. The origin of carbon isotope vital effects in coccolith calcite

    Science.gov (United States)

    McClelland, H. L. O.; Bruggeman, J.; Hermoso, M.; Rickaby, R. E. M.

    2017-03-01

    Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive.

  11. The origin of carbon isotope vital effects in coccolith calcite

    Science.gov (United States)

    McClelland, H. L. O.; Bruggeman, J.; Hermoso, M.; Rickaby, R. E. M.

    2017-01-01

    Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive. PMID:28262764

  12. Kinetic secondary deuterium isotope effects for substituted benzaldehyde cyanohydrin formation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, V.; do Amaral, L.; Cordes, E.H.

    1976-07-07

    ..cap alpha.. secondary deuterium isotope effects have been measured for the observed rate constants for addition of cyanide ion to a series of substituted benzaldehydes in aqueous solution at 25/sup 0/C. Under the experimental conditions employed, these reactions did not proceed to completion, and the observed isotope effects were corrected to account for the influence of the reverse reaction employing measured equilibrium constants for cyanohydrin formation and previously determined secondary deuterium isotope effect for the equilibrium constant for 4-methoxybenzaldehyde cyanohydrin formation. In the four cases studied, values of k/sub D//k/sub H/ varied from 1.15 to 1.20, only slightly lower than the calculated maximal value for complete formation of the anionic tetrahedral species which is the immediate product of the rate-determining step, 1.21. A trend in isotope effect as a function of substrate reactivity could not be definitively established. The results suffice to establish that addition of cyanide to benzaldehydes proceeds via transition states in which rehybridization of carbonyl carbon to the tetrahedral geometry is nearly complete.

  13. Study of single particle properties of neutron-rich Na isotopes on the "shore of the island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Reiter, P; Blazhev, A A; Riisager, K; Bastin, B; Tengborn, E A; Kruecken, R; Voulot, D; Jeppesen, H B; Hadinia, B; Gernhaeuser, R A; Fynbo, H O U; Georgiev, G P; Habs, D; Fraile prieto, L M; Chapman, R; Nilsson, T; Diriken, J V J; Jenkins, D G; Kroell, T; Leske, J; Huyse, M L; Patronis, N

    We aim at the investigation of single particle properties of neutron-rich Na isotopes around the "shore of the island of inversion". As first experiment of this programme, we propose to study excited states in the isotope $^{29}$Na by a one-neutron transfer reaction with a $^{28}$Na beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$-target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by the T-REX array of segmented Si detectors. The main physics aims are to extract from the relative spectroscopic factors information on the configurations contributing to the wave functions of the populated states and, secondly, to identify and characterize negative parity states whose excitation energies reflect directly the N= 28 gap in this region. The results will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure and help to understand the underlying physics relevant for the f...

  14. Clumped isotope effects during OH and Cl oxidation of methane

    Science.gov (United States)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan A.; Wang, David T.; Johnson, Matthew S.; Ono, Shuhei

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE). The deviation from this relationship is 0.3‰ ± 1.2‰ and 3.5‰ ± 0.7‰ for OH and Cl oxidation, respectively. This is consistent with model calculations performed using quantum chemistry and transition state theory. The OH and Cl reactions enrich the residual methane in the clumped isotopologue in open system reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane, will only have a minor (∼0.3‰) impact on the clumped isotope signature (Δ13CH3D, measured as a deviation from a stochastic distribution of isotopes) of tropospheric methane. This paper shows that Δ13CH3D will provide constraints on methane source strengths, and predicts that Δ12CH2D2 can provide information on methane sink strengths.

  15. The Inversion Effect for Chinese Characters Is Modulated by Radical Organization

    Science.gov (United States)

    Luo, Canhuang; Chen, Wei; Zhang, Ye

    2017-01-01

    In studies of visual object recognition, strong inversion effects accompany the acquisition of expertise and imply the involvement of configural processing. Chinese literacy results in sensitivity to the orthography of Chinese characters. While there is some evidence that this orthographic sensitivity results in an inversion effect, and thus…

  16. Explanation of the inverse Doppler effect observed in nonlinear transmission lines.

    Science.gov (United States)

    Kozyrev, Alexander B; van der Weide, Daniel W

    2005-05-27

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.

  17. The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2014-01-01

    Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…

  18. Effect of the Inverse Volume Modification in Loop Quantum Cosmology

    Institute of Scientific and Technical Information of China (English)

    XIONG Hua-Hui; ZHU Jian-Yang

    2011-01-01

    After incorporating the inverse volume modifications both in the gravitational and matter part in the improved framework of LQC, we find that the inverse volume modification can decrease the bouncing energy scale, and the presence of nonsingular bounce is generic. For the backward evolution in the expanding branch, in terms of different initial states, the evolution trajectories classify into two classes. One class with larger initial energy density leads to the occurrence of bounce in the region a>ach where ash marks the different inverse volume modification region. The other class with smaller initial energy density evolves back into the region a<ach. In this region, both the energy density for the scalar field and the bouncing energy scale decrease with the backward evolution. The bounce is present when the bouncing energy scale decreases to be equal to the energy density of the scalar field.

  19. Effective and accurate processing and inversion of airborne electromagnetic data

    DEFF Research Database (Denmark)

    Auken, Esben; Christiansen, Anders Vest; Andersen, Kristoffer Rønne

    Airborne electromagnetic (AEM) data is used throughout the world for mapping of mineral targets and groundwater resources. The development of technology and inversion algorithms has been tremendously over the last decade and results from these surveys are high-resolution images of the subsurface...

  20. Kinetic isotope effects for fast deuterium and proton exchange rates.

    Science.gov (United States)

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  1. Isotope effects in photo dissociation of ozone with visible light

    Science.gov (United States)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  2. Isotope Effects in Low Energy Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havener, Charles C [ORNL; Seely, D. G. [Albion College; Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH

    2009-01-01

    Isotope effects for charge transfer processes have recently received increased attention. The ion-atom merged-beams apparatus at Oak Ridge National Laboratory is used to measure charge transfer for low energy collisions of multi-charged ions with H and D and is therefore well suited to investigate isotope effects. The apparatus has been relocated and upgraded to accept high velocity beams from the 250 kV High Voltage Platform at the Multi-Charged Ion Research Facility. The intense higher velocity multi-charged ion beams allow, for the first time, measurements with both H and D from keV/u down to meV/u collision energies in the center-of-mass frame. When charge transfer occurs at relatively large inter-nuclear distances (via radial couplings) the ion-induced dipole attraction can lead to trajectory effects, causing differences in the charge transfer cross sections for H and D. A strong isotope effect (nearly a factor of two) has been observed in the cross section for Si4+ + H(D) below 0.1 eV/u. However, little or no difference is observed for N2+ + H(D). Recently, strong effects have been predicted for the fundamental system He2+ + H(D,T) at collision energies below 200 eV/u where charge transfer occurs primarily through united-atom rotational coupling. We are currently exploring systems where rotational coupling is important and isotopic differences in the cross section can be observed.

  3. Isotope effects in a multicusp tandem ion source

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.G. (Department of Pure and Applied Physics, Queen' s University, Belfast BT7 1NN (Northern Ireland))

    1992-10-05

    Measurements of plasma parameters, including electron density, electron energy distribution function (eedf), and negative ion density, have been made in the driver and extractor regions of a multicusp tandem ion source. Here results which focus on comparing operation in hydrogen and deuterium are presented. Several isotope effects are evident. In particular, for the same operating conditions, the electron density is found to be higher in deuterium than in hydrogen while the negative ion density is consistently lower.

  4. Isotopic modeling of the sub-cloud evaporation effect in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Salamalikis, V., E-mail: vsalamalik@upatras.gr [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Argiriou, A.A. [Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras (Greece); Dotsika, E. [Stable Isotope Unit, Institute of Nanoscience and Nanotechnology, National Center of Scientific Research ‘Demokritos’, Ag. Paraskevi Attikis, 15310 Athens (Greece)

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a ‘heat capacity’ model providing high correlation coefficients for both isotopes (R{sup 2} > 80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH = 95%) sub-cloud evaporation is negligible and the

  5. Anharmonic phonons and the isotope effect in superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, Berkeley, CA (USA) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA (USA)); Penn, D.R. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

    1991-06-01

    Anharmonic interionic potentials are examined in an Einstein model to study the unusual isotope-effect exponents for the high-{ital T}{sub {ital c}} oxides. The mass dependences of the electron-phonon coupling constant {lambda} and the average phonon frequency {radical}{l angle}{omega}{sup 2}{r angle} are computed from weighted sums over the oscillator levels. The isotope-effect exponent is depressed below 1/2 by either a double-well potential or a potential with positive quadratic and quartic parts. Numerical solutions of Schroedinger's equation for double-well potentials produce {lambda}'s in the range 1.5--4 for a material with a vanishing isotope-effect parameter {alpha}. However, low phonon frequencies limit {ital T}{sub {ital c}} to roughly 15 K. A negative quartic perturbation to a harmonic well can increase {alpha} above 1/2. In the extreme-strong-coupling limit, {alpha} is 1/2, regardless of anharmonicity.

  6. Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications.

    Science.gov (United States)

    Waugh, Matthew W; Marsh, E Neil G

    2014-09-02

    The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.

  7. Effect of interband interaction on isotope effect exponent of MgB2 superconductors

    Indian Academy of Sciences (India)

    P Udomsamuthirun; C Kumvongsa; A Burakorn; P Changkanarth

    2006-03-01

    The exact formula of c's equation and the isotope effect exponent of two-band s-wave superconductors in the weak-coupling limit are derived by considering the influence of interband interaction. In each band, our model consists of two pairing interactions: the electron-phonon interaction and non-electron-phonon interaction. We find that the isotope effect exponent of MgB2, = 0.3 with c ≈ 40 K can be found in the weak coupling regime and interband interaction of electron-phonon shows more effect on the isotope effect exponent than on the interband interaction of non-phonon.

  8. Probing isotope effects in chemical reactions using single ions

    CERN Document Server

    Staanum, Peter F; Wester, Roland; Drewsen, Michael

    2008-01-01

    Isotope effects in reactions between Mg+ in the 3p 2P3/2 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ~250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From additional 65 reactions with H2 and D2 we find that the overall decay probability of the intermediate MgH2+, MgHD+ or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well-suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  9. Magnetocaloric effect at the exchange–inversion with magnetoelastic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Piazzi, Marco, E-mail: m.piazzi@inrim.it; Basso, Vittorio

    2015-09-15

    We develop a thermodynamic model to describe antiferro- (AFM) to ferromagnetic (FM) phase transitions through magnetoelastic coupling in the framework of Kittel's exchange–inversion mechanism. By including both magnetic and structural contributions to the free energy, we derive the conditions to have a direct AFM–FM transition. These are represented either by the presence of a non-zero intra-sublattice coupling constant or by a sufficiently high value of the magnetoelastic coupling parameter. In the paper we establish these conditions by analytical means and we discuss the physical meaning of the model in relation to possible applications to magnetocaloric materials with AFM–FM transitions.

  10. Magnetocaloric effect at the exchange-inversion with magnetoelastic coupling

    Science.gov (United States)

    Piazzi, Marco; Basso, Vittorio

    2015-09-01

    We develop a thermodynamic model to describe antiferro- (AFM) to ferromagnetic (FM) phase transitions through magnetoelastic coupling in the framework of Kittel's exchange-inversion mechanism. By including both magnetic and structural contributions to the free energy, we derive the conditions to have a direct AFM-FM transition. These are represented either by the presence of a non-zero intra-sublattice coupling constant or by a sufficiently high value of the magnetoelastic coupling parameter. In the paper we establish these conditions by analytical means and we discuss the physical meaning of the model in relation to possible applications to magnetocaloric materials with AFM-FM transitions.

  11. Effective boson number calculations in Mo and Cd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cata, G.; Bucurescu, D.; Cutoiu, D.; Ivascu, M.; Zamfir, N.V. (Institutul Central de Fizica, Bucharest (Romania))

    1990-03-01

    The effects of the neutron-proton interaction on the low-lying levels of Mo and Cd isotopes have been considered in the frame of the IBA-1 model by taking into account an effective boson number (N{sub eff}). Both an empirical procedure based on previous IBA-2 mixing calculations and the N{sub p}N{sub n} scheme provide comparable N{sub eff} values. Level spectra and electromagnetic transitions are investigated. The results support the idea that IBA-1 calculations with a suitable N{sub eff} can largely simulate IBA-2 mixing calculations, taking advantage of simplicity and a smaller number of parameters. (orig.).

  12. Culture Studies of Nitrogen and Oxygen Isotope Effects Associated with Nitrate Assimilation and Denitrification

    Science.gov (United States)

    Sigman, D. M.; Granger, J.; Lehmann, M. F.; Difiore, P. J.; Tortell, P. D.

    2007-12-01

    The isotope effects of nitrate-consuming reactions such as nitrate assimilation and denitrification are potential indicators of the physiological state of the organisms carrying out these reactions. Moreover, an understanding of these isotope effects is needed to use the stable isotopes to investigate the fluxes associated with these reactions in modern and ancient environments. We have used batch cultures to investigate the nitrogen (N) and oxygen (O) isotope effects of (1) nitrate assimilation by eukaryotic and prokaryotic algae and by heterotrophic bacteria, and (2) nitrate reduction by denitrifying bacteria. We observe intra- and inter-specific variation in isotope effect amplitudes and, in the case of denitrifiers, indications of isotope effect decreases during individual nitrate drawdown experiments. However, the measured N and O isotope effect ratio is close to 1 for all studied organisms, with the exception of an unusual denitrifier (Rhodobacter sphaeroides) that possesses only periplasmic (non-respiratory) nitrate reductase. This observation and other findings are consistent with nitrate reductase being the predominant source of isotope fractionation and with most isotope effect amplitude variability arising from variable degrees to which nitrate imported into the cell is reduced versus effluxed back into the environment; the more efflux, the more complete the expression of the fractionation imparted by nitrate reduction. If this is the case, then isotope effect amplitudes in the field should be related to physiological conditions in the environment, a prediction that, we argue, is supported by recent studies of (1) nitrate assimilation in the polar ocean and (2) denitrification in sediment porewaters.

  13. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound.

    Science.gov (United States)

    Mañosa, Lluís; González-Alonso, David; Planes, Antoni; Barrio, Maria; Tamarit, Josep-Lluís; Titov, Ivan S; Acet, Mehmet; Bhattacharyya, Amitava; Majumdar, Subham

    2011-12-20

    Application of hydrostatic pressure under adiabatic conditions causes a change in temperature in any substance. This effect is known as the barocaloric effect and the vast majority of materials heat up when adiabatically squeezed, and they cool down when pressure is released (conventional barocaloric effect). There are, however, materials exhibiting an inverse barocaloric effect: they cool when pressure is applied, and they warm when it is released. Materials exhibiting the inverse barocaloric effect are rather uncommon. Here we report an inverse barocaloric effect in the intermetallic compound La-Fe-Co-Si, which is one of the most promising candidates for magnetic refrigeration through its giant magnetocaloric effect. We have found that application of a pressure of only 1 kbar causes a temperature change of about 1.5 K. This value is larger than the magnetocaloric effect in this compound for magnetic fields that are available with permanent magnets.

  14. Effects of water temperature inversion layer on underwater sound propagation in the East China Sea

    Science.gov (United States)

    Kim, Seong Hyeon; Kim, Byoung-Nam; Kim, Eung; Choi, Bok Kyoung; Kim, Dong Sun

    2017-07-01

    In this study, we investigated the effect of a water temperature inversion layer on the propagation of acoustic waves in the western coastal sea of Jeju Island in April 2015. When the acoustic source and receiver are simultaneously located within the water temperature inversion layer depth, the long-range propagation of acoustic waves is confirmed by numerical modeling. This is caused by the duct effect due to the water temperature inversion phenomenon. For the experimental area without the water temperature inversion layer, when the acoustic source and receiver are simultaneously located below thermocline depth, the long-range propagation of acoustic waves is also confirmed. This is generally caused by the seasonal water temperature profile.

  15. The effect of inversion at 8p23 on BLK association with lupus in Caucasian population.

    Directory of Open Access Journals (Sweden)

    Bahram Namjou

    Full Text Available To explore the potential influence of the polymorphic 8p23.1 inversion on known autoimmune susceptibility risk at or near BLK locus, we validated a new bioinformatics method that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion in a Caucasian population.Principal components analysis (PCA was performed using markers inside the inversion territory followed by k-means cluster analyses on 7416 European derived and 267 HapMaP CEU and TSI samples. A logistic regression conditional analysis was performed.Three subgroups have been identified; inversion homozygous, heterozygous and non-inversion homozygous. The status of inversion was further validated using HapMap samples that had previously undergone Fluorescence in situ hybridization (FISH assays with a concordance rate of above 98%. Conditional analyses based on the status of inversion were performed. We found that overall association signals in the BLK region remain significant after controlling for inversion status. The proportion of lupus cases and controls (cases/controls in each subgroup was determined to be 0.97 for the inverted homozygous group (1067 cases and 1095 controls, 1.12 for the inverted heterozygous group (1935 cases 1717 controls and 1.36 for non-inverted subgroups (924 cases and 678 controls. After calculating the linkage disequilibrium between inversion status and lupus risk haplotype we found that the lupus risk haplotype tends to reside on non-inversion background. As a result, a new association effect between non-inversion status and lupus phenotype has been identified ((p = 8.18×10(-7, OR = 1.18, 95%CI = 1.10-1.26.Our results demonstrate that both known lupus risk haplotype and inversion status act additively in the pathogenesis of lupus. Since inversion regulates expression of many genes in its territory, altered expression of other genes might also be involved in the development of lupus.

  16. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations

    OpenAIRE

    2016-01-01

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD), than in H-tunneling. In order to examine the isoto...

  17. Effects of short range correlations on Ca isotopes

    CERN Document Server

    Lalazissis, G A

    1996-01-01

    The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.

  18. Isotope effect in charge-transfer collisions of H with He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J.; Dalgarno, A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Ryabchenko, S. [Northern (Arctic) Federal University, 17 Severnaya Dvina Emb., 163002 Arkhangelsk (Russian Federation); Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium)

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  19. Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

    Directory of Open Access Journals (Sweden)

    Abel Palafox

    2014-01-01

    Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.

  20. The oxygen isotope effect on critical temperature in superconducting copper oxides

    OpenAIRE

    Mourachkine, A.

    2003-01-01

    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen i...

  1. Environmental effects on the stable carbon and oxygen isotopic ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... Key words: Oxygen isotopes, carbon isotopes, Porites coral, density bands, skeletal .... isotopic ratio of CO2 gas derived from the Pee Dee Belemnite (PDB) ... water samples, a 2.0 ml of the sample was taken into a syringe and.

  2. Alzheimer’s disease: the Amyloid hypothesis and the Inverse Warburg effect

    Directory of Open Access Journals (Sweden)

    Lloyd eDemetrius

    2015-01-01

    Full Text Available Epidemiological and biochemical studies show that the sporadic forms of Alzheimer’s disease (AD are characterized by the following hallmarks : (a An exponential increase with age ; (b Selective neuronal vulnerability ; (c Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD : the amyloid hypothesis (a neuron-centric mechanism and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism. We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events – mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect, and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

  3. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    Energy Technology Data Exchange (ETDEWEB)

    Abell, L.M.; O' Leary, M.H.

    1988-08-09

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  4. A large solvent isotope effect on protein association thermodynamics.

    Science.gov (United States)

    Eginton, Christopher; Beckett, Dorothy

    2013-09-24

    Solvent reorganization can contribute significantly to the energetics of protein-protein interactions. However, our knowledge of the magnitude of the energetic contribution is limited, in part, by a dearth of quantitative experimental measurements. The biotin repressor forms a homodimer as a prerequisite to DNA binding to repress transcription initiation. At 20 °C, the dimerization reaction, which is thermodynamically coupled to binding of a small ligand, bio-5'-AMP, is characterized by a Gibbs free energy of -7 kcal/mol. This modest net dimerization free energy reflects underlying, very large opposing enthalpic and entropic driving forces of 41 ± 3 and -48 ± 3 kcal/mol, respectively. The thermodynamics have been interpreted as indicating coupling of solvent release to dimerization. In this work, this interpretation has been investigated by measuring the effect of replacing H2O with D2O on the dimerization thermodynamics. Sedimentation equilibrium measurements performed at 20 °C reveal a solvent isotope effect of -1.5 kcal/mol on the Gibbs free energy of dimerization. Analysis of the temperature dependence of the reaction in D2O indicates enthalpic and entropic contributions of 28 and -37 kcal/mol, respectively, considerably smaller than the values measured in H2O. These large solvent isotope perturbations to the thermodynamics are consistent with a significant contribution of solvent release to the dimerization reaction.

  5. Isotope effects on particle transport in the Compact Helical System

    Science.gov (United States)

    Tanaka, K.; Okamura, S.; Minami, T.; Ida, K.; Mikkelsen, D. R.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.

    2016-05-01

    The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8  ×  1019 m-3 to 4  ×  1019 m-3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density  2.5  ×  1019 m-3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime.

  6. Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses

    Science.gov (United States)

    Kozhaev, M. A.; Chernov, A. I.; Savochkin, I. V.; Kuz'michev, A. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-12-01

    The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.

  7. The physical chemistry of mass-independent isotope effects and their observation in nature.

    Science.gov (United States)

    Thiemens, Mark H; Chakraborty, Subrata; Dominguez, Gerardo

    2012-01-01

    Historically, the physical chemistry of isotope effects and precise measurements in samples from nature have provided information on processes that could not have been obtained otherwise. With the discovery of a mass-independent isotopic fractionation during the formation of ozone, a new physical chemical basis for isotope effects required development. Combined theoretical and experimental developments have broadened this understanding and extended the range of chemical systems where these unique effects occur. Simultaneously, the application of mass-independent isotopic measurements to an extensive range of both terrestrial and extraterrestrial systems has furthered the understanding of events such as solar system origin and evolution and planetary atmospheric chemistry, present and past.

  8. Effect of head shape variations among individuals on the EEG/MEG forward and inverse problems.

    Science.gov (United States)

    von Ellenrieder, Nicolás; Muravchik, Carlos H; Wagner, Michael; Nehorai, Arye

    2009-03-01

    We study the effect of the head shape variations on the EEG/magnetoencephalography (MEG) forward and inverse problems. We build a random head model such that each sample represents the head shape of a different individual and solve the forward problem assuming this random head model, using a polynomial chaos expansion. The random solution of the forward problem is then used to quantify the effect of the geometry when the inverse problem is solved with a standard head model. The results derived with this approach are valid for a continuous family of head models, rather than just for a set of cases. The random model consists of three random surfaces that define layers of different electric conductivity, and we built an example based on a set of 30 deterministic models from adults. Our results show that for a dipolar source model, the effect of the head shape variations on the EEG/MEG inverse problem due to the random head model is slightly larger than the effect of the electronic noise present in the sensors. The variations in the EEG inverse problem solutions are due to the variations in the shape of the volume conductor, while the variations in the MEG inverse problem solutions, larger than the EEG ones, are caused mainly by the variations of the absolute position of the sources in a coordinate system based on anatomical landmarks, in which the magnetometers have a fixed position.

  9. The isotope altitude effect reflected in groundwater: a case study from Slovenia.

    Science.gov (United States)

    Mezga, Kim; Urbanc, Janko; Cerar, Sonja

    2014-01-01

    This paper presents the stable isotope data of oxygen (δ(18)O) and hydrogen (δ(2)H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009-2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ(18)O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ(18)O in groundwater.

  10. Observation of the inverse Doppler effect in negative-index materials at optical frequencies

    Science.gov (United States)

    Chen, Jiabi; Wang, Yan; Jia, Baohua; Geng, Tao; Li, Xiangping; Feng, Lie; Qian, Wei; Liang, Bingming; Zhang, Xuanxiong; Gu, Min; Zhuang, Songlin

    2011-04-01

    The Doppler effect is a fundamental frequency shift phenomenon that occurs whenever a wave source and an observer are moving with respect to one another. It has well-established applications in astrophotonics, biological diagnostics, weather and aircraft radar systems, velocimetry and vibrometry. The counterintuitive inverse Doppler effect was theoretically predicted in 1968 by Veselago in negative-index materials. However, because of the tremendous challenges of frequency shift measurements inside such materials, most investigations of the inverse Doppler effect have been limited to theoretical predictions and numerical simulations. Indirect experimental measurements have been conducted only in nonlinear transmission lines at ~1-2 GHz (ref. 8) and in acoustic media at 1-3 kHz (ref. 9). Here, we report the first experimental observation of the inverse Doppler shift at an optical frequency (λ = 10.6 µm) by refracting a laser beam in a photonic-crystal prism that has the properties of a negative-index material.

  11. The inversion effect on gaze perception reflects processing of component information.

    Science.gov (United States)

    Schwaninger, Adrian; Lobmaier, Janek S; Fischer, Martin H

    2005-11-01

    When faces are turned upside-down they are much more difficult to recognize than other objects. This "face inversion effect" has often been explained in terms of configural processing, which is impaired when faces are rotated away from the upright. Here we report a "gaze inversion effect" and discuss whether it is related to configural face processing of the whole face. Observers reported the gaze locations of photographed upright or inverted faces. When whole faces were presented, we found an inversion effect both for constant errors and observer sensitivity. These results were closely replicated when only the eyes were visible. Together, our findings suggest that gaze processing is largely based on component-based information from the eye region. Processing this information is orientation-sensitive and does not seem to rely on configural processing of the whole face.

  12. Priming and Habituation for Faces: Individual Differences and Inversion Effects

    Science.gov (United States)

    Rieth, Cory A.; Huber, David E.

    2010-01-01

    Immediate repetition priming for faces was examined across a range of prime durations in a threshold identification task. Similar to word repetition priming results, short duration face primes produced positive priming whereas long duration face primes eliminated or reversed this effect. A habituation model of such priming effects predicted that…

  13. Priming and Habituation for Faces: Individual Differences and Inversion Effects

    Science.gov (United States)

    Rieth, Cory A.; Huber, David E.

    2010-01-01

    Immediate repetition priming for faces was examined across a range of prime durations in a threshold identification task. Similar to word repetition priming results, short duration face primes produced positive priming whereas long duration face primes eliminated or reversed this effect. A habituation model of such priming effects predicted that…

  14. Optical Orientation and Inverse Spin Hall Effect as Effective Tools to Investigate Spin-Dependent Diffusion

    Directory of Open Access Journals (Sweden)

    Marco Finazzi

    2016-11-01

    Full Text Available In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions.

  15. Effects of betahistine at histamine H3 receptors: mixed inverse agonism/agonism in vitro and partial inverse agonism in vivo.

    Science.gov (United States)

    Gbahou, F; Davenas, E; Morisset, S; Arrang, J-M

    2010-09-01

    We previously suggested that therapeutic effects of betahistine in vestibular disorders result from its antagonist properties at histamine H(3) receptors (H(3)Rs). However, H(3)Rs exhibit constitutive activity, and most H(3)R antagonists act as inverse agonists. Here, we have investigated the effects of betahistine at recombinant H(3)R isoforms. On inhibition of cAMP formation and [(3)H]arachidonic acid release, betahistine behaved as a nanomolar inverse agonist and a micromolar agonist. Both effects were suppressed by pertussis toxin, were found at all isoforms tested, and were not detected in mock cells, confirming interactions at H(3)Rs. The inverse agonist potency of betahistine and its affinity on [(125)I]iodoproxyfan binding were similar in rat and human. We then investigated the effects of betahistine on histamine neuron activity by measuring tele-methylhistamine (t-MeHA) levels in the brains of mice. Its acute intraperitoneal administration increased t-MeHA levels with an ED(50) of 0.4 mg/kg, indicating inverse agonism. At higher doses, t-MeHA levels gradually returned to basal levels, a profile probably resulting from agonism. After acute oral administration, betahistine increased t-MeHA levels with an ED(50) of 2 mg/kg, a rightward shift probably caused by almost complete first-pass metabolism. In each case, the maximal effect of betahistine was lower than that of ciproxifan, indicating partial inverse agonism. After an oral 8-day treatment, the only effective dose of betahistine was 30 mg/kg, indicating that a tolerance had developed. These data strongly suggest that therapeutic effects of betahistine result from an enhancement of histamine neuron activity induced by inverse agonism at H(3) autoreceptors.

  16. Ruthenium endemic isotope effects in chondrites and differentiated meteorites

    Science.gov (United States)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2010-07-01

    We report on the abundances of Ru isotopes in (1) iron meteorites, (2) stony-iron meteorites (pallasites), (3) ordinary and carbonaceous chondrites, and (4) in refractory inclusions from the carbonaceous meteorite Allende. We have developed improved Multiple-Collector, Negative-ion Thermal Ionization Mass Spectrometric (MC-NTIMS) techniques for Ru, with high ionization efficiency of 4% and with chemical separation techniques for Ru, which reduce mass interferences to the ppm level, so that no mass interference corrections needed to be applied. Our data were normalized to 99Ru/ 101Ru to correct for mass-dependent fractionation. We find no Ru isotopic effects in the ordinary chondrites and group IAB iron meteorites we have measured. There are significant effects (deficits) in the pure s-process nuclide 100Ru, in the Allende whole-rock and in refractory inclusions of up to 1.7 parts in 10,000 (ɛu). There are also endemic deficits in 100Ru in iron meteorites and in pallasites of up to 1.1 ɛu. The Ru data suggest a wide spread and large scale heterogeneity in p-, s-, and r-process components resulting in a deficit in s-process nuclides or enhancements in both p- and r-process nuclides, in refractory siderophiles condensing in the early solar nebula. In contrast, the data on bulk Murchison suggest an excess in 100Ru and in 104Ru, which are distinct from the rest of the measured patterns. Our results establish the presence of significant isotopic heterogeneity for Ru in the early solar nebula. The observation of endemic Ru effects in planetary differentiates, such as iron meteorites and pallasites, must reflect the siderophile nature of Ru and the preservation in condensing FeNi metal of refractory metal condensate grains formed in the early solar nebula. Once incorporated in the metal phase, the refractory siderophiles remained in the metal phase through the melting and differentiation of planetesimals to form FeNi cores and silicate mantles and crusts.

  17. Iron isotope effect on T c in optimally-doped (Ba,K)Fe 2As 2 ( T c = 38 K) and SmFeAsO 1-y ( T c = 54 K) superconductors

    Science.gov (United States)

    Shirage, P. M.; Kihou, K.; Miyazawa, K.; Lee, C. H.; Kito, H.; Yoshida, Y.; Eisaki, H.; Tanaka, Y.; Iyo, A.

    2010-11-01

    We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1-y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = -0.18 ± 0.03 while SmFeAsO1-y shows a small iron isotope effect αFe = -0.02 ± 0.01, where the isotope exponent α is defined by Tc ∼ M-α (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.

  18. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    Science.gov (United States)

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  19. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Takeshi, E-mail: go-sai@imr.tohoku.ac.jp; Takanashi, Koki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Uchida, Ken-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Kikkawa, Takashi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Qiu, Zhiyong [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, Eiji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-08-31

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  20. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    Science.gov (United States)

    Seki, Takeshi; Uchida, Ken-ichi; Kikkawa, Takashi; Qiu, Zhiyong; Saitoh, Eiji; Takanashi, Koki

    2015-08-01

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (Js) in the FePt|Y3Fe5O12 (YIG) structure, and Js was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  1. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.

    Science.gov (United States)

    Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang

    2015-11-01

    Enzymatic reactions are integral components in many biological functions and malfunctions. The iconic structure of each reaction path for elucidating the reaction mechanism in details is the molecular structure of the rate-limiting transition state (RLTS). But RLTS is very hard to get caught or to get visualized by experimentalists. In spite of the lack of explicit molecular structure of the RLTS in experiment, we still can trace out the RLTS unique "fingerprints" by measuring the isotope effects on the reaction rate. This set of "fingerprints" is considered as a most direct probe of RLTS. By contrast, for computer simulations, oftentimes molecular structures of a number of TS can be precisely visualized on computer screen, however, theoreticians are not sure which TS is the actual rate-limiting one. As a result, this is an excellent stage setting for a perfect "marriage" between experiment and theory for determining the structure of RLTS, along with the reaction mechanism, i.e., experimentalists are responsible for "fingerprinting", whereas theoreticians are responsible for providing candidates that match the "fingerprints". In this Review, the origin of isotope effects on a chemical reaction is discussed from the perspectives of classical and quantum worlds, respectively (e.g., the origins of the inverse kinetic isotope effects and all the equilibrium isotope effects are purely from quantum). The conventional Bigeleisen equation for isotope effect calculations, as well as its refined version in the framework of Feynman's path integral and Kleinert's variational perturbation (KP) theory for systematically incorporating anharmonicity and (non-parabolic) quantum tunneling, are also presented. In addition, the outstanding interplay between theory and experiment for successfully deducing the RLTS structures and the reaction mechanisms is demonstrated by applications on biochemical reactions, namely models of bacterial squalene-to-hopene polycyclization and RNA 2'-O

  2. Electrochemical H-D isotope effect at metal-perovskite proton conductor interfaces

    DEFF Research Database (Denmark)

    Kek, D.; Bonanos, N.

    1999-01-01

    The H-D isotope effect on the electrode kinetics of a metal-proton conductor interface has been investigated. The current-voltage behaviour depends on the nature of the electrode (Ni, Ag), the atmosphere (H(2), D(2)), the partial pressures of the gases, and the temperature. The isotope effect...

  3. Electrochromic effect in domain-inversion process in LiNbO3: Ru: Fe crystals

    Institute of Scientific and Technical Information of China (English)

    XI Qingxin; LIU De'an; ZHI Ya'nan; ZHU Luan; LIU Liren

    2005-01-01

    A reversible electrochromic effect accompanying domain-inversion during the electrical poling process in LiNbO3: Ru: Fe crystals at room temperature has been observed. In electrode area, both electrochromism and domain-inversion occur alternately, and electrochromism is also reversible during back-switch poling, which is experimentally verified and whose mechanism is briefly explained using a microstructure ferroelectric model. In addition, because of the enhancing elcctrochromic effect, different from the undoped LiNbO3 crystals, the coercive filed (21.0 kV/mm or so) measured in LiNbO3: Ru: Fe is lower than its breakdown field, thus providing a possible new technique for realizing the domain-inversion by constant electric field rather than a pulsed one.

  4. Effects of ankle eversion taping using kinesiology tape in a patient with ankle inversion sprain.

    Science.gov (United States)

    Lee, Sun-Min; Lee, Jung-Hoon

    2016-01-01

    [Purpose] The aim of this study was to report the effects of ankle eversion taping using kinesiology tape on ankle inversion sprain. [Subject] The subject was a 21-year-old woman with Grade 2 ankle inversion sprain. [Methods] Ankle eversion taping was applied to the sprained left ankle using kinesiology tape for 4 weeks (average, 15 h/day). [Results] Ankle instability and pain were reduced, and functional dynamic balance was improved after ankle eversion taping for 4 weeks. The Cumberland Ankle Instability Tool score and reach distances in the Y-Balance and lunge tests were increased. [Conclusion] Repeated ankle eversion taping may be an effective treatment intervention for ankle inversion sprain.

  5. Relationship between atmospheric methane lifetime, isotope budget and effective sink enrichments simulated in AC-GCM EMAC

    Science.gov (United States)

    Gromov, Sergey; Steil, Benedikt

    2016-04-01

    ] when averages are used, however differences in local values (e.g. between the N and S poles) may reach double of that. We find that surface ɛ values can be parametrically derived using local and average tropospheric CH4 mixing ratios, however not lifetimes. Importantly, the effective enrichment signal is lost if the lower boundary condition (so-called "nudging") is used instead of surface CH4 emissions in the model. Such will likely lead to wrong estimates of the isotope signatures of CH4 sources in inverse modelling approaches. Some conclusions and quantitative estimates of 2Hɛ are presented in addition. 1. Tans, P. P.: A note on isotopic ratios and the global atmospheric methane budget, Glob. Biogeochem. Cyc., 11, 77-81, doi: 10.1029/96gb03940, 1997. 2. Jöckel, P., et al.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi: 10.5194/gmd-3-717-2010, 2010. 3. Gromov, S., et al.: A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases, Geosci. Model Dev., 3, 337-364, doi: 10.5194/gmd-3-337-2010, 2010.

  6. Isotope effect in tunnelling ionization of neutral hydrogen molecules

    CERN Document Server

    Wang, X; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-01-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates (O.I. Tolstikhin, H.J. Worner and T. Morishita, Phys. Rev. A 87, 041401(R) (2013) [1]). We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  7. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    Science.gov (United States)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  8. Variation of kinetic isotope effect in multiple proton transfer reactions

    Indian Academy of Sciences (India)

    B Saritha; M Durga Prasad

    2012-01-01

    Recently, we had suggested that the motion along the promoter mode in the first part of the IRC of proton transfer reaction enhances the delocalization of electrons on the acceptor atom into the * orbital of the donor-hydrogen covalent bond, and as a consequence weakens it. This leads to a reduction of the barrier to the proton transfer as well as the stretching frequency of donor-hydrogen bond. An extension of this to the concerted multiple proton transfer reactions implies that the kinetic isotope effect in such reaction depends exponentially on the number of protons that are being transferred. Computational evidence on three systems, (HF)3, formic acid dimer, and (H2O) clusters is provided to support this assertion.

  9. Structural isotope effects in metal hydrides and deuterides.

    Science.gov (United States)

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  10. Isotope quantum effects in water around the freezing point.

    Science.gov (United States)

    Hart, R T; Mei, Q; Benmore, C J; Neuefeind, J C; Turner, J F C; Dolgos, M; Tomberli, B; Egelstaff, P A

    2006-04-07

    We have measured the difference in electronic structure factors between liquid H(2)O and D(2)O at temperatures of 268 and 273 K with high energy x-ray diffraction. These are compared to our previously published data measured from 279 to 318 K. We find that the total structural isotope effect increases by a factor of 3.5 over the entire range, as the temperature is decreased. Structural isochoric temperature differential and isothermal density differential functions have been used to compare these data to a thermodynamic model based upon a simple offset in the state function. The model works well in describing the magnitude of the structural differences above approximately 310 K, but fails at lower temperatures. The experimental results are discussed in light of several quantum molecular dynamics simulations and are in good qualitative agreement with recent temperature dependent, rotationally quantized rigid molecule simulations.

  11. [The isotope effect in the glycine dehydrogenase reaction is the cause of the intramolecular isotope inhomogeneity of glucose carbon of starch synthesized during photorespiration].

    Science.gov (United States)

    Ivlev, A A

    2005-01-01

    The isotope distribution of glucose-6-phosphate in the main pathways of its biosynthesis (in the processes of CO2 assimilation and photorespiration in the Calvin cycle and during resynthesis from the degradation products of lipids and proteins) was analyzed. For reconstructing the isotope distribution of glucoso-6-phosphate synthesized in the Calvin cycle during photorespiration, the functioning of the cycle with regard to its coupling with the glycolate chain, which together constitute the photorespiration chain, was considered. In the glycine dehydrogenase reaction of the glycolate cycle, there arises an isotope effect, which determines the distribution of isotopes in the glucose-6-phosphate and other photorespiration products. The isotope effect of the glycine dehydrogenase reaction increases at the expense of the exhaustion of glucose resources feeding the photorespiration chain. As a result, atoms C-3 and C-4 of glucose become enriched with the heavy isotope, and subsequent mixing of atoms and the specificity of interactions in the photorespiration chain lead to an isotope weighting of the other atoms and an uneven distribution of carbon isotopes in glucose-6-phosphate and other photorespiration products. A comparison of the glucose-6-phosphate isotope patterns in different pathways of the synthesis with the experimental data on the distribution of carbon isotopes in starch glucose of storing plant organs led to the conclusion that the starch resources are predominantly formed at the expense of glucose-6-phosphate of photorespiration. This is consistent with the earlier observed enhancement of photorespiration at the stage of plant maturation.

  12. The Effects of Face Inversion and Face Race on the P100 ERP.

    Science.gov (United States)

    Colombatto, Clara; McCarthy, Gregory

    2016-11-29

    Research about the neural basis of face recognition has investigated the timing and anatomical substrates of different stages of face processing. Scalp-recorded ERP studies of face processing have focused on the N170, an ERP with a peak latency of ∼170 msec that has long been associated with the initial structural encoding of faces. However, several studies have reported earlier ERP differences related to faces, suggesting that face-specific processes might occur before N170. Here, we examined the influence of face inversion and face race on the timing of face-sensitive scalp-recorded ERPs by examining neural responses to upright and inverted line-drawn and luminance-matched White and Black faces in a sample of White participants. We found that the P100 ERP evoked by inverted faces was significantly larger than that evoked by upright faces. Although this inversion effect was statistically significant at 100 msec, the inverted-upright ERP difference peaked at 138 msec, suggesting that it might represent an activity in neural sources that overlap with P100. Inverse modeling of the inversion effect difference waveform suggested possible neural sources in pericalcarine extrastriate visual cortex and lateral occipito-temporal cortex. We also found that the inversion effect difference wave was larger for White faces. These results are consistent with behavioral evidence that individuals process the faces of their own races more configurally than faces of other races. Taken together, the inversion and race effects observed in the current study suggest that configuration influences face processing by at least 100 msec.

  13. Observation of Selective Isotope Effect in the Ultraviolet excitation of N2: A Computational Study

    CERN Document Server

    Muskatel, B H; Thiemens, Mark H; Levine, R D

    2011-01-01

    Isotope effects associated with gas phase N2 photolysis are used to interpret Martian atmospheric evolution, icy satellite atmospheric chemistry and meteorite isotopic anomalies from nebular N2 photochemistry. To interpret observations at the highest level, fundamental understanding of the precise wavelength dependency of the process must be known. In this paper VUV isotopic photodissociation effects are calculated as a function of wavelength at different wavelength slices in the 12.5-15 eV range. A very strong wavelength dependence is observed, which is significant for experiments. An observable effect is possible for the width of the beam profile at the advanced light source, ALS that may produce sufficient photolysis product for high precision isotopic analysis. A significantly more pronounced effect is predicted for a beam narrower by a factor of four providing a potential experimental test of the model. The spectrum is computed ab initio. It manifests two physical mechanisms for the isotope effect and th...

  14. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    Science.gov (United States)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  15. Apparent Inverse Gibbs-Thomson Effect in Dealloyed Nanoporous Nanoparticles

    Science.gov (United States)

    McCue, I.; Snyder, J.; Li, X.; Chen, Q.; Sieradzki, K.; Erlebacher, J.

    2012-06-01

    The Gibbs-Thomson effect (the reduction of local chemical potential due to nanoscale curvature) predicts that nanoparticles of radius r dissolve at lower electrochemical potentials than bulk materials, decreasing as 1/r. However, we show here that if the particle is an alloy—susceptible to selective dissolution (dealloying) and nanoporosity evolution—then complete selective electrochemical dissolution and porosity evolution require a higher electrochemical potential than the comparable bulk planar material, increasing empirically as 1/r. This is a kinetic effect, which we demonstrate via kinetic Monte Carlo simulation. Our model shows that in the initial stages of dissolution, the less noble particle component is easily stripped from the nanoparticle surface, but owing to an increased mobility of the more noble atoms, the surface of the particle quickly passivates. At a fixed electrochemical potential, porosity and complete dealloying can only evolve if fluctuations in the surface passivation layer are sufficiently long-lived to allow dissolution from percolating networks of the less-noble component that penetrate through the bulk of the particle.

  16. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.

    Science.gov (United States)

    Pavon, Jorge Alex; Fitzpatrick, Paul F

    2006-09-12

    Phenylalanine hydroxylase (PheH) and tryptophan hydroxylase (TrpH) catalyze the aromatic hydroxylation of phenylalanine and tryptophan, forming tyrosine and 5-hydroxytryptophan, respectively. The reactions of PheH and TrpH have been investigated with [4-(2)H]-, [3,5-(2)H(2)]-, and (2)H(5)-phenylalanine as substrates. All (D)k(cat) values are normal with Delta117PheH, the catalytic core of rat phenylalanine hydroxylase, ranging from 1.12-1.41. In contrast, for Delta117PheH V379D, a mutant protein in which the stoichiometry between tetrahydropterin oxidation and amino acid hydroxylation is altered, the (D)k(cat) value with [4-(2)H]-phenylalanine is 0.92 but is normal with [3,5-(2)H(2)]-phenylalanine. The ratio of tetrahydropterin oxidation to amino acid hydroxylation for Delta117PheH V379D shows a similar inverse isotope effect with [4-(2)H]-phenylalanine. Intramolecular isotope effects, determined from the deuterium contents of the tyrosine formed from [4-(2)H]-and [3,5(2)H(2)]-phenylalanine, are identical for Delta117PheH and Delta117PheH V379D, suggesting that steps subsequent to oxygen addition are unaffected in the mutant protein. The inverse effects are consistent with the reaction of an activated ferryl-oxo species at the para position of the side chain of the amino acid to form a cationic intermediate. The normal effects on the (D)k(cat) value for the wild-type enzyme are attributed to an isotope effect of 5.1 on the tautomerization of a dienone intermediate to tyrosine with a rate constant 6- to7-fold that for hydroxylation. In addition, there is a slight ( approximately 34%) preference for the loss of the hydrogen originally at C4 of phenylalanine. With (2)H(5)-indole-tryptophan as a substrate for Delta117PheH, the (D)k(cat) value is 0.89, consistent with hydroxylation being rate-limiting in this case. When deuterated phenylalanines are used as substrates for TrpH, the (D)k(cat) values are within error of those for Delta117PheH V379D. Overall, these results

  17. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  18. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  19. On the inverse Magnus effect for flow past a rotating cylinder

    Science.gov (United States)

    John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.

    2016-11-01

    Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.

  20. The effects of face inversion and contrast-reversal on efficiency and internal noise.

    Science.gov (United States)

    Gaspar, Carl M; Bennett, Patrick J; Sekuler, Allison B

    2008-03-01

    Inverted and contrast-reversed faces are identified less accurately and less rapidly than normal, upright faces. The effects of inversion and contrast-reversal may reflect different sampling strategies and/or different levels of internal noise. To test these alternative hypotheses, we used a combination of noise-masking and response-consistency techniques to measure the internal noise and high-noise efficiency associated with the identification of upright, inverted, and contrast-reversed faces. We found that both face inversion and contrast-reversal reduced efficiency, but did not change internal noise.

  1. The normal and inverse magnetocaloric effect in RCu2 (R=Tb, Dy, Ho, Er) compounds

    Science.gov (United States)

    Zheng, X. Q.; Xu, Z. Y.; Zhang, B.; Hu, F. X.; Shen, B. G.

    2017-01-01

    Orthorhombic polycrystalline RCu2 (R=Tb, Dy, Ho and Er) compounds were synthesized and the magnetic properties and magnetocaloric effect (MCE) were investigated in detail. All of the RCu2 compounds are antiferromagnetic (AFM) ordered. As temperature increases, RCu2 compounds undergo an AFM to AFM transition at Tt and an AFM to paramagnetic (PM) transition at TN. Besides of the normal MCE around TN, large inverse MCE around Tt was found in TbCu2 compound. Under a field change of 0-7 T, the maximal value of inverse MCE is even larger than the value of normal MCE around TN for TbCu2 compound. Considering of the normal and inverse MCE, TbCu2 shows the largest refrigerant capacity among the RCu2 (R=Tb, Dy, Ho and Er) compounds indicating its potential applications in low temperature multistage refrigeration.

  2. Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect

    NARCIS (Netherlands)

    Jiao, H.; Bauer, G.E.W.

    2013-01-01

    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE).

  3. Tuning the giant inverse magnetocaloric effect in Mn2−xCrxSb compounds

    NARCIS (Netherlands)

    Caron, L.; Miao, X.F.; Klaasse, J.C.P.; Gama, S.; Brück, E.

    2013-01-01

    Structural, magnetic, and magnetocaloric properties of Mn2-xCrxSb compounds have been studied. In these compounds, a first order magnetic phase transition from the ferrimagnetic to the antiferromagnetic state occurs with decreasing temperature, giving rise to giant inverse magnetocaloric effects tha

  4. Developmental Changes in Cross-Situational Word Learning: The Inverse Effect of Initial Accuracy

    Science.gov (United States)

    Fitneva, Stanka A.; Christiansen, Morten H.

    2017-01-01

    Intuitively, the accuracy of initial word-referent mappings should be positively correlated with the outcome of learning. Yet recent evidence suggests an inverse effect of initial accuracy in adults, whereby greater accuracy of initial mappings is associated with poorer outcomes in a cross-situational learning task. Here, we examine the impact of…

  5. Effects of geometric head model perturbations on the EEG forward and inverse problems.

    Science.gov (United States)

    von Ellenrieder, Nicolás; Muravchik, Carlos H; Nehorai, Arye

    2006-03-01

    We study the effect of geometric head model perturbations on the electroencephalography (EEG) forward and inverse problems. Small magnitude perturbations of the shape of the head could represent uncertainties in the head model due to errors on images or techniques used to construct the model. They could also represent small scale details of the shape of the surfaces not described in a deterministic model, such as the sulci and fissures of the cortical layer. We perform a first-order perturbation analysis, using a meshless method for computing the sensitivity of the solution of the forward problem to the geometry of the head model. The effect on the forward problem solution is treated as noise in the EEG measurements and the Cramér-Rao bound is computed to quantify the effect on the inverse problem performance. Our results show that, for a dipolar source, the effect of the perturbations on the inverse problem performance is under the level of the uncertainties due to the spontaneous brain activity. Thus, the results suggest that an extremely detailed model of the head may be unnecessary when solving the EEG inverse problem.

  6. Silver diffusion and isotope effect in silver rubidium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Arzigian, James Simon [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics

    1980-01-01

    The diffusion coefficient of silver in (RbAg 4I 5) was measured in both superionic phases using radiotracer Ag-110m and serial sectioning with a low temperature sectioning apparatus. The activation energies for diffusion in alpha-RbAg4I5 and beta-RbAg4I5, respectively, are 0.11 ± 0.01 eV and 0.20 ± 0.04 eV. An isotope effect for diffusion was also measured in both superionic phases. Ag-105 and Ag-110m radioisotopes were used with gamma spectroscopy and energy discrimination. The effect is small, with no significant temperature variation, with the value at 333 K being 0.12 ± 0.01. The second-order phase transition at 208 K has a small effect, if any, on the magnitude of the effect. The data suggest that a highly cooperative transport mechanism is responsible for the unusually high values of both the conductivity and diffusion coefficient. Although it is not possible to deduce the particular mechanism involved, theories involving ionic polarons, or cooperative motion, such as crowdions or solitons, seem consistent with the observed results.

  7. {beta}-Secondary and solvent deuterium kinetic isotope effects and the mechanisms of base- and acid-catalyzed hydrolysis of penicillanic acid

    Energy Technology Data Exchange (ETDEWEB)

    Deraniyagala, S.A.; Adediran, S.A.; Pratt, R.F. [Wesleyan Univ., Middletown, CT (United States)

    1995-03-24

    {beta}-Secondary and solvent deuterium kinetic isotope effects have been determined at 25 {degrees}C for the alkaline and acid-catalyzed hydrolysis of penicillanic acid. In order to determine the former isotope effect, [6,6-{sup 2}H{sub 2}]dideuteriopenicillanic acid has been synthesized. In alkaline solution, the former isotope effect was found to be 0.95 {plus_minus} 0.01. These values support the B{sub AC}2 mechanism of hydrolysis with rate-determining formation of the tetrahedral intermediate that has been proposed for other {beta}-lactams. The measured {beta}-secondary kinetic isotope for the acid-catalyzed reaction was 1.00 {plus_minus} 0.01. The data indicates that a likely pathway of acid-catalyzed hydrolysis would be that of an A{sub AC}1 mechanism with an intermediate acylium ion. If this were so, the calculated {beta}-secondary isotope effect per hydrogen coplanar with the breaking C-N bond and corrected for the inductive effect of deuterium would be 1.06 {plus_minus} 0.01. This suggests an early A{sub AC}1 transition state, which would be reasonable in this case because of destabilization of the N-protonated amide with respect to the acylium ion because of ring strain. The absence of specific participation by solvent in the transition state, as would be expected of an A{sub AC}1 but not an associative mechanism, is supported by the strongly inverse solvent deuterium kinetic isotope effect of 0.25 {plus_minus} 0.00 in 1 M HCl and 0.22 {plus_minus} 0.01 in 33.3 wt % H{sub 2}SO{sub 4}. 1 fig., 3 tabs.

  8. Isotope effect on gyro-fluid edge turbulence and zonal flows

    CERN Document Server

    Meyer, Ole Hauke Heinz

    2016-01-01

    The role of ion polarisation and finite Larmor radius on the isotope effect on turbulent tokamak edge transport and flows is investigated by means of local electromagnetic multi-species gyro-fluid computations. Transport is found to be reduced with the effective plasma mass for protium, deuterium and tritium mixtures. This isotope effect is found for both cold and warm ion models, but significant influence of finite Larmor radius and polarisation effects are identified. Sheared flow reduction of transport through self generated turbulent zonal flows and geodesic acoustic modes in the present model (not including neoclassical flows) is found to play only a minor role on regulating isotopically improved confinement.

  9. Effect of uniaxial stress on gallium, beryllium, and copper-doped germanium hole population inversion lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, Danielle Russell [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    The effects of stress on germanium lasers doped with single, double, and triple acceptors have been investigated. The results can be explained quantitatively with theoretical calculations and can be attributed to specific changes in the energy levels of acceptors in germanium under stress. In contrast to previous measurements, gallium-doped Ge crystals show a decrease in lasing upon uniaxial stress. The decrease seen here is attributed to the decrease in heavy hole effective mass upon application of uniaxial stress, which results in a decreased population inversion. The discrepancy between this work and previous studies can be explained with the low compensation level of the material used here. Because the amount of ionized impurity scattering in low-compensated germanium lasers is small to begin with, the reduction in scattering with uniaxial stress does not play a significant role in changing the laser operation. Beryllium-doped germanium lasers operate based on a different mechanism of population inversion. In this material it is proposed that holes can transfer between bands by giving their energy to a neutral beryllium atom, raising the hole from the ground to a bound excited state. The free hole will then return to zero energy with some probability of entering the other band. The minimum and maximum E/B ratios for lasing change with uniaxial stress because of the change in effective mass and bound excited state energy. These limits have been calculated for the case of 300 bar [100] stress, and match very well with the observed data. This adds further credence to the proposed mechanism for population inversion in this material. In contrast to Be and Ga-doped lasers, copper-doped lasers under uniaxial stress show an increase in the range of E and B where lasing is seen. To understand this change the theoretical limits for population inversion based on both the optical phonon mechanism and the neutral acceptor mechanism have been calculated. The data are

  10. The Effect of Inversion on 3- to 5-Year-Olds' Recognition of Face and Nonface Visual Objects

    Science.gov (United States)

    Picozzi, Marta; Cassia, Viola Macchi; Turati, Chiara; Vescovo, Elena

    2009-01-01

    This study compared the effect of stimulus inversion on 3- to 5-year-olds' recognition of faces and two nonface object categories matched with faces for a number of attributes: shoes (Experiment 1) and frontal images of cars (Experiments 2 and 3). The inversion effect was present for faces but not shoes at 3 years of age (Experiment 1). Analogous…

  11. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity

    OpenAIRE

    Gang, Zhang; Li, Baowen

    2005-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  12. Dynamic isotope effects on relaxation of quadrupolar nuclei in 12 simple organic molecules

    Institute of Scientific and Technical Information of China (English)

    毛希安; andM.Holz

    1995-01-01

    Dynamic isotope effects on relaxation rate of quadrupolar nuclei are preliminarily reported. The relaxation rates of 17O and 14N in 12 simple organic molecules and their 18 corresponding deuterated species have been systematically measured. The principal components of the molecular inertia tensors have been calculated. The results show that there is an intrinsic correlation between the dynamic isotope effects of the relaxation rate and the static isotope effects of the molecular inertia. The concepts of molecular collision frequency and translation-rotation coupling have been introduced into the NMR relaxation theory. Therefore, a reasonable explanation of the experimental results has been given.

  13. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...... with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized....

  14. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    CERN Document Server

    Li, Meng; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Recently, on-chip single-mode laser emission has attracted considerable research attention due to its wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism for single-mode operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the frequency detuning. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for underst...

  15. Scale effects of leaf area index inversion based on environmental and disaster monitoring satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investigate this effect,we constructed three realistic scenarios with the same LAI values and other properties,except that the simulated plants had different distributions.We implemented the radiosity method to subsequently produce synthetic bidirectional reflectance factor(BRF) datasets based upon these simulated scenes.The inversion was conducted using these data,which showed that spatial distribution affects retrieval accuracy.The inversion was also conducted for LAI based on charge-coupled device(CCD) data from the Environment and Disaster Monitor Satellite(HJ-1),which depicted both forest and drought-resistant crop land cover.This showed that heterogeneity in coarse-resolution remote sensing data is the main error source in LAI inversion.The spatial distribution of global fractal dimension index,which can be used to describe the area of sub-pixel components and their spatial distribution modes,shows good consistency with the coarse resolution LAI inversion error.

  16. HYDRODYNAMIC AND THERMODYNAMIC EFFECTS IN PHASE INVERSION EMULSIFICATION PROCESS OF EPOXY RESIN IN WATER

    Institute of Scientific and Technical Information of China (English)

    Yuan-ze Xu; Yu-zhe Wu; Jian-mao Yang

    2006-01-01

    The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties,conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.

  17. Inverse-kinematics proton scattering on $^{50}$Ca: Determining effective charges using complementary probes

    CERN Document Server

    Riley, L A; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Kemper, K W; Lunderberg, E; McPherson, D M; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2014-01-01

    We have performed measurements of the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ excitations in the neutron-rich isotopes $^{48,50}$Ca via inelastic proton scattering on a liquid hydrogen target, using the GRETINA $\\gamma$-ray tracking array. A comparison of the present results with those from previous measurements of the lifetimes of the $2_1^+$ states provides us the ratio of the neutron and proton matrix elements for the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ transitions. These results allow the determination of the ratio of the proton and neutron effective charges to be used in shell model calculations of neutron-rich isotopes in the vicinity of $^{48}$Ca.

  18. Inversion mechanism of Joule-Thomson effect. Joule-Thomson koka no hannenkiko

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Echigo, R.; Yoshida, H.; Tada, S. (Tokyo Institute of Technology, Tokyo (Japan))

    1994-05-25

    An analysis by means of a molecular dynamics method using argon gas has been made on the Joule-Thomson effect and its inversion mechanism from a molecular theory viewpoint. System temperature, pressure and enthalpy under different conditions were calculated, individual results were compared, and amount of gaseous body temperature change before and after expansion was derived. As a result, an explanation was given successfully by using temperature change due to expansion of equivalent internal energy (Joule effect) and its inversion mechanism. Further, it was made clear that the temperature change due to expansion of equivalent enthalpy (Joule-Thomson effect) and its inversion are generated by two mechanisms: internal energy change as a result of inter-molecular works, and mutual conversion between motion and potential energies. The result therefrom verified that the molecular dynamics method is highly effective for quantitative analysis of the Joule-Thomson effect. The method is estimated applicable also to more complex molecules or mixed gaseous bodies. 4 refs., 11 figs.

  19. Effects of carbonate leaching on foraminifer stable isotopes ratios

    Science.gov (United States)

    Obrochta, S.; Yokoyama, Y.; Sakai, S.; Ishimura, T.

    2011-12-01

    Stable carbon and oxygen isotope ratios were measured on 125 individual epifaunal and infaunal benthic foraminifers from two discrete Holocene intervals in a shallow-water sediment core (~ 450 m) from the Timor Sea. Methane seeps are common in the area, resulting in significant precipitation of secondary calcite that is confirmed by SEM photomicrographs and has likely resulted in inconsistent downcore results. To assess the degree of removal of contaminants, individual Uvigerina peregrina were subjected to varying degrees of pretreatment prior to analysis. All foraminifers received standard cleaning with ethanol and brief sonication. A subset were further cleaned and sonicated in a dilute HCl solution (~ 0.003 M). Foraminifer tests were photographed using both reflected light and scanning electron microscopes during the course of treatment to monitor the changing degree of contaminant removal as increasingly aggressive cleaning methods were employed. Visible contamination remained on individuals not subjected to HCl treatment. The leached individuals exhibit a lower overall relative standard deviation and consistent results within morphotype groups. Based on these results, a 2% value is expected to be typical of the Holocene, though further downcore analyses are pending restoration of equipment adversely effected by the Eastern Japan 3/11 earthquake.

  20. The Evaporation Effect on the Isotopes in the Yellow River Water

    Institute of Scientific and Technical Information of China (English)

    SU Xiaosi; LIN Xueyu; LIAO Zisheng; WANG Jinsheng

    2001-01-01

    Based on the isotope analysis result of water samples in the 18 sections of the Yellow River, the variation of δ18Oand δD have been analyzed. From near the source to the entrance to the sea, the Yellow River has a general trend that the ratios of the stable isotope increase progressively; The main factors affecting the isotopes in the river water are mixing of external water bodies, evaporation and others; In the river segment between Lanzhou and Baotou and in lower reaches, the extent of the evaporation effect on the isotope fractionation from the river water surface is limited but the evaporation from the irrigated river water and the return flow is one of the main factors affecting the isotopes in river water.

  1. Theoretical Analysis on the Kinetic Isotope Effects of Bimolecular Nucleophilic Substitution (SN2 Reactions and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Wan-Chen Tsai

    2013-04-01

    Full Text Available Factors affecting the kinetic isotope effects (KIEs of the gas-phase SN2 reactions and their temperature dependence have been analyzed using the ion-molecule collision theory and the transition state theory (TST. The quantum-mechanical tunneling effects were also considered using the canonical variational theory with small curvature tunneling (CVT/SCT. We have benchmarked a few ab initio and density functional theory (DFT methods for their performance in predicting the deuterium KIEs against eleven experimental values. The results showed that the MP2/aug-cc-pVDZ method gave the most accurate prediction overall. The slight inverse deuterium KIEs usually observed for the gas-phase SN2 reactions at room temperature were due to the balance of the normal rotational contribution and the significant inverse vibrational contribution. Since the vibrational contribution is a sensitive function of temperature while the rotation contribution is temperature independent, the KIEs are thus also temperature dependent. For SN2 reactions with appreciable barrier heights, the tunneling effects were predicted to contribute significantly both to the rate constants and to the carbon-13, and carbon-14 KIEs, which suggested important carbon atom tunneling at and below room temperature.

  2. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  3. Magnetostriction Measurement of Giant Magnetoresistance Films on the Practical Substrates by using Inverse-magnetostriction Effect

    Directory of Open Access Journals (Sweden)

    Okita K.

    2013-01-01

    Full Text Available After forming electric devices, a magnetostriction effect sometimes deteriorates the sensitivity of sensors such as read heads of hard disk devices, or the bit stability of memories such as magnetic random access memories through the inverse-magnetostriction phenomenon. We should, therefore, know the magnetostriction constant of magnetic films on the practical substrates. In this paper, I present a new method by detecting the changes in coercive force, Hc, with mechanically bending the substrates. This method uses the inverse-magnetostriction effect and I show the magnetostriction constant can be calculated from the gradient of the applied stress vs. Hc curves. With this method, I have successfully measured the magnetostriction constant of the GMR films fabricated on the practical substrates with a high sensitivity over 10-7. This method will be useful for the magnetic thin films with a large anisotropy field.

  4. Principal component analysis-based inversion of effective temperatures for late-type stars

    CERN Document Server

    Paletou, F; Houdebine, E R; Watson, V

    2015-01-01

    We show how the range of application of the principal component analysis-based inversion method of Paletou et al. (2015) can be extended to late-type stars data. Besides being an extension of its original application domain, for FGK stars, we also used synthetic spectra for our learning database. We discuss our results on effective temperatures against previous evaluations made available from Vizier and Simbad services at CDS.

  5. Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria

    Science.gov (United States)

    Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon

    2006-01-01

    In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell–Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h≅1013 s−1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2′-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature

  6. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary...... isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  7. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    Science.gov (United States)

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-07

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  8. Deformation effects on cluster decays of radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Soylu, A., E-mail: asimsoylu@gmail.com; Evlice, S.

    2015-04-15

    We systematically investigate the influence of nuclear deformations of the cluster and daughter nuclei on the half-lives of {sup 4}He, {sup 8,10}Be, {sup 12,14,16}C and {sup 16,18,20,22}O cluster decays from {sup 210–226}Ra. The Wentzel–Kramers–Brillouin (WKB) method and Bohr–Sommerfeld quantization condition with the deformed squared Woods–Saxon and Cosh potentials are used phenomenologically in order to compute the half-lives. The calculations are performed for the spherical cluster and deformed daughter, deformed cluster and spherical daughter and deformed cluster and daughter cases. The half-lives for different orientation angles as well as over all angles are calculated, in order to show the deformation effects on the systems. In cases where the deformation of both cluster and daughter effect the result, it is found that the deformation of the cluster is more important than the deformation of the daughter. Furthermore, it is also found that taking into account the orientation angles of the daughter and cluster also improves the results when compared to experiment. However, the results for a Cosh potential with certain parameters without any deformation are found to be more compatible with both the results obtained by the Coulomb and proximity potential model (CPPM) and the universal formula for cluster decay (UNIV), as well as the experimental values for {sup 4}He and {sup 14}C decays. The results provide a useful method for estimating the unknown experimental half-lives of possible exotic decays from Ra isotopes.

  9. Deformation effects on cluster decays of radium isotopes

    Science.gov (United States)

    Soylu, A.; Evlice, S.

    2015-04-01

    We systematically investigate the influence of nuclear deformations of the cluster and daughter nuclei on the half-lives of 4He, 8,10Be, 12,14,16C and 16,18,20,22O cluster decays from 210-226Ra. The Wentzel-Kramers-Brillouin (WKB) method and Bohr-Sommerfeld quantization condition with the deformed squared Woods-Saxon and Cosh potentials are used phenomenologically in order to compute the half-lives. The calculations are performed for the spherical cluster and deformed daughter, deformed cluster and spherical daughter and deformed cluster and daughter cases. The half-lives for different orientation angles as well as over all angles are calculated, in order to show the deformation effects on the systems. In cases where the deformation of both cluster and daughter effect the result, it is found that the deformation of the cluster is more important than the deformation of the daughter. Furthermore, it is also found that taking into account the orientation angles of the daughter and cluster also improves the results when compared to experiment. However, the results for a Cosh potential with certain parameters without any deformation are found to be more compatible with both the results obtained by the Coulomb and proximity potential model (CPPM) and the universal formula for cluster decay (UNIV), as well as the experimental values for 4He and 14C decays. The results provide a useful method for estimating the unknown experimental half-lives of possible exotic decays from Ra isotopes.

  10. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Kim, Dong-Jun; Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  11. Kinetic and solvent deuterium isotope effects in the oxidation of putrescine catalysed by enzyme diamine oxidase.

    Science.gov (United States)

    Pałka, Katarzyna; Szymańska, Jolanta; Kańska, Marianna

    2013-01-01

    In this study, the kinetic isotope effects and solvent isotope effects in the reaction of the deamination of [(1R)-(2)H ] putrescine--catalysed by enzyme diamine oxidase (EC 1.4.3.6)--were determined using a non-competitive spectroscopic method. Putrescine, stereospecifically labelled with deuterium, was obtained by enzymatic decarboxylation of l-ornithine that was carried out in a fully deuteriated incubation medium.

  12. Priming effects of biochar elucidated using stable isotope techniques.

    Science.gov (United States)

    Hood-Nowotny, R.; Vanlauwe, B.

    2012-04-01

    Organic residues are routinely used in tropical agricultural systems; as mulches to reduce water losses and for their fertiliser value. The addition of high N content organic residues to soils has been promoted in tropical countries as a means to achieve sustainable intensification of tropical farming systems and increasing soil organic matter status on infertile low income farms. Improving the nutrient release from these materials could have positive feedback effects in terms of improved food security and increased organic matter return to the soil through improved crop yields. Unfortunately the fertiliser value of most organic residues is such that only 10 -20% of the available nitrogen in the residue is mineralised to plant available nitrogen and taken up by the plant in the first cropping year, dropping to less than 2% in the subsequent years; thus having marginal overall impact on crop yields. Improving the fertiliser benefit of residues by combining them with the biochar addition could lead to significant increases in crop yields, an immediately tangible benefit for farmers. The addition of charcoal in boreal forest systems has been shown to increase the rate of soil organic matter decomposition, suggesting there is a priming effect of a biochar analogue on organic matter decomposition. The priming effect is the increase in soil organic matter (SOM) decomposition rate after the addition of fresh organic matter or other compounds to soil. The implication is that is biochar if addition leads to the loss of native SOM it negates the carbon benefit of adding biochar to soil. However there could also be potential benefits of priming effects of biochar under specific circumstances, for example if biochar addition leads to the priming of freshly added organic matter breakdown it may in turn improve nutrient synchronisation and overall nutrient use efficiency. We conducted a series of experiments conducted in Kenya and Austria using stable isotope tools to look at

  13. The isotope effect in H3S superconductor

    Science.gov (United States)

    Szczęśniak, R.; Durajski, A. P.

    2017-01-01

    The experimental value of H3S a isotope coefficient decreases from 2.37 to 0.31 in the pressure range from 130 GPa to 200 GPa. We have shown that the value of 0.31 is correctly reproduced in the framework of the classical Eliashberg approach in the harmonic approximation. On the other hand, the anomalously large value of the isotope coefficient (2.37) may be associated with the strong renormalization of the normal state by the electron density of states.

  14. Investigation of Stable C and Cl Isotope Effects of Trichloroethene and Tetrachloroethylene during Evaporation at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    Tingting Yu; Yiqun Gan; Aiguo Zhou; Kai Yu; Yunde Liu

    2014-01-01

    There are variations of reported isotope enrichment factors of chlorinated organic contaminants in evaporation processes. Trichloroethene (TCE) and tetrachloroethylene (PCE) were chosen to study carbon and chlorine isotope effects during evaporation at different temperatures. Equilibrium vapor-liquid carbon and chlorine isotope effects experiments were also conducted. In the equilibrium liquid-vapor system, the 13C was enriched but 37Cl was depleted in the vapor phase, being consistent with previous results. For evaporation average carbon isotope enrichment factor εC were +0.28‰± 0.01‰ for TCE and +0.56‰±0.09‰ for PCE at temperature from 20 to 26 ºC. Meanwhile, average chlorine isotope enrichment factor εCl were -1.33‰±0.21‰ for TCE and -1.00‰±0.00‰ for PCE. The results indicate that during evaporation the equilibrium isotope effect attenuates the magnitude of carbon isotope fractionation whereas enhances the chlorine isotope effect. Isotope fractionation during evaporation is determined by both equilibrium and kinetic factors. Chlorine isotope fractionation is influenced by the evaporation rate which is linked to temperature. When using stable isotope to investigate the behavior of chlorinated organic contaminants in groundwater with slow biodegradation rate, the isotope fractionation resulted from evaporation should be taken into consideration. Furthermore, the environment conditions such as temperature are also factors to be considered.

  15. Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR

    NARCIS (Netherlands)

    Röckmann, T.; Walter, S.; Bohn, B.; Wegener, R.; Spahn, H.; Brauers, T.; Tillmann, R.; Schlosser, E.; Koppmann, R.; Rohrer, F.

    2010-01-01

    Formaldehyde of known, near-natural isotopic composition was photolyzed in the SAPHIR atmosphere simulation chamber under ambient conditions. The isotopic composition of the product H2 was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecula

  16. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    Science.gov (United States)

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  17. Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects.

    Science.gov (United States)

    Rosentsvit, Leon; Wang, Wei; Schiffbauer, Jarrod; Chang, Hsueh-Chia; Yossifon, Gilad

    2015-12-14

    Ion current rectification inversion is observed in a funnel-shaped nanochannel above a threshold voltage roughly corresponding to the under-limiting to over-limiting current transition. Previous experimental studies have examined rectification at either low-voltages (under-limiting current region) for conical nanopores/funnel-shaped nanochannels or at high-voltages (over-limiting region) for straight nanochannels with asymmetric entrances or asymmetric interfacing microchannels. The observed rectification inversion occurs because the system resistance is shifted, beyond a threshold voltage, from being controlled by intra-channel ion concentration-polarization to that controlled by external concentration-polarization. Additionally, strong hysteresis effects, due to residual concentration-polarization, manifest themselves through the dependence of the transient current rectification on voltage scan rate.

  18. The "Inverse Hall-Petch" effect on the impact response of single crystal copper

    Institute of Scientific and Technical Information of China (English)

    Zhen Chen; Shan Jiang; Yong Gan

    2012-01-01

    Based on the available experimental and computational capabilities,a phenomenological approach has been proposed to formulate a hypersurface in both spatial and temporal domains to predict combined specimen size and loading rate effects on the material properties [ 1-2].A systematic investigation is being performed to understand the combined size,rate and thermal effects on the properties and deformation patterns of representative materials with different nanostructures and under various types of loading conditions [3-16].The recent study on the single crystal copper response to impact loading has revealed the size-dependence of the Hugoniot curve.In this paper,the "inverse Hall-Petch" behavior as observed in the impact response of single crystal copper,which has not been reported in the open literature,is investigated by performing molecular dynamics simulations of the response of copper nanobeam targets subjected to impacts by copper nanobeam flyers with different impact velocities.It appears from the preliminary results that the "inverse Hall-Petch" behavior in single crystal copper is mainly due to the formation and evolution of disordered atoms and the interaction between ordered and disordered atoms,as compared with the physics behind the "inverse Hall-Petch"behavior as observed in nanocrystalline materials.

  19. Stable isotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  20. Copper isotope effect in serum of cancer patients. A pilot study.

    Science.gov (United States)

    Télouk, Philippe; Puisieux, Alain; Fujii, Toshiyuki; Balter, Vincent; Bondanese, Victor P; Morel, Anne-Pierre; Clapisson, Gilles; Lamboux, Aline; Albarede, Francis

    2015-02-01

    The isotope effect describes mass-dependent variations of natural isotope abundances for a particular element. In this pilot study, we measured the (65)Cu/(63)Cu ratios in the serums of 20 breast and 8 colorectal cancer patients, which correspond to, respectively, 90 and 49 samples taken at different times with molecular biomarker documentation. Copper isotope compositions were determined by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). When compared with the literature data from a control group of 50 healthy blood donors, abundances of Cu isotopes predict mortality in the colorectal cancer group with a probability p = 0.018. For the breast cancer patients and the group of control women the probability goes down to p = 0.0006 and the AUC under the ROC curve is 0.75. Most patients considered in this preliminary study and with serum δ(65)Cu lower than the threshold value of -0.35‰ (per mil) did not survive. As a marker, a drop in δ(65)Cu precedes molecular biomarkers by several months. The observed decrease of δ(65)Cu in the serum of cancer patients is assigned to the extensive oxidative chelation of copper by cytosolic lactate. The potential of Cu isotope variability as a new diagnostic tool for breast and colorectal cancer seems strong. Shifts in Cu isotope compositions fingerprint cytosolic Cu chelation by lactate mono- and bidentates. This simple scheme provides a straightforward explanation for isotopically light Cu in the serum and isotopically heavy Cu in cancer cells: Cu(+) escaping chelation by lactate and excreted into the blood stream is isotopically light. Low δ(65)Cu values in serum therefore reveal the strength of lactate production by the Warburg effect.

  1. Quasi-harmonic calculations of the isotope effect in diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Harding, J.H.

    1986-11-10

    It is shown how the kinetic energy factor for isotope diffusion may be calculated within the quasi-harmonic approximation using methods devised to calculate the vibrational contribution to defect entropies. The results are compared with experiment in the cases of CoO and NiO and good agreement found.

  2. Sedimentary nitrate reduction and its effect on the N-isotopic composition of oceanic nitrate

    Science.gov (United States)

    Lehmann, M. F.; Sigman, D. M.; McCorkle, D. C.

    2005-12-01

    A prerequisite for assessing denitrification fluxes in a specific environment using water column nitrate N isotope ratios is the knowledge of the expressed N isotope effects of water column and/or benthic denitrification in this environment. Here, we aim at assessing the effects of benthic nitrogen cycling on the N isotopic composition of the oceanic nitrate pool in deep-sea sediments, which are believed to harbour a large portion of the global benthic denitrification. We report 15N/14N ratios of pore water nitrate in pelagic sediments from the deep Bering Sea, where benthic nitrate reduction has previously been identified as a significant sink of fixed nitrogen. Porewater profiles from multicores indicate strong 15N enrichment in porewater nitrate at all stations, as one goes deeper in the sediments and nitrate concentrations decrease (δ15N generally reached 25-35‰). Our data are consistent with variable biological isotope effect (ɛ) for dissimilatory nitrate reduction ranging between 13 to 30 ‰. A one-dimensional diffusion-reaction model including organic matter degradation, nitrification, and denitrification indicates that, although denitrification leads to a pore water nitrate pool that is enriched in 15N, N isotope fractionation is poorly expressed at the scale of sediment-water nitrate exchange, independent of whether sediments are a net sink or a net source of nitrate. The apparent nitrate isotope effect of sedimentary denitrification on nitrate in overlying waters is generally below 2‰, as a result of diffusive transport limitation into, and within, the sediments and/or the production of light nitrate during nitrification. Thus, our data suggest that the low expressed isotope effect of benthic denitrification observed previously in reactive shelf sediments also applies to deep-sea sediments. However, where ammonium fluxes out of the sediments, it is enriched in 15-N, and may ultimately lead to an N-isotopic enrichment of the water-column nitrate

  3. Mass-independent isotope effects in planetary atmospheres and the early solar system.

    Science.gov (United States)

    Thiemens, M H

    1999-01-15

    A class of isotope effects that alters isotope ratios on a mass-independent basis provides a tool for studying a wide range of processes in atmospheres of Earth and other planets as well as early processes in the solar nebula. The mechanism for the effect remains uncertain. Mass-independent isotopic compositions have been observed in O3, CO2, N2O, and CO in Earth's atmosphere and in carbonate from a martian meteorite, which suggests a role for mass-independent processes in the atmosphere of Mars. Observed mass-independent meteoritic oxygen and sulfur isotopic compositions may derive from chemical processes in the presolar nebula, and their distributions could provide insight into early solar system evolution.

  4. Sulfur isotope effects associated with protonation of HS- and volatilization of H2S

    Science.gov (United States)

    Fry, B.; Gest, H.; Hayes, J. M.

    1986-01-01

    The isotope effects associated with: (1) formation of H2S from HS- by protonation in aqueous solution; and (2) volatilization of H2S have been experimentally determined. Both isotopic distributions in closed systems at equilibrium and differential rates of volatilization of isotopic species in open systems were measured at 22 +/- 1 degrees C. It was found that, at equilibrium aqueous H2S is enriched in 34S by 2.0 - 2.7% relative to HS- and that H2S volatilized from solution is depleted in 34S by 0.5% relative to dissolved H2S. A small kinetic isotope effect accompanying volatilization of H2S was observed in the open-system experiments.

  5. Unusual isotope effects of molybdenum in chemical exchange reaction using dicyclohexano-18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki; Nishizawa, Kazushige [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering; Inagawa, Jun

    1999-06-01

    Molybdenum isotopes were fractionated in a liquid-liquid extraction system using dicyclohexano-18-crown-6 (DC18C6). The enrichment factors showed a breakdown of the conventional mass-dependent rule. Some unusual and larger isotope effects were observed in the even atomic mass isotopes, {sup 92}Mo and {sup 94}Mo. The unusual features in the present study were not responsible for the field shift effect, which was regarded as a primary factor of the anomalous isotope effect in the recent theory, but were due to an anomaly on the vibrational levels. The largest isotope effect was observed in the isotope pair of {sup 94}Mo-{sup 96}Mo, it was {epsilon}{sub 96,94} = 0.0086 {+-} 0.0007, its initial aqueous phase was 0.91 M molybdenum chloride, and its organic phase was 0.2 M DC18C6 in chloroform: this was 0.0043 {+-} 0.0004 in terms of the enrichment factor for unit mass different. (author)

  6. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  7. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    Science.gov (United States)

    Gui-Li, Zheng; Hui, Zhang; Wen-Jiang, Ye; Zhi-Dong, Zhang; Hong-Wei, Song; Li, Xuan

    2016-03-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and -1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and -1 defects obtained in the experiment conducted by Kumar et al. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.

  8. Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect

    Science.gov (United States)

    Jiao, HuJun; Bauer, Gerrit E. W.

    2013-05-01

    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE). Here we compute ac ISHE voltages much larger than the dc signals for various material combinations and discuss optimal conditions to observe the effect. The backflow of spin is shown to be essential to distill parameters from measured ISHE voltages for both dc and ac configurations.

  9. Inverse spin Hall effect induced by spin pumping into semiconducting ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Chuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Huang, Leng-Wei [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China); Hung, Dung-Shing, E-mail: dshung@mail.mcu.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Information and Telecommunications Engineering, Ming Chuan University, Taipei 111, Taiwan (China); Chiang, Tung-Han [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Huang, J. C. A., E-mail: jcahuang@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liang, Jun-Zhi [Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Physics, Fu Jen Catholic University, Taipei 242, Taiwan (China); Lee, Shang-Fan, E-mail: leesf@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan (China)

    2014-02-03

    The inverse spin Hall effect (ISHE) of n-type semiconductor ZnO thin films with weak spin-orbit coupling has been observed by utilizing the spin pumping method. In the ferromagnetic resonance condition, the spin pumping driven by the dynamical exchange interaction of a permalloy film injects a pure spin current into the adjacent ZnO layer. This spin current gives rise to a DC voltage through the ISHE in the ZnO layer, and the DC voltage is proportional to the microwave excitation power. The effect is sizeable even when the spin backflow is considered.

  10. Mechanistic investigations of the hydrolysis of amides, oxoesters and thioesters via kinetic isotope effects and positional isotope exchange.

    Science.gov (United States)

    Robins, Lori I; Fogle, Emily J; Marlier, John F

    2015-11-01

    The hydrolysis of amides, oxoesters and thioesters is an important reaction in both organic chemistry and biochemistry. Kinetic isotope effects (KIEs) are one of the most important physical organic methods for determining the most likely transition state structure and rate-determining step of these reaction mechanisms. This method induces a very small change in reaction rates, which, in turn, results in a minimum disturbance of the natural mechanism. KIE studies were carried out on both the non-enzymatic and the enzyme-catalyzed reactions in an effort to compare both types of mechanisms. In these studies the amides and esters of formic acid were chosen because this molecular structure allowed development of methodology to determine heavy-atom solvent (nucleophile) KIEs. This type of isotope effect is difficult to measure, but is rich in mechanistic information. Results of these investigations point to transition states with varying degrees of tetrahedral character that fit a classical stepwise mechanism. This article is part of a special issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Science.gov (United States)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for

  12. Temperature effects on the fractionation of multiple sulfur isotopes by Thermodesulfobacterium and Desulfovibrio strains

    Science.gov (United States)

    Wang, P.; Sun, C.; Ono, S.; Lin, L.

    2012-12-01

    Microbial dissimilatory sulfate reduction is one of the major mechanisms driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic compositions of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in the sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions. The isotope fractionations caused by microbial sulfate reduction have been interpreted to be a sequence of enzyme-catalyzed isotope fractionation steps. Therefore, the fractionation factor depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur transformation between the internal pools. Whether the multiple sulfur isotope effect could be quantitatively predicted using such a metabolic flux model would provide insights into the cellular machinery catalyzing with sulfate reduction. This study examined the multiple sulfur isotope fractionation patterns associated with a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79°C with an optimal temperature at 72°C and the highest cell-specific sulfate reduction rate at 77°C. The 34ɛ values ranged between 8.2 and 31.6‰ with a maximum at 68°C. The D. gigas grew between 10 and 45 °C with an optimal temperature at 30°C and the highest cell-specific sulfate reduction rate at 41°C. The 34ɛ values ranged between 10.3 and 29.7‰ with higher magnitude at both lower and higher temperatures. The results of multiple sulfur isotope measurements expand the previously reported range and cannot be described by a solution field of the metabolic flux model, which calculates

  13. Estimation of Site Effects on Stations in the Capital Circle Region Using the Generalized Inversion Method

    Institute of Scientific and Technical Information of China (English)

    Shi Haixia; Xiu Jigang; Chen Zhangli; Wang Qincai; Hua Wei

    2010-01-01

    Generalized Inversion Method has been used to estimate the spatial variation of site effects,using the digital data of SH-waves recorded by 63 stations in the Capital Circle Region of China from 2001 to 2006.We gained the site effects of all stations participating in the calculation.We found that the site effect of rock was stabile and about 1.0 from 1.0Hz to10.0Hz,while the site effect of deposit was high in low frequencies,about 3~7 from1.0Hz to 8.0Hz,and the site effect was protuberant at about 5.0Hz,then fell as the frequency increased.The result shows the shape and intensity of station site effects are mainly influenced by the lithology below the station,and possibly also by the local geological structure.

  14. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    Science.gov (United States)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  15. Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane

    Science.gov (United States)

    Webb, Michael A.; Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Miller, Thomas F.

    2017-01-01

    We combine path-integral Monte Carlo methods with a new intramolecular potential energy surface to quantify the equilibrium enrichment of doubly substituted ethane isotopologues due to clumped-isotope effects. Ethane represents the simplest molecule to simultaneously exhibit 13C-13C, 13C-D, and D-D clumped-isotope effects, and the analysis of corresponding signatures may provide useful geochemical and biogeochemical proxies of formation temperatures or reaction pathways. Utilizing path-integral statistical mechanics, we predict equilibrium fractionation factors that fully incorporate nuclear quantum effects, such as anharmonicity and rotational-vibrational coupling which are typically neglected by the widely used Urey model. The magnitude of the calculated fractionation factors for the doubly substituted ethane isotopologues indicates that isotopic clumping can be observed if rare-isotope substitutions are separated by up to three chemical bonds, but the diminishing strength of these effects suggests that enrichment at further separations will be negligible. The Urey model systematically underestimates enrichment due to 13C-D and D-D clumped-isotope effects in ethane, leading to small relative errors in the apparent equilibrium temperature, ranging from 5 K at 273.15 K to 30 K at 873.15 K. We additionally note that the rotameric dependence of isotopologue enrichment must be carefully considered when using the Urey model, whereas the path-integral calculations automatically account for such effects due to configurational sampling. These findings are of direct relevance to future clumped-isotope studies of ethane, as well as studies of 13C-13C, 13C-D, and D-D clumped-isotope effects in other hydrocarbons.

  16. Coherent phonon decay and the boron isotope effect for MgB2.

    Science.gov (United States)

    Alarco, Jose A; Talbot, Peter C; Mackinnon, Ian D R

    2014-12-14

    Ab initio DFT calculations for the phonon dispersion (PD) and the phonon density of states (PDOS) of the two isotopic forms ((10)B and (11)B) of MgB2 demonstrate that use of a reduced symmetry super-lattice provides an improved approximation to the dynamical, phonon-distorted P6/mmm crystal structure. Construction of phonon frequency plots using calculated values for these isotopic forms gives linear trends with integer multiples of a base frequency that change in slope in a manner consistent with the isotope effect (IE). Spectral parameters inferred from this method are similar to that determined experimentally for the pure isotopic forms of MgB2. Comparison with AlB2 demonstrates that a coherent phonon decay down to acoustic modes is not possible for this metal. Coherent acoustic phonon decay may be an important contributor to superconductivity for MgB2.

  17. IMMEDIATE EFFECTS OF INVERSE RATIO BREATHING VERSUS DIAPHRAGMATIC BREATHING ON INSPIRATORY VITAL CAPACITY AND THORACIC EXPANSION IN ADULT HEALTHY FEMALES

    Directory of Open Access Journals (Sweden)

    Kshipra Baban Pedamkar

    2016-04-01

    Full Text Available Background: The normal inspiratory to expiratory ratio is 1:2.However, the duration of inspiration can be increased voluntarily till the ratio becomes 2:1.This is called as inverse ratio breathing. The effects of inverse ratio ventilation have been studied on patients with respiratory failure and Acute Respiratory Distress Syndrome. No studies have been carried out to study the effects of inverse ratio breathing in voluntarily breathing individuals. Hence this study was carried out to find the immediate effects of inverse ratio breathing versus diaphragmatic breathing on inspiratory vital capacity and thoracic expansion. Methods: 30 healthy adult females in the age group 20-25 years were included in the study. Inspiratory vital capacity and thoracic expansion at 2nd, 4th and 6th intercostal space was measured using a digital spirometer and an inelastic inch tape respectively. Diaphragmatic breathing was administered for one minute and the same parameters were measured again. A washout period of one day was given and same outcome measures were measured before and after individuals performed inverse ratio breathing with the help of a visual feedback video for one minute. Results: Data was analysed using Wilcoxon test. There was extremely significant difference between the mean increase in the inspiratory vital capacity and thoracic expansion at the 2nd, 4th and 6th intercostals space after inverse ratio breathing as compared to diaphragmatic breathing (p < 0.0001. Conclusion: Inspiratory vital capacity and thoracic expansion increase significantly after inverse ratio breathing.

  18. Impact of deep convection on the isotopic amount effect in tropical precipitation

    Science.gov (United States)

    Tharammal, Thejna; Bala, Govindasamy; Noone, David

    2017-02-01

    The empirical "amount effect" observed in the distribution of stable water isotope ratios in tropical precipitation is used in several studies to reconstruct past precipitation. Recent observations suggest the importance of large-scale organized convection systems on amount effect. With a series of experiments with Community Atmospheric Model version 3.0 with water isotope tracers, we quantify the sensitivity of amount effect to changes in modeled deep convection. The magnitude of the regression slope between long-term monthly precipitation amount and isotope ratios in precipitation over tropical ocean reduces by more than 20% with a reduction in mean deep convective precipitation by about 60%, indicating a decline in fractionation efficiency. Reduced condensation in deep convective updrafts results in enrichment of lower level vapor with heavier isotope that causes enrichment in total precipitation. However, consequent increases in stratiform and shallow convective precipitation partially offset the reduction in the slope of amount effect. The net result is a reduced slope of amount effect in tropical regions except the tropical western Pacific, where the effects of enhanced large-scale ascent and increased stratiform precipitation prevail over the influence of reduced deep convection. We also find that the isotope ratios in precipitation are improved over certain regions in the tropics with reduced deep convection, showing that analyses of isotope ratios in precipitation and water vapor are powerful tools to improve precipitation processes in convective parameterization schemes in climate models. Further, our study suggests that the precipitation types over a region can alter the fractionation efficiency of isotopes with implications for the reconstructions of past precipitation.

  19. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.

  20. 3D Effects in the Formation of Zonal Jets Through Inverse Cascade

    Science.gov (United States)

    Sayanagi, K. M.; Showman, A. P.

    2006-12-01

    The atmospheric zonal jets on Jupiter and Saturn are characterized by the broad, prograde, equatorial jet and the narrower, higher-latitude jets that alternate between prograde and retrograde. The question of what controls the widths and directions of those jets remains a major unsolved problem in geophysical fluid dynamics. Past studies have shown that, in shallow flows on a rotating sphere, small random vortices can undergo inverse cascade to form zonal jets with a characteristic width called the Rhines scale. Most of the studies to date use 2D non-divergent or shallow-water models in studying this zonal jet formation mechanism. However, in the parameter ranges representative of the Jovian conditions, the flows produced by 2D non- divergent models are typically dominated by strong circumpolar jets, and the shallow-water models produce a robust retrograde equatorial jet. These models' apparent inabilities in reproducing some key Jovian jet features may suggest the importance of 3D effects in controlling the jets' large-scale horizontal structures. To date, Kitamura and Matsuda (Fluid Dynamics Research, 34, 33-57, 2004) is the only published study that analyzes the 3D effects in the zonalization of fine-scale random turbulence through the inverse cascade. Their two-layer primitive equation simulations of free-evolving flows resulted in circumpolar jet dominated flows, although slower mid-latitude jets are also present. Our study is a significant extension over that by Kitamura and Matsuda and includes substantially more layers to study the zonalization process to more fully resolve relevant 3D effects in the inverse cascade. We test the flow behavior's dependence on the deformation radius and the resulting vertical structures in both spherical and beta-plane geometries. Our study uses the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al, Icarus, 32, 221-238., 1998). The research is supported by a NASA Planetary Atmospheres grant to APS.

  1. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    Science.gov (United States)

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to

  2. Reversing the direction of space and inverse Doppler effect in positive refraction index media

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2017-01-01

    A negative refractive index medium, in which all spatial coordinates are reversed (i.e. a left-hand triplet is formed) by a spatial folding transformation, can create many novel electromagnetic phenomena, e.g. backward wave propagation, and inversed Doppler effect (IDE). In this study, we use coordinate rotation transformation to reverse only two spatial coordinates (e.g. x‧ and y‧), while keeping z‧ unchanged. In this case, some novel phenomena, e.g. radiation-direction-reversing illusions and IDE, can be achieved in a free space region wrapped by the proposed shell without any negative refractive index medium, which is easier for experimental realization and future applications.

  3. Inverse spin Hall effect in ferromagnetic metal with Rashba spin orbit coupling

    Directory of Open Access Journals (Sweden)

    M.-J. Xing

    2012-09-01

    Full Text Available We report an intrinsic form of the inverse spin Hall effect (ISHE in ferromagnetic (FM metal with Rashba spin orbit coupling (RSOC, which is driven by a normal charge current. Unlike the conventional form, the ISHE can be induced without the need for spin current injection from an external source. Our theoretical results show that Hall voltage is generated when the FM moment is perpendicular to the ferromagnetic layer. The polarity of the Hall voltage is reversed upon switching the FM moment to the opposite direction, thus promising a useful reading mechanism for memory or logic applications.

  4. Carbon addition during the Paleocene-Eocene Thermal Maximum: Model inversion of a new, high-resolution carbon isotope record from Svalbard

    Science.gov (United States)

    Cui, Y.; Kump, L.; Ridgwell, A.; Junium, C.; Diefendorf, A. F.; Freeman, K. H.; Urban, N.

    2010-12-01

    Newly analyzed core material from Svalbard presents the most expanded sedimentary section spanning the Paleocene Eocene Thermal Maximum (PETM) studied to date. Carbon isotopic analysis of the bulk organic matter extracted from core BH9-05 details the onset of the negative carbon isotope excursion (CIE) of approximately 4.2‰ over 19,000 years (8 m of section, sampled every 30 cm) and its recovery over 50 m of section, representing 150,000 years. The CIE of terrestrial higher plant n-alkanes (~6‰) is larger than that of the bulk organic carbon (4.2‰), suggesting the CIE of the atmospheric CO2 is in the range of 4.2 to 6‰. We use a novel approach to modeling the excursion, forcing an Earth system model of intermediate complexity to conform to the total organic carbon isotope record, yielding rates of carbon release at the PETM for a specified isotopic composition representing end-member potential sources (methane or fossil organic matter). We find that the peak rate of carbon addition is only a small fraction of the current rate of fossil fuel burning (9 Pg C/yr) whether the source is methane (0.3 Pg C/yr; δ13C = -60‰) or organic matter (1.7 Pg C/yr; δ13C = -22‰). Model/data comparison, especially the observed and modeled seafloor carbonate dissolution record, favors the higher peak rate and larger (~13,000 Pg C) cumulative addition associated with an organic-matter source, such as rapid oxidation of peat/coal/marine organic matter, thermal alteration of marine organic matter during emplacement of the N. Atlantic Volcanic Province, or a mix of relatively 13C enriched (volcanic) and relatively 13C depleted (methane) sources. However, model sensitivity analysis shows that while the rate and amount of carbon added (for a specified source type) is relatively insensitive to key model uncertainties, the predicted seafloor carbonate dissolution response is quite sensitive to the presumed initial ocean alkalinity and seafloor carbonate distribution (i.e., the

  5. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    Science.gov (United States)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  6. Predictive Framework and Experimental Tests of the Kinetic Isotope Effect at Redox-Active Interfaces

    Science.gov (United States)

    Kavner, A.; John, S.; Black, J. R.

    2013-12-01

    Electrochemical reactions provide a compelling framework to study kinetic isotope effects because redox-related processes are important for a wide variety of geological and environmental processes. In the laboratory, electrochemical reaction rates can be electronically controlled and measured in the laboratory using a potentiostat. This enables variation of redox reactions rates independent of changes in chemistry and, and the resulting isotope compositions of reactants and products can be separated and analyzed. In the past years, a series of experimental studies have demonstrated a large, light, and tunable kinetic isotope effect during electrodeposition of metal Fe, Zn, Li, Cu, and Mo from a variety of solutions (e.g. Black et al., 2009, 2010, 2011). A theoretical framework based on Marcus kinetic theory predicts a voltage-dependent kinetic isotope effect (Kavner et al., 2005, 2008), however while this framework was able to predict the tunable nature of the effect, it was not able to simultaneously predict absolute reaction rates and relative isotope rates. Here we present a more complete development of a statistical mechanical framework for simple interfacial redox reactions, which includes isotopic behavior. The framework is able to predict a kinetic isotope effect as a function of temperature and reaction rate, starting with three input parameters: a single reorganization energy which describes the overall kinetics of the electron transfer reaction, and the equilibrium reduced partition function ratios for heavy and light isotopes in the product and reactant phases. We show the framework, elucidate some of the predictions, and show direct comparisons against isotope fractionation data obtained during laboratory and natural environment redox processes. A. Kavner, A. Shahar, F. Bonet, J. Simon and E. Young (2005) Geochim. Cosmochim. Acta, 69(12), 2971-2979. A. Kavner, S. G. John, S. Sass, and E. A. Boyle (2008), Geochim. Cosmochim. Acta, vol 72, pp. 1731

  7. Electrocaloric effect in BaTiO3 at all three ferroelectric transitions: Anisotropy and inverse caloric effects

    Science.gov (United States)

    Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude

    2017-07-01

    We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.

  8. Effect of a combined inversion and plantarflexion surface on ankle kinematics and EMG activities in landing

    Directory of Open Access Journals (Sweden)

    Divya Bhaskaran

    2015-12-01

    Conclusion: These findings suggest that compared to the inversion surface, the combined plantarflexion and inversion surface seems to provide a more unstable surface condition for lateral ankle sprains during landing.

  9. Confidence intervals for single-case effect size measures based on randomization test inversion.

    Science.gov (United States)

    Michiels, Bart; Heyvaert, Mieke; Meulders, Ann; Onghena, Patrick

    2017-02-01

    In the current paper, we present a method to construct nonparametric confidence intervals (CIs) for single-case effect size measures in the context of various single-case designs. We use the relationship between a two-sided statistical hypothesis test at significance level α and a 100 (1 - α) % two-sided CI to construct CIs for any effect size measure θ that contain all point null hypothesis θ values that cannot be rejected by the hypothesis test at significance level α. This method of hypothesis test inversion (HTI) can be employed using a randomization test as the statistical hypothesis test in order to construct a nonparametric CI for θ. We will refer to this procedure as randomization test inversion (RTI). We illustrate RTI in a situation in which θ is the unstandardized and the standardized difference in means between two treatments in a completely randomized single-case design. Additionally, we demonstrate how RTI can be extended to other types of single-case designs. Finally, we discuss a few challenges for RTI as well as possibilities when using the method with other effect size measures, such as rank-based nonoverlap indices. Supplementary to this paper, we provide easy-to-use R code, which allows the user to construct nonparametric CIs according to the proposed method.

  10. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    Science.gov (United States)

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-09-01

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.

  11. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    Science.gov (United States)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  12. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    Science.gov (United States)

    Schol, M.A.; Shanley, J.B.; Zegarra, J.P.; Coplen, T.B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for ??18O and ??2H. Precipitation enriched in , 18O and 2H occurred during the winter dry season (approximately December-May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June-November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  13. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects.

    Science.gov (United States)

    Sternberg, Leonel; Pinzon, Maria Camila; Anderson, William T; Jahren, A Hope

    2006-10-01

    The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

  14. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  15. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  16. Influence of Isotope on Shell Effects of Pre-scission Particle Evaporation

    Institute of Scientific and Technical Information of China (English)

    YE Wei; CHEN Na

    2005-01-01

    The shell effects on the particle evaporation prior to fission for three Pb isotopes, 204pb, 20sPb, and 212pb,as well as three Sn isotopes, 128Sn, 132Sn, and 136Sn, are explored by a diffusion model. Calculations show that the magnitude of shell effects in the emission of particles changes with the neutron-to-proton ratio N/Z of these fissioning nuclei, and this change is affected significantly by the spin and excitation energy of the system. It is shown that high angular momentum enhances the dependence of shell effects on the N/Z while high excitation energy weakens such a dependence.

  17. Biological Applications of Extraordinary Electroconductance and Photovoltaic Effects in Inverse Extraordinary Optoconductance

    Science.gov (United States)

    Tran, Lauren Christine

    The Extraordinary Electroconductance (EEC) sensor has been previously demonstrated to have an electric field sensitivity of 3.05V/cm in a mesoscopic-scale structure fabricated at the center of a parallel plate capacitor. In this thesis, we demonstrate the first successful application of EEC sensors as electrochemical detectors of protein binding and biological molecule concentration. Using the avidin derivative, captavidin, in complex with the vitamin biotin, the change in four-point measured resistance with fluid protein concentration of bare EEC sensors was shown to increase by a factor of four in the presence of biomolecular binding as compared to baseline. Calculations for approximate field strengths introduced by a bound captavidin molecule are also presented. The development of Inverse-Extraordinary Optoconductance (I-EOC), an effect which occurs in nanoscale sensors, is also discussed. In the I-EOC effect, electron transport transitions from ballistic to diffusive with increasing light intensity. In these novel, room temperature optical detectors, the resistance is low at low light intensity and resistance increases by 9462% in a 250nm device mesa upon full illumination with a 5 mW HeNe laser. This is the inverse of bulk and mesoscopic device behavior, in which resistance decreases with increasing photon density.

  18. The effects of inversion and familiarity on face versus body cues to person recognition.

    Science.gov (United States)

    Robbins, Rachel A; Coltheart, Max

    2012-10-01

    Extensive research has focused on face recognition, and much is known about this topic. However, much of this work seems to be based on an assumption that faces are the most important aspect of person recognition. Here we test this assumption in two experiments. We show that when viewers are forced to choose, they do use the face more than the body, both for familiar (trained) person recognition and for unfamiliar person matching. However, we also show that headless bodies are recognized and matched with very high accuracy. We further show that processing style may be similar for faces and bodies, with inversion effects found in all cases (bodies with heads, faces alone and bodies alone), and evidence that mismatching bodies and heads causes interference. We suggest that recent findings of no inversion effect when stimuli are headless bodies may have been obtained because the stimuli led viewers to focus on nonbody aspects (e.g., clothes) or because pose and identity tasks led to somewhat different processing. Our results are consistent with holistic processing for bodies as well as faces.

  19. Universal field dependence of conventional and inverse magnetocaloric effects in DyCo2Si2

    Science.gov (United States)

    Karmakar, S. K.; Giri, S.; Majumdar, S.

    2017-01-01

    The rare-earth intermetallic compound DyCo2Si2 orders antiferromagnetically below TN = 23 K followed by a second magnetic anomaly at Tt = 9 K. The sample is known to show multiple metamagnetic transitions, which are reproduced in our present study. Our investigations on this sample indicate that the magnetocaloric effect (MCE) calculated from the magnetization data (in terms of change in entropy, ΔSM ) is quite fascinating, and it is characterized by multiple sign reversals around TN and Tt. The MCE is found to be conventional (i.e., ΔSM is negative) above TN and below Tt, while it is inverse (i.e., ΔSM is positive) between TN and Tt. We performed a comprehensive analysis of the field dependence of the observed MCE, and a universal quadratic variation is observed at temperatures above and below TN (including the region below Tt) as long as the applied field is lower than the critical field for metamagnetic transition. The present work is able to show that the field dependence of the MCE in this antiferromagnetic material is quadratic despite the fact that the magnetocaloric effect is conventional or inverse in different temperature regions.

  20. Impaired configural body processing in anorexia nervosa: evidence from the body inversion effect.

    Science.gov (United States)

    Urgesi, Cosimo; Fornasari, Livia; Canalaz, Francesca; Perini, Laura; Cremaschi, Silvana; Faleschini, Laura; Thyrion, Erica Zappoli; Zuliani, Martina; Balestrieri, Matteo; Fabbro, Franco; Brambilla, Paolo

    2014-11-01

    Patients with anorexia nervosa (AN) suffer from severe disturbances of body perception. It is unclear, however, whether such disturbances are linked to specific alterations in the processing of body configurations with respect to the local processing of body part details. Here, we compared a consecutive sample of 12 AN patients with a group of 12 age-, gender- and education-matched controls using an inversion effect paradigm requiring the visual discrimination of upright and inverted pictures of whole bodies, faces and objects. The AN patients presented selective deficits in the discrimination of upright body stimuli, which requires configural processing. Conversely, patients and controls showed comparable abilities in the discrimination of inverted bodies, which involves only detail-based processing, and in the discrimination of both upright and inverted faces and objects. Importantly, the body inversion effect negatively correlated with the persistence scores at the Temperament and Character Inventory, which evaluates increased tendency to convert a signal of punishment into a signal of reinforcement. These results suggest that the deficits of configural processing in AN patients may be associated with their obsessive worries about body appearance and to the excessive attention to details that characterizes their general perceptual style.

  1. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  2. EFFECTIVE INVERSION OF LEFT HEART REMODELING BY PHENYLALANINE IN ESSENTIAL HYPERTENSION

    Institute of Scientific and Technical Information of China (English)

    赵光胜; 邱慧丽; 范明昌; 张伟忠

    2000-01-01

    Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart "remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables were compared after 3,6 and 9 months of observation between the Phe intervention group (Phe lg/d + amiloride complex 1 tablet/d, 20 cases) and control group (placebo lg/d+amiloride complex 1 tablet/d, 20 cases) with either interventricular septum and (or) post-wall thickness≥12mm, and were carried on further to compare in cross-over trial. Results (1) Phe improved effectively the left heart and systolic dysfunction; while the improvement, also shown in control group due to the concurrent use of diuretic antihypertensive drug-amiloride complex, was much less evident than that in Phe group. (2) The disturbed left heart structure and systolic function were improved prominently while placebo was crossed over to Phe, and the improvement decreased after Phe was crrossed over to placebo. (3) The changes almost attained to its peak level after 6 months and not improved further at 9 months. (4) The differences seen between above 2 groups could not be explained by their diverse drops of blood pressure. Conclusion Phe does exert an independent inverse effect on cardiac "remodeling", which might implicate an important clinical application upon the prevention and control of essential hypertension and its complications.

  3. Stabilization effect ofWeibel modes due to inverse bremsstrahlung absorption in laser fusion plasma using Krook collisions model

    Indian Academy of Sciences (India)

    S BELGHIT; A SID

    2016-12-01

    In this work, the Weibel instability due to inverse bremsstrahlung absorption in laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by Weibel instability with the laser wave field is explicitly showed. The main result obtained in this work is that the inclusion of self-generated magnetic field due to Weibel instability to the inverse bremsstrahlung absorption causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes.This decrease is accompanied by a reduction of two orders in the growth rate of instability or even stabilization of these modes. It has been shown that the previous analyses of the Weibel instability due to inverse bremsstrahlunghave overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the Weibel instability due to inverse bremsstrahlung should not affect the experiences of an inertial confinement fusion.

  4. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.

    Science.gov (United States)

    Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L

    2015-09-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

  5. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon = 6,1 x 10/sup -4/. This is one of the highest isotope fractionations known in a chloride isotope exchange system. The results show that the electrolyte behaviour of isotopes is comparable to that of a series of homologous elements.

  6. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?

    Science.gov (United States)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel

    2016-04-01

    The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving

  7. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  8. Comparisons of phosphorothioate with phosphate transfer reactions for a monoester, diester, and triester: isotope effect studies.

    Science.gov (United States)

    Catrina, Irina E; Hengge, Alvan C

    2003-06-25

    Phosphorothioate esters are sometimes used as surrogates for phosphate ester substrates in studies of enzymatic phosphoryl transfer reactions. To gain better understanding of the comparative inherent chemistry of the two types of esters, we have measured equilibrium and kinetic isotope effects for several phosphorothioate esters of p-nitrophenol (pNPPT) and compared the results with data from phosphate esters. The primary (18)O isotope effect at the phenolic group ((18)k(bridge)), the secondary nitrogen-15 isotope effect ((15)k) in the nitro group, and (for the monoester and diester) the secondary oxygen-18 isotope effect ((18)k(nonbridge)) in the phosphoryl oxygens were measured. The equilibrium isotope effect (EIE) (18)k(nonbridge) for the deprotonation of the monoanion of pNPPT is 1.015 +/- 0.002, very similar to values previously reported for phosphate monoesters. The EIEs for complexation of Zn(2+) and Cd(2+) with the dianion pNPPT(2-) were both unity. The mechanism of the aqueous hydrolysis of the monoanion and dianion of pNPPT, the diester ethyl pNPPT, and the triester dimethyl pNPPT was probed using heavy atom kinetic isotope effects. The results were compared with the data reported for analogous phosphate monoester, diester, and triester reactions. The results suggest that leaving group bond fission in the transition state of reactions of the monoester pNPPT is more advanced than for its phosphate counterpart pNPP, while alkaline hydrolysis of the phosphorothioate diester and triester exhibits somewhat less advanced bond fission than that of their phosphate ester counterparts.

  9. The face inversion effect following pitch and yaw rotations: investigating the boundaries of holistic processing.

    Directory of Open Access Journals (Sweden)

    Simone eFavelle

    2012-12-01

    Full Text Available Upright faces are thought to be processed holistically. However, the range of views within which holistic processing occurs is unknown. Recent research by McKone (2008 suggests that holistic processing occurs for all yaw rotated face views (i.e. full-face through to profile. Here we examined whether holistic processing occurs for pitch, as well as yaw, rotated face views. In this face recognition experiment: (i participants made same/different judgments about two sequentially presented faces (either both upright or both inverted; (ii the test face was pitch/yaw rotated by between 0°-75° from the encoding face (always a full face view. Our logic was as follows: If a particular pitch/yaw rotated face view is being processed holistically when upright, then this processing should be disrupted by inversion. Consistent with previous research, significant face inversion effects (FIEs were found for all yaw rotated views. However, while FIEs were found for pitch rotations up to 45°, none were observed for 75° pitch rotations (rotated either above or below the full face. We conclude that holistic processing does not occur for all views of upright faces (e.g., not for uncommon pitch rotated views, only those that can be matched to a generic global representation of a face.

  10. Isotope Effect on Electron-Phonon Coupling in Multiband Superconductor MgB2

    Science.gov (United States)

    Mou, Daixiang; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'Ko, Serguei; Canfield, Paul; Kaminski, Adam

    We systematically investigate the isotope effect of electron-phonon coupling in multi-band superconductor MgB2 by laser based Angle Resolved Photoemission Spectroscopy. The kink structure around 70 meV on two σ bands, which is caused by electron coupling to E2 g phonon mode, is shifted to higher binding energy in Mg10B2 than that in Mg11B2. The measured shifting energy of 3.5 meV is consistent with theoretical calculation based on harmonic phonon in MgB2. Our temperature dependent measurement also indicates the isotope effect of kink structure is not dependent on superconducting transition.

  11. Isotope effect on electron-phonon interaction in the multiband superconductor MgB2

    Science.gov (United States)

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; Wu, Yun; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-04-01

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E2 g phonon mode, is shifted to higher binding energy by ˜3.5 meV in Mg 10B2 and the shift is not affected by superconducting transition. These results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  12. The influence of anharmonic phonons on the isotope effect in high-{Tc} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L.

    1992-01-01

    Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.

  13. The influence of anharmonic phonons on the isotope effect in high- Tc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L.

    1992-01-01

    Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.

  14. Inverse effect in simultaneous thermal and radiation aging of EVA insulation

    Directory of Open Access Journals (Sweden)

    G. Przybytniak

    2015-04-01

    Full Text Available Poly(ethylene-co-vinyl acetate (EVA insulation of the cable applied in nuclear power plants was accelerated aged by gamma-rays at two various temperatures, namely 55 and 85°C. Radiation degradation in the dose range of 0–1500 kGy was monitored using a Differential Scanning Calorimetry method by measuring oxidative induction temperature (OITp, gel fraction, mechanical and electrical tests. It was confirmed that a dose rate effect in the range of 420–1500 Gy/h was negligible whereas progress of degradation with increasing dose was strongly temperature dependent. For the insulation accelerated aged at 85°C the OITp and permittivity measurements confirmed lower degradation than for the specimens radiation treated at 55°C at the same dose rates. It was postulated that an inverse thermal effect resulted from radiation induced cross-linking facilitated by melting of EVA crystallites at 85°C.

  15. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    Science.gov (United States)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different rainfall weighing methods resulted in different minimum pre-event water fractions in streamflow. For small events with a small mean temporal range in stable isotope composition of rainfall, the different rainfall weighing methods had little effect on the calculated minimum pre-event water fractions. However with increasing temporal variability in stable isotope composition of rainfall, the range in the minimum pre-event water fractions increased and therefore the choice of the rainfall weighing method

  16. The principle of inverse effectiveness in multisensory integration: some statistical considerations.

    Science.gov (United States)

    Holmes, Nicholas P

    2009-05-01

    The principle of inverse effectiveness (PoIE) in multisensory integration states that, as the responsiveness to individual sensory stimuli decreases, the strength of multisensory integration increases. I discuss three potential problems in the analysis of multisensory data with regard to the PoIE. First, due to 'regression towards the mean,' the PoIE may often be observed in datasets that are analysed post-hoc (i.e., when sorting the data by the unisensory responses). The solution is to design discrete levels of stimulus intensity a priori. Second, due to neurophysiological or methodological constraints on responsiveness, the PoIE may be, in part, a consequence of 'floor' and 'ceiling' effects. The solution is to avoid analysing or interpreting data that are too close to the limits of responsiveness, enabling both enhancement and suppression to be reliably observed. Third, the choice of units of measurement may affect whether the PoIE is observed in a given dataset. Both relative (%) and absolute (raw) measurements have advantages, but the interpretation of both is affected by systematic changes in response variability with changes in response mean, an issue that may be addressed by using measures of discriminability or effect-size such as Cohen's d. Most importantly, randomising or permuting a dataset to construct a null distribution of a test parameter may best indicate whether any observed inverse effectiveness specifically characterises multisensory integration. When these considerations are taken into account, the PoIE may disappear or even reverse in a given dataset. I conclude that caution should be exercised when interpreting data that appear to follow the PoIE.

  17. Seeing emotions in the eyes - inverse priming effects induced by eyes expressing mental states.

    Science.gov (United States)

    Wagenbreth, Caroline; Rieger, Julia; Heinze, Hans-Jochen; Zaehle, Tino

    2014-01-01

    Automatic emotional processing of faces and facial expressions gain more and more of relevance in terms of social communication. Among a variety of different primes, targets and tasks, whole face images and facial expressions have been used to affectively prime emotional responses. This study investigates whether emotional information provided solely in eye regions that display mental states can also trigger affective priming. Sixteen subjects answered a lexical decision task (LDT) coupled with an affective priming paradigm. Emotion-associated eye regions were extracted from photographs of faces and acted as primes, whereas targets were either words or pseudo-words. Participants had to decide whether the targets were real German words or generated pseudo-words. Primes and targets belonged to the emotional categories "fear," "disgust," "happiness," and "neutral." A general valence effect for positive words was observed: responses in the LDT were faster for target words of the emotional category happiness when compared to other categories. Importantly, pictures of emotional eye regions preceding the target words affected their subsequent classification. While we show a classical priming effect for neutral target words - with shorter RT for congruent compared to incongruent prime-target pairs- , we observed an inverse priming effect for fearful and happy target words - with shorter RT for incongruent compared to congruent prime-target pairs. These inverse priming effects were driven exclusively by specific prime-target pairs. Reduced facial emotional information is sufficient to induce automatic implicit emotional processing. The emotional-associated eye regions were processed with respect to their emotional valence and affected the performance on the LDT.

  18. Seeing emotions in the eyes – Inverse priming effects induced by eyes expressing mental states

    Directory of Open Access Journals (Sweden)

    Caroline eWagenbreth

    2014-09-01

    Full Text Available ObjectiveAutomatic emotional processing of faces and facial expressions gain more and more of relevance in terms of social communication. Among a variety of different primes, targets and tasks, whole face images and facial expressions have been used to affectively prime emotional responses. This study investigates whether emotional information provided solely in eye regions that display mental states can also trigger affective priming.MethodsSixteen subjects answered a lexical decision task (LDT coupled with an affective priming paradigm. Emotion-associated eye regions were extracted from photographs of faces and acted as primes, whereas targets were either words or pseudo-words. Participants had to decide whether the targets were real German words or generated pseudo-words. Primes and targets belonged to the emotional categories fear, disgust, happiness and neutral.ResultsA general valence effect for positive words was observed: Responses in the LDT were faster for target words of the emotional category happiness when compared to other categories. Importantly, pictures of emotional eye regions preceding the target words affected their subsequent classification. While we show a classical priming effect for neutral target words - with shorter RT for congruent compared to incongruent prime-target pairs- , we observed an inverse priming effect for fearful and happy target words - with shorter RT for incongruent compared to congruent prime-target pairs. These inverse priming effects were driven exclusively by specific prime-target pairs.ConclusionReduced facial emotional information is sufficient to induce automatic implicit emotional processing. The emotional-associated eye regions were processed with respect to their emotional valence and affected the performance on the LDT.

  19. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations.

  20. Anharmonicity effects in impurity-vacancy centers in diamond revealed by isotopic shifts and optical measurements

    Science.gov (United States)

    Ekimov, E. A.; Krivobok, V. S.; Lyapin, S. G.; Sherin, P. S.; Gavva, V. A.; Kondrin, M. V.

    2017-03-01

    We studied isotopically enriched nano- and microdiamonds with optically active GeV- centers synthesized at high pressures and high temperatures in nonmetallic growth systems. The influence of isotopic composition on optical properties has been thoroughly investigated by photoluminescence-excitation (PLE) and photoluminescence (PL) spectroscopy to get insight into the nature and electronic structure of this color center. We have demonstrated that the large frequency defect (difference between oscillation frequencies in the ground and excited electronic states) does bring about large discrepancy between PLE and PL spectra and comparatively high isotopic shift of the zero phonon line. Both effects seem to be rather common to split-vacancy centers (for example SiV-), where the frequency defect reaches record high values. Isotopic substitution of carbon atoms in the diamond lattice results in even larger shifts, which are only partially accounted for by a redistribution of electron density caused by the volume change of the diamond lattice. It was shown that the vibronic frequency in this case does not depend on the mass of carbon atoms. The greatest part of this isotopic shift is due to anharmonicity effects, which constitute a substantial part of vibronic frequency observed in this center. The exact physical mechanism, which leads to significant enhancement of anharmonicity on substitution of 12C to 13C, is yet to be clarified.

  1. Improved energy confinement with nonlinear isotope effects in magnetically confined plasmas

    CERN Document Server

    Garcia, J; Jenko, F

    2016-01-01

    The efficient production of electricity from nuclear fusion in magnetically confined plasmas relies on a good confinement of the thermal energy. For more than thirty years, the observation that such confinement depends on the mass of the plasma isotope and its interaction with apparently unrelated plasma conditions has remained largely unexplained and it has become one of the main unsolved issues. By means of numerical studies based on the gyrokinetic theory, we quantitatively show how the plasma microturbulence depends on the isotope mass through nonlinear multiscale microturbulence effects involving the interplay between zonal flows, electromagnetic effects and the torque applied. This finding has crucial consequences for the design of future reactors since, in spite of the fact that they will be composed by multiple ion species, their extrapolation from present day experiments heavily relies on the knowledge obtained from a long experimental tradition based in single isotope plasmas.

  2. Brillouin scattering studies of isotopic effects in solid ammonia

    Science.gov (United States)

    Kiefte, H.; Penney, R.; Breckon, S. W.; Clouter, M. J.

    1987-01-01

    The technique of high resolution Brillouin spectroscopy has been used to determine the adiabatic elastic constants and the elasto-optic coupling (Pockels) coefficient ratios of oriented single crystals of (solid I) ND3 at temperatures near the gas-liquid-solid triple point. The values of the elastic constants at 196.0 K are C11=83.3, C12=44.0, and C44=49.6 (in units of kbar) with an estimated absolute uncertainty of ±2%. The values of the elasto-optic coefficient ratios are P12/P11=0.90 and P44/P11=0.16 for ND3 and 0.89 and 0.16 for NH3, respectively. Other than that expected from the mass ratio, no significant isotopic differences are evident.

  3. Isotopic effects in the neon fixed point: uncertainty of the calibration data correction

    Science.gov (United States)

    Steur, Peter P. M.; Pavese, Franco; Fellmuth, Bernd; Hermier, Yves; Hill, Kenneth D.; Seog Kim, Jin; Lipinski, Leszek; Nagao, Keisuke; Nakano, Tohru; Peruzzi, Andrea; Sparasci, Fernando; Szmyrka-Grzebyk, Anna; Tamura, Osamu; Tew, Weston L.; Valkiers, Staf; van Geel, Jan

    2015-02-01

    The neon triple point is one of the defining fixed points of the International Temperature Scale of 1990 (ITS-90). Although recognizing that natural neon is a mixture of isotopes, the ITS-90 definition only states that the neon should be of ‘natural isotopic composition’, without any further requirements. A preliminary study in 2005 indicated that most of the observed variability in the realized neon triple point temperatures within a range of about 0.5 mK can be attributed to the variability in isotopic composition among different samples of ‘natural’ neon. Based on the results of an International Project (EUROMET Project No. 770), the Consultative Committee for Thermometry decided to improve the realization of the neon fixed point by assigning the ITS-90 temperature value 24.5561 K to neon with the isotopic composition recommended by IUPAC, accompanied by a quadratic equation to take the deviations from the reference composition into account. In this paper, the uncertainties of the equation are discussed and an uncertainty budget is presented. The resulting standard uncertainty due to the isotopic effect (k = 1) after correction of the calibration data is reduced to (4 to 40) μK when using neon of ‘natural’ isotopic composition or to 30 μK when using 20Ne. For comparison, an uncertainty component of 0.15 mK should be included in the uncertainty budget for the neon triple point if the isotopic composition is unknown, i.e. whenever the correction cannot be applied.

  4. Ab initio calculation of the Zn isotope effect in phosphates, citrates, and malates and applications to plants and soil.

    Science.gov (United States)

    Fujii, Toshiyuki; Albarède, Francis

    2012-01-01

    Stable Zn isotopes are fractionated in roots and leaves of plants. Analyses demonstrate that the heavy Zn isotopes are enriched in the root system of plants with respect to shoots and leaves as well as the host soil, but the fractionation mechanisms remain unclear. Here we show that the origin of this isotope fractionation is due to a chemical isotope effect upon complexation by Zn malates and citrates in the aerial parts and by phosphates in the roots. We calculated the Zn isotope effect in aqueous citrates, malates, and phosphates by ab initio methods. For pHphosphates, with respect to leaves, which concentrate malates and citrates, by about one permil. It is proposed that Zn isotope fractionation represents a useful tracer of Zn availability and mobility in soils.

  5. Kinetic isotope effects in the OH and Cl reactions of the clumped methane species 13CH3D

    DEFF Research Database (Denmark)

    Joelsson, Magnus

    a heavy atom vibrates slower than a light atom, the substitution to heavier isotopes in a molecular bond leads to lower Zero-Point Energy (ZPE) and thus amore stable bond. Fromstatistical thermodynamics we know that the influence of ZPE is largest at low temperatures, therefore the clumping of isotopes....... In Papers I and II, isotopically-labeled methane was used and the reactions were studied using Fourier Transform Infrared spectroscopy (FTIR). In Paper III; natural abundance methane was used and only the reaction yield was measured with FTIR spectroscopy. Meanwhile, the isotopic compositions were measured...... the clumping effect by a reaction, the apparent clumpiness is defined as the deviation of the Kinetic Isotope Effect (KIE) of the reaction with the clumped isotope (13CH3D) from the combination of KIEs of reactions with the single substituted isotopologues (13CH4 and 12CH3D). If the KIE of the reaction with 13...

  6. Iron isotope effect on T{sub c} in optimally-doped (Ba,K)Fe{sub 2}As{sub 2} (T{sub c} = 38 K) and SmFeAsO{sub 1-y} (T{sub c} = 54 K) superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shirage, P.M.; Kihou, K. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Miyazawa, K. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-3510 (Japan); Lee, C.H.; Kito, H. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), 5, Sanbancho, Chiyoda, Tokyo 102-0075 (Japan); Yoshida, Y. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Eisaki, H. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), 5, Sanbancho, Chiyoda, Tokyo 102-0075 (Japan); Tanaka, Y. [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iyo, A., E-mail: iyo-akira@aist.go.j [Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, Transformative Research-Project on Iron Pnictides (TRIP), 5, Sanbancho, Chiyoda, Tokyo 102-0075 (Japan)

    2010-11-01

    We report the iron isotope effect on a transition temperature (T{sub c}) in an optimally-doped (Ba,K)Fe{sub 2}As{sub 2} (T{sub c} = 38 K) and SmFeAsO{sub 1-y} (T{sub c} = 54 K) superconductors. In order to obtain the reliable isotope shift in T{sub c}, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe{sub 2}As{sub 2} shows an inverse iron isotope effect {alpha}{sub Fe} = -0.18 {+-} 0.03 while SmFeAsO{sub 1-y} shows a small iron isotope effect {alpha}{sub Fe} -0.02 {+-} 0.01, where the isotope exponent {alpha} is defined by T{sub c} {approx} M{sup -{alpha}}(M is the isotopic mass). The results show that {alpha}{sub Fe} changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.

  7. Inverse modeling of dynamic nonequilibrium in water flow with an effective approach

    Science.gov (United States)

    Diamantopoulos, E.; Iden, S. C.; Durner, W.

    2012-03-01

    Observations of water flow in unsaturated soils often show "dynamic effects," indicated by nonequilibrium between water contents and water potential, a phenomenon that cannot be modeled with the Richards equation. The objective of this article is to formulate an effective process description of dynamic nonequilibrium flow in variably saturated soil which is both flexible enough to match experimental observations and as parsimonious as possible to allow unique parameter estimation by inverse modeling. In the conceptual model, water content is partitioned into two fractions. Water in one fraction is in equilibrium with the pressure head, whereas water in the second fraction is in nonequilibrium, described by the kinetic equilibration approach of Ross and Smettem (2000). Between the two fractions an instantaneous equilibration of the pressure head is assumed. The new model, termed the dual-fraction nonequilibrium model, requires only one additional parameter compared to the nonequilibrium approach of Ross and Smettem. We tested the model with experimental data from multistep outflow experiments conducted on two soils and compared it to the Richards equation, the nonequilibrium model of Ross and Smettem, and the dual-porosity model of Philip (1968). The experimental data were evaluated by inverse modeling using a robust Markov chain Monte Carlo sampler. The results show that the proposed model is superior to the Richards equation and the Ross and Smettem model in describing dynamic nonequilibrium effects occurring in multistep outflow experiments. The three popular model selection criteria (Akaike information criterion, Bayesian information criterion, and deviance information criterion) all favored the new model because of its smaller number of parameters.

  8. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    Science.gov (United States)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  9. Site Effects Estimation by a Transfer-Station Generalized Inversion Method

    Science.gov (United States)

    Zhang, Wenbo; Yu, Xiangwei

    2016-04-01

    Site effect is one of the essential factors in characterizing strong ground motion as well as in earthquake engineering design. In this study, the generalized inversion technique (GIT) is applied to estimate site effects. Moreover, the GIT is modified to improve its analytical ability.GIT needs a reference station as a standard. Ideally the reference station is located at a rock site, and its site effect is considered to be a constant. For the same earthquake, the record spectrum of an interested station is divided by that of the reference station, and the source term is eliminated. Thus site effects and the attenuation can be acquired. In the GIT process, the amount of earthquake data available in analysis is limited to that recorded by the reference station, and the stations of which site effects can be estimated are also restricted to those stations which recorded common events with the reference station. In order to improve the limitation of the GIT, a modified GIT is put forward in this study, namely, the transfer-station generalized inversion method (TSGI). Comparing with the GIT, this modified GIT can be used to enlarge data set and increase the number of stations whose site effects can be analyzed. And this makes solution much more stable. To verify the results of GIT, a non-reference method, the genetic algorithms (GA), is applied to estimate absolute site effects. On April 20, 2013, an earthquake with magnitude of MS 7.0 occurred in the Lushan region, China. After this event, more than several hundred aftershocks with ML<3.0 occurred in this region. The purpose of this paper is to investigate the site effects and Q factor for this area based on the aftershock strong motion records from the China National Strong Motion Observation Network System. Our results show that when the TSGI is applied instead of the GIT, the total number of events used in the inversion increases from 31 to 54 and the total number of stations whose site effect can be estimated

  10. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  11. The Effect of Aerosol Formation on Stable Isotopes Ratio in Titan's Atmosphere

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Sebree, Joshua; Wold, Allison; Stern, Jennifer

    2016-10-01

    The formation of large amounts of aerosol in Titan atmosphere induces a significant sink for carbon and nitrogen in the atmosphere. Due to the high complexity of the chemistry leading to aerosol formation, there may be isotopic fractionation along the formation pathways of the aerosol. So far several stable isotopes have been measured in Titan atmosphere including the 13C/12C, 15N/14N and D/H ratios for different gaseous species. However, the fractionation effect of the aerosol formation and its impact on atmospheric stable isotope ratios has yet to be fully understood. Two experimental studies were recently published on the stable carbon [1] and nitrogen [1,2] isotope fractionation during aerosol formation in N2-CH4 reactant mixture. To better constrain the fractionation effect of aerosol formation on the Titan atmosphere we have measured the isotopic fractionation induced in laboratory aerosol analogues produced exploring the space of parameters that are expected to have an effect on fractionation processes. Parameters studied include pressure and temperature of aerosol formation and the reactant gas phase composition, including the standard "Titan" mixture of CH4/N2 as well as other trace species such as benzene (C6H6).[1] Sebree, J.A., Stern, J.C., Mandt, K.E., Domagal-Goldman, S.D., and Trainer, M.G.: C and N Fractionation of CH /N Mixtures during Photochemical Aerosol Formation: Relevance to Titan, (2016) Icarus 270:421-428[2] Kuga, M., Carrasco, N., Marty, B., Marrochi, Y., Bernard, S., Rigaudier, T., Fleury, B., Tissandier, L.: Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles, (2014) EPSL 393:2-13

  12. Phase-Sensitive Detection of Spin Pumping via the ac Inverse Spin Hall Effect

    Science.gov (United States)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Silva, Thomas J.

    2014-10-01

    We use a phase-sensitive, quantitative technique to separate inductive and ac inverse spin Hall effect (ISHE) voltages observed in Ni81Fe19/normal metal multilayers under the condition of ferromagnetic resonance. For Ni81Fe19/Pt thin film bilayers and at microwave frequencies from 7 to 20 GHz, we observe an ac ISHE magnitude that is much larger than that expected from the dc spin Hall angle ΘSHPt=0.1. Furthermore, at these frequencies, we find an unexpected, ≈110° phase of the ac ISHE signal relative to the in-plane component of the resonant magnetization precession. We attribute our findings to a dominant intrinsic ac ISHE in Pt.

  13. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    Science.gov (United States)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  14. Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-Maxwellian distribution.

    Science.gov (United States)

    Weng, Su-Ming; Sheng, Zheng-Ming; Zhang, Jie

    2009-11-01

    Inverse bremsstrahlung (IB) absorption and evolution of the electron distribution function (EDF) in a wide laser intensity range (10;{12}-10;{17} W/cm;{2}) have been studied systematically by a two velocity-dimension Fokker-Planck code. It is found that Langdon's IB operator overestimates the absorption rate at high laser intensity, consequently with an overdistorted non-Maxwellian EDF. According to the small anisotropy of EDF in the oscillation frame, we introduce an IB operator which is similar to Langdon's but without the low laser intensity limit. This operator is appropriate for self-consistently tackling the nonlinear effects of high laser intensity as well as non-Maxwellian EDF. Particularly, our operator is capable of treating IB absorption properly in the indirect and direct-drive inertial confinement fusion schemes with the National Ignition Facility and Laser MegaJoule laser parameters at focused laser intensity beyond 10;{15} W/cm;{2} .

  15. Normal and inverse magnetocaloric effect in magnetic multilayers with antiferromagnetic interlayer coupling.

    Science.gov (United States)

    Szałowski, Karol; Balcerzak, Tadeusz

    2014-09-24

    The thermodynamics of a spin-1/2 magnetic multilayer system with antiferromagnetic interplanar couplings is studied using the pair approximation method. Special attention is paid to magnetocaloric properties, quantified by isothermal entropy change. The multilayer consists of two kinds of magnetic planes, one of which is diluted. The intraplanar couplings in both planes have arbitrary anisotropy ranging between Ising and isotropic Heisenberg interactions. The phase diagram related to the occurrence of magnetic compensation phenomenon is constructed and discussed. Then the isothermal entropy change is discussed as a function of interaction parameters, magnetic component concentration and external magnetic field amplitude. The ranges of normal and inverse magnetocaloric effect are found and related to the presence or absence of compensation.

  16. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films

    Science.gov (United States)

    Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke, A.; Klimova, S.; Waske, A.; Elerman, Y.; Hütten, A.

    2015-05-01

    The structural, magnetic, and magnetocaloric properties of epitaxial Ni-Co-Mn-Al thin films with different compositions have been studied. The films were deposited on MgO(001) substrates by co-sputtering on heated substrates. All films show a martensitic transformation, where the transformation temperatures are strongly dependent on the composition. The structure of the martensite phase is shown to be 14 M . The metamagnetic martensitic transformation occurs from strongly ferromagnetic austenite to weakly magnetic martensite. The structural properties of the films were investigated by atomic force microscopy and temperature dependent x-ray diffraction. Magnetic and magnetocaloric properties were analyzed using temperature dependent and isothermal magnetization measurements. We find that Ni41Co10.4Mn34.8Al13.8 films show giant inverse magnetocaloric effects with magnetic entropy change of 17.5 J kg-1K-1 for μ0Δ H =5 T.

  17. The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect

    Science.gov (United States)

    Wan, Lili; Wang, Bowen; Wang, Qilong; Han, Jianhui; Cao, Shuying

    2017-05-01

    The output characteristic model of a magnetostrictive cantilever-like tactile sensor has been founded based on the inverse-magnetostrictive effect, the flexure mode, and the Jiles-Atherton model. The magnetostrictive sensor has been designed and an output voltage is analyzed under the conditions of bias magnetic field, contact pressure and deflection of cantilever beam. The experiment has been performed to determine the relation among the induced output voltage, bias magnetic field, and pressure. It is found that the peak of the induced output voltage increases with an increasing pressure under the bias magnetic field of 4.8kA/m. The experimental result agrees well with the theoretical one and it means that the model can describe the relation among the induced output voltage, bias magnetic field, and pressure. The sensor with a Galfenol sheet may hold potentials in sample characterization and deformation predication in artificial intelligence area.

  18. The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect

    Directory of Open Access Journals (Sweden)

    Lili Wan

    2017-05-01

    Full Text Available The output characteristic model of a magnetostrictive cantilever-like tactile sensor has been founded based on the inverse-magnetostrictive effect, the flexure mode, and the Jiles-Atherton model. The magnetostrictive sensor has been designed and an output voltage is analyzed under the conditions of bias magnetic field, contact pressure and deflection of cantilever beam. The experiment has been performed to determine the relation among the induced output voltage, bias magnetic field, and pressure. It is found that the peak of the induced output voltage increases with an increasing pressure under the bias magnetic field of 4.8kA/m. The experimental result agrees well with the theoretical one and it means that the model can describe the relation among the induced output voltage, bias magnetic field, and pressure. The sensor with a Galfenol sheet may hold potentials in sample characterization and deformation predication in artificial intelligence area.

  19. Phase-sensitive detection of spin pumping via the ac inverse spin Hall effect.

    Science.gov (United States)

    Weiler, Mathias; Shaw, Justin M; Nembach, Hans T; Silva, Thomas J

    2014-10-10

    We use a phase-sensitive, quantitative technique to separate inductive and ac inverse spin Hall effect (ISHE) voltages observed in Ni(81)Fe(19)/normal metal multilayers under the condition of ferromagnetic resonance. For Ni(81)Fe(19)/Pt thin film bilayers and at microwave frequencies from 7 to 20 GHz, we observe an ac ISHE magnitude that is much larger than that expected from the dc spin Hall angle Θ(SH)(Pt) = 0.1. Furthermore, at these frequencies, we find an unexpected, ≈ 110° phase of the ac ISHE signal relative to the in-plane component of the resonant magnetization precession. We attribute our findings to a dominant intrinsic ac ISHE in Pt.

  20. Synthesis of Superabsorbent Polymer via Inverse Suspension Method: Effect of Carbon Filler

    Science.gov (United States)

    Zakaria, Munirah Ezzah Tuan; Shima Jamari, Saidatul; Ling, Yeong Yi; Ghazali, Suriati

    2017-05-01

    This paper studies on the effect of the addition of carbon filler towards the performance of superabsorbent polymer composite (SAPc). In this work, the SAPc was synthesized using inverse suspension polymerization method. The process involved two different solutions; dispersed phase which contains partially neutralized acrylic acid, acrylamide, APS and NN-Methylenebisacrylamide, and continuous phase which contains cyclohexane, span-80 and carbon filler (at different weight percent). The optimum SAPs and filler ratio was measured in terms of water retention in soil and characterized by Mastersizer, FTIR and SEM. Biodegradability of the polymer was determined by soil burial test and SAPc with 0.02% carbon has highest biodegradability rate. SAPc with 0.04wt% carbon showed the optimal water retention percentage among all the samples. The synthesized SAPc producing spherical shapes with parallel alignment due to the addition of carbon fiber. It can be concluded that the addition of carbon fiber able to enhance the performance of the SAP composite (SAPc).

  1. Determination of Kinetic Isotope Effects in Yeast Alcohol Dehydrogenase Using Transition Path Sampling

    Science.gov (United States)

    Varga, Matthew; Schwartz, Steven

    2015-03-01

    The experimental determination of kinetic isotope effects in enzymatic systems can be a difficult, time-consuming, and expensive process. In this study, we use the Chandler-Bolhius method for the determination of reaction rates within transition path sampling (rTPS) to determine the primary kinetic isotope effect in yeast alcohol dehydrogenase (YADH). In this study, normal mode centroid molecular dynamics (CMD) was applied to the transferring hydride/deuteride in order to correctly incorporate quantum effects into the molecular simulations. Though previous studies have used rTPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. Due to the fact that particle transfer is not wholly indicative of the chemical step, this method cannot be used to determine reaction rate constants in YADH. However, it is possible to determine the transition rate constant of the particle transfer, and the kinetic isotope effect of that step. This method provides a set of tools to determine kinetic isotope effects with the atomistic detail of molecular simulations.

  2. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    .1 ± 0.8‰; ε18O, −23.7 ± 1.8‰ to −19.9 ± 0.8‰). The observed isotope effects did not depend on the growth kinetics which were similar for the three types of electron donors. We suggest that different carbon sources change the observed isotope enrichment factors by changing the relative kinetics...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  3. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  4. Rubidium isotope effect in superconducting Rb[sub 3]C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Burk, B.; Crespi, V.H.; Zettl, A.; Cohen, M.L. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1994-06-06

    We have measured the resistive supercondeucting transition temperature in C[sub 60] single crystals intercalated with isotopically pure [sup 87]Rb and [sup 85]Rb and with natural abundance rubidium. We obtain a rubidium isotope effect exponent of [alpha][sub Rb]=[minus]0.028[plus minus]0.036, a result which implies that the Rb-C[sub 60] optic phonons play at most a minor role in the pairing mechanism of Rb[sub 3]C[sub 60].

  5. Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    R. Koppmann

    2010-06-01

    Full Text Available Formaldehyde of known, near-natural isotopic composition was photolyzed in the SAPHIR atmosphere simulation chamber under ambient conditions. The isotopic composition of the product H2 was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecular photolysis channel, and the radical channel has only an indirect effect and cannot be effectively constrained. The molecular channel kinetic isotope effect KIEmol, the ratio of photolysis frequencies j(HCHO→CO+H2/j(HCDO→CO+HD at surface pressure, is determined to be KIEmol=1.63−0.046+0.038. This is similar to the kinetic isotope effect for the total removal of HCHO from a recent relative rate experiment (KIEtot=1.58±0.03, which indicates that the KIEs in the molecular and radical photolysis channels at surface pressure (≈100 kPa may not be as different as described previously in the literature.

  6. Isotopic Effect on the Kinetics of the Belousov-Zhabotinsky Reaction

    Directory of Open Access Journals (Sweden)

    Enzo Tiezzi

    2007-09-01

    Full Text Available In this work we present results about the deuterium isotope effect on the globalkinetics of a Belousov-Zhabotinsky reaction in batch conditions. A nonlinear dependenceof the Induction Period upon the percentage of deuterated reactants was found. The isotopiceffect on the bromination reaction of malonic acid was evaluated.

  7. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O.; Zhang, Jingdong; Chi, Qijin

    2001-01-01

    Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K-1 mol(-1...

  8. Obtaining effective pair potentials in colloidal monolayers using a thermodynamically consistent inversion scheme.

    Science.gov (United States)

    Law, A D; Buzza, D M A

    2010-05-18

    The structure and stability of colloidal monolayers depends crucially on the effective pair interaction potential u(r) between colloidal particles. In this study, we construct a novel method for extracting u(r) from the two-dimensional (2D) radial distribution function g(r) of dense colloidal monolayers. The method is based on the Ornstein-Zernike relation and the HMSA closure first proposed by Zerah and Hansen (Zerah, G.; Hansen, J.-P. Self-consistent integral equations for fluid pair distribution functions: Another attempt. J. Chem. Phys. 1986, 84(4), 2336-2343). The HMSA closure contains a single fitting parameter which is determined by requiring thermodynamic consistency between the virial and compressibility equations of state. The accuracy of the HMSA inversion scheme is compared to a 2D predictor corrector scheme based on hard-disk fluids (HDPC) previously proposed by us (Law, A. D.; Buzza, D. M. A. Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method. J. Chem. Phys. 2009, 131, 094704) and the conventional "one-step" inversion methods of HNC and Percus-Yevick (PY). The accuracy of all these schemes is tested against Monte Carlo simulation data for g(r) from monolayers interacting via a range of commonly encountered potentials, including both purely repulsive potentials and potentials containing an attractive well. For all the potentials studied, we find that the accuracy of the HMSA and HDPC schemes is superior to HNC and PY, especially as we go to higher densities. The HDPC and HMSA schemes are particularly accurate for hard-core and soft-core fluids, respectively, at high density and are therefore complementary to each other. Finally, we find that, even in the presence of experimentally realistic levels of noise in the input g(r) data, both HMSA and HDPC schemes are able to faithfully extract the salient features of the underlying interaction

  9. The roles of visual expertise and visual input in the face inversion effect: behavioral and neurocomputational evidence.

    Science.gov (United States)

    McCleery, Joseph P; Zhang, Lingyun; Ge, Liezhong; Wang, Zhe; Christiansen, Eric M; Lee, Kang; Cottrell, Garrison W

    2008-02-01

    Research has shown that inverting faces significantly disrupts the processing of configural information, leading to a face inversion effect. We recently used a contextual priming technique to show that the presence or absence of the face inversion effect can be determined via the top-down activation of face versus non-face processing systems [Ge, L., Wang, Z., McCleery, J., & Lee, K. (2006). Activation of face expertise and the inversion effect. Psychological Science, 17(1), 12-16]. In the current study, we replicate these findings using the same technique but under different conditions. We then extend these findings through the application of a neural network model of face and Chinese character expertise systems. Results provide support for the hypothesis that a specialized face expertise system develops through extensive training of the visual system with upright faces, and that top-down mechanisms are capable of influencing when this face expertise system is engaged.

  10. Effect of Calcium Oxide Microstructure on the Diffusion of Isotopes

    CERN Document Server

    Fernandes Ramos, João Pedro; Stora, T

    2012-01-01

    Calcium oxide (CaO) powder targets have been successfully used at CERN-ISOLDE to produce neutron deficient exotic argon and carbon isotopes under proton irradiation at high temperatures (>1000°C). These targets outperform the other related targets for the production of the same beams. However, they presented either slow release rates (yields) from the beginning or a rapid decrease over time. This problem was believed to come from the target microstructure degradation, justifying the material investigation. In order to do so, the synthesis, reactivity in ambient air and sintering kinetics of CaO were studied, through surface area determination by N2 adsorption, X-ray diffraction for crystalline phase identification and crystallite size determination, and scanning and transmission electron microscopy to investigate the microstructure. The synthesis studies revealed that a nanometric material is obtained from the decarbonation of CaCO3 in vacuum at temperatures higher than 550°C, which is very reactive in air....

  11. Effect of vacuum-induced coherence on lasing without inversion in an equispaced three-level ladder system

    Institute of Scientific and Technical Information of China (English)

    Jun Qian; Chengpu Liu; Shangqing Gong

    2005-01-01

    The effects of vacuum-induced coherence (VIC) on the properties of the absorption and gain of the probe field in an equispaced three-level ladder atomic system are investigated. It is found that lasing without inversion (LWI) is remarkably enhanced due to the effect of VIC in the case of the small incoherent pump rate.

  12. Forward and inverse effects of the complete electrode model in neonatal EEG.

    Science.gov (United States)

    Pursiainen, S; Lew, S; Wolters, C H

    2017-03-01

    This paper investigates finite element method-based modeling in the context of neonatal electroencephalography (EEG). In particular, the focus lies on electrode boundary conditions. We compare the complete electrode model (CEM) with the point electrode model (PEM), which is the current standard in EEG. In the CEM, the voltage experienced by an electrode is modeled more realistically as the integral average of the potential distribution over its contact surface, whereas the PEM relies on a point value. Consequently, the CEM takes into account the subelectrode shunting currents, which are absent in the PEM. In this study, we aim to find out how the electrode voltage predicted by these two models differ, if standard size electrodes are attached to a head of a neonate. Additionally, we study voltages and voltage variation on electrode surfaces with two source locations: 1) next to the C6 electrode and 2) directly under the Fz electrode and the frontal fontanel. A realistic model of a neonatal head, including a skull with fontanels and sutures, is used. Based on the results, the forward simulation differences between CEM and PEM are in general small, but significant outliers can occur in the vicinity of the electrodes. The CEM can be considered as an integral part of the outer head model. The outcome of this study helps understanding volume conduction of neonatal EEG, since it enlightens the role of advanced skull and electrode modeling in forward and inverse computations.NEW & NOTEWORTHY The effect of the complete electrode model on electroencephalography forward and inverse computations is explored. A realistic neonatal head model, including a skull structure with fontanels and sutures, is used. The electrode and skull modeling differences are analyzed and compared with each other. The results suggest that the complete electrode model can be considered as an integral part of the outer head model. To achieve optimal source localization results, accurate electrode

  13. Isotope effects in the non enzymic glycation of hemoglobin catalyzed by DPG

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Herminia; Uzcategui, Jorge [Universidad de Los Andes, Merida (Venezuela). Dept. de Quimica

    1993-12-31

    The paradigmatic reaction of glucose with hemoglobin (Hb A{sub o}) has been studied and is known to occur most rapidly at the N-terminal valine of the {beta}-subunit. An initial, rapid imine formation is succeeded by slower Amadori rearrangement. Non enzymic glycation of Hb A{sub o} was studied in vitro in buffer Tris 10 mM in H{sub 2} O and D{sub 2} O, pH 7.3, pD 7.8 at 37 deg C at a fixed concentration of 2,3 diphosphoglycerate (DPG). The reaction exhibits identical rates in protium and deuterium oxides. When D-glucose-2-h is compared with D-glucose-2-d, the kinetic isotope effect for the DPG-dependent rate is 2.1 {+-} 0.3, while the DPG-independent rate constant shows no isotope effect (1.1 {+-} 0.1). The absence of a rate in isotopic water solvents shows that proton donation for solvent, lyons or DPG does not limit the rate. The substrate isotope effect of around 2 for the DPG kinetic term indicates that the proton abstraction step of the Amadori rearrangement by DPG is wholly or partially rate-limiting for this reaction. (author) 23 refs., 4 figs.

  14. Oxygen Isotope Effect and Structural Phase Transitions in La2CuO4-Based Superconductors.

    Science.gov (United States)

    Crawford, M K; Farneth, W E; McCarronn, E M; Harlow, R L; Moudden, A H

    1990-12-07

    The oxygen isotope effect on the superconducting transition temperature (alpha(o)) varies as a function of x in La2-xSrxCuO(4) and La2-xBaxCuO(4), with the maximum alpha(o) values (alpha(o) >/= 0.5) found for x near 0.12. This unusual x dependence implies that the isotope effect is influenced by proximity to the Abma --> P4(2)/ncm structural phase transition in these systems. Synchrotron x-ray difaction measurements reveal little change in lattice parameters or orthorhombicity due to isotope exchange in strontium-doped materials where alpha(o) > 0.5, eliminating static structural distortion as a cause of the large isotope effects. The anomalous behavior of alpha(o) in both strontium- and barium-doped materials, in combination with the previously discovered Abma --> P4(2)/ncm structural phase-transition in La(1.88)B(0.12)CuO(4), suggests that an electronic contribution to the lattice instability is present and maximizes at approximately 1/8 hole per copper atom. These observations indicate a dose connection between hole doping of the Cu-O sheets, tilting instabilities of the CuO(6) octahedra, and superconductivity in La(2)CuO(4)-based superconductors.

  15. An unusual isotope effect in a high-transition-temperature superconductor.

    Science.gov (United States)

    Gweon, G-H; Sasagawa, T; Zhou, S Y; Graf, J; Takagi, H; Lee, D-H; Lanzara, A

    2004-07-08

    In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other.

  16. D{sub 2}O–H{sub 2}O solvent isotope effects on the enthalpy of 1,1,3,3-tetramethyl-2-thiourea hydration at temperatures from (278.15 to 313.15) K and ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeniy V., E-mail: evi_ihrras@mail.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Batov, Dmitriy V. [Incorporated Physical and Chemical Center of Solution Researches, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Ivanovo’s State University of Chemistry and Technology, 7 Sheremetevsky Av., 153000 Ivanovo (Russian Federation); Abrosimov, V.K. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation)

    2014-08-20

    Highlights: • Enthalpies of solution of 1,1,3,3-tetramethyl-2-thiourea in H{sub 2}O and D{sub 2}O were measured. • Dissolution process becomes increasingly endothermic as the temperature is rising. • Enthalpy-isotopic effect undergoes a negative-to-positive sign inversion at 304 K. • Positive heat capacity of dissolution increases significantly, going from H{sub 2}O to D{sub 2}O. • Hydration of solute, being prevailingly hydrophobic, is weakened with temperature. - Abstract: The enthalpies of solution of 1,1,3,3-tetramethyl-2-thiourea (TMTU) in ordinary (H{sub 2}O) and heavy (D{sub 2}O) water were measured at (278.15, 283.15, 288.15, 298.15, and 313.15) K and atmospheric pressure. Standard molar enthalpies and heat capacities of solution and hydration, together with D{sub 2}O–H{sub 2}O solvent isotope effects (IEs) on these quantities, were calculated. It was established that, unlike the process of forming aqueous 1,1,3,3-tetramethyl-2-urea (TMU), the dissolution of TMTU in both H{sub 2}O and D{sub 2}O is an endothermic effect over the whole temperature range studied, and the standard enthalpy-isotopic effect undergoes a negative-to-positive sign inversion nearby of T = 304 K. Going from TMTU to TMU, the standard heat capacity of solution (hydration) and corresponding IE become less positive.

  17. Prejunctional and peripheral effects of the cannabinoid CB(1) receptor inverse agonist rimonabant (SR 141716).

    Science.gov (United States)

    van Diepen, Hester; Schlicker, Eberhard; Michel, Martin C

    2008-10-01

    Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB(1)) subtype. Although CB(1) receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB(1) receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smooth-muscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse events.

  18. The FIP and Inverse FIP Effects in Solar and Stellar Coronae

    CERN Document Server

    Laming, J Martin

    2015-01-01

    We review our state of knowledge of coronal element abundance anomalies in the Sun and stars. We concentrate on the first ionization potential (FIP) effect observed in the solar corona and slow-speed wind, and in the coronae of solar-like dwarf stars, and the "inverse FIP" effect seen in the corona of stars of later spectral type; specifically M dwarfs. These effects relate to the enhancement or depletion, respectively, in coronal abundance with respect to photospheric values of elements with FIP below about 10~eV. They are interpreted in terms of the ponderomotive force due to the propagation and/or reflection of magnetohydrodynamic waves in the chromosphere. This acts on chromospheric ions, but not neutrals, and so can lead to ion-neutral fractionation. A detailed description of the model applied to closed magnetic loops, and to open field regions is given, accounting for the observed difference in solar FIP fractionation between the slow and fast wind. It is shown that such a model can also account for the...

  19. Directed flow in asymmetric nucleus-nucleus collisions and the inverse Landau-Pomeranchuk-Migdal effect

    CERN Document Server

    Toneev, V D; Kolomeitsev, E E; Cassing, W

    2016-01-01

    It is proposed to identify a strong electric field - created during relativistic collisions of asymmetric nuclei - via the observation of pseudorapidity and transverse momentum distributions of hadrons with the same mass but opposite charge. The results of detailed calculations within the Parton-Hadron String Dynamics (PHSD) approach for the charge-dependent directed flow $v_1$ are presented for semi-central Cu+Au collision at $\\sqrt{s_{NN}}=200$ GeV incorporating the inverse Landau-Pomeranchuk-Migdal (iLPM) effect, which accounts for a delay in the electromagnetic interaction with the charged degree of freedom. Including the iLPM effect we achieve a reasonable agreement of the PHSD results for the charge splitting in $v_1(p_T)$ in line with the recent measurements of the STAR Collaboration for Cu+Au collisions at $\\sqrt{s_{NN}}=200$ GeV while an instant appearance and coupling of electric charges at the hard collision vertex overestimates the splitting by about a factor of 10. We predict that the iLPM effect...

  20. Is there a stable isotope evidence for the CO2 fertiliser effect

    Indian Academy of Sciences (India)

    R V Krishnamurthy; M Machavaram

    2000-03-01

    It has been suggested that part of the so-called ``missing sink" of carbon dioxide introduced into the atmosphere by anthropogenic activities, that is the imbalance between estimated anthropogenic carbon dioxide emissions and oceanic uptake, may be stored in the vegetation in midlatitudes. Precise mecha- nisms of abstraction of additional carbon dioxide by vegetation, also known as the ``fertilization effect", are poorly understood. Stable carbon and hydrogen isotope ratios of cellulose extracted from annual growth rings (covering the time period 1980-1993) in an oak tree from Kalamazoo, SW Michigan provide a basis to investigate at a physiological level how the fertilization effect may operate. The carbon isotope ratios show that the intercellular concentration of carbon dioxide increased due to an increase in stomatal opening. Although increased intercellular concentration of carbon dioxide translated to increased Water Use Efficiency and assimilation rates, it also resulted in increased transpiration rate as shown by higher D/H of the fixed carbon. The two-fold significance of the isotope data are: first, they provide the first field evidence based on isotope studies for excess CO2 induced biomass production and second, they suggest that this mechanism is likely to operate only in limited environments. Vegetation in regions where mois- ture availability is not restricted so that there can be a gain in water use efficiency despite increased leaf evaporation are best suited to sequester excess carbon from the atmosphere.

  1. Quantum-instanton evaluation of the isotopic effects on the rate constants

    Science.gov (United States)

    Vanicek, Jiri; Miller, William H.

    2004-03-01

    We present a general quantum-mechanical method suitable for numerical evaluation of the isotopic effects on the rate constants of chemical reactions. Our method is based on the quantum instanton approximation [1-3] and on the path-integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. The method is more accurate than existing transition-state theory or semiclassical instanton method since we do not assume a single reaction path and do not use a semiclassical approximation of the Boltzmann operator. In order to calculate the isotopic effect we use a "charging algoritm," whereby the mass of the isotope is continuously changed from the initial to the final value. Direct calculation of the isotopic ratio turns out to be much more efficient than finding the absolute rate constants first and then calculating their ratio. While the Monte-Carlo implementation should make the method accessible to systems with a larger number of atoms, we present numerical results for the Eckart barrier and for the reactions H + H2 arrow H2 + H and H + DH arrow HD + H. [1] W.H. Miller, Y. Zhao, M. Ceotto, and Sandy Yang, J. Chem. Phys. 119, 1329 (2003). [2] T. Yamamoto and W.H. Miller, J. Chem. Phys. (in press). [3] Y. Zhao, T. Yamamoto, and W.H. Miller, J. Chem. Phys. (in press).

  2. Soil Drying Effects on the Carbon Isotope Composition of Soil Respiration

    Science.gov (United States)

    Phillips, C. L.; Nickerson, N.; Risk, D.; Kayler, Z. E.; Rugh, W.; Mix, A. C.; Bond, B. J.

    2008-12-01

    -steady-state effects are necessary to avoid spurious correlations between measured δ13CO2 and soil moisture. A third experiment, using closed-system soil incubations to avoid non-steady state mixing with atmospheric CO2, indicates that the isotopic composition of microbial soil respiration appears to be unchanging under a large range of soil moisture contents.

  3. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.

    Science.gov (United States)

    Berhanu, Tesfaye A; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S K; Johnson, Matthew S; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ((15)N, (17)O, and (18)O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ(15)N, δ(18)O, and Δ(17)O). From these measurements an average photolytic isotopic fractionation of (15)ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of (15)ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of (14)NO3 (-) and (15)NO3 (-) in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the

  4. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Science.gov (United States)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S. K.; Johnson, Matthew S.; Savarino, Joël

    2014-06-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO3- and 15NO3- in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well

  5. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    Energy Technology Data Exchange (ETDEWEB)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël [Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, F-38041 Grenoble (France); Univ. Grenoble Alpes, LGGE, F-38041 Grenoble (France); Meusinger, Carl; Johnson, Matthew S. [Copenhagen Center for Atmospheric Research (CCAR), Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Jost, Rémy [Laboratoire de Interdisciplinaire de Physique (LIPHY) Univ. de Grenoble, Grenoble (France); Bhattacharya, S. K. [Research Center for Environmental Changes, Academia Sinica, Nangang, Taipei 115, Taiwan (China)

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  6. The effect of Hartmann-Hahn mismatching on polarization inversion spin exchange at the magic angle.

    Science.gov (United States)

    Fu, Riqiang; Tian, Changlin; Kim, Hyeongnam; Smith, Scott A; Cross, Timothy A

    2002-12-01

    The effect of the Hartmann-Hahn mismatch delta = omega(eff)-omega(1S) during polarization inversion spin exchange at the magic angle (PISEMA) has been investigated, where omega(eff) and omega(1S) represent the amplitudes of the 1H effective spin-locking field at the magic angle and the 15N RF spin-locking field, respectively. During the PISEMA evolution period, the exact Hartmann-Hahn match condition (i.e., delta = 0) yields a maximum dipolar scaling factor of 0.816 for PISEMA experiments, while any mismatch results in two different effective fields for the first and second half of each frequency switched Lee-Goldburg (FSLG) cycle. The mismatch effect on the scaling factor depends strongly on the transition angle from one effective field to the other within each FSLG cycle as well as on the cycle time. At low RF spin-lock amplitudes in which the FSLG cycle time is relatively long, the scaling factor rapidly becomes smaller as omega(1S) becomes greater than omega(eff). On the other hand, when omega(1S) lock amplitudes result in a relatively small variation for the scaling factor. Furthermore, ramped amplitude of the 15N RF spin-lock field in synchronization with the flip-flop of the FSLG sequence minimizes the transition angle between the two effective fields within the FSLG cycle. It is shown experimentally that such a ramped amplitude not only gives rise to the same scaling factor but also results in a narrower dipolar line-width in comparison with the rectangular amplitude.

  7. Assessing Tillage Effects on Soil Hydraulic Properties via Inverse Parameter Estimation using Tension Infiltrometry

    Science.gov (United States)

    Schwen, Andreas; Bodner, Gernot; Loiskandl, Willibald

    2010-05-01

    Hydraulic properties are key factors controlling water and solute movement in soils. While several recent studies have focused on the assessment of the spatial variability of hydraulic properties, the temporal dynamics are commonly not taken into account, primarily because its measurement is costly and time-consuming. However, there is extensive empirical evidence that these properties are subject to temporal changes, particularly in the near-saturated range where soil structure strongly influences water flow. One main source of temporal variability is soil tillage. It can improve macroporosity by loosening the soil and thereby changing the pore-size distribution. Since these modifications are quite unstable over time, the pore space partially collapses after tillage. This effect should be largest for conventional tillage (CT), where the soil is ploughed after harvest every year. Assessing the effect of different tillage treatments on the temporal variability of hydraulic properties requires adequate measurement techniques. Tension infiltrometry has become a popular and convenient method providing not only the hydraulic conductivity function but also the soil rentention properties. The inverse estimation of parameters from infiltration measurements remains challenging, despite some progress since the first approach of Šimůnek et al. (1998). Measured data like the cumulative infiltration, the initial and final volumetric water content, as well as independently measured retention data from soil core analysis with laboratory methods, have to be considered to find an optimum solution describing the soil's pore space. In the present study we analysed tension infiltration measurements obtained several times between August 2008 and December 2009 on an arable field in the Moravian Basin, Lower Austria. The tillage treatments were conventional tillage including ploughing (CT), reduced tillage with chisel only (RT), and no-tillage treatment using a direct seeding

  8. Small-angle proton elastic scattering from the neutron-rich isotopes sup 6 He and sup 8 He, and from sup 4 He, at 0.7 GeV in inverse kinematics

    CERN Document Server

    Neumaier, S R; Andronenko, M N; Dobrovolsky, A V; Egelhof, P; Gavrilov, G E; Geissel, H; Irnich, H; Khanzadeev, A V; Korolev, G A; Lobodenko, A A; Münzenberg, G; Mutterer, M; Schwab, W; Seliverstov, D M; Suzuki, T; Timofeev, N A; Vorobyov, A A; Yatsoura, V I

    2002-01-01

    Absolute differential cross sections for elastic p sup 4 He, p sup 6 He and p sup 8 He small-angle scattering were measured in inverse kinematics with secondary sup 4 sup , sup 6 sup , sup 8 He-beams at an energy near 0.7 GeV/u. The experiment was performed using beams from the heavy-ion synchrotron SIS and the fragment separator FRS of GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. Projectile scattering angles were measured with multi-wire tracking detectors. For proton scattering from the neutron-rich isotopes sup 6 He and sup 8 He, differential elastic-scattering cross sections d sigma/dt were deduced in the range 0.002<= parallel t parallel <=0.05 (GeV/c) sup 2 of the four-momentum transfer squared t. For elastic p sup 4 He scattering, the data obtained in the t-range 0.002<= parallel t parallel <=0.02 (GeV/c) sup 2 supplement the results from an earlier work performed in direct kinematics. From the differ...

  9. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ling, K.H.; Hanzlik, R.P.

    1989-04-28

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover.

  10. The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution.

    Science.gov (United States)

    Sun, Chenhang; Berg, John C

    2003-04-15

    Inverse gas chromatography (IGC) at infinite dilution has been widely used to access the nonspecific surface free energy of solid materials. Since most practical surfaces are heterogeneous, the effective surface energy given by IGC at infinite dilution is somehow averaged over the whole sample surface, but the rule of averaging has thus far not been established. To address this problem, infinite dilution IGC analysis was carried out on mixtures of known heterogeneity. These materials are obtained by mixing two types of solid particles with significantly different surface energies as characterized individually with IGC, and results are obtained for binary combinations in varying proportions. It is found that when all surface components have the same accessibility by probe molecules, the effective surface energy of such a heterogeneous surface is related to the surface energy distribution by a square root linear relationship, square root sigma(eff)(LW)= summation operator (i)phi(i) square root sigma(i)(LW), where sigma(i)(LW) refers to the nonspecific (Lifshitz-van der Waals) surface energy of patches i, and phi(i) to their area fraction.

  11. Femtometer accuracy EXAFS measurements: Isotopic effect in the first, second and third coordination shells of germanium

    Energy Technology Data Exchange (ETDEWEB)

    Purans, J; Timoshenko, J; Kuzmin, A [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Dalba, G; Fornasini, P; Grisenti, R; Afify, N D [Dip. di Fisica dell' Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy); Rocca, F [Istituto di Fotonica e Nanotecnologie del CNR, Sezione ' FBK-CeFSA' di Trento, Povo, Trento (Italy); De Panfilis, S [Research Center Soft INFM-CNR, c/o Universita di Roma La Sapienza, I-00185 Roma (Italy); Ozhogin, I [Institute of Molecular Physics, Russian Research Centre ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Tiutiunnikov, S I, E-mail: purans@cfi.lu.l [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2009-11-15

    The analysis of the EXAFS signals from {sup 70}Ge and {sup 76}Ge has evidenced the low-temperature effect of isotopic mass difference on the amplitude of relative atomic vibrations. This effect is reflected in the difference of the Debye-Waller factors of the first three coordination shells, and on the difference of nearest-neighbour average interatomic distances, evaluated with femtometer accuracy. The experimental results are in agreement with theoretical expectations.

  12. Identification of effective flow processes and properties from virtual soils using inverse modelling

    Science.gov (United States)

    Schelle, H.; Iden, S. C.; Schlüter, S.; Vogel, H.-J.; Durner, W.

    2012-04-01

    Simulation of water flow and solute transport in unsaturated soils requires accurate knowledge of soil hydraulic properties. This study aims at developing strategies for deriving the flow and transport parameters for effective models at the scale of an agricultural field. Although hydraulic properties can be estimated from field observations under atmospheric boundary conditions by inverse modeling, the spatial heterogeneity of soil hydraulic properties within a field is known to strongly influence both local observations and the average behavior of the system. To assess the impact of individual or combined structural components on the water dynamics within the system, the interdisciplinary research group INVEST performs water flow simulations in complex two- and three-dimensional virtual realities, representing cultivated soils with spatial heterogeneity on multiple scales. Numerical simulations with a high spatiotemporal resolution yield synthetic datasets of internal state variables and fluxes. These data mimic measurements which could be recorded by typical instruments in a field soil. The simulated datasets are used to analyze the influence of the soil structures on the variability of measured data and to develop and test parameter estimation procedures. The central questions being addressed in this contribution are: (i) How big is the lateral variability of the measured data? (ii) How can within-field structures be related to the effective model parameters that are needed to predict average water dynamics at the field scale? (iii) How do the estimated hydraulic properties depend on measurement type and location? And (iv) what is the impact of the variability of the estimated effective hydraulic properties on the assessment of the soil water budget? To answer these questions we evaluate different data sets in terms of information content and usefulness for identifying suitable effective models and effective model parameters. The simulations show that a general

  13. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Baba, A. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y.; Nishi, M.

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  14. FEM Analysis of Effect of Die Angle on Tube Inversion Forming Process under Conical Die

    Institute of Scientific and Technical Information of China (English)

    Zhichao SUN; He YANG

    2003-01-01

    Tube inversion including free deformation under conical die is an advanced forming process for manufacturing complicated thin-walled parts with high strength/weight ratio, high efficiency, and good flexibility for size changing.However, the successful rea

  15. Effect of soil roughness on the inversion of off-ground monostatic GPR signal for noninvasive quantification of soil properties

    NARCIS (Netherlands)

    Lambot, S.; Antoine, M.; Vanclooster, M.; Slob, E.C.

    2006-01-01

    We report on a laboratory experiment that investigates the effect of soil surface roughness on the identification of the soil electromagnetic properties from full-wave inversion of ground-penetrating radar (GPR) data in the frequency domain. The GPR system consists of an ultrawide band stepped-frequ

  16. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    NARCIS (Netherlands)

    Mosendz, O.; Vlaminck, V.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in nonmagnetic conductors. Here we study the spin-pumping-induced v

  17. Common Mechanisms Underlying the Proconflict Effects of Corticotropin-Releasing Factor, A Benzodiazepine Inverse Agonist and Electric Foot-Shock

    NARCIS (Netherlands)

    Boer, Sietse F. de; Katz, Jonathan L.; Valentino, Rita J.

    1992-01-01

    The effects of corticotropin-releasing factor (CRF), a benzodiazepine inverse agonist (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate; DMCM) and electric foot-shock on rat conflict behavior were characterized and compared. Rats were trained to lever press under a multiple fixed-ratio schedul

  18. Effects of connection of electrical and mechanical potentials in inverse osmosis processes

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Farid; Chejne, Farid; Chejne, David; Velez, Fredy; Londono, Carlos [Grupo de Termodinamica Aplicada y Energias Alternativas - TAYEA, Instituto de Energia, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellin, Antigua (Colombia)

    2009-07-15

    A theoretical dissertation and experimental assays of the irreversible phenomena applied to electro-kinetics and inverse osmosis is presented. Experimental assays were made on simple equipment to evidence the occurrence of connected irreversible phenomena between electric current flow and global mass flow. The coupling of these two phenomena allowed us to make conclusions about the possibility of reducing operation costs of the inverse osmosis equipment due to increasing the saline solution flow between 12% and 20%. (author)

  19. Cooper pair breaking and isotope effect coefficient variation in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pandey, R.K.; Singh, P. [G.B. Pant Univ. Pantanagar, Nainital (India)

    1996-06-01

    The effect of pair breaking on the isotope effect coefficient a = {minus}d ln T{sub c}/d ln M in La{sub 2{minus}x}Sr{sub x}CuO{sub 4} and Pr-, Ca-, and Zn-doped YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} and EuBa{sub 2}Cu{sub 3}O{sub 7{minus}x} is studied using the generalized Abrikosov-Gorkov theory recently employed by Singh and Kishore for superconductivity. It is argued that the isotope effect coefficient a can be further enhanced, in agreement with experimental observation, by considering the dependence of the characteristic scattering time {tau}{sub s} for Cooper pairs on the concentration n of impurities (both magnetic and nonmagnetic) and the disorder ignored by them.

  20. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  1. Where You Look Matters for Body Perception: Preferred Gaze Location Contributes to the Body Inversion Effect

    Science.gov (United States)

    McKean, Danielle L.; Tsao, Jack W.; Chan, Annie W.-Y.

    2017-01-01

    The Body Inversion Effect (BIE; reduced visual discrimination performance for inverted compared to upright bodies) suggests that bodies are visually processed configurally; however, the specific importance of head posture information in the BIE has been indicated in reports of BIE reduction for whole bodies with fixed head position and for headless bodies. Through measurement of gaze patterns and investigation of the causal relation of fixation location to visual body discrimination performance, the present study reveals joint contributions of feature and configuration processing to visual body discrimination. Participants predominantly gazed at the (body-centric) upper body for upright bodies and the lower body for inverted bodies in the context of an experimental paradigm directly comparable to that of prior studies of the BIE. Subsequent manipulation of fixation location indicates that these preferential gaze locations causally contributed to the BIE for whole bodies largely due to the informative nature of gazing at or near the head. Also, a BIE was detected for both whole and headless bodies even when fixation location on the body was held constant, indicating a role of configural processing in body discrimination, though inclusion of the head posture information was still highly discriminative in the context of such processing. Interestingly, the impact of configuration (upright and inverted) to the BIE appears greater than that of differential preferred gaze locations. PMID:28085894

  2. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  3. Phase behaviour of inverse patchy colloids: effect of the model parameters.

    Science.gov (United States)

    Noya, Eva G; Bianchi, Emanuela

    2015-06-17

    The phase behaviour of inverse patchy colloid systems composed of spherical particles with two oppositely charged patches at the poles is investigated by simulation-based thermodynamic integration schemes. The interaction between the particles is derived via a coarse-grained model characterized by three system parameters: the charge imbalance between the bare colloid and the patches, the patch surface extension and the particle interaction range. Starting from a set of parameters for which a stacking of parallel layers is thermodynamically stable, the effect of each of these three parameters on the phase diagram is studied. Our results show that the region of stability of the layered solid phase can be expanded by increasing the charge imbalance and/or by reducing the interaction range. A larger patch size, on the other hand, stabilizes the layered structure with respect to the competing face centered cubic solid at high pressures but destabilizes it with respect to the fluid phase at low pressures. The location of the liquid-vapour critical point in the temperature versus density plane is also investigated: while the charge imbalance and the patch size affect mainly the critical density, a change of the interaction range has a substantial impact also on the critical temperature.

  4. An Illustration of Inverse Probability Weighting to Estimate Policy-Relevant Causal Effects.

    Science.gov (United States)

    Edwards, Jessie K; Cole, Stephen R; Lesko, Catherine R; Mathews, W Christopher; Moore, Richard D; Mugavero, Michael J; Westreich, Daniel

    2016-08-15

    Traditional epidemiologic approaches allow us to compare counterfactual outcomes under 2 exposure distributions, usually 100% exposed and 100% unexposed. However, to estimate the population health effect of a proposed intervention, one may wish to compare factual outcomes under the observed exposure distribution to counterfactual outcomes under the exposure distribution produced by an intervention. Here, we used inverse probability weights to compare the 5-year mortality risk under observed antiretroviral therapy treatment plans to the 5-year mortality risk that would had been observed under an intervention in which all patients initiated therapy immediately upon entry into care among patients positive for human immunodeficiency virus in the US Centers for AIDS Research Network of Integrated Clinical Systems multisite cohort study between 1998 and 2013. Therapy-naïve patients (n = 14,700) were followed from entry into care until death, loss to follow-up, or censoring at 5 years or on December 31, 2013. The 5-year cumulative incidence of mortality was 11.65% under observed treatment plans and 10.10% under the intervention, yielding a risk difference of -1.57% (95% confidence interval: -3.08, -0.06). Comparing outcomes under the intervention with outcomes under observed treatment plans provides meaningful information about the potential consequences of new US guidelines to treat all patients with human immunodeficiency virus regardless of CD4 cell count under actual clinical conditions.

  5. Effects of wind shear and temperature inversion on sound propagation from wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Haan, Henk de [Golder Associates (Canada)], email: Henk_deHaan@golder.com

    2011-07-01

    Noise impact assessment of wind turbines usually takes into account sound speed and propagation at ground level, and those are influenced by wind shear and atmospheric temperature changes. This paper focuses on a week-long monitoring study and presents the observed and anticipated effects of wind shear and temperature on the level of ground sound emitted from a 65m high wind turbine. Working with anemometers at ground level and turbine height, it is shown that wind shear can influence sound propagation, and that atmospheric stability must be taken into account for accurate wind speed calculations to be made. Temperature must also be addressed and the heating of the earth by solar radiation and the re-radiation of that heat in a day-night cycle, resulting in temperature inversion in the atmosphere, must be taken into account. Observations of temperature changes over a week can then yield sound speed and sound power levels with respect to altitude, and show that sound power levels are higher at ground levels during the night.

  6. Inverse Effectiveness and Multisensory Interactions in Visual Event-Related Potentials with Audiovisual Speech

    Science.gov (United States)

    Bushmakin, Maxim; Kim, Sunah; Wallace, Mark T.; Puce, Aina; James, Thomas W.

    2013-01-01

    In recent years, it has become evident that neural responses previously considered to be unisensory can be modulated by sensory input from other modalities. In this regard, visual neural activity elicited to viewing a face is strongly influenced by concurrent incoming auditory information, particularly speech. Here, we applied an additive-factors paradigm aimed at quantifying the impact that auditory speech has on visual event-related potentials (ERPs) elicited to visual speech. These multisensory interactions were measured across parametrically varied stimulus salience, quantified in terms of signal to noise, to provide novel insights into the neural mechanisms of audiovisual speech perception. First, we measured a monotonic increase of the amplitude of the visual P1-N1-P2 ERP complex during a spoken-word recognition task with increases in stimulus salience. ERP component amplitudes varied directly with stimulus salience for visual, audiovisual, and summed unisensory recordings. Second, we measured changes in multisensory gain across salience levels. During audiovisual speech, the P1 and P1-N1 components exhibited less multisensory gain relative to the summed unisensory components with reduced salience, while N1-P2 amplitude exhibited greater multisensory gain as salience was reduced, consistent with the principle of inverse effectiveness. The amplitude interactions were correlated with behavioral measures of multisensory gain across salience levels as measured by response times, suggesting that change in multisensory gain associated with unisensory salience modulations reflects an increased efficiency of visual speech processing. PMID:22367585

  7. Non-Local effective SU(2) Polyakov-loop models from inverse Monte-Carlo methods

    CERN Document Server

    Bahrampour, Bardiya; von Smekal, Lorenz

    2016-01-01

    The strong-coupling expansion of the lattice gauge action leads to Polyakov-loop models that effectively describe gluodynamics at low temperatures, and together with the hopping expansion of the fermion determinant provides insight into the QCD phase diagram at finite density and low temperatures, although for rather heavy quarks. At higher temperatures the strong-coupling expansion breaks down and it is expected that the interactions between Polyakov loops become non-local. Here, we therefore test how well pure SU(2) gluodynamics can be mapped onto different non-local Polyakov models with inverse Monte-Carlo methods. We take into account Polyakov loops in higher representations and gradually add interaction terms at larger distances. We are particularly interested in extrapolating the range of non-local terms in sufficiently large volumes and higher representations. We study the characteristic fall-off in strength of the non-local couplings with the interaction distance, and its dependence on the gauge coupl...

  8. Investigating the Inverse Faraday Effect with an intense short pulse laser

    Science.gov (United States)

    Najmudin, Zulfikar; Tatarakis, Michealis; Krushelnick, Karl; Clark, Eugene; Santala, Marko; Dangor, Bucker; Clarke, Robert; Neely, David; Faure, Jerome; Malka, Victor

    2000-10-01

    A circularly polarised laser beam traversing through a plasma can generate an azimuthal electron current, due to their combined quiver motion. This will generate a solenoidal magnetic field in the plasma colinear with the laser propagation. This phenomena is known as the Inverse Faraday Effect (IFE), and can result in sizeable magnetic field strength for an ultra-intense laser pulses traversing through sufficiently dense plasmas. We present here measurements of the IFE field generated by the ultra-intense Vulcan:CPA laser travelling through underdense plasmas. The Vulcan:CPA laser can be focused to greater than 5 × 10^18 Wcm-2, and can generate IFE magnetic fields in excess of 2 MG. We present here the variation of the field with intensity and density, as well as measurements of its temporal and spatial behaviour. Noticeably the field is only observed for the time duration of the driver pulse, and decreases in spatial extent with increasing strength of magnetic field.

  9. The effect of bonding environment on iron isotope fractionation between minerals at high temperature

    Science.gov (United States)

    Sossi, Paolo A.; O'Neill, Hugh St. C.

    2017-01-01

    Central to understanding the processes that drive stable isotope fractionation in nature is their quantification under controlled experimental conditions. The polyvalent element iron, given its abundance in terrestrial rocks, exerts controls on the structural and chemical properties of minerals and melts. The iron isotope compositions of typical high temperature minerals are, however, poorly constrained and their dependence on intensive (e.g. fO2) and extensive (e.g. compositional) variables is unknown. In this work, experiments involving a reference phase, 2 M FeCl2·4H2O(l), together with an oxide mix corresponding to the bulk composition of the chosen mineral were performed in a piston cylinder in Ag capsules. The oxide mix crystallised in situ at 1073 K and 1 GPa, in equilibrium with the iron chloride, and was held for 72 h. In order to characterise the effect of co-ordination and oxidation state on the isotope composition independently, exclusively Fe2+ minerals were substituted in: VIII-fold almandine, VI-fold ilmenite, fayalite and IV-fold chromite and hercynite. Δ57FeMin-FeCl2 increases in the order VIII ion. The composition of the VIFe2+-bearing minerals is similar to that of the aqueous FeCl2 fluid. To the degree that this represents the speciation of iron in fluids exsolving from magmas, the fractionation between them should be small, unless the iron is hosted in magnetite. By contrast, predominantly Fe2+-bearing mantle garnets should preserve a much lighter δ57Fe than their lower pressure spinel counterparts, a signature that may be reflected in partial melts from these lithologies. As the Fe-O bond lengths in fayalite and ilmenite are comparable, their isotope compositions overlap, suggesting that high Ti mare basalts acquired their heavy isotopic signature from ilmenite that crystallised late during lunar magma ocean solidification.

  10. Temperature dependence of the kinetic isotope effect in β-pinene ozonolysis

    Science.gov (United States)

    Gensch, Iulia; Laumer, Werner; Stein, Olaf; Kammer, Beatrix; Hohaus, Thorsten; Saathoff, Harald; Wegener, Robert; Wahner, Andreas; Kiendler-Scharr, Astrid

    2011-10-01

    The temperature dependence of the kinetic isotope effect (KIE) of β-pinene ozonolysis was investigated experimentally at 258, 273 and 303 K in the AIDA atmospheric simulation chamber. Compound specific carbon isotopic analysis of gas phase samples was performed off-line with a Thermo Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS) system. From the temporal behavior of the δ13C of β-pinene a KIE of 1.00358 ± 0.00013 was derived at 303 K, in agreement with literature data. Furthermore, KIE values of 1.00380 ± 0.00014 at 273 K and 1.00539 ± 0.00012 at 258 K were determined, showing an increasing KIE with decreasing temperature. A parameterization of the observed KIE temperature dependence was deduced and used in a sensitivity study carried out with the global chemistry transport model MOZART-3. Two scenarios were compared, the first neglecting, the second implementing the KIE temperature dependence in the simulations. β-Pinene stable carbon isotope ratio and concentration were computed, with emphasis on boreal zones. For early spring it is shown that when neglecting the temperature dependence of KIE, the calculated average age of β-pinene in the atmosphere can be up to two times over- or underestimated. The evolution of the isotopic composition of the major β-pinene oxidation product, nopinone, was examined using Master Chemical Mechanism (MCM) simulations. The tested hypothesis that formation of nopinone and its associated KIE are the determining factors for the observed δ13C values of nopinone is supported at high β-pinene conversion levels.

  11. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America

    Science.gov (United States)

    Domingo, Laura; Prado, José Luis; Alberdi, María Teresa

    2012-11-01

    The modern South American mammalian assemblage was determined by the closure of the Panama isthmus (˜2.7-3.1 Ma) and later on, by profound climatic and environmental fluctuations occurred during the Quaternary as well as by the appearance of humans in the continent. In the present study, stable isotope analyses (δ13C, δO and δO) have been carried out on Pleistocene-Holocene northern inmigrant and endemic taxa from a broad latitudinal and altitudinal distribution in South America with the purpose of characterizing their paleoecology and the effects of the paleobiogeographic distribution on stable isotope results. Equids and gomphotheres show a wide range of δ13C values going from woodlands to pure C4 grasslands. In the case of equids, Hippidion shows lower δ13C values than Equus in the Late Pleistocene, whereas, in the case of gomphotheres, Cuvieronius and Stegomastodon differ in their δ18O values on account on differences in their paleobiogeography with the former found in the Andean corridor and the latter dispersing through an eastern route. Isotope data of the rest of taxa (immigrant and endemic) are in general in good agreement with other previous isotopic and non-isotopic studies. The latitude threshold between mixed C3-C4 and pure C3 conditions have been pinpointed at ˜33°S in the Middle and the Late Pleistocene. Mammalian δ18O values are intimately related to latitudinal and altitudinal distribution, with the latter exerting an overriding influence independently of latitude. Calculated altitudinal gradients (between -0.23‰/100 m and -0.40‰/100 m) are within the range of modern gradients.

  12. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

    Science.gov (United States)

    Gao, J

    2016-01-01

    Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects.

  13. Effects of preservatives on stable isotope analyses of four marine species

    Science.gov (United States)

    Carabel, Sirka; Verísimo, Patricia; Freire, Juan

    2009-04-01

    The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.

  14. Kinetic isotope effects in the OH and Cl reactions of the clumped methane species 13CH3D

    DEFF Research Database (Denmark)

    Joelsson, Magnus

    Methane is an potent greenhouse gas, second only to carbon dioxide of the anthropogenic greenhouse gases in its influence on Earth’s radiative budget. Although less abundant in the atmosphere, methane’s global warming potential is about twentyeight times that of carbon dioxide. Sources of methane...... at significantly different temperatures, therefore, the clumped isotope signatures of methane can be used to identify the process by which the gas was formed. Clumped isotopes can thus be a helpful tool in refining the budget of atmospheric methane. However, the isotopic composition of the atmospheric methane pool....... As is proven in the current research project, the clumped isotopes are removed by oxidation mechanisms at a slower rate. The residual methane pool is therefore enriched in clumped isotopes compared to the methane from the sources. In order to construct a top-down budget of methane, the clumped kinetic effect...

  15. Hydrogen isotope effect on storage behavior of U2Ti and UZr2.3

    Science.gov (United States)

    Jat, Ram Avtar; Sawant, S. G.; Rajan, M. B.; Dhanuskar, J. R.; Kaity, Santu; Parida, S. C.

    2013-11-01

    U2Ti and UZr2.3 alloys were prepared by arc melting method, vacuum annealed and characterized by XRD, SEM and EDX methods. Hydrogen isotope effect on the storage behavior of these alloys were studied by measuring the hydrogen/deuterium desorption pressure-composition-temperature (PCT) profiles in the temperature range of 573-678 K using a Sievert's type volumetric apparatus. It was observed that, in the temperature and pressure range of investigation, all the isotherms show a single desorption plateau. The PCT data reveals that both U2Ti and UZr2.3 alloys had normal isotope effects on hydrogen/deuterium desorption at all experimental temperatures. Thermodynamic parameters for dehydrogenation and dedeuteration reactions of the corresponding hydrides and deuterides of the above alloys were deduced from the PCT data.

  16. Neutron skin effect of some Mo isotopes in pre-equilibrium reactions

    Indian Academy of Sciences (India)

    M H Bölükdemir; E Tel; S Okuducu; N N Akti

    2011-03-01

    The neutron skin effect has been investigated for even isotopes of molybdenum at 25.6 MeV 94−100Mo(, ) reaction using the geometry-dependent hybrid model of pre-equilibrium nuclear reactions. Here the initial neutron/proton exciton numbers were calculated from the neutron/proton densities obtained from an effective nucleon–nucleon interaction of the Skyrme type. Initial exciton numbers from different radii of even Mo isotopes were used to obtain the corresponding neutron emission spectra. In this investigation the calculated results are compared with the experimental data as also with each other. The results using central densities in the geometry-dependent hybrid model are in better agreement with the experimental data.

  17. Tritium isotope effect in high-performance liquid chromatography of eicosanoids

    Energy Technology Data Exchange (ETDEWEB)

    Do, U.H.; Lo, S.-L.; Iles, J.; Rosenberger, T.; Tam, P.; Hong, Y.; Ahern, D. [DuPont, NEN Products, Boston (United States). Lipids Group

    1994-07-01

    A significant difference in retention time between unlabeled and the corresponding multi-tritium-labeled eicosanoid has been observed in the high performance liquid chromatography (HPLC) analysis of 11 eicosanoids. Variations in retention time range from 3-7%, depending on the separation conditions as well as the number and position of the tritium substitution. Multi-tritium-labeled eicosanoids were eluted earlier than the corresponding unlabeled eicosanoid in reversed phase HPLC, whereas no isotope effect was seen with {sup 14}C- and {sup 3}H{sub 2}-eicosanoids. Considerations must be given to this tritium isotope effect whenever both multi-tritium-labeled and unlabeled eicosanoids are used for HPLC cochromatography or recovery studies. (author).

  18. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O; Zhang, J; Chi, Q;

    2001-01-01

    Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K(-1) mol(-1...... dependence of E(0') is also different, yielding entropy changes of -57 J K(-1) mol(-1) in water and -84 J K(-1) mol(-1) in deuterium oxide. The driving force difference of 10 mV is in keeping with the kinetic isotope effect, but the contribution to DeltaS from the temperature dependence of E(0') is positive...

  19. Phase diagram and isotopic effect in high-Tc pnictide superconductors

    Science.gov (United States)

    Chen, Xianhui

    2010-03-01

    We will talk about the discovery of superconductivity with Tc higher than 40 K in Fe-based superconductors SmFeAsO1-xF. Tc higher than McMillan limit of 39 K definitely proves pnictide superconductors high-Tc superconductivity^1,2. In this talk, we present the transport properties: resistivity, Hall coefficient and transport properties under high magnetic field. These results suggest a quantum phase transition around x=0.14 in SmFeAsO1-xFx system. A electronic phase diagram is proposed, and coexistence of superconductivity and spin-density-wave is observed in Sm-1111 and Ba-122 system. We discuss the effect of isotopic effect on TC and TSDW in SmFeAsO1-xFx and Ba1-xKxFe2As2 systems. Our results show that oxygen isotope effect on TC and TSDW is very little, while the iron isotope exponent is about 0.35. Surprisingly, the iron isotope exchange shows the same effect on SDW transition as on superconductivity. Our results indicate that electron-phonon interaction plays some role in the superconducting mechanism, but simple electron-phonon coupling mechanism seems to be rather unlikely because a strong magnon-phonon coupling is included^3. 1. Chen, X. H. et al. Nature 453, 761-762 (2008). 2. Liu, R. H. et al. Phys. Rev. Lett. 101, 087001 (2008). 3. R. H. Liu et al., Nature 459, 64-67(2009).

  20. Kinetic Isotope Effects (KIE) and Density Functional Theory (DFT): A Match Made in Heaven?

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Fristrup, Peter

    2015-01-01

    Determination of experimental kinetic isotope effects (KIE) is one of the most useful tools for the exploration of reaction mechanisms in organometallic chemistry. The approach has been further strengthened during the last decade with advances in modern computational chemistry. This allows for th...... reaction). The approach is highlighted by using recent examples from both stoichiometric and catalytic reactions, homogeneous and heterogeneous catalysis, and enzyme catalysis to illustrate the expected accuracy and utility of this approach....

  1. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    Science.gov (United States)

    Hemley, R. J.; Mao, H. K.

    1989-01-01

    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  2. Normal and inverse magnetocaloric effects in LaCaMnNiO

    Science.gov (United States)

    Krishnamoorthi, C.; Barik, S. K.; Siu, Z.; Mahendiran, R.

    2010-09-01

    We have investigated magnetic and magnetocaloric properties of La 0.5Ca 0.5Mn 1- xNi xO 3 ( x=0, 0.02, 0.04, 0.06, & 0.08). It is shown that charge-ordered antiferromagnetic ground state of x=0 is destabilized and ferromagnetism is induced by just 2% Ni substitution. The ferromagnetic Curie temperature (TC) decreases from TC=220 K for x=0 to 85 K (x=0.08). Unusual field-induced metamagnetic transition is found above TC for x=0.02-0.06 and even below TC in the parent compound (x=0). Magnetic entropy change (ΔSm) was estimated from isothermal magnetization data and it is found that the parent compound (x=0) exhibits both normal (negative ΔSm) and inverse (positive ΔSm) magnetocaloric effects at TC and TN (Neel temperature), respectively. The ΔSm=+6.5 J kg K at TN is twice larger than that at TC(ΔSm=-3 JkgK) for a field change (ΔH) of 5 T. However, all the Ni doped samples in La 0.5Ca 0.5Mn 1- xNi xO 3 system show only normal magnetocaloric effect at TC. The largest MCE in the Ni doped series occurs for x=0.04 (ΔSm=-3.9 JkgK,ΔH=5 T) which also has the largest relative cooling power (RCP=235 J/kg,ΔH=5 T) in the series. We discuss our results in the scenario of phase separation induced by Ni substitution.

  3. The power of integrating kinetic isotope effects into the formalism of the Michaelis-Menten equation.

    Science.gov (United States)

    Klinman, Judith P

    2014-01-01

    The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued until the present. This review discusses a family of eukaryotic copper proteins, including dopamine β-monooxygenase, tyramine β-monooxygenase and peptidylglycine α-amidating enzyme, which are responsible for the synthesis of neuroactive compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. The review highlights the results of studies showing how combining kinetic isotope effects with initial rate parameters permits the evaluation of: (a) the order of substrate binding to multisubstrate enzymes; (b) the magnitude of individual rate constants in complex, multistep reactions; (c) the identification of chemical intermediates; and (d) the role of nonclassical (tunnelling) behaviour in C-H activation. © 2013 FEBS.

  4. Isotopic Effects on Stereodynamics of the C+ + H2 → CH+ + H Reaction

    Science.gov (United States)

    Guo, Lu; Yang, Yun-Fan; Fan, Xiao-Xing; Ma, Feng-Cai; Li, Yong-Qing

    2017-05-01

    The effects of isotope substitution on stereodynamic properties for the reactions {C}++{H}2/{H D}/{H T}\\to {{C H}}++H/D/T have been studied applying a quasi classical trajectory method occurring on the new ground state {{C H}}2+ potential energy surface [J. Chem. Phys. 142 (2015) 124302]. In the center of mass coordinates applying the quasi classical trajectory method to investigate the orientation and the alignment of the product molecule. Differential cross section and three angle distribution functions P(θr), P(ϕr), P( {θ }r,{φ }r ) on the potential energy surface that fixed the collision energy with a value is 40 kcal/mol have been studied. The isotope effect becomes more and more important with the reagent molecules H 2 changing into HD and HT. P({θ }r,{φ }r) as the joint probability density function of both polar angles θ r and ϕ r , which can illustrate more detailed dynamics information. The isotope effect is obvious influence on the properties of stereodynamics in the reactions of {C}++{H}2/{H D}/{H T}\\to {{C H}}++H/D/T. Supported by the National Natural Science Foundation of China under Grant Nos. 11474141, 11274149, 11544015, the Program for Liaoning Excellent Talents in University under Grant No. LJQ2015040, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2014-1685)

  5. Isotopic quantum effects on the structure of low density amorphous ice

    Energy Technology Data Exchange (ETDEWEB)

    Urquidi, J [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Benmore, C J [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Neuefeind, J [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Tomberli, B [Department of Physics, University of Guelph, Guelph, ON, N1G 2W1 (Canada); Tulk, C A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Guthrie, M [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Egelstaff, P A [Department of Physics, University of Guelph, Guelph, ON, N1G 2W1 (Canada); Klug, D D [National Research Council of Canada, Ottawa, ON, K0A 0R6 (Canada)

    2003-06-11

    Careful neutron diffraction measurements on deuterated low density amorphous (LDA) ice confirm that at 120 K it can be considered a fully 'annealed' structure, as no significant changes are observed in the amorphous spectra until crystallization occurred over time at 130 K. On this basis, the measurement of structural differences between the hydrogenated and deuterated forms of LDA ice at 120 K, have been carried out using 98 keV electromagnetic radiation diffraction techniques. The maximum observed isotope effect in LDA ice is {approx} 3.4% at 40 K when compared to the magnitude of the first peak in the electronic structure factor at Q = 1.70 A{sup -1}. This compares to a maximum effect of {approx} 1.6% previously measured in liquid water at room temperature (Tomberli et al 2000 J. Phys.: Condens. Matter. 12 2597). The isotope effect is shown to be similar to a temperature shift in the structure of light LDA ice. However, the existence of a first sharp diffraction peak at Q = 1.0 A{sup -1} in the isotopic difference function is not reproduced in the temperature difference and suggests that additional longer-range correlations are present in the more ordered deuterated form.

  6. Isotopic quantum effects on the structure of low density amorphous ice.

    Energy Technology Data Exchange (ETDEWEB)

    Urquidi, J.; Benmore, C. J.; Neuefeind, J.; Tomberli, B.; Tulk, C. A.; Egelstaff, P. A.; Klug, D.D.; CHM; IPNS; APS-USR

    2003-06-11

    Careful neutron diffraction measurements on deuterated low density amorphous (LDA) ice confirm that at 120 K it can be considered a fully ''annealed'' structure, as no significant changes are observed in the amorphous spectra until crystallization occurred over time at 130 K. On this basis, the measurement of structural differences between the hydrogenated and deuterated forms of LDA ice at 120 K, have been carried out using 98 keV electromagnetic radiation diffraction techniques. The maximum observed isotope effect in LDA ice is {approx} 3.4% at 40 K when compared to the magnitude of the first peak in the electronic structure factor at Q = 1.70 {angstrom}{sup -1}. This compares to a maximum effect of {approx} 1.6% previously measured in liquid water at room temperature (Tomberli et al 2000 J. Phys.: Condens. Matter. 12 2597). The isotope effect is shown to be similar to a temperature shift in the structure of light LDA ice. However, the existence of a first sharp diffraction peak at Q = 1.0 {angstrom}{sup -1} in the isotopic difference function is not reproduced in the temperature difference and suggests that additional longer-range correlations are present in the more ordered deuterated form.

  7. Milne-Eddington inversions of the He I 10830 {\\AA} Stokes profiles: Influence of the Paschen-Back effect

    OpenAIRE

    Sasso, C; Lagg, A.; Solanki, S. K.

    2011-01-01

    The Paschen-Back effect influences the Zeeman sublevels of the He I multiplet at 10830 {\\AA}, leading to changes in strength and in position of the Zeeman components of these lines. We illustrate the relevance of this effect using synthetic Stokes profiles of the He I 10830 {\\AA} multiplet lines and investigate its influence on the inversion of polarimetric data. We invert data obtained with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). We compare the res...

  8. Mg isotopes in biocarbonates: new insight into vital effects associated to echinoderms and bivalves calcification

    Science.gov (United States)

    Planchon, F.; Hermans, J.; Borremans, C.; Dubois, P.; Poulain, C.; Paulet, Y.; Andre, L.

    2007-12-01

    Mg isotopes can be helpful tracers to reveal the fundamental pathways of Mg incorporation during biomineralisation. We report in this study a detailed characterisation of the Mg isotopic signatures of different biominerals: high magnesium calcitic skeletons of selected echinoderms (sea urchins and starfish) and low magnesium aragonitic shells of a bivalve species (clam). State of the art analytical procedures were applied including sample purification step followed by high precision measurements using MC-ICP-MS (Nu instrument) in dry plasma conditions. 26Mg/24Mg and 25Mg/24Mg are expressed as per mil deviations from the DSM3 (Dead Sea Metal 3) reference standard in delta notation (d26Mg and d25Mg). For echinoderms, we considered: (a) adult specimens of six starfish species (Asteria r., Marthasterias g., Anseropoda p., Asterina g., Echinaster s. and Henricia o.), sampled in Brittany (France); (b) a sea urchin species (Paracentrotus lividus) with field samples (Mediterranean Sea, Marseille, France) and culture specimen under T and S controlled conditions. In vivo endoskeletons display negative, but different d26Mg values of -3.06 for starfish (with uniform interspecies signatures) and -2.65 for sea urchin. Relative to seawater signature (-0.82), all echinoderms favour the incorporation of light isotopes during biocalcification. The d26Mg depletion is lower than theoretically expected from a inorganic calcite precipitation from seawater (at -3.5). These differences suggest that on its route from seawater to the shell, Mg isotopes are partly biologically fractionationated through "vital effects" leaving heavier Mg isotopic signatures. Taken into account that calcification in echinoderms is an intra- cellular process involving transient amorphous calcium carbonate (ACC) phase, the observed bio-fractionation factors can be related to: (1) changes in the isotopic composition of the precipitating intracellular fluids due to active pumping in and out of the cell; (2) a

  9. Isotopic Variations Within the Carbo Iron Meteorite: A Case Study of the Effects from Galactic Cosmic Rays

    Science.gov (United States)

    Cook, D. L.; Hunt, A. C.; Ek, M. E.; Leya, I.; Schönbächler, M.

    2016-08-01

    Four aliquots of the Carbo (IID) iron meteorite were sampled representing different depths within the original meteoroid. These samples were used to investigate the effects of galactic cosmic rays on the isotopes of Pt, Pd, Fe, and Ni.

  10. Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling.

    Science.gov (United States)

    Jia, Jia; Liu, Juan; Jin, Guofan; Wang, Yongtian

    2014-09-20

    Occlusion culling is an important process that produces correct depth cues for observers in holographic displays, whereas current methods suffer from occlusion errors or high computational loads. We propose a fast and effective method for occlusion culling based on multiple light-point sampling planes and an inverse orthographic projection technique. Multiple light-point sampling planes are employed to remove the hidden surfaces for each direction of the view of the three-dimensional (3D) scene by forward orthographic projection, and the inverse orthographic projection technique is used to determine the effective sampling points of the 3D scene. A numerical simulation and an optical experiment are performed. The results show that this approach can realize accurate occlusion effects, smooth motion parallax, and continuous depth using low angular sampling without any extra computation costs.

  11. Determination of ionization potential of atomic gadolinium and its isotope effect. Analysis of unperturbed Rydberg series

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Masabumi; Ohba, Masaki; Wakaida, Ikuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Autoionizing Rydberg series converging to six states (0, 261.841, 633.273, 3082.011, 3427.274, 3444.235 cm{sup -1}) of Gd ion have been observed by using three-color three-step photoionization via ten different 2nd-step levels of J=0 or 1. While the perturbations with interlopers become significant in the region of n=30-35 for most of the observed series, long and well-defined series structures appeared in higher energy region. From an analysis of such unperturbed structures, the first ionization potential of Gd atom was estimated to be 49601.45 (30) cm{sup -1}. This is in good agreement with the previous value, but the accuracy is improved by about one order of magnitude. In addition, isotope effect on the ionization potential was also determined by isotope shifts of some Rydberg series. (author)

  12. EFFECTS OF ELECTRODE SPACING AND INVERSION TECHNIQUES ON THE EFFICACY OF 2D RESISTIVITY IMAGING TO DELINEATE SUBSURFACE FEATURES

    Directory of Open Access Journals (Sweden)

    Adiat Kola Abdul-Nafiu

    2013-01-01

    Full Text Available In this study, the effect of the choice of appropriate electrode spacing and inversion algorithms on the efficacy of 2D imaging to map subsurface features was investigated. The target being investigated was the drainage concrete pipe buried at approximately 0.3 m into the subsurface. A profile perpendicular to the strike of the pipe was established. 2D resistivity data was separately collected with the electrode spacings of 1.5 m and 0.5 m. using the Dipole-Dipole, the Wenner and the Wenner-Schlumberger array configurations. The results obtained showed that when the electrode spacing of 1.5 m was used for the investigations, none of the three array types was able to map the target with either of the two inversion techniques. The results further show that the attainment of RMS error of less about 10% which usually gives the indication of a good subsurface model is not a guarantee that subsurface features are successfully mapped. On the other hand, when the electrode spacing of 0.5 m was used for the data collection, the results obtained with the standard constrains inversion technique showed that all the three array configurations mapped the target however, only the dipole-dipole array was able to resolve the boundary between the concrete pipe and the entrapped air. With the robust constrain inversion technique; the target was also successfully mapped by all the three array types. In addition to this, the boundary between the entrapped air and the concrete pipe was resolved by all the three array types. This suggests that if there is a significant contrast in the subsurface layers’ resistivities, the robust constrain inversion algorithm technique gives better boundaries resolution irrespective of the array types used for the survey. The inversion of the 3D data gave 3D resistivity sections which were presented as horizontal depth slices. The result obtained from the inversion of the 3D data has assisted us in getting information about the

  13. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    Science.gov (United States)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    and allows us to scale the numerical calculations to atmospheric conditions. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). However, few natural crystals form under such conditions. At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, and kinetic effects control isotopic fractionation. Fractionation factors for dendritic crystals are similar to those predicted by the spherical diffusion model, but the model also gives estimates of crystal heterogeneity. Dendritic crystals are constrained to be relatively large, with dimension much greater than about 20D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. An approach using a larger scale simulation and the domain decomposition method can provide a vapor flux for a nested smaller scale calculation. The results clarify the controls on crystal growth, and the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation.

  14. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  15. Communication: Isotopic effects on tunneling motions in the water trimer

    Energy Technology Data Exchange (ETDEWEB)

    Videla, Pablo E. [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Rossky, Peter J. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Laria, D., E-mail: dhlaria@cnea.gov.ar [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires (Argentina)

    2016-02-14

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H{sub 2}O]{sub 3} and [D{sub 2}O]{sub 3}, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H{sub 2}O]{sub 3} than in [D{sub 2}O]{sub 3}. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.

  16. Effect of heavy hydrogen isotopes on the vibrational line shape for supercritical water through rotational couplings.

    Science.gov (United States)

    Yoshida, Ken; Matubayasi, Nobuyuki; Uosaki, Yasuhiro; Nakahara, Masaru

    2013-04-07

    The rotational couplings, which determine the infrared spectral line shape in the low-density supercritical water, were analyzed as functions of the density and the temperature by applying molecular dynamics simulation to a flexible water model, SPC∕Fw and by varying the moment of inertia of the water through substitution for the H atom in H2O by heavy hydrogen isotopes. The differences in the frequency and the relative intensity between the sharp center peak and the rotational broad side-bands were analyzed for the O-H, O-D, and O-T stretch spectra. The frequency differences between the sharp center peak and the rotational broad side-bands are linearly correlated with the inverse of the moment of inertia of the isotope-substituted water species. The intensity of the sharp peak is associated with the long-time component of the reorientational time correlation function for the stretching bond vector. At 400 °C, where a substantial amount of hydrogen bonds are dynamically persisting, an intensity decrease in the rotational broad side-bands was observed with increasing density from 0.01 to 0.40 g cm(-3), respectively, corresponding to 0.56 and 22.2 M (=mol dm(-3)), orders of magnitude higher than the ideal gas densities. This arises from the decrease in the correlation time of the angular velocity and the rotational couplings due to an increase in the hydrogen-bonding perturbation. The intensity decrease of the rotational side-bands with increasing density is more significant for the water isotopes with heavier hydrogens. At a high temperature of 1200 °C, the rotational side-bands at 0.01 to 0.05 g cm(-3) were more distinct than those at 400 °C, and even at a medium density of 0.40 g cm(-3) a significant signal broadening due to the rotational couplings was clearly observed because of the accelerated rotational momentum. The vibrational spectrum cannot be decomposed into definite chemical clusters for the thermodynamic and kinetic analysis because of the dynamic

  17. Small-angle proton elastic scattering from the neutron-rich isotopes {sup 6}He and {sup 8}He, and from {sup 4}He, at 0.7 GeV in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S.R.; Alkhazov, G.D.; Andronenko, M.N.; Dobrovolsky, A.V.; Egelhof, P. E-mail: p.egelhof@gsi.de; Gavrilov, G.E.; Geissel, H.; Irnich, H.; Khanzadeev, A.V.; Korolev, G.A.; Lobodenko, A.A.; Muenzenberg, G.; Mutterer, M.; Schwab, W.; Seliverstov, D.M.; Suzuki, T.; Timofeev, N.A.; Vorobyov, A.A.; Yatsoura, V.I

    2002-12-30

    Absolute differential cross sections for elastic p {sup 4}He, p {sup 6}He and p {sup 8}He small-angle scattering were measured in inverse kinematics with secondary {sup 4,6,8}He-beams at an energy near 0.7 GeV/u. The experiment was performed using beams from the heavy-ion synchrotron SIS and the fragment separator FRS of GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. Projectile scattering angles were measured with multi-wire tracking detectors. For proton scattering from the neutron-rich isotopes {sup 6}He and {sup 8}He, differential elastic-scattering cross sections d{sigma}/dt were deduced in the range 0.002{<=} parallel t parallel {<=}0.05 (GeV/c){sup 2} of the four-momentum transfer squared t. For elastic p {sup 4}He scattering, the data obtained in the t-range 0.002{<=} parallel t parallel {<=}0.02 (GeV/c){sup 2} supplement the results from an earlier work performed in direct kinematics. From the differential cross sections the integral elastic-scattering cross sections {sigma}{sub el}, the total cross sections {sigma}{sub tot}, and the total reaction cross sections {sigma}{sub r} for the proton-nucleus strong interaction were evaluated. The data obtained on d{sigma}/dt allow the radial matter distributions in the {sup 6}He and {sup 8}He nuclei to be determined and the corresponding root-mean-square matter radii to be deduced.

  18. Deformation effects in the alpha accompanied cold ternary fission of even-even 244-260Cf isotopes

    Science.gov (United States)

    Santhosh, K. P.; Krishnan, Sreejith

    2016-04-01

    Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even 244-260Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the 244Cf isotope, the highest yield is obtained for the fragment combination 108Ru + 4He + 132Te, which contains the near doubly magic nucleus 132Te ( N = 80, Z = 52). In the case of 246Cf and 248Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus 134Te ( N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for 250Cf, 252Cf, 254Cf, 256Cf, 258Cf and 260Cf isotopes is for the fragment combination with the doubly magic nucleus 132Sn ( N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the 252Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data.

  19. Ab initio calculation of the Zn isotope effect in phosphates, citrates, and malates and applications to plants and soil.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Fujii

    Full Text Available Stable Zn isotopes are fractionated in roots and leaves of plants. Analyses demonstrate that the heavy Zn isotopes are enriched in the root system of plants with respect to shoots and leaves as well as the host soil, but the fractionation mechanisms remain unclear. Here we show that the origin of this isotope fractionation is due to a chemical isotope effect upon complexation by Zn malates and citrates in the aerial parts and by phosphates in the roots. We calculated the Zn isotope effect in aqueous citrates, malates, and phosphates by ab initio methods. For pH<5, the Zn isotopic compositions of the various parts of the plants are expected to be similar to those of groundwater. In the neutral to alkaline region, the calculations correctly predict that (66Zn is enriched over (64Zn in roots, which concentrate phosphates, with respect to leaves, which concentrate malates and citrates, by about one permil. It is proposed that Zn isotope fractionation represents a useful tracer of Zn availability and mobility in soils.

  20. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  1. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect.

    Science.gov (United States)

    Hinks, D G; Claus, H; Jorgensen, J D

    2001-05-24

    Magnesium diboride, MgB2, was recently observed to become superconducting at 39 K, which is the highest known transition temperature for a non-copper-oxide bulk material. Isotope-effect measurements, in which atoms are substituted by isotopes of different mass to systematically change the phonon frequencies, are one of the fundamental tests of the nature of the superconducting mechanism in a material. In a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor, where the mechanism is mediated by electron-phonon coupling, the total isotope-effect coefficient (in this case, the sum of both the Mg and B coefficients) should be about 0.5. The boron isotope effect was previously shown to be large and that was sufficient to establish that MgB2 is a conventional superconductor, but the Mg effect has not hitherto been measured. Here we report the determination of the Mg isotope effect, which is small but measurable. The total reduced isotope-effect coefficient is 0.32, which is much lower than the value expected for a typical BCS superconductor. The low value could be due to complex materials properties, and would seem to require both a large electron-phonon coupling constant and a value of mu* (the repulsive electron-electron interaction) larger than found for most simple metals.

  2. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    relationship between Hg concentrations and rates of denitrification in enrichment cultures. In part III of our project, we examined in more detail the effects of microbial interactions on Hg transformations. We discovered that both sulfate reducing and iron reducing bacteria coexist in freshwater sediments and both microbial groups contribute to mercury methylation. We showed that mercury methylation by sulfate reducing and iron reducing bacteria are temporally and spatially separated processes. We also discovered that methanogens can methylate mercury. We showed that Methanospirillum hungatei JF-1 methylated Hg at comparable rates, but with higher yields, than those observed for sulfate-reducing bacteria and iron-reducing bacteria. Finally, we demonstrated that syntrophic interactions between different microbial groups increase mercury methylation rates. We showed that Hg methylation rates are stimulated via inter-species hydrogen and acetate transfer (i) from sulfate-reducing bacteria to methanogens and (ii) from fermenters to the sulfate-reducing bacteria. In part IV of the project, we studied Hg bioavailability and Hg isotope fractionation. We demonstrated that thiol-bound Hg is bioavailable to mercury resistant bacteria. We found that uptake of Hg from Hg-glutathione and Hg-cysteine complexes does not require functioning glutathione and cystine/cysteine transport systems. We demonstrated that a wide range of methylmercury complexes (e.g. MeHgOH, MeHg-cysteine, and MeHg-glutathione) are bioavailable to mercury resistant bacteria. The rate of MeHg demethylation varies more between different species of mercury resistant bacteria than among MeHg complexes. We showed that microbial demethylation of MeHg depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present. Finally, we demonstrated that Hg methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 imparts mass

  3. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    relationship between Hg concentrations and rates of denitrification in enrichment cultures. In part III of our project, we examined in more detail the effects of microbial interactions on Hg transformations. We discovered that both sulfate reducing and iron reducing bacteria coexist in freshwater sediments and both microbial groups contribute to mercury methylation. We showed that mercury methylation by sulfate reducing and iron reducing bacteria are temporally and spatially separated processes. We also discovered that methanogens can methylate mercury. We showed that Methanospirillum hungatei JF-1 methylated Hg at comparable rates, but with higher yields, than those observed for sulfate-reducing bacteria and iron-reducing bacteria. Finally, we demonstrated that syntrophic interactions between different microbial groups increase mercury methylation rates. We showed that Hg methylation rates are stimulated via inter-species hydrogen and acetate transfer (i) from sulfate-reducing bacteria to methanogens and (ii) from fermenters to the sulfate-reducing bacteria. In part IV of the project, we studied Hg bioavailability and Hg isotope fractionation. We demonstrated that thiol-bound Hg is bioavailable to mercury resistant bacteria. We found that uptake of Hg from Hg-glutathione and Hg-cysteine complexes does not require functioning glutathione and cystine/cysteine transport systems. We demonstrated that a wide range of methylmercury complexes (e.g. MeHgOH, MeHg-cysteine, and MeHg-glutathione) are bioavailable to mercury resistant bacteria. The rate of MeHg demethylation varies more between different species of mercury resistant bacteria than among MeHg complexes. We showed that microbial demethylation of MeHg depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present. Finally, we demonstrated that Hg methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 imparts mass

  4. Effect of rearing water temperature on protandrous sex inversion in cultured Asian Seabass (Lates calcarifer).

    Science.gov (United States)

    Athauda, Saman; Anderson, Trevor; de Nys, Rocky

    2012-02-01

    Asian Seabass, Lates calcarifer (Bloch, 1790), is a protandrous species cultured for Aquaculture. The cultured Asian Seabass in Australia exhibits precocious sex inversion before 2years of age. This phenomenon highly affects on maintaining a proper broodstock in a hatchery. The effect of temperature on sex inversion inducement in Asian Seabass was thus investigated at five different temperature regimes experienced in Australia. Asian Seabass (14months) grown in fresh water under natural temperature in a commercial farm in Queensland were transported to the research facility at James Cook University, Australia and held in fresh water at 28°C until acclimatized to the experimental conditions. Fish were acclimated to the experimental conditions (30ppt salinity) over the first and final week (22°C, 25°C, 28°C, 31°C and 34°C) of one month acclimatizing period. Fish were fed daily with a commercial pellet (50% protein, 18MJkg(-1)) to satiety. Blood, brain and gonad collected before transfer to the experimental temperature regime in the final week of acclimatization and at the end of the experiment were analysed. Plasma sex steroids level and aromatase activity of brain and gonad were also measured. There was an increase in plasma estradiol levels with increasing temperature from 25°C while no significant difference was observed among all treatment temperatures except at 25°C. However, fish held at 22°C showed higher estradiol level than at 25°C and 28°C. Significantly higher (pplasma testosterone levels were detected in fish held at 31°C and 34°C while a reducing trend was observed towards lower temperature regimes. Fish held at 22°C had significantly lower plasma testosterone than all others as well those sampled at the beginning. The plasma 11-ketoTestosterone was at non-detectable levels in all experimental temperatures as shown at the beginning. The average aromatase activity in brain was highest at 28°C among all temperatures, but no significant

  5. Inverse Solutions for a Second-Grade Fluid for Porous Medium Channel and Hall Current Effects

    Indian Academy of Sciences (India)

    Muhammad R Mohyuddin; Ehsan Ellahi Ashraf

    2004-02-01

    Assuming certain forms of the stream function inverse solutions of an incompressible viscoelastic fluid for a porous medium channel in the presence of Hall currents are obtained. Expressions for streamlines, velocity components and pressure fields are described in each case and are compared with the known viscous and second-grade cases.

  6. Privileged Detection of Conspecifics: Evidence from Inversion Effects during Continuous Flash Suppression

    Science.gov (United States)

    Stein, Timo; Sterzer, Philipp; Peelen, Marius V.

    2012-01-01

    The rapid visual detection of other people in our environment is an important first step in social cognition. Here we provide evidence for selective sensitivity of the human visual system to upright depictions of conspecifics. In a series of seven experiments, we assessed the impact of stimulus inversion on the detection of person silhouettes,…

  7. Effect of silhouetting and inversion on view invariance in the monkey inferotemporal cortex.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, Sripati Panditaradhyula

    2017-04-05

    We effortlessly recognize objects across changes in viewpoint, but we know relatively little about the features that underlie viewpoint invariance in the brain. Here we set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations - silhouetting and inversion. Reducing an object into its silhouette removes internal detail, so this would reveal how much viewpoint invariance depends on the external contours. Inverting an object retains but rearranges features, so this would reveal how much viewpoint invariance depends on the arrangement and orientation of features. Our main findings are: (1) View invariance is weakened by silhouetting but not by inversion; (2) View invariance was stronger in neurons that generalized across silhouetting and inversion; (3) Neuronal responses to natural objects matched early with that of silhouettes and only later to that of inverted objects, indicative of coarse-to-fine processing and (4) The impact of silhouetting and inversion depended on object structure. Taken together, our results elucidate the underlying features and dynamics of view invariant object representations in the brain.

  8. The effect of the fat content on the thermal effusivity of foods: an inverse photopyroelectric study

    NARCIS (Netherlands)

    Szafner, G.; Bicanic, D.D.; Doka, O.

    2011-01-01

    Photopyroelectric (PPE) methods belong to the class of photothermal techniques and provide the means for determining some thermal properties of foods in a relatively fast and simple way. In particular, the inverse variant of the photopyroelectric method, abbreviated IPPE, was used here to determine

  9. The Effect of Inversion on Face Recognition in Adults with Autism Spectrum Disorder

    Science.gov (United States)

    Hedley, Darren; Brewer, Neil; Young, Robyn

    2015-01-01

    Face identity recognition has widely been shown to be impaired in individuals with autism spectrum disorders (ASD). In this study we examined the influence of inversion on face recognition in 26 adults with ASD and 33 age and IQ matched controls. Participants completed a recognition test comprising upright and inverted faces. Participants with ASD…

  10. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.

  11. Rotational dynamics in ammonia borane: Evidence of strong isotope effects

    Energy Technology Data Exchange (ETDEWEB)

    Cantelli, Rosario; Paolone, Annalisa; Palumbo, Oriele; Leardini, F.; Autrey, Thomas; Karkamkar, Abhijeet J.; Luedtke, Avery T.

    2013-12-15

    This work reports anelastic spectroscopy measurements on the partially deuterated (ND3BH3 and NH3BD3) and perdeuterated (ND3BD3) ammonia borane (NH3BH3) compounds. The relaxations previously reported in NH3BH3 are observed in all the samples, and are ascribed to the rotational and torsional dynamics of NH(D)3BH(D)3 complexes. A new thermally activated peak appears at 70 K (for a vibration frequency of 1 kHz) in the spectrum of NH3BD3 and ND3BD3. The peak is practically a single-time Debye process, indicating absence of interaction between the relaxing units, and has a strikingly high intensity. A secondary relaxation process is also detected around 55 K. The anelastic spectrum of the ND3BH3 only displays this less intense process at 55 K. The analysis of the peaks supplies information about the dynamics of the relaxing species, and the obtained results provide indications on the effect of partial and selective deuteration on the hydrogen (deuterium) dynamics.

  12. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    Science.gov (United States)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  13. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  14. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau

    Science.gov (United States)

    Huang, Hui; Niu, Yaoling; Mo, Xuanxue

    2017-03-01

    The initial Nd and Hf isotope ratios of a 420 Ma post-collisional dioritic-granitic batholith from the Northern Tibetan plateau define a negative trend above and orthogonal to the ԐHf(t)-ԐNd(t) terrestrial array. This uncommon trend offers an insight into the origin of the puzzling Nd-Hf isotope decoupling in the crustal rocks. On this trend, samples depleted in heavy rare earth elements (HREEs, i.e., [Dy/Yb]N ≫ 1) deviate most from the terrestrial array whereas samples with flat HREEs (i.e., [Dy/Yb]N ≥ 1) deviate less or plot within the terrestrial array, pointing to the controlling effect of garnet in the magma source. Ancient garnet-bearing residues after melt extraction will have elevated Lu/Hf ratios and can evolve with time to produce high ԐHf(t) at a low ԐNd(t) value. Mixing of melts derived from such source lithologies (high Lu/Hf) with melts possessing a within-terrestrial array Nd-Hf isotopic composition (low Lu/Hf) best explains the observed trend orthogonal to the terrestrial array. The samples from the Jinfosi batholith with the most decoupled Nd-Hf isotope compositions require a larger degree (> 40%) and ancient (i.e., ≥ 1.8 Gyr) previous melt extraction from their source. It follows that the ancient melts with depleted HREEs complementary to those garnet-bearing residues should have low ԐHf values and plot below the terrestrial array, which is indeed shown by some Archean/Paleoproterozic TTGs.

  15. Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems

    Science.gov (United States)

    Gottardi, RaphaëL.; Kao, Po-Hao; Saar, Martin O.; Teyssier, Christian

    2013-05-01

    Field studies of Cordilleran metamorphic core complexes indicate that meteoric fluids permeated the upper crust down to the detachment shear zone and interacted with highly deformed and recrystallized (mylonitic) rocks. The presence of fluids in the brittle/ductile transition zone is recorded in the oxygen and hydrogen stable isotope compositions of the mylonites and may play an important role in the thermomechanical evolution of the detachment shear zone. Geochemical data show that fluid flow in the brittle upper crust is primarily controlled by the large-scale fault-zone architecture. We conduct continuum-scale (i.e., large-scale, partial bounce-back) lattice-Boltzman fluid, heat, and oxygen isotope transport simulations of an idealized cross section of a metamorphic core complex. The simulations investigate the effects of crust and fault permeability fields as well as buoyancy-driven flow on two-way coupled fluid and heat transfer and resultant exchange of oxygen isotopes between meteoric fluid and rock. Results show that fluid migration to middle to lower crustal levels is fault controlled and depends primarily on the permeability contrast between the fault zone and the crustal rocks. High fault/crust permeability ratios lead to channelized flow in the fault and shear zones, while lower ratios allow leakage of the fluids from the fault into the crust. Buoyancy affects mainly flow patterns (more upward directed) and, to a lesser extent, temperature distributions (disturbance of the geothermal field by ~25°C). Channelized fluid flow in the shear zone leads to strong vertical and horizontal thermal gradients, comparable to field observations. The oxygen isotope results show δ18O depletion concentrated along the fault and shear zones, similar to field data.

  16. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [Department of Chemistry, Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan); Suzuki, Kimichi [Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nagashima, Umpei, E-mail: u.nagashima@aist.go.jp [Department of Chemistry, Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan); Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of Science, Yokohama-City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan); Yan, Shiwei [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2013-11-29

    Highlights: • PIMD simulations with PM6-DH+ potential are carried out for Cl{sup −}(H{sub 2}O){sub n} clusters. • The geometric isotope effects on the rearrangement of single and multi shell structures are presented. • The competition of intramolecular and intermolecular nuclear quantum effects on the cluster structures is shown. • The correlations between r(Cl…O) and other vibration motions are discussed. - Abstract: The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH{sup ∗} stretching and intermolecular ion–water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion–water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water–water hydrogen bond interactions.

  17. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    Science.gov (United States)

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Isotopic effects on non-linearity, molecular radius and intermolecular free length

    Indian Academy of Sciences (India)

    Ranjan Dey; Arvind K Singh; N K Soni; B S Bisht; J D Pandey

    2006-08-01

    Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an attempt to study the isotopic effects on the non-linearity parameter and the physicochemical properties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof.

  19. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    Science.gov (United States)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (δ34SSO4 and δ18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of δ18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between δ18OSO4 and δ18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ε = 1000 * (α - 1), we find εSO3-H2O=13.61-0.299∗pH-0.081∗T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of δ18OSO4 resulting as a consequence of sulfate reduction.

  20. Inverse disjuncties

    NARCIS (Netherlands)

    Malepaard, J.

    2007-01-01

    Balansschikkingen (of negatief gebonden of-constructies) zijn volgens de in dit artikel ontwikkelde hypothese inverse disjuncties (id's). Het zijn tweeledige zinnen waarvan het eerste lid een verplichte negatieve of minimaliserende constituent bevat en het tweede lid met of begint. Evenals

  1. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  2. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane.

    Science.gov (United States)

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes two important transformations in the global carbon cycle: methane formation and its reverse, the anaerobic oxidation of methane. MCR uses the methyl thioether methyl-coenzyme M (CH3-S-CH2CH2-SO3(-), Me-S-CoM) and the thiol coenzyme B (CoB-SH) as substrates and converts them reversibly to methane and the corresponding heterodisulfide (CoB-S-S-CoM). The catalytic mechanism is still unknown. Here, we present isotope effects for this reaction in both directions, catalyzed by the enzyme isolated from Methanothermobacter marburgensis . For methane formation, a carbon isotope effect ((12)CH3-S-CoM/(13)CH3-S-CoM) of 1.04 ± 0.01 was measured, showing that breaking of the C-S bond in the substrate Me-S-CoM is the rate-limiting step. A secondary isotope effect of 1.19 ± 0.01 per D in the methyl group of CD3-S-CoM indicates a geometric change of the methyl group from tetrahedral to trigonal planar upon going to the transition state of the rate-limiting step. This finding is consistent with an almost free methyl radical in the highest transition state. Methane activation proceeds with a primary isotope effect of 2.44 ± 0.22 for the C-H vs C-D bond breakage and a secondary isotope effect corresponding to 1.17 ± 0.05 per D. These values are consistent with isotope effects reported for oxidative cleavage/reductive coupling occurring at transition metal centers during C-H activation but are also in the range expected for the radical substitution mechanism proposed by Siegbahn et al. The isotope effects presented here constitute boundary conditions for any suggested or calculated mechanism.

  3. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment

    Science.gov (United States)

    Alkhatib, M.; Lehmann, M. F.; Del Giorgio, P. A.

    2011-12-01

    The nitrogen (N) stable isotopic composition of pore water nitrate and total dissolved N (TDN) was measured in sediments of the St. Lawrence Estuary and the Gulf of St. Lawrence. The study area is characterized by gradients in organic matter reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. Benthic N isotope exchange, as well as the nitrate and TDN isotope effects of benthic nitrification-denitrification coupling on the water column, ϵapp and ϵsed, respectively, were investigated. The sediments were a major sink for nitrate and a source of reduced dissolved N (RDN = DON + NH4+). We observed that both the pore water nitrate and RDN pools were enriched in 15N relative to the water column, with increasing δ15N downcore in the sediments. As in other marine environments, the biological nitrate isotope fractionation of net nitrate elimination was barely expressed at the scale of sediment-water-exchange, with ϵapp values water oxygen concentrations and the organic matter reactivity can modulate ϵapp. For the first time, actual measurements of δ15N of pore water RDN were included in the calculations of ϵsed. We argue that large fractions of the sea-floor-derived DON are reactive and, hence, involved in the development of the δ15N of dissolved inorganic N (DIN) in the water column. In the St. Lawrence sediments, the combined benthic N transformations yield a flux of 15N-enriched RDN that can significantly enhance ϵsed. Calculated ϵsed values were within the range of 4.6 ± 2‰, and were related to organic matter reactivity and oxygen penetration depth in the sediments. ϵsed reflects the δ15N of the N2 lost from marine sediments and thus best describes the isotopic impact of N elimination on the oceanic fixed N pool. Our mean value for ϵsed is larger than assumed by earlier work, questioning current ideas with regards to the state of

  4. Direct effects of CO{sub 2} concentration on growth and isotopic composition of marine plankton

    Energy Technology Data Exchange (ETDEWEB)

    Wolf-Gladrow, D.A.; Riebesell, Ulf; Burkhardt, Steffen; Bijma, Jelle [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    1999-04-01

    The assessment of direct effects of anthropogenic CO{sub 2} increase on the marine biota has received relatively little attention compared to the intense research on CO{sub 2}-related responses of the terrestrial biosphere. Yet, due to the rapid air-sea gas exchange, the observed past and predicted future rise in atmospheric CO{sub 2} causes a corresponding increase in seawater CO{sub 2} concentrations, [CO{sub 2}], in upper ocean waters. Increasing [CO{sub 2}] leads to considerable changes in the surface ocean carbonate system, resulting in decreases in pH and the carbonate concentration, [CO{sub 3}{sup 2-}]. These changes can be shown to have strong impacts on the marine biota. Here we will distinguish between CO{sub 2}-related responses of the marine biota which (a) potentially affect the ocean`s biological carbon pumps and (b) are relevant to the interpretation of diagnostic tools (proxies) used to assess climate change on geological times scales. With regard to the former, three direct effects of increasing [CO{sub 2}] on marine plankton have been recognized: enhanced phytoplankton growth rate, changing elemental composition of primary produced organic matter, and reduced biogenic calcification. Although quantitative estimates of their impacts on the oceanic carbon cycle are not yet feasible, all three effects increase the ocean`s capacity to take up and store atmospheric CO{sub 2} and hence, can serve as negative feedbacks to anthropogenic CO{sub 2} increase. With respect to proxies used in paleo-reconstructions, CO{sub 2}-sensitivity is found in carbon isotope fractionation by phytoplankton and foraminifera. While CO{sub 2}-dependent isotope fractionation by phytoplankton may be of potential use in reconstructing surface ocean pCO{sub 2} at ancient times, CO{sub 2}-related effects on the isotopic composition of foraminiferal shells confounds the use of the difference in isotopic signals between planktonic and benthic shells as a measure for the strength of

  5. Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation

    Science.gov (United States)

    Fischer, Benjamin M. C.; van Meerveld, H. J. (Ilja); Seibert, Jan

    2017-04-01

    Isotope hydrograph separation (IHS) is a valuable tool to study runoff generation processes. To perform an IHS, samples of baseflow (pre-event water) and streamflow are taken at the catchment outlet. For rainfall (event water) either a bulk sample is collected or it is sampled sequentially during the event. For small headwater catchment studies, event water samples are usually taken at only one sampling location in or near the catchment because the spatial variability in the isotopic composition of rainfall is assumed to be small. However, few studies have tested this assumption. In this study, we investigated the spatiotemporal variability in the isotopic composition of rainfall and its effects on IHS results using detailed measurements from a small pre-alpine headwater catchment in Switzerland. Rainfall was sampled sequentially at eight locations across the 4.3 km2 Zwäckentobel catchment and stream water was collected in three subcatchments (0.15, 0.23, and 0.70 km2) during ten events. The spatial variability in rainfall amount, average and maximum rainfall intensity and the isotopic composition of rainfall was different for each event. There was no significant relation between the isotopic composition of rainfall and total rainfall amount, rainfall intensity or elevation. For eight of the ten studied events the temporal variability in the isotopic composition of rainfall was larger than the spatial variability in the rainfall isotopic composition. The isotope hydrograph separation results, using only one rain sampler, varied considerably depending on which rain sampler was used to represent the isotopic composition of event water. The calculated minimum pre-event water contributions differed up to 60%. The differences were particularly large for events with a large spatial variability in the isotopic composition of rainfall and a small difference between the event and pre-event water isotopic composition. Our results demonstrate that even in small catchments

  6. Studies on fractionation of ytterbium isotopes in Yb(III)-acetate/Yb-amalgam system. Even-odd effect

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, W.; Poninski, M.; Fiedler, R.

    1997-12-31

    The fractionation of ytterbium isotopes with the even and odd numbers of neutrons was investigated in a Yb(III)-acetate/Yb-amalgam exchange systems. The light isotope was preferentially fractionated to the amalgam phase. The values of the unit separation gain per mass difference,{epsilon}, were found to be -0.00054 for {sup 176/171}Yb and -0.00069 for {sup 176/174}Yb The difference which amounted to 0.00015 is an evidence for the occurrence of the so called `even-odd` effect. It was also found that the chemical isotope shift of ytterbium was monitored by optical isotope shift its atomic spectra. (author). 23 refs, 7 figs, 4 tabs.

  7. The Kuo-Brown effective interaction: From 18O to the Sn isotopes

    Science.gov (United States)

    Engeland, Torgeir; Hjorth-Jensen, Morten; Kartamyshev, Maxim; Osnes, Eivind

    2014-08-01

    After briefly reviewing the pioneering work on effective interactions by Gerry Brown and his group, and the developments which followed, we apply present-day effective interactions to large-scale shell-model calculations on the entire range of Sn isotopes from 102Sn to 132Sn. We have made explorative calculations starting from three different nucleon-nucleon potentials (Argonne V18, CD-Bonn, and N3LO) and evaluated the higher-order contributions to the effective interaction from both G-matrix and Vlowk interactions. Further, we have checked the convergence of intermediate-state excitations up to 10ħω harmonic oscillator energy. Final extensive calculations were made of binding energies, excitation energies and B(E2) transition rates using an effective interaction based on a G-matrix evaluated from the chiral N3LO potential and including intermediate excitations up to 10ħω harmonic oscillator energy. The energy spectra are well reproduced throughout the region while overbinding of the ground states emerges as valence nucleons are added. The B(E2) rates agree well for the heavy isotopes, while they seem too low for the lighter ones.

  8. Stable isotope analysis as an early monitoring tool for community-scale effects of rat eradication

    Science.gov (United States)

    Nigro, Katherine M.; Hathaway, Stacie A.; Wegmann, Alex; Miller-ter Kuile, Ana; Fisher, Robert N.; Young, Hillary S.

    2017-01-01

    Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community- and ecosystem-wide effects of restoration.

  9. Measuring the Effect of Fuel Chemical Structure on Particulate and Gaseous Emissions using Isotope Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A; Mueller, C J; Martin, G C; Upatnicks, A; Dibble, R W; Cheng, S

    2003-09-11

    Using accelerator mass spectrometry (AMS), a technique initially developed for radiocarbon dating and recently applied to internal combustion engines, carbon atoms within specific fuel molecules can be labeled and followed in particulate or gaseous emissions. In addition to examining the effect of fuel chemical structure on emissions, the specific source of carbon for PM can be identified if an isotope label exists in the appropriate fuel source. Existing work has focused on diesel engines, but the samples (soot collected on quartz filters or combustion gases captured in bombs or bags) are readily collected from large industrial combustors as well.

  10. Isotope effect in the superfluid density of high-temperature superconducting cuprates: stripes, pseudogap, and impurities.

    Science.gov (United States)

    Tallon, J L; Islam, R S; Storey, J; Williams, G V M; Cooper, J R

    2005-06-17

    Underdoped cuprates exhibit a normal-state pseudogap, and their spins and doped carriers tend to spatially separate into 1D or 2D stripes. Some view these as central to superconductivity and others as peripheral and merely competing. Using La(2-x)Sr(x)Cu(1-y)Zn(y)O4 we show that an oxygen isotope effect in Tc and in the superfluid density can be used to distinguish between the roles of stripes and pseudogap and also to detect the presence of impurity scattering. We conclude that stripes and pseudogap are distinct, and both compete and coexist with superconductivity.

  11. Ruthenium tetraoxide oxidations of alkanes: DFT calculations of barrier heights and kinetic isotope effects.

    Science.gov (United States)

    Drees, Markus; Strassner, Thomas

    2006-03-03

    The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.

  12. Level density shell effects in neutron induced reactions on molybdenum isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ivascu, M.; Avrigeanu, M.; Avrigeanu, V.

    1986-01-01

    The gradual reduction of the level density shell effects with increasing excitation is described by two coupled phenomenological models: the back-shifted Fermi gas model for medium excitation energies (E < or approx.,10MeV) and the Ignatyuk et al. (Yad. Fiz. 21, 255, 1975) formula for higher energies. This approach is used in preequilibrium and statistical model calculations of (n,p), (n,n'p) and some (n,2n) reaction cross-sections for stable molybdenum isotopes, from threshold up to 20 MeV incident energy.

  13. Characterizing the Effect of Shock on Isotopic Ages I: Ferroan Anorthosite Major Elements

    Science.gov (United States)

    Edmunson, J.; Cohen, B. A.; Spilde, M. N.

    2009-01-01

    A study underway at Marshall Space Flight Center is further characterizing the effects of shock on isotopic ages. The study was inspired by the work of L. Nyquist et al. [1, 2], but goes beyond their work by investigating the spatial distribution of elements in lunar ferroan anorthosites (FANs) and magnesium-suite (Mg-suite) rocks in order to understand the processes that may influence the radioisotope ages obtained on early lunar samples. This paper discusses the first data set (major elements) obtained on FANs 62236 and 67075.

  14. Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields

    CERN Document Server

    Shahbaz, Atif; Müller, Carsten

    2010-01-01

    High-harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is calculated. Systems of low nuclear charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schr\\"odinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent gamma-ray pulses.

  15. Isotopes through the looking glass

    Science.gov (United States)

    Mårtensson Pendrill, Ann Marie

    2000-08-01

    Nuclear distributions affect many aspects of atomic spectra. As an example, recent experimental results for the hyperfine anomaly in Fr isotopes are considered. These depend on nuclear charge and magnetization distributions. The variations in charge radii for these isotopes were studied earlier by measuring optical isotope shifts. The hyperfine anomalies for the odd-odd isotopes involve the neutron distributions, of interest for studies of parity nonconserving effects along a chain of isotopes.

  16. Laser Spectroscopic Study on Oxygen Isotope Effects in Ozone Surface Decomposition

    Science.gov (United States)

    Minissale, Marco; Boursier, Corinne; Elandaloussi, Hadj; Te, Yao; Jeseck, Pascal; Rouille, Christian; Zanon-Willette, Thomas; Janssen, Christof

    2016-04-01

    The isotope kinetics of ozone formation in the Chapman reaction [1] O + O2 + M → O3 + M (1) provides the primary example for a chemically induced oxygen isotope anomaly and is associated with large [2] and mass independent [3] oxygen isotope enrichments in the product molecule, linked to a symmetry selection in the ozone formation kinetics [4-5]. The isotopic composition of ozone and its transfer to other molecules is a powerful tracer in the atmospheric and biogeochemical sciences [6] and serves as a primary model for a possible explanation of the oxygen isotopic heterogeneity in the Solar system [7-8]. Recently, the isotope fractionation in the photolytic decomposition process O3 + hν → O2 + O (2) using visible light has been studied in detail [9-10]. Much less is currently known about the isotope fractionation in the dry deposition or in the gas phase thermal decomposition of ozone O3 + M → O2 + O +M. (3) Here we report on first spectroscopic studies of non-photolytic ozone decomposition using a cw-quantum cascade laser at 9.5 μm. The concentration of individual ozone isotopomers (16O3,16O16O17O, and 16O17O16O) in a teflon coated reaction cell is followed in real time at temperatures between 25 and 150 °C. Observed ozone decay rates depend on homogeneous (reaction (3)) processes in the gas phase and on heterogeneous reactions on the wall. A preliminary analysis reveals agreement with currently recommended ozone decay rates in the gas phase and the absence of a large symmetry selection in the surface decomposition process, indicating the absence of a mass independent fractionation effect. This result is in agreement with previous mass spectrometer (MS) studies on heterogeneous ozone formation on pyrex [11], but contradicts an earlier MS study [12] on ozone surface decomposition on pyrex and quartz. Implications for atmospheric chemistry will be discussed. [1] Morton, J., Barnes, J., Schueler, B. and Mauersberger, K. J. Geophys. Res. 95, 901 - 907 (1990

  17. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations

    Science.gov (United States)

    Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei

    2013-11-01

    The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH∗ stretching and intermolecular ion-water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion-water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water-water hydrogen bond interactions.

  18. Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: The state of the art

    Science.gov (United States)

    Kirby, Jon F.

    2014-09-01

    The effective elastic thickness (Te) is a geometric measure of the flexural rigidity of the lithosphere, which describes the resistance to bending under the application of applied, vertical loads. As such, it is likely that its magnitude has a major role in governing the tectonic evolution of both continental and oceanic plates. Of the several ways to estimate Te, one has gained popularity in the 40 years since its development because it only requires gravity and topography data, both of which are now readily available and provide excellent coverage over the Earth and even the rocky planets and moons of the solar system. This method, the ‘inverse spectral method’, develops measures of the relationship between observed gravity and topography data in the spatial frequency (wavenumber) domain, namely the admittance and coherence. The observed measures are subsequently inverted against the predictions of thin, elastic plate models, giving estimates of Te and other lithospheric parameters. This article provides a review of inverse spectral methodology and the studies that have used it. It is not, however, concerned with the geological or geodynamic significance or interpretation of Te, nor does it discuss and compare Te results from different methods in different provinces. Since the three main aspects of the subject are thin elastic plate flexure, spectral analysis, and inversion methods, the article broadly follows developments in these. The review also covers synthetic plate modelling, and concludes with a summary of the controversy currently surrounding inverse spectral methods, whether or not the large Te values returned in cratonic regions are artefacts of the method, or genuine observations.

  19. Isotope dependence of the Zeeman effect in lithium-like calcium

    Science.gov (United States)

    Köhler, Florian; Blaum, Klaus; Block, Michael; Chenmarev, Stanislav; Eliseev, Sergey; Glazov, Dmitry A.; Goncharov, Mikhail; Hou, Jiamin; Kracke, Anke; Nesterenko, Dmitri A.; Novikov, Yuri N.; Quint, Wolfgang; Minaya Ramirez, Enrique; Shabaev, Vladimir M.; Sturm, Sven; Volotka, Andrey V.; Werth, Günter

    2016-01-01

    The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=-g μB s ħ-1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests.

  20. Isotopic quantum effects on the structure of low density amorphous ice

    CERN Document Server

    Urquidi, J; Neuefeind, J; Tomberli, B; Tulk, C A; Guthrie, M; Egelstaff, P A; Klug, D D

    2003-01-01

    Careful neutron diffraction measurements on deuterated low density amorphous (LDA) ice confirm that at 120 K it can be considered a fully 'annealed' structure, as no significant changes are observed in the amorphous spectra until crystallization occurred over time at 130 K. On this basis, the measurement of structural differences between the hydrogenated and deuterated forms of LDA ice at 120 K, have been carried out using 98 keV electromagnetic radiation diffraction techniques. The maximum observed isotope effect in LDA ice is approx 3.4% at 40 K when compared to the magnitude of the first peak in the electronic structure factor at Q = 1.70 A sup - sup 1. This compares to a maximum effect of approx 1.6% previously measured in liquid water at room temperature (Tomberli et al 2000 J. Phys.: Condens. Matter. 12 2597). The isotope effect is shown to be similar to a temperature shift in the structure of light LDA ice. However, the existence of a first sharp diffraction peak at Q = 1.0 A sup - sup 1 in the isotopi...

  1. Control of the spin to charge conversion using the inverse Rashba-Edelstein effect

    Energy Technology Data Exchange (ETDEWEB)

    Sangiao, S. [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); De Teresa, J. M. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza (Spain); Morellon, L.; Martinez-Velarte, M. C. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Lucas, I. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); Viret, M., E-mail: michel.viret@cea.fr [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France)

    2015-04-27

    We show here that using spin orbit coupling interactions at a metallic interface it is possible to control the sign of the spin to charge conversion in a spin pumping experiment. Using the intrinsic symmetry of the “Inverse Rashba Edelstein Effect” (IREE) in a Bi/Ag interface, the charge current changes sign when reversing the order of the Ag and Bi stacking. This confirms the IREE nature of the conversion of spin into charge in these interfaces and opens the way to tailoring the spin sensing voltage by an appropriate trilayer sequence.

  2. Examining the interplay between halo effects and deformation in neutron rich neon isotopes

    Science.gov (United States)

    Loelius, Charles; Iwasaki, Hironori; Bazin, Daniel; Elder, Robert; Elman, Brandon; Gade, Alexandra; Grinder, Mara; Longfellow, Brenden; Lunderberg, Eric; Heil, Sebastian; Hufnagel, Alexander; Mathy, Michael; Syndikus, Ina; Kobayashi, Nobu; Belarge, Joe; Bender, Peter; Weisshaar, Dirk; Petri, Marina; Whitmore, Kenneth

    2017-01-01

    27 Ne serves as an excellent test case for understanding the interplay between halo effects and deformation. It is known that the neighboring isotopes 26Ne and 28Ne demonstrate substantial deformation, which indicate a potential for deformation in 27Ne. At the same time, the 1/2+ excited state is expected to have a single valence neutron in the s orbital near the neutron separation energy and therefore is expected to exhibit halo effects. Due to the interplay between the halo and deformation effects, the M1 transition strength, which is expected to be large because of the deformation, could be severely reduced, while the E1 transition strength is expected to be large. To examine this effect, precise knowledge of transition rates is required. In this work, the model-independent Recoil Distance Method was employed with fast RI beams to constrain the lifetime of the 1/2+ state down to the lowest achievable limits of precision.

  3. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    Science.gov (United States)

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  4. Oxygen isotopes in tree rings record variation in precipitation δ(18)O and amount effects in the south of Mexico.

    Science.gov (United States)

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ(18)Otr). Interannual variation in δ(18)Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ(13)C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ(18)Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly (18)O-depleted rain in the region and seem to have affected the δ(18)Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ(18)Otr of M. acantholoba can be used as a proxy for source water δ(18)O and that interannual variation in δ(18)Oprec is caused by a regional amount effect. This contrasts with δ(18)O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  5. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    Science.gov (United States)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes

  6. The inverse electroencephalography pipeline

    Science.gov (United States)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  7. Communication: ab initio simulations of hydrogen-bonded ferroelectrics: collective tunneling and the origin of geometrical isotope effects.

    Science.gov (United States)

    Wikfeldt, K T; Michaelides, A

    2014-01-28

    Ab initio simulations that account for nuclear quantum effects have been used to examine the order-disorder transition in squaric acid, a prototypical H-bonded antiferroelectric crystal. Our simulations reproduce the >100 K difference in transition temperature observed upon deuteration as well as the strong geometrical isotope effect observed on intermolecular separations within the crystal. We find that collective transfer of protons along the H-bonding chains - facilitated by quantum mechanical tunneling - is critical to the order-disorder transition and the geometrical isotope effect. This sheds light on the origin of isotope effects and the importance of tunneling in squaric acid which likely extends to other H-bonded ferroelectrics.

  8. Milne-Eddington inversions of the He I 10830 {\\AA} Stokes profiles: Influence of the Paschen-Back effect

    CERN Document Server

    Sasso, C; Solanki, S K

    2011-01-01

    The Paschen-Back effect influences the Zeeman sublevels of the He I multiplet at 10830 {\\AA}, leading to changes in strength and in position of the Zeeman components of these lines. We illustrate the relevance of this effect using synthetic Stokes profiles of the He I 10830 {\\AA} multiplet lines and investigate its influence on the inversion of polarimetric data. We invert data obtained with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). We compare the results of inversions based on synthetic profiles calculated with and without the Paschen-Back effect being included. We find that when taking into account the incomplete Paschen-Back effect, on average 16% higher field strength values are obtained. We also show that this effect is not the main cause for the area asymmetry exhibited by many He I 10830 Stokes V-profiles. This points to the importance of velocity and magnetic field gradients over the formation height range of these lines.

  9. Milne-Eddington inversions of the He I 10 830 Å Stokes profiles: influence of the Paschen-Back effect

    Science.gov (United States)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2006-09-01

    Context: .The Paschen-Back effect influences the Zeeman sublevels of the He I multiplet at 10 830 Å, leading to changes in strength and in position of the Zeeman components of these lines. Aims: .We illustrate the relevance of this effect using synthetic Stokes profiles of the He I 10 830 Å multiplet lines and investigate its influence on the inversion of polarimetric data. Methods: .We invert data obtained with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT). We compare the results of inversions based on synthetic profiles calculated with and without the Paschen-Back effect being included. Results: .We find that when taking into account the incomplete Paschen-Back effect, on average 16% higher field strength values are obtained. We also show that this effect is not the main cause for the area asymmetry exhibited by many He I 10 830 Stokes V-profiles. This points to the importance of velocity and magnetic field gradients over the formation height range of these lines.

  10. Chlorine isotope separation using an hydrous zirconium dioxide exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Heumann, K.G.; Baier, K.; Wibmer, G.

    1980-05-01

    Hydrous zirconium dioxide is used in column experiments for separating the halide ions as well as for isotope fractionation of chlorine. The preparation of the zirconium dioxide particles is carried out by homogeneous hydrolysis of a zirconyl chloride solution using hexamethylenetetramine. The separation order of the halides is I/sup -/, Br/sup -/ and Cl/sup -/ in contrast to the inverse separation order using a strongly basic anion exchange resin. In chlorine isotope separation experiments an enrichment of /sup 35/Cl/sup -/ is found in the first fractions, whereas the last fractions show a significant enrichment of /sup 37/Cl/sup -/. This also indicates an inversion of the isotope separation compared with a strongly basic anion exchange resin. A dependence of the isotope fractionation on the concentration of the NaNO/sub 3/ solution used as eluant is found. With increasing concentration the isotope fractionation decreases. Using a 0.5 M NaNO/sub 3/ solution the elementary separation effect was calculated epsilon done on different tantalum parts to determine the amount of dissolved hydrogen.

  11. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects.

    Science.gov (United States)

    Bernstein, Anat; Ronen, Zeev; Gelman, Faina

    2013-01-02

    The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence.

  12. Conformational effect of dicyclo-hexano-18-crown-6 on isotopic fractionation of zinc: DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Boda, A.; Singha Deb, A. K.; Ali, Sk. M.; Shenoy, K. T.; Ghosh, S. K. [Chemical Engineering Division, Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    Generalized gradient approximated BP86 density functional employing triple zeta valence plus polarization (TZVP) basis set has been used to compute the reduced partition function ratio and isotopic separation factor for zinc isotopes. The isotopic separation factor was found to be in good agreement with the experimental results. The isotopic separation factor was found to depend on the conformation of the crown ether ligand. The trans-trans conformation shows the highest fractionation compared to cis-cis conformer. The present theoretical results can thus be used to plan the isotope separation experiments.

  13. Semiclassical wave packet study of anomalous isotope effect in ozone formation.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-10-21

    We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect.

  14. Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2010-04-01

    Full Text Available The pressure dependence of the relative photolysis rate of HCHO vs. HCDO has been investigated for the first time, using a photochemical reactor at the University of Copenhagen. The dissociation of HCHO vs. HCDO using a UVA lamp was measured at total bath gas pressures of 50, 200, 400, 600 and 1030 mbar. The products of formaldehyde photodissociation are either H2 + CO (molecular channel or HCO + H (radical channel, and a photolysis lamp was chosen to emit light at wavelengths that greatly favor the molecular channel. The isotope effect in the dissociation, kHCHO/kHCDO, was found to depend strongly on pressure, varying from 1.1 + 0.15/−0.1 at 50 mbar to 1.75±0.10 at 1030 mbar. The results can be corrected for radical channel contribution to yield the kinetic isotope effect for the molecular channel; i.e. the KIE in the production of molecular hydrogen. This is done and the results at 1030 mbar are discussed in relation to previous studies at ambient pressure. In the atmosphere the relative importance of the two product channels changes with altitude as a result of changes in pressure and actinic flux. The study demonstrates that the δD of photochemical hydrogen produced from formaldehyde will increase substantially as pressure decreases.

  15. Low-temperature chemistry between water and hydroxyl radicals: H/D isotopic effects

    CERN Document Server

    Lamberts, T; Puletti, F; Ioppolo, S; Cuppen, H M; Linnartz, H

    2015-01-01

    Sets of systematic laboratory experiments are presented -- combining Ultra High Vacuum cryogenic and plasma-line deposition techniques -- that allow us to compare H/D isotopic effects in the reaction of H2O (D2O) ice with the hydroxyl radical OD (OH). The latter is known to play a key role as intermediate species in the solid-state formation of water on icy grains in space. The main finding of our work is that the reaction H2O + OD --> OH + HDO occurs and that this may affect the HDO/H2O abundances in space. The opposite reaction D2O + OH --> OD + HDO is much less effective, and also given the lower D2O abundances in space not expected to be of astronomical relevance. The experimental results are extended to the other four possible reactions between hydroxyl and water isotopes and are subsequently used as input for Kinetic Monte Carlo simulations. This way we interpret our findings in an astronomical context, qualitatively testing the influence of the reaction rates.

  16. Use of chlorine kinetic isotope effects for evaluating ion pairing in nucleophilic displacements at saturated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Taylor, J.W.; Turnquist, C.R.

    1978-11-08

    Use of the Winstein scheme to describe ion pairing leads to the conclusion that chlorine kinetic isotope effects (KIE) are primarily responsive to processes involving the covalently bound chlorine and less indicative of reactions which occur after the formation of the initial ion pair. This conclusion has been tested by showing that the calculated equilibrium isotope effect (1.0057) and observed (1.0059/sub 6/ +- 0.0001/sub 1/) KIE are nearly identical when the solvolysis of p-methylbenzyl chloride is forced toward a limiting case with 97% trifluoroethanol as solvent. The reaction of p-phenoxybenzyl chloride showed similar behavior with an equilibrium KIE value of 1.0058/sub 4/ +- 0.0001/sub 1/. These results suggest that competing ion-pair and S/sub N/2 processes may be one factor contributing to Hammett plot curvature for these nucleophilic displacement reactions. Chloride KIE values for the reaction of n-butyl chloride with thiophenoxide anion, where ion pairing does not occur, show little variation with a wide variety of solvents. 3 tables.

  17. Elaboration of an effective neutron generator for short-lived isotope analysis

    Science.gov (United States)

    Kozlovsky, K. I.; Tsybin, A. S.; Ischeinov, O. V.

    Preliminary results of the use of a laboratory pulsed laser neutron generator for effective material activation analysis of short-lived isotopes (10 ms-30 s) are delivered. The generator function is based on the acceleration of laser-produced plasma containing deuterium by an external magnetic field that leads to a plasma-bundle velocity up to 3×108cm/s. A fast-neutron yield of about 107-108 (d-d reaction) with a pulse duration not more than 100ns is expected. The main peculiarity of such a neutron source is connected with the substantially smaller X-ray background that accompanies a neutron-irradiation process in traditional types of generators. It gives a possibility to improve the detection conditions as well as to increase the sensitivity of the analysis. The neutron generator may be more effective for the content determination of isotopes such as carbon-12, fluorine-19, oxygen-16, sulfur-34, gold-197, and some others.

  18. Isotopic quantum effects in water structure measured with high energy photon diffraction

    Science.gov (United States)

    Tomberli, B.; Benmore, C. J.; Egelstaff, P. A.; Neuefeind, J.; Honkimäki, V.

    2000-03-01

    High energy electromagnetic radiation scattering techniques have been used to measure the structural differences between light and heavy water: we have studied both intra- and intermolecular effects. These methods and our data analysis are described in detail. We have observed a maximum isotopic effect of 1.6% relative to the magnitude of the x-ray structure factor. Our uncertainties are an order of magnitude smaller than those of previous icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/> -ray measurements (Root J H, Egelstaff P A and Hime A 1986 Chem. Phys. 109 5164) and this has permitted us to test accurately the available quantum simulation results on water. The SPC and TIP4P potentials reproduce the measured results in r -space moderately well for intermolecular effects at distances greater than 2.5 Å. These results show that H2 O is a slightly more disordered liquid than D2 O at the same temperature.

  19. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  20. Inverse methods for radiation transport

    Science.gov (United States)

    Bledsoe, Keith C.

    Implicit optimization methods for solving the inverse transport problems of interface location identification, source isotope weight fraction identification, shield material identification, and material mass density identification are explored. Among these optimization methods are the Schwinger inverse method, Levenberg-Marquardt method, and evolutionary algorithms. Inverse problems are studied in one-dimensional spherical and two-dimensional cylindrical geometries. The scalar fluxes of unscattered gamma-ray lines, leakages of neutron-induced gamma-ray lines, and/or neutron multiplication in the system are assumed to be measured. Each optimization method is studied on numerical test problems in which the measured data is simulated using the same deterministic transport code used in the optimization process (assuming perfectly consistent measurements) and using a Monte Carlo code (assuming less-consistent, more realistic measurements). The Schwinger inverse method and Levenberg-Marquardt methods are found to be successful for problems with relatively few (i.e. 4 or fewer) unknown parameters, with the former being the best for unknown isotope problems and the latter being more adept at interface location, unknown material mass density, and mixed parameter problems. A study of a variety of evolutionary algorithms indicates that the differential evolution method is the best for inverse transport problems, and outperforms the Levenberg-Marquardt method on problems with large numbers of unknowns. An algorithm created by combining different variants of the differential evolution method is shown to be highly successful on spherical problems with unscattered gamma-ray lines, while a basic differential evolution approach is more useful for problems with scattering and in cylindrical geometries. A hybrid differential evolution/Levenberg-Marquardt algorithm also was found to show promise for fast and robust solution of inverse problems.

  1. On the effective inversion by imposing a priori information for retrieval of land surface parameters

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The anisotropy of the land surface can be best described by the bidirectional reflectance distribution function (BRDF). As the field of multiangular remote sensing advances, it is increasingly probable that BRDF models can be inverted to estimate the important biological or climatological parameters of the earth surface such as leaf area index and albedo. The state-of-the-art of BRDF is the use of the linear kernel-driven models, mathematically described as the linear combination of the isotropic kernel, volume scattering kernel and geometric optics kernel. The computational stability is characterized by the algebraic operator spectrum of the kernel-matrix and the observation errors. Therefore, the retrieval of the model coefficients is of great importance for computation of the land surface albedos. We first consider the smoothing solution method of the kernel-driven BRDF models for retrieval of land surface albedos. This is known as an ill-posed inverse problem. The ill-posedness arises from that the linear kernel driven BRDF model is usually underdetermined if there are too few looks or poor directional ranges, or the observations are highly dependent. For example, a single angular observation may lead to an under-determined system whose solution is infinite (the null space of the kernel operator contains nonzero vectors) or no solution (the rank of the coefficient matrix is not equal to the augmented matrix). Therefore, some smoothing or regularization technique should be applied to suppress the ill-posedness. So far, least squares error methods with a priori knowledge, QR decomposition method for inversion of the BRDF model and regularization theories for ill-posed inversion were developed. In this paper, we emphasize on imposing a priori information in different spaces. We first propose a gen-eral a priori imposed regularization model problem, and then address two forms of regularization scheme. The first one is a regularized singular value decomposition

  2. Simulation study of HEMT structures with HfO2 cap layer for mitigating inverse piezoelectric effect related device failures

    Directory of Open Access Journals (Sweden)

    Deepthi Nagulapally

    2015-01-01

    Full Text Available The Inverse Piezoelectric Effect (IPE is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs. Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO2 “cap layer” above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using “field plates” in concert with high-k oxides.

  3. Deformation effects in the alpha accompanied cold ternary fission of even-even {sup 244-260}Cf isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Krishnan, Sreejith [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2016-04-15

    Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even {sup 244-260}Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the {sup 244}Cf isotope, the highest yield is obtained for the fragment combination {sup 108}Ru + {sup 4}He + {sup 132}Te, which contains the near doubly magic nucleus {sup 132}Te (N = 80, Z = 52). In the case of {sup 246}Cf and {sup 248}Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus {sup 134}Te (N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for {sup 250}Cf, {sup 252}Cf, {sup 254}Cf, {sup 256}Cf, {sup 258}Cf and {sup 260}Cf isotopes is for the fragment combination with the doubly magic nucleus {sup 132}Sn (N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the {sup 252}Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data. (orig.)

  4. Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects

    Science.gov (United States)

    Asensio Ramos, A.; Trujillo Bueno, J.; Landi Degl'Innocenti, E.

    2008-08-01

    A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. Here we present a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 10830 Å and 5876 Å (or D3) multiplets. It is based on the quantum theory of spectral line polarization, which takes into account in a rigorous way all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, level crossings and repulsions, Zeeman, Paschen-Back, and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods. The reliability of the forward modeling and inversion code presented here is demonstrated through several applications, which range from the inference of the magnetic field vector in solar active regions to determining whether or not it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the astrophysical community, with the hope that it will facilitate new advances in solar and stellar physics.

  5. The isotopic effect and spectroscopic studies of boron orthophosphate (BPO 4)

    Science.gov (United States)

    Adamczyk, A.; Handke, M.

    2000-11-01

    Boron orthophosphate (BPO 4) belongs to the group of SiO 2-derivative structures. Its network is built up of boron and phosphorous tetrahedra, with boron and phosphorous atoms at almost the same positions as the silicon atoms in high-temperature cristobalite structure. In the present work, the interpretation of IR and Raman spectra of BPO 4 was carried out based on the model of PO 4 tetrahedron isolated by boron atoms. The factor group analysis enabled the separation of 12 bands due to the vibrations of PO 4 tetrahedron and three bands due to pseudo-lattice boron-oxygen bond vibrations. Substitution of boron atoms with 10B isotope caused shifts of the bands in the IR spectra, which made it possible to distinguish the bands due to boron-oxygen and phosphorus-oxygen bond vibrations. Based on the factor group analysis and isotopic effect, all bands in the IR and Raman spectra were assigned to the appropriate bond vibrations.

  6. Carbon Isotope Effect in Single-Crystal Rb{sub 3}C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrer, M.S.; Cherrey, K.; Zettl, A.; Cohen, M.L. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Crespi, V.H. [The Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States)

    1999-07-01

    The sharp resistive transitions in superconducting single crystals of natural abundance and 99{percent} {sup 13}C -enriched Rb{sub 3}C {sub 60} reveal the carbon isotope effect with unprecedented accuracy. The measured isotope exponent {alpha}{sub C} =0.21{plus_minus}0.012 is outside the error bars of all previous reported values. Our precise value for {alpha}{sub C} , combined with T{sub c} , {alpha}{sub Rb} , and an {ital ab initio} calculation of the frequency distribution of the electron-phonon coupling, allows a fully constrained determination of the coupling strength {lambda}=0.9{sup +0.15}{sub {minus}0.1} and the Coulomb repulsion {mu}{sup *}=0.22{sup +0.03}{sub {minus}0.02} . These new measurements reveal a phonon-mediated superconductor with moderate coupling to a wide range of phonons centered near {approximately}1400 K . {copyright} {ital 1999} {ital The American Physical Society}

  7. Inner Sphere and Outer Sphere Electron Transfer to Methyl Iodide. Deuterium and 13C Kinetic Isotope Effects

    DEFF Research Database (Denmark)

    Holm, Torkil; Crossland, Ingolf

    1996-01-01

    Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...

  8. Simulation of cloud microphysical effects on water isotope fractionation in a frontal system

    Science.gov (United States)

    Chen, J. P.; Tsai, I. C.; Chen, W. Y.; Liang, M. C.

    2014-12-01

    The stable water isotopic composition changes due to fractionation during phase changes. This information is useful for understanding the water cycle, such as the water vapor source, transport and cloud microphysical processes. In conventional atmospheric models, the isotope exchange between liquid and gas phase is usually assumed to be in an equilibrium state, which is not sufficient to describe the highly kinetic phase transformation processes in clouds. In this study, a two-moment microphysical scheme incorporated into the NCAR Weather Research and Forecasting (WRF) model is modified to simulate the isotope fractionations. Experimentally determined stable water isotope thermal equilibrium data are converted into isotope saturation vapor pressure, which is then put into the two-stream Maxwellian kinetic equation to calculate the fractionation during vapor condensation/evaporation or deposition/sublimation. Isotope mass transfer between liquid- and ice-phase hydrometeors during freezing/melting are also considered explicitly. The simulation results were compared with rainwater isotope measurements and showed fairly good agreement. Sensitivity tests were also conducted to quantify the contribution of rainwater isotopic due to water vapor source and transport, condensation environment conditions, and cloud microphysical processes. The results show that isotopic water vapor source dominates the stable isotope concentration in rainwater but the cloud microphysical processes including the ice-phase processes are also quite important. The results also showed that the two-stream Maxwellian kinetic method would cause significantly more deuterium to be transported into higher altitudes during convection than the thermal equilibrium method.

  9. Isotope effect in collision between helium atom and hydrogen bromide molecule

    Institute of Scientific and Technical Information of China (English)

    Yu Chun-Ri; Cheng Xin-Lu; Yang Xiang-Dong

    2008-01-01

    The anisotropic potential developed in our previous research and the close-coupling method are applied to the HBr-3He(4He,5He,6He,7He)system,and the partial cross sections(PCSs)at the incident energy of 60 meV are calculated.Based on the calculations,the influences of the isotope helium atom on PCSs are discussed in detail.The results show that the excitation PCSs converge faster than the elastic PCSs for the collision energy and the systems considered here.Also the excitation PCSs converge more rapidly for the high-excited states.The tail effect is present only in elastic scattering and low-excited states but not in high-excited states.With the increase of reduced mass of the collision system,the converging speed of the elastic and excitation PCSs slows down,and the tail effect goes up.

  10. Isotopic Soret effect in ternary mixtures: Theoretical predictions and molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Artola, Pierre-Arnaud, E-mail: pierre-arnaud.artola@u-psud.fr [Laboratoire de Chimie-Physique, Université de Paris-Sud, Orsay (France); Rousseau, Bernard [Laboratoire de Chimie-Physique, CNRS Université de Paris-Sud, Orsay (France)

    2015-11-07

    In this paper, we study the Soret effect in ternary fluid mixtures of isotopic argon like atoms. Soret coefficients have been computed using non-equilibrium molecular dynamics and a theoretical approach based on our extended Prigogine model (with mass effect) and generalized to mixtures with any number of components. As is well known for binary mixture studies, the heaviest component always accumulates on the cold side whereas the lightest species accumulate on the hot side. An interesting behavior is observed for the species with the intermediate mass: it can accumulate on both sides, depending on composition and mass ratios. A simple picture can be given to understand this change of sign: the intermediate mass species can be seen as evolving in an equivalent fluid whose species mass varies with composition. An excellent prediction of all simulated data has been obtained using our model including the change of sign of the Soret coefficient for species with intermediate mass.

  11. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Team, JET [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  12. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts

    Science.gov (United States)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten

    2016-11-01

    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  13. Inverse Seesaw in Nonsupersymmetric SO(10), Proton Lifetime, Nonunitarity Effects, and a Low-mass Z' Boson

    CERN Document Server

    Awasthi, Ram Lal

    2011-01-01

    Recently realization of TeV scale inverse seesaw mechanism in supersymmetric SO(10) framework has led to a number of experimentally verifiable predictions including low-mass W_R and Z' gauge bosons and nonunitarity effects. Using nonsupersymmetric SO(10) grand unified theory, we show how a TeV scale inverse seesaw mechanism for neutrino masses is implemented with a low-mass Z' boson accessible to Large Hadron Collider. We derive renormalization group equations for fermion masses and mixings in the presence of the intermediate symmetries of the model and extract the Dirac neutrino mass matrix at the TeV scale from successful GUT-scale parameterization of fermion masses. We estimate leptonic nonunitarity effects measurable at neutrino factories and lepton flavor violating decays expected to be probed in near future. While our prediction on the nonunitarity matrix element $\\eta_{\\mu\\tau}$ for degenerate right-handed neutrinos is similar to the supersymmetric SO(10) case, we find new predictions with significantl...

  14. The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques

    KAUST Repository

    Wang, Lixin

    2013-06-01

    The proportion of transpiration (T) in total evapotranspiration (ET) is an important parameter that provides insight into the degree of biological influence on the hydrological cycles. Studies addressing the effects of climatic warming on the ecosystem total water balance are scarce, and measured warming effects on the T/ET ratio in field experiments have not been seen in the literature. In this study, we quantified T/ET ratios under ambient and warming treatments in a grassland ecosystem using a stable isotope approach. The measurements were made at a long-term grassland warming site in Oklahoma during the May-June peak growing season of 2011. Chamber-based methods were used to estimate the δ2H isotopic composition of evaporation (δE), transpiration (δT) and the aggregated evapotranspiration (δET). A modified commercial conifer leaf chamber was used for δT, a modified commercial soil chamber was used for δE and a custom built chamber was used for δET. The δE, δET and δT were quantified using both the Keeling plot approach and a mass balance method, with the Craig-Gordon model approach also used to calculate δE. Multiple methods demonstrated no significant difference between control and warming plots for both δET and δT. Though the chamber-based estimates and the Craig-Gordon results diverged by about 12‰, all methods showed that δE was more depleted in the warming plots. This decrease in δE indicates that the evaporation flux as a percentage of total water flux necessarily decreased for δET to remain constant, which was confirmed by field observations. The T/ET ratio in the control treatment was 0.65 or 0.77 and the ratio found in the warming treatment was 0.83 or 0.86, based on the chamber method and the Craig-Gordon approach. Sensitivity analysis of the Craig-Gordon model demonstrates that the warming-induced decrease in soil liquid water isotopic composition is the major factor responsible for the observed δE depletion and the temperature

  15. Influence of the Paschen-Back effect on the results of polarimetric inversions of the He I 10830 Å triplet

    Science.gov (United States)

    Sasso, C.; Lagg, A.; Solanki, S. K.; Socas-Navarro, H.

    The He I triplet at 10830 Å has a great potential for determining the magnetic field vector in the upper chromosphere. The triplet is Zeeman sensitive (Landé factors 2.0, 1.75 and 1.25) and shows the signature of the Hanle effect under appropriate conditions. Additionally, the Zeeman sublevels are influenced by the Paschen-Back effect leading to changes in strength and in position of the Zeeman components of the transitions forming the triplet. In this work we calculate the influence of the Paschen-Back effect on the Stokes profiles and investigate its relevance to inversions on spectro-polarimetric data obtained with the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT).

  16. Effects of dipole-dipole interaction between cigar-shaped BECs of cold alkali atoms: towards inverse-squared interactions.

    Science.gov (United States)

    Yu, Yue; Luo, Zhuxi; Wang, Ziqiang

    2014-07-30

    We show that the dipole-dipole coupling between Wannier modes in cigar-shaped Bose-Einstein condensates (BECs) is significantly enhanced while the short-range coupling is strongly suppressed. As a result, the dipole-dipole interaction can become the dominant interaction between ultracold alkali Bose atoms. In the long length limit of a cigar-shaped BEC, the resulting effective one-dimensional models possess an effective inverse squared interacting potential, the Calogero-Sutherland potential, which plays a fundamental role in many fields of contemporary physics; but its direct experimental realization has been a challenge for a long time. We propose to realize the Calogero-Sutherland model in ultracold alkali Bose atoms and study the effects of the dipole-dipole interaction.

  17. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions.

    Science.gov (United States)

    Kirichek, Oleg; Soper, Alan; Dzyuba, Boris; Callear, Sam; Fuller, Barry

    2015-01-01

    The nucleation and growth of crystalline ice during cooling, and further crystallization processes during re-warming are considered to be key processes determining the success of low temperature storage of biological objects, as used in medical, agricultural and nature conservation applications. To avoid these problems a method, termed vitrification, is being developed to inhibit ice formation by use of high concentration of cryoprotectants and ultra-rapid cooling, but this is only successful across a limited number of biological objects and in small volume applications. This study explores physical processes of ice crystal formation in a model cryoprotective solution used previously in trials on vitrification of complex biological systems, to improve our understanding of the process and identify limiting biophysical factors. Here we present results of neutron scattering experiments which show that even if ice crystal formation has been suppressed during quench cooling, the water molecules, mobilised during warming, can crystallise as detectable ice. The crystallisation happens right after melting of the glass phase formed during quench cooling, whilst the sample is still transiting deep cryogenic temperatures. We also observe strong water isotope effects on ice crystallisation processes in the cryoprotectant mixture. In the neutron scattering experiment with a fully protiated water component, we observe ready crystallisation occurring just after the glass melting transition. On the contrary with a fully deuteriated water component, the process of crystallisation is either completely or substantially supressed. This behaviour might be explained by nuclear quantum effects in water. The strong isotope effect, observed here, may play an important role in development of new cryopreservation strategies.

  18. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.

    Science.gov (United States)

    Cassano, Adam G; Anderson, Vernon E; Harris, Michael E

    2004-08-17

    Heavy atom isotope effects are a valuable tool for probing chemical and enzymatic reaction mechanisms; yet, they are not widely applied to examine mechanisms of nucleophilic activation. We developed approaches for analyzing solvent (18)O nucleophile isotope effects ((18)k(nuc)) that allow, for the first time, their application to hydrolysis reactions of nucleotides and nucleic acids. Here, we report (18)k(nuc) for phosphodiester hydrolysis catalyzed by Mg(2+) and by the Mg(2+)-dependent RNase P ribozyme and deamination by the Zn(2+)-dependent protein enzyme adenosine deaminase (ADA). Because ADA incorporates a single solvent molecule into the product inosine, this reaction can be used to monitor solvent (18)O/(16)O ratios in complex reaction mixtures. This approach, combined with new methods for analysis of isotope ratios of nucleotide phosphates by whole molecule mass spectrometry, permitted determination of (18)k(nuc) for hydrolysis of thymidine 5'-p-nitrophenyl phosphate and RNA cleavage by the RNase P ribozyme. For ADA, an inverse (18)k(nuc) of 0.986 +/- 0.001 is observed, reflecting coordination of the nucleophile by an active site Zn(2+) ion and a stepwise mechanism. In contrast, the observed (18)k(nuc) for phosphodiester reactions were normal: 1.027 +/- 0.013 and 1.030 +/- 0.012 for the Mg(2+)- and ribozyme-catalyzed reactions, respectively. Such normal effects indicate that nucleophilic attack occurs in the rate-limiting step for these reactions, consistent with concerted mechanisms. However, these magnitudes are significantly less than the (18)k(nuc) observed for nucleophilic attack by hydroxide (1.068 +/- 0.007), indicating a "stiffer" bonding environment for the nucleophile in the transition state. Kinetic analysis of the Mg(2+)-catalyzed reaction indicates that a Mg(2+)-hydroxide complex is the catalytic species; thus, the lower (18)k(nuc), in large part, reflects direct metal ion coordination of the nucleophilic oxygen. A similar value for the RNase P

  19. Deuterium isotope effects on acid ionization and transition metal hydrolysis at reactor conditions by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yacyshyn, M.; Madekufamba, M.; Tremaine, P. [Univ. of Guelph, Dept. of Chemistry, Guelph, Ontario (Canada)

    2011-07-01

    This paper reports the preliminary measurements from an experimental study to measure the small differences between light (H{sub 2}O) and heavy (D{sub 2}O) water under reactor operating conditions (250-300 {sup o}C, 10 MPa), using Raman spectroscopy. The deuterium isotope effect δpK = pK{sub D2O} - pK{sub H2O}, for sodium bisulphate NaDSO{sub 4} and phosphoric acid D{sub 3}PO{sub 4}, has now been determined at temperatures of 25 {sup o}C and 80 {sup o}C by measuring the isotropic Raman spectra at different concentrations. The results for the pK and ΔpK at 25 {sup o}C agree with the literature, confirming the reliability of the method. High temperature cells have been constructed. (author)

  20. Tensor-force-driven Jahn-Teller effect and shape transitions in exotic Si isotopes

    CERN Document Server

    Utsuno, Yutaka; Brown, B Alex; Honma, Michio; Mizusaki, Takahiro; Shimizu, Noritaka

    2012-01-01

    We show how the shape evolution of the neutron-rich exotic Si and S isotopes can be understood as a Jahn-Teller effect that comes in part from the tensor-driven evolution of single-particle energies. The detailed calculations we present are in excellent agreement with known experimental data, and we point out of new features that should be explored in new experiments. Potential energy surfaces are used to understand the shape evolutions. The sub-shell closed nucleus, $^{42}$Si, is shown to be a perfect example of a strongly oblate shape instead of a sphere through a robust Jahn-Teller mechanism. The distribution of spectroscopic factors measured by $^{48}$Ca(e,e'p) experiment is shown to be well described, providing a unique test on the tensor-driven shell evolution.

  1. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-06-08

    Coenzyme B12 -dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5'-deoxyadenosyl moiety of the intrinsic coenzyme B12 , it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5'-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5'-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small.

  2. Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics

    Science.gov (United States)

    Zeidler, Anita; Salmon, Philip S.; Fischer, Henry E.; Neuefeind, Jörg C.; Simonson, J. Mike; Markland, Thomas E.

    2012-07-01

    The structures of heavy and light water at 300 K were investigated by using a joint approach in which the method of neutron diffraction with oxygen isotope substitution was complemented by path integral molecular dynamics simulations. The diffraction results, which give intra-molecular O-D and O-H bond distances of 0.985(5) and 0.990(5) Å, were found to be in best agreement with those obtained by using the flexible anharmonic TTM3-F water model. Both techniques show a difference of ≃ 0.5% between the O-D and O-H intra-molecular bond lengths, and the results support a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intra-molecular and inter-molecular quantum contributions. Further consideration of the O-O correlations is needed in order to improve agreement with experiment.

  3. Isotopic Effects on Stereodynamics for Ca+HCI, Ca+DCI, and Ca+TClReactions

    Institute of Scientific and Technical Information of China (English)

    Li-zhi Wang; Chuan-lu Yang; Jing-juan Liang; Jing Xiao; Qing-gang Zhang

    2011-01-01

    The vector correlations in Ca+HC1,Ca+DCI,and Ca+TCI reactions have been investigated by means of the quasi-classical trajectory calculations on PES constructed by means of multireference configuration interaction.The distributions of P(θr),P(Φr) and the PDDCSs of (2π/σ)(dσ00/dωt),(2π/σ)(dσ20/dωt),(2π/σ)(dσ22+/dωt),(2π/σ)(dσ21-/dωt) have been calculated based on the surface.The remarkable isotopic effects in the reactions are observed,and the mechanism which may be ascribed to different mass factors is discussed.

  4. Isotope Effects in the Reactions of Chloroform Isotopologues with Cl, OH and OD

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Claus J.

    2009-01-01

    The kinetic isotope effects in the reactions of CHCl3, CDCl3, and 13CHCl3 with Cl, OH, and OD radicals have been determined in relative rate experiments at 298 ( 1 K and atmospheric pressure monitored by long path FTIR spectroscopy. The spectra were analyzed using a nonlinear least-squares spectral...... fitting procedure including line data from the HITRAN database and measured infrared spectra as references. The following relative reaction rates were determined: kCHCl3+Cl/kCDCl3+Cl ) 3.28 ( 0.01, kCHCl3+Cl/k13CHCl3+Cl ) 1.000 ( 0.003, kCHCl3+OH/kCDCl3+OH ) 3.73 ( 0.02, kCHCl3+OH/k13CHCl3+OH ) 1.023 ( 0...

  5. Isotopic effect and temperature dependent intramolecular excitation energy transfer in a model donor-acceptor dyad.

    Science.gov (United States)

    Singh, Jaykrishna; Bittner, Eric R

    2010-07-21

    We consider here the non-adiabatic energy transfer dynamics for a model bi-chromophore system consisting of a perylenemonoimide unit linked to a ladder-type poly(para-phenylene) oligomer. Starting from a semi-empirical parameterization of a model electron/phonon Hamiltonian, we compute the golden-rule rate for energy transfer from the LPPP5 donor to the PMI acceptor. Our results indicate that the non-adiabatic transfer is promoted by the out-of-plane wagging modes of the C-H bonds even though theses modes give little or no contribution to the Franck-Condon factors in this system. We also predict a kinetic isotope effect of k((H))/k((D)) = 1.7-2.5 depending upon the temperature.

  6. The role of symmetry in the mass independent isotope effect in ozone

    Science.gov (United States)

    Michalski, Greg; Bhattacharya, S. K.

    2009-01-01

    Understanding the internal distribution of “anomalous” isotope enrichments has important implications for validating theoretical postulates on the origin of these enrichments in molecules such as ozone and for understanding the transfer of these enrichments to other compounds in the atmosphere via mass transfer. Here, we present an approach, using the reaction NO2− + O3, for assessing the internal distribution of the Δ17O anomaly and the δ18O enrichment in ozone produced by electric discharge. The Δ17O results strongly support the symmetry mechanism for generating mass independent fractionations, and the δ18O results are consistent with published data. Positional Δ17O and δ18O enrichments in ozone can now be more effectively used in photochemical models that use mass balance oxygen atom transfer mechanisms to infer atmospheric oxidation chemistry. PMID:19307571

  7. Reaction Rates and Kinetic Isotope Effects of H$_2$ + OH $\\rightarrow$ H$_2$O + H

    CERN Document Server

    Meisner, Jan

    2016-01-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling (CVT/$\\mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 \\cdot 10^{-20}$ to $4 \\cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  8. Deuterium isotope effect on the induction period of the cerium catalyzed Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Rossi, Federico; Simoncini, Eugenio; Marchettini, Nadia; Tiezzi, Enzo

    2009-02-01

    In this work we present results about the deuterium isotopic effect on the global kinetics of a cerium catalyzed Belousov-Zhabotinsky reaction. A nonlinear dependence of the induction period upon the percentage of deuterated reactants was found in batch conditions. In order to understand this result, we investigated two reaction pathways responsible for the length of the induction period, namely: (a) the reaction between the enolic form of the malonic acid with molecular bromine and (b) the oxidation of malonic acid by the Ce(IV) ion. In both cases we obtained a linear dependence of the kinetic constants on the percentage of deuterated reactants. Nevertheless, by inserting the experimental values in the MBM (Marburg-Budapest-Missoula) model, we were able to qualitatively simulate the observed trend of the induction period.

  9. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  10. Isotope effect maximum for proton transfer between normal acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, N.A. (Univ. of Goeteborg); Chiang, Y.; Kresge, A.J.

    1978-08-30

    Kinetic isotope effects were determined for the reaction between p-methylbenzaldehyde and methoxylamine in the presence of thirteen carboxylic acid catalysts and ammonium ions using deuterium oxide as the solvent for k/sub D/ measurements. The ratio of k/sub H//k/sub D/ = 1 for the relatively strong acids, CNCH/sub 2/CO/sub 2/H and HCO/sub 2/H, rise to a maximum approaching 3 for CNCH/sub 2/CH/sub 2/NH/sub 3//sup +/, O(CH/sub 2/CH/sub 2/)/sub 2/NH/sub 2//sup +/, and C/sub 6/H/sub 5/CH/sub 2/NH/sub 3//sup +/, and decrease to less than 2 for CH/sub 3/OCH/sub 2/CH/sub 2/CH/sub 2/NH/sub 3//sup +/, and CH/sub 3/CH/sub 2/CH/sub 2/NH/sub 3//sup +/. The authors state that the maximum observed can not be the result of solvent and secondary isotope effects, but must be caused by a rate determining step involving the proton transfer from the catalyst to the alkoxide oxygen of the first-formed zwitterion intermediate. From a discussion of the pKa's of the proton donor and the protonated proton acceptor (for these systems, pKa = 0), the authors conclude that the experimental data are consistent with a model in which encounter, proton transfer, and separation occur at approximately equal rates.

  11. Effective rates of heavy metal release from alkaline wastes--quantified by column outflow experiments and inverse simulations.

    Science.gov (United States)

    Wehrer, Markus; Totsche, Kai Uwe

    2008-10-23

    Column outflow experiments operated at steady state flow conditions do not allow the identification of rate limited release processes. This requires an alternative experimental methodology. In this study, the aim was to apply such a methodology in order to identify and quantify effective release rates of heavy metals from granular wastes. Column experiments were conducted with demolition waste and municipal waste incineration (MSWI) bottom ash using different flow velocities and multiple flow interruptions. The effluent was analyzed for heavy metals, DOC, electrical conductivity and pH. The breakthrough-curves were inversely modeled with a numerical code based on the advection-dispersion equation with first order mass-transfer and nonlinear interaction terms. Chromium, Copper, Nickel and Arsenic are usually released under non-equilibrium conditions. DOC might play a role as carrier for those trace metals. By inverse simulations, generally good model fits are derived. Although some parameters are correlated and some model deficiencies can be revealed, we are able to deduce physically reasonable release-mass-transfer time scales. Applying forward simulations, the parameter space with equifinal parameter sets was delineated. The results demonstrate that the presented experimental design is capable of identifying and quantifying non-equilibrium conditions. They show also that the possibility of rate limited release must not be neglected in release and transport studies involving inorganic contaminants.

  12. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  13. Monitoring Soil Moisture Deficit Effects on Vegetation Parameters Using Radiative Transfer Models Inversion and Hyperspectral Measurements Under Controlled Conditions

    Science.gov (United States)

    Bayat, Bagher; Van der Tol, Christiaan; Verhoef, Wouter

    2016-08-01

    Plant-available soil moisture is a key element which affects plant properties in their ecosystems. This study shows Poa pratensis -a species of grass- responses to soil moisture deficit during an artificial drought episode in a greenhouse experiment. We used radiative transfer model inversion to monitor the gradual manifestation of soil moisture deficit effects on vegetation in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 40 days. In a regular weekly schedule, canopy reflectance was measured. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters (mainly; LAI, Cab, Cw, Cdm and Cs). The relationships between these retrieved parameters with soil moisture content were established in two separated groups; stress and non-stressed. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil moisture content in the drought episode. These parameters co- varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level.

  14. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces.

    Science.gov (United States)

    Rojas-Sánchez, J-C; Reyren, N; Laczkowski, P; Savero, W; Attané, J-P; Deranlot, C; Jamet, M; George, J-M; Vila, L; Jaffrès, H

    2014-03-14

    Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4  nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.

  15. Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects

    CERN Document Server

    Ramos, A Asensio; Degl'Innocenti, E Landi

    2008-01-01

    A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. Here we present a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It is based on the quantum theory of spectral line polarization, which takes into account all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a...

  16. Isotope effect in the carbonyl sulfide reaction with O(3P)

    DEFF Research Database (Denmark)

    Hattori, Shohei; Schmidt, Johan Albrecht; Mahler, Denise W.;

    2012-01-01

    The sulfur kinetic isotope effect (KIE) in the reaction of carbonyl sulfide (OCS) with O((3)P) was studied in relative rate experiments at 298 ± 2 K and 955 ± 10 mbar. The reaction was carried out in a photochemical reactor using long path FTIR detection, and data were analyzed using a nonlinear ...

  17. alfa-Deuterium kinetic isotope effects in reactions of methyllithium. Is better aggregation the cause of lower reactivity?

    DEFF Research Database (Denmark)

    Holm, Torkil

    1996-01-01

    The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium...

  18. Correlation between the energy shell structure and geometry in metallic nanoclusters: quasi-resonance states, isotope effect

    CERN Document Server

    Kresin, Vladimir

    2008-01-01

    Metallic nanoclusters displaying electronic shell structure exhibit the special feature of a correlation between their geometry and the number of delocalized electrons . Their shape evolution can be described as a quantum oscillation between quasi-resonant states (prolate and oblate configurations) whose amplitudes depend upon the degree of shell filling. The picture explains the evolution of absorption spectra and predicts a peculiar isotope effect .

  19. Atmospheric Model Effects on Infrasound Source Inversion from the Source Physics Experiments

    Science.gov (United States)

    Preston, L. A.; Aur, K. A.

    2016-12-01

    The Source Physics Experiments (SPE) consist of a series of underground explosive shots at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance in non-proliferation activities. To this end we perform full waveform source inversion of infrasound data collected from SPE shots at distances from 300 m to 1 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each shot, computing Green's functions through these atmospheric models, and subsequently inverting these signals in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the shot, we utilize two different datasets: North American Regional Reanalysis data, a comprehensive but lower resolution dataset, and locally obtained sonde and surface weather observations. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite. These models include 3-D variations in topography, temperature, pressure, and wind. We will compare and contrast the atmospheric models derived from the two weather datasets and discuss how these differences affect computed source waveforms and contribute to modeling uncertainty. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Cost effective solution using inverse lithography OPC for DRAM random contact layer

    Science.gov (United States)

    Jun, Jinhyuck; Hwang, Jaehee; Choi, Jaeseung; Oh, Seyoung; Park, Chanha; Yang, Hyunjo; Dam, Thuc; Do, Munhoe; Lee, Dong Chan; Xiao, Guangming; Choi, Jung-Hoe; Lucas, Kevin

    2017-04-01

    Many different advanced devices and design layers currently employ double patterning technology (DPT) as a means to overcome lithographic and OPC limitations at low k1 values. Certainly device layers with k1 value below 0.25 require DPT or other pitch splitting methodologies. DPT has also been used to improve patterning of certain device layers with k1 values slightly above 0.25, due to the difficulty of achieving sufficient pattern fidelity with only a single exposure. Unfortunately, this broad adoption of DPT also came with a significant increase in patterning process cost. In this paper, we discuss the development of a single patterning technology process using an integrated Inverse Lithography Technology (ILT) flow for mask synthesis. A single pattering technology flow will reduce the manufacturing cost for a k1 > 0.25 full chip random contact layer in a memory device by replacing the more expensive DPT process with ILT flow, while also maintaining good lithographic production quality and manufacturable OPC/RET production metrics. This new integrated flow consists of applying ILT to the difficult core region and traditional rule-based assist features (RBAFs) with OPC to the peripheral region of a DRAM contact layer. Comparisons of wafer results between the ILT process and the non-ILT process showed the lithographic benefits of ILT and its ability to enable a robust single patterning process for this low-k1 device layer. Advanced modeling with a negative tone develop (NTD) process achieved the accuracy levels needed for ILT to control feature shapes through dose and focus. Details of these afore mentioned results will be described in the paper.

  1. Accidental Predissociation: A Special Case of Photo-Induced Isotope Fractionation Effect and Possible Occurrence in Nature

    Science.gov (United States)

    Chakraborty, S.; Thiemens, M. H.

    2009-12-01

    Photo-Induced Isotope Fractionation Effects (PHIFE) are known to produce isotopic frac-tionation in some photo-dissociating molecules (1-2). The PHIFE formalism is based on the Born-Oppenheimer approximation and the Reflection Principle. The isotopic fractionation arises principally from the spectral shift induced by the small difference in zero point energy between isotopologues and the contraction of the wave function due to isotopic substitution, consequently, the associated isotopic fractionations depends on the reduced mass of the isotopically substi-tuted species. The PHIFE formalism is only applicable to the molecules which undergo direct photo-dissociation that possess continuous absorption spectra. Simple molecules (N2, O2, CO) however do not follow a direct dissociation pathway and dissociate through an indirect process termed predissociation, which occurs when the molecule is excited to a quasi-bound state energetically above the dissociation continuum. The PHIFE formalism is not applicable when the absorption spectra are discrete. The assumption that the lightest isotopologues are preferentially predissociated is only valid for restricted predissociation cases. There is a special case of predissociation known as ‘accidental predissociation’ (3), which takes place through an intermediate bound state in two steps (i) leakage to an intermediate bound state (coupled through spin orbit interaction) and, (ii) predissociation to a third quasi-bound state from the intermediate state. Line broadening at an accidental predissociation is a function of the magnitude of coupling matrix elements and the linewidths are strongly influenced by isotopic substitution (4). An anomalous isotopic effect in accidental predissociation was spectroscopically observed in CO (5), N2 (4) and BeH (6). We measured the isotopic fractionation for the first time in two accidental predissociating states of CO through VUV photodissociation using the 9.0.2 beamline at ALS (7-8). In

  2. Isotope Effect in Ozone Formation: Assessing the Relationship Between Photon Energy and Stabilization

    Science.gov (United States)

    Gardner, D. A.; Chakraborty, S.; Thiemens, M. H.

    2016-12-01

    ozone formation (i.e. energy dependence) and associated isotope effect. Results from different photon energies (e.g. 116.5, 121.6, and 123.6 nm) from different UV lamps will be presented in the meeting.

  3. Deuterium D(V/K) isotope effects on ethanol oxidation in hepatocytes; Importance of the reverse ADH-reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, F.; Iversen, H.L.; Hansen, L.L. (Department of Biochemistry A, The Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    The kinetic deuterium isotope effect, D(V/K), on ethanol oxidation was measured on hepatocytes from rat and pig by the radiometric competitive method using {sup 14}C-labelled ethanol containing deuterium in the (a-R)-position. The corrected D(V/K) values of 2.68 and 2.80 for rat and pig hepatocytes respectively were significantly different, suggesting differences in the amount of non-ADH ethanol oxidizing activity. The apparent isotope effects declined repidly with time when acetaldehyde was present in the medium as a result of the reduction to ethanol of the ({sup 14}C)-acetaldehyde formed from the double labelled ethanol by alcohol dehydrogenase (ADH). Fructose and cynamide caused the acetaldehyde concentration during ethanol oxidation to increase by entirely different mechanisms, and the isotope effect to decrease with time, as did also the addition of acetaldehyde. The apparent first order rate constant for the reverse ADH reaction, assuming the reactants to be acetaldehyde and the ADH-NADH complex, was determined by two metohods giving comparable results. In the presence of semicarbazide, which removes acetaldehyde, the isotope effect was nearly constant. This was the case also when the acetaldehyde concentration was very low (<1 {mu}M) for other reasons, as in hepatocytes from starved animals. A mathematical formula describing the expected decrease of the apparent isotope effect with time was derived. The different response of pig and rat hepatocytes to addition of fructose (the 'fructose effect') is suggested to be caused by differences in activity of aldehyde dehydrogenases in the two species. (author).

  4. Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Grip, W.J. de

    2011-01-01

    Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids

  5. Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Grip, W.J. de

    2011-01-01

    Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids

  6. Influence of the Inverse Faraday Effect on Switching and Oscillations of Magnetization in Single-Domain Nanoparticles

    Directory of Open Access Journals (Sweden)

    A.L. Daniluyk

    2012-03-01

    Full Text Available We have performed a numerical simulation of magnetization switching and oscillations in a ferromagnetic single-domain particle in the disk form under the influence of nanosecond laser pulses with linear and circular polarization. The analysis has shown that the interaction of laser pulses with a ferromagnetic nanodisk leads to change in the direction of its magnetization. This process is accompanied by magnetization oscillations with duration from units to tens of nanoseconds. As it follows from the obtained results, the main cause of magnetization switching is the reduction of magnetic anisotropy energy at heating of the structure by laser. The field of the inverse Faraday effect can lead to an increase in frequency and amplitude of this oscillations. We have performed a numerical simulation of magnetization switching and oscillations in a ferromagnetic single-domain particle in the disk form under the influence of nanosecond laser pulses with linear and circular polarization. The analysis has shown that the interaction of laser pulses with a ferromagnetic nanodisk leads to change in the direction of its magnetization. This process is accompanied by magnetization oscillations with duration from units to tens of nanoseconds. As it follows from the obtained results, the main cause of magnetization switching is the reduction of magnetic anisotropy energy at heating of the structure by laser. The field of the inverse Faraday effect can lead to an increase in frequency and amplitude of this oscillations. We have performed a numerical simulation of magnetization switching and oscillations in a ferromagnetic single-domain particle in the disk form under the influence of nanosecond laser pulses with linear and circular polarization. The analysis has shown that the interaction of laser pulses with a ferromagnetic nanodisk leads to change in the direction of its magnetization. This process is accompanied by magnetization oscillations with duration from

  7. Production of Radioactive Nuclides in Inverse Reaction Kinematics

    CERN Document Server

    Traykov, E; Dendooven, P; Dermois, O C; Jungmann, K; Onderwater, G; Rogachevskiy, A; Sohani, M; Willmann, L; Wilschut, H W; Young, A R

    2006-01-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly interesting when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.

  8. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water.

  9. Secondary. cap alpha. -deuterium kinetic isotope effects in solvolyses of ferrocenylmethyl acetate and benzoate in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sutic, D. (Univ. of Zagreb, Yugoslavia); Asperger, S.; Borcic, S.

    1982-12-17

    Secondary ..cap alpha..-deuterium kinetic isotope effects (KIE) in solvolyses of ferrocenyldideuteriomethyl acetate and benzoate were determined in 96% (v/v) ethanol, at 25/sup 0/C, as k/sub H//k/sub D/ = 1.24 and 1.26, respectively. The KIEs were also determined in the presence of 0.1 mol dm/sup -3/ lithium perchlorate: the k/sub H//k/ sub D/ values were 1.23 and 1.22 for acetate and benzoate complexes, respectively. The maximum KIE for the C-O bond cleavage of a primary substrate is as large as, or larger than, that of secondary derivatives, which is estimated to be 1.23 per deuterium. The measured KIE of about 12% per D therefore represents a strongly reduced effect relative to its maximum. The solvolyses exhibit ''a special salt effect''. This effect indicates the presence of solvent-separated ion pairs and the return to tight pairs. As the maximum KIE is expected in solvolyses involving transformation of one type of ion pair into another, the strongly reduced ..cap alpha..-D KIE supports the structure involving direct participation of electrons that in the ground state are localized at the iron atom. The alkyl-oxygen cleavage is accompanied by 10-15% acyl-oxygen cleavage.

  10. Novel selective cannabinoid CB1 receptor antagonist MJ08 with potent in vivo bioactivity and inverse agonistic effects

    Institute of Scientific and Technical Information of China (English)

    Wei CHEN; Cheng XU; Hong-ying LIU; Long LONG; Wei ZHANG; Zhi-bing ZHENG; Yun-de XIE; Li-li WANG; Song LI

    2011-01-01

    To characterize the biological profiles of M J08,a novel selective CB1 receptor antagonist.Methods:Radioligand binding assays were performed using rat brain and spleen membrane preparations.CB1 and CB2 receptor redistribution and intracellular Ca2+ ([Ca2+]1) assays were performed with IN CELL Analyzer.Inverse agonism was studied using intracellular cAMP assays,and in guinea-pig ileum and mouse vas deferens smooth muscle preparations.In vivo pharmacologic profile was assessed in diet-induced obesity (DIO) mice.Results:In radioligand binding assay,M J08 selectively antagonized CB1 receptor (IC50=99.9 nmol/L).In EGFP-CB1_U20S cells,its IC50 value against CB1 receptor activation was 30.23 nmol/L (SR141716A:32.16 nmol/L).WIN 55,212-2 (1 μmol/L) increased [Ca2+]1 in the primary cultured hippocampal neuronal cells and decreased cAMP accumulation in CHO-hCB1 cells.M J08 (10 nmol/L-1O μmol/L)blocked both the WIN 55,212-2-induced effects.Furthermore,M J08 reversed the inhibition of electrically evoked twitches of mouse vas deferens by WIN 55,212-2 (pA2=10.29±1.05).M J08 and SR141716A both showed an inverse agonism activity by markedly promoting the contraction force and frequency of guinea pig ileum muscle.M J08 significantly increased the cAMP level in CHO-hCB1 cells with an EC50 value of 78.6 nmol/L,which was lower than the EC50 value for SR141716A (159.2 nmol/L).Besides the more potent pharmacological effects of cannabinoid CB1 receptor antagonism in DIO mice,such as reducing food intake,decreasing body weight,and ameliorating dyslipidemia,M J08 (10 mg/kg) unexpectedly raised the fasted blood glucose in vivo.Conclusion:M J08 is a novel,potent and selective CB1 receptor antagonist/inverse agonist with potent bioactive responses in vitro and in vivo that may be useful for disclosure the versatile nature of CB1 receptors.

  11. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  12. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Zhang, Wei [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Ding, Junjia [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Jiang, Wanjun [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA; Pearson, John E. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-02-01

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.

  13. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique.

    Science.gov (United States)

    Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis

    2012-01-01

    The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.

  14. Quantitative investigation of the inverse Rashba-Edelstein effect in Bi/Ag and Ag/Bi on YIG

    Science.gov (United States)

    Matsushima, Masasyuki; Ando, Yuichiro; Dushenko, Sergey; Ohshima, Ryo; Kumamoto, Ryohei; Shinjo, Teruya; Shiraishi, Masashi

    2017-02-01

    The inverse Rashba-Edelstein effect (IREE) is a spin conversion mechanism that recently attracts attention in spintronics and condensed matter physics. In this letter, we report an investigation of the IREE in Bi/Ag by using ferrimagnetic insulator yttrium iron garnet. We prepared two types of samples with opposite directions of the Rashba field by changing a stacking order of Bi and Ag. An electric current generated by the IREE was observed from both stacks, and an efficiency of spin conversion—characterized by the IREE length—was estimated by taking into account a number of contributions left out in previous studies. This study provides a further insight into the IREE spin conversion mechanism: important step towards achieving efficient spin-charge conversion devices.

  15. Inverse probability weighting to estimate causal effect of a singular phase in a multiphase randomized clinical trial for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Annalisa Pezzi

    2016-11-01

    Full Text Available Abstract Background Randomization procedure in randomized controlled trials (RCTs permits an unbiased estimation of causal effects. However, in clinical practice, differential compliance between arms may cause a strong violation of randomization balance and biased treatment effect among those who comply. We evaluated the effect of the consolidation phase on disease-free survival of patients with multiple myeloma in an RCT designed for another purpose, adjusting for potential selection bias due to different compliance to previous treatment phases. Methods We computed two propensity scores (PS to model two different selection processes: the first to undergo autologous stem cell transplantation, the second to begin consolidation therapy. Combined stabilized inverse probability treatment weights were then introduced in the Cox model to estimate the causal effect of consolidation therapy miming an ad hoc RCT protocol. Results We found that the effect of consolidation therapy was restricted to the first 18 months of the phase (HR: 0.40, robust 95 % CI: 0.17-0.96, after which it disappeared. Conclusions PS-based methods could be a complementary approach within an RCT context to evaluate the effect of the last phase of a complex therapeutic strategy, adjusting for potential selection bias caused by different compliance to the previous phases of the therapeutic scheme, in order to simulate an ad hoc randomization procedure. Trial registration ClinicalTrials.gov: NCT01134484 May 28, 2010 (retrospectively registered EudraCT: 2005-003723-39 December 17, 2008 (retrospectively registered

  16. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters

    Directory of Open Access Journals (Sweden)

    B. Scharnagl

    2011-10-01

    Full Text Available In situ observations of soil water state variables under natural boundary conditions are often used to estimate the soil hydraulic properties. However, many contributions to the soil hydrological literature have demonstrated that the information content of such data is insufficient to accurately and precisely estimate all the soil hydraulic parameters. In this case study, we explored to which degree prior information about the soil hydraulic parameters can help improve parameter identifiability in inverse modelling of in situ soil water dynamics under natural boundary conditions. We used percentages of sand, silt, and clay as input variables to the ROSETTA pedotransfer function that predicts the parameters in the van Genuchten-Mualem (VGM model of the soil hydraulic functions. To derive additional information about the correlation structure of the predicted parameters, which is not readily provided by ROSETTA, we employed a Monte Carlo approach. We formulated three prior distributions that incorporate to different extents the prior information about the VGM parameters derived with ROSETTA. The inverse problem was posed in a formal Bayesian framework and solved using Markov chain Monte Carlo (MCMC simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM algorithm. Synthetic and real-world soil water content data were used to illustrate the approach. The results of this study demonstrated that prior information about the soil hydraulic parameters significantly improved parameter identifiability and that this approach was effective and robust, even in case of biased prior information. To be effective and robust, however, it was essential to use a prior distribution that incorporates information about parameter correlation.

  17. Topological inverse semigroups

    Institute of Scientific and Technical Information of China (English)

    ZHU Yongwen

    2004-01-01

    That the projective limit of any projective system of compact inverse semigroups is also a compact inverse semigroup,the injective limit of any injective system of inverse semigroups is also an inverse semigroup, and that a compact inverse semigroup is topologically isomorphic to a strict projective limit of compact metric inverse semigroups are proved. It is also demonstrated that Horn (S,T) is a topological inverse semigroup provided that S or T is a topological inverse semigroup with some other conditions. Being proved by means of the combination of topological semigroup theory with inverse semigroup theory,all these results generalize the corresponding ones related to topological semigroups or topological groups.

  18. Deformation effects in the alpha accompanied cold ternary fission of even-even $^{244-260}$Cf isotopes

    CERN Document Server

    Santhosh, K P

    2016-01-01

    Within the Unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even $^{244-260}$Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of 244^Cf isotope, the highest yield is obtained for the fragment combination 108^Ru+4^He+132^Te, which contain near doubly magic nuclei 132^Te (N=80, Z=52). In the case of 246^Cf and 248^Cf isotopes, the highest yield is obtained for the fragment combinations with near doubly magic nuclei 134^Te (N=82, Z=52) as the heavier fragment. The highest yield obtained for 250^Cf, 252^Cf, 254^Cf, 256^Cf, 258^Cf and 260^Cf isotopes is for the fragment combination with doubly magic nuclei 132^Sn (N=82, Z=50) as the heavier fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to closed shell effect, ground state deformation also plays an important role in the calculation of relative yield of fav...

  19. Kinetic Isotope Effects from QM/MM Subset Hessians: "Cut-Off" Analysis for SN2 Methyl Transfer in Solution.

    Science.gov (United States)

    Williams, Ian H

    2012-02-14

    Isotopic partition-function ratios and kinetic isotope effects for reaction of S-adenosylmethionine with catecholate in water are evaluated using a subset of 324 atoms within its surrounding aqueous environment at the AM1/TIP3P level. Two alternative methods for treating motion in the six librational degrees of freedom of the subset atoms relative to their environment are compared. A series of successively smaller subset Hessians are generated by cumulative deletion of rows and columns from the initial 972 × 972 Hessian. We find that it is better to treat these librations as vibrations than as translations and rotations and that there is no need to invoke the Teller-Redlich product rule. The validity of "cut-off" procedures for computation of isotope effects with truncated atomic subsets is assessed: to ensure errors in ln(KIE) < 1% (or 2% for the quantum-corrected KIE) for all isotopic substitutions considered, it is necessary to use a less-restrictive procedure than is suggested by the familiar two-bond cutoff rule.

  20. Separation of inverse spin hall effect and spin rectification effect by inverting spin injection direction in NiFe/ta bilayers film

    Science.gov (United States)

    Wang, Qiuru; Zhang, Wanli; Peng, Bin; Zhang, Wenxu

    2016-11-01

    The inverse spin Hall effect (ISHE) has been detected and separated from spin rectification effect (SRE) by inverting spin injection direction in metallic system. This work is based on the relation between the two effects and the spin injection direction: the sign of VISHE changes because of the reversing direction of spin injection while the VSRE is independent on it. According to the different voltage signals before and after the spin injection inverted, the pure VISHE and VSRE are calculated by utilizing the method of addition and subtraction. The signals can be separated in a wide range of frequency and power.

  1. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  2. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2012-03-01

    Full Text Available The oxygen isotopic composition (δ18O of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO32−] effect on δ18O is universal for unicellular calcifying planktonic organisms. The slopes of the δ18O/[CO32−] relationships range between –0.0243‰ (μmol kg−1−1 (calcareous dinoflagellate T. heimii and the previously published –0.0022‰ (μmol kg−1−1 (non-symbiotic planktonic foramifera Orbulina universa, while C. leptoporus has a slope of –0.0048 ‰ (μmol kg−1−1. We present a simple conceptual model, based on the contribution of δ18O-enriched HCO3 to the CO32− pool in the calcifying vesicle, which can explain the [CO32−] effect on δ18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms

  3. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    Directory of Open Access Journals (Sweden)

    P. Ziveri

    2011-08-01

    Full Text Available The oxygen isotopic composition (δ18O of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy and possibly for developing new biomarkers. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, suggesting that the [CO32−] effect on δ18O is universal for unicellular calcifying planktonic organisms. The slopes of the δ18O/[CO32−] relationships range between −0.0243 (μmol kg−1−1 (calcareous dinoflagellate T. heimii and the previously published 0.0022 (μmol kg−1−1 (non-symbiotic planktonic foramifera Orbulina universa, while C. leptoporus has a slope of 0.0048 (μmol kg−1−1. We present a simple conceptual model, based on the contribution of δ18O-enriched HCO3 to the CO32− pool in the calcifying vesicle, which can explain the [CO32−] effect on δ18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in

  4. Constraints on the vital effect in coccolithophore and dinoflagellate calcite by oxygen isotopic modification of seawater

    Science.gov (United States)

    Hermoso, Michaël; Horner, Tristan J.; Minoletti, Fabrice; Rickaby, Rosalind E. M.

    2014-09-01

    In this study, we show that there are independent controls of 18O/16O and 13C/12C fractionation in coccolithophore and dinoflagellate calcite due to the contrasting kinetics of each isotope system. We demonstrate that the direction and magnitude of the oxygen isotope fractionation with respect to equilibrium is related to the balance between calcification rate and the replenishment of the internal pool of dissolved inorganic carbon (DIC). As such, in fast growing cells, such as those of Emiliania huxleyi and Gephyrocapsa oceanica (forming the so-called “heavy group”), calcification of the internal carbon pool occurs faster than complete isotopic re-adjustment of the internal DIC pool with H2O molecules. Hence, coccoliths reflect the heavy oxygen isotope signature of the CO2 overprinting the whole DIC pool. Conversely, in large and slow growing cells, such as Coccolithus pelagicus ssp. braarudii, complete re-equilibration is achieved due to limited influx of CO2 leading to coccoliths that are precipitated in conditions close to isotopic equilibrium (“equilibrium group”). Species exhibiting the most negative oxygen isotope composition, such as Calcidiscus leptoporus (“light group”), precipitate coccolith under increased pH in the coccolith vesicle, as previously documented by the “carbonate ion effect”. We suggest that, for the carbon isotope system, any observed deviation from isotopic equilibrium is only “apparent”, as the carbon isotopic composition in coccolith calcite is controlled by a Rayleigh fractionation originating from preferential incorporation of 12C into organic matter. Therefore, species with low PIC/POC ratios as E. huxleyi and G. oceanica are shifted towards positive carbon isotope values as a result of predominant carbon fixation into the organic matter. By contrast, cells with higher PIC/POC as C. braarudii and C. leptoporus maintain, to some extent, the original negative isotopic composition of the CO2. The calcareous

  5. Reaction of dimethyl ether with hydroxyl radicals: kinetic isotope effect and prereactive complex formation.

    Science.gov (United States)

    Bänsch, Cornelie; Kiecherer, Johannes; Szöri, Milan; Olzmann, Matthias

    2013-09-05

    The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory

  6. H/D isotope effect of {sup 1}H MAS NMR spectra and {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate and pyrrolidinium p-bromobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Hisashi, E-mail: hhonda@yokohama-cu.ac.jp [Yokohama City University, Graduate School of Nanobioscience (Japan); Kyo, Shinshin [Yokohama City University, Faculty of Sciences (Japan); Akaho, Yousuke [Yokohama City University, Faculty of International College of Arts and Sciences (Japan); Takamizawa, Satoshi [Yokohama City University, Graduate School of Nanobioscience (Japan); Terao, Hiromitsu [Tokushima University, Faculty of Integrated Arts and Sciences (Japan)

    2010-04-15

    H/D isotope effects onto {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate were studied by deuterium substitution of hydrogen atoms which form two kinds of N-H Midline-Horizontal-Ellipsis O type hydrogen bonds, and the isotope shift of ca. 100 kHz were detected for a whole observed temperature range. In addition, {sup 1}H MAS NMR spectra measurements of piperidinium and pyrrolidinium p-bromobenzoate were carried out and little isotope changes of NMR line shape were detected. In order to reveal effects of molecular arrangements into the obtained isotope shift of NQR frequencies, single-crystal X-ray measurement of piperidinium p-bromobenzoate-d2 and density-functional-theory calculation were carried out. Our estimation showed the dihedral-angle change between piperidine and benzene ring contributes to isotope shift rather than those of N-H lengths by deuterium substitution.

  7. Quantum interference effects on the probe amplification without and with inversion in a four-level system

    Institute of Scientific and Technical Information of China (English)

    Zhang Bing; Xu Wei-Hua; Zhang Hui-Fang; Gao Jin-Yue

    2004-01-01

    A four-level system driven by two coherent fields is considered. It is shown that in the presence of an incoherent pump, the probe gain at a short wavelength can be achieved due to the quantum interference. Our density matrix calculation provides the conditions for probe amplification from different origins, including gain without population inversion on any state basis, gain with population inversion on the dressed-state basis, and gain with population inversion on the bare-state basis. Also, by controlling the Rabi frequency of the coupling field a total change from non-inversion to inversion can be achieved which does not depend on the intensity of the incoherent pump.

  8. Quantum path-integral study of the phase diagram and isotope effects of neon

    CERN Document Server

    Ramirez, R; 10.1063/1.3023036

    2011-01-01

    The phase diagram of natural neon has been calculated for temperatures in the range 17-50 K and pressures between 0.01 and 2000 bar. The phase coexistence between solid, liquid, and gas phases has been determined by the calculation of the separate free energy of each phase as a function of temperature. Thus, for a given pressure, the coexistence temperature was obtained by the condition of equal free energy of coexisting phases. The free energy was calculated by using non-equilibrium techniques such as adiabatic switching and reversible scaling. The phase diagram obtained by classical Monte Carlo simulations has been compared to that obtained by quantum path-integral simulations. Quantum effects related to the finite mass of neon cause that coexistence lines are shifted towards lower temperatures when compared to the classical limit. The shift found in the triple point amounts to 1.5 K, i.e., about 6 % of the triple-point temperature. The triple-point isotope effect has been determined for 20Ne, 21Ne, 22Ne, a...

  9. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    CERN Document Server

    Guo, Ya-Fei; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2016-01-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}isotopic nuclear reactions of $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn at the incident energies of 50 and 120 MeV/nucleon, respectively. It is found that the both effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observab...

  10. Examining the Effects of Geomorphology on Hydrologic Transit Times Using Liquid Water Isotopes

    Science.gov (United States)

    Delgado, D.; Troch, P.; Lyon, S.; Desilets, S.; Guardiola, M.; Broxton, P.

    2007-12-01

    In recent years there has been resurgence in improving physically based and spatially distributed hydrological response models. However there continues to be many obstacles in accurately representing the basic processes governing rainfall runoff responses. Much of these inaccuracies can be attributed to such problems as a lack of understanding in runoff processes, unknown heterogeneity both at the surface and subsurface, variations in driving forces and the effects of geomorphology on the transformation of rainfall to stream flow. We hope to improve on such ambiguity is by examining the relationships between geomorphology and hydrology through the investigation of transit time distributions, which can be used as a fundamental descriptor of catchments" characteristics such as storage and flow pathways. By examining stable isotopic variability in precipitation, soil moisture and stream flow to determine transit times, we hope to better understand the effects of topographic land structures on the hydrologic response system. The first step in this process has been to fully instrument a series of hill slopes with similar structural and pedologic characteristics, located in the Marshall Gulch region of the Santa Catalina Mountains. Equipment including suction and non- suction lysimeters, tipping bucket rain gauges and automatic flow samplers with data loggers positioned to take stream flow and precipitation samples have been used to collect samples throughout the region. A description of preliminary results will be presented.

  11. Hemodynamic effects of metoprolol and nifedipine in angina pectoris measured by isotope technique

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, P.A.

    1988-01-01

    In order to evaluate the therapeutic effects of metoprolol, nifedipine, and their combination, 11 patients with secondary angina pectoris and with thallium tomographic findings indicating coronary artery disease were studied before and after these three treatment regimes in a single-blind cross-over study. The therapeutic effect was measured by standardized working test and isotope angiocardiography, which enabled evaluation of left ventricular ejection fraction, stroke volume, and phase analysis of left ventricular contraction. Treatment with metoprolol and combination therapy increased work performance. Ejection fraction did not differentiate the treatment regimes, whereas stroke volume was significantly lower at work and heart rate higher at rest and at work during nifedipine treatment compared to either metoprolol or combination treatment (p less than 0.05). Cardiac output was significantly reduced during nifedipine and metoprolol treatment during work (p less than 0.05). Phase improved after all therapeutic regimes, but reached significance only during the metoprolol treatment period at rest (p less than 0.05).

  12. Electron–Rotor Interaction in Organic–Inorganic Lead Iodide Perovskites Discovered by Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jue; Yang, Mengjin; Ma, Xiangchao; Schaller, Richard D.; Liu, Gang; Kong, Lingping; Yang, Ye; Beard, Matthew C.; Lesslie, Michael; Dai, Ying; Huang, Baibiao; Zhu, Kai; Xu, Tao

    2016-08-04

    We report on the carrier-rotor coupling effect in perovskite organic-inorganic hybrid lead iodide (CH3NH3PbI3) compounds discovered by isotope effects. Deuterated organic-inorganic perovskite compounds including CH3ND3PbI3, CD3NH3PbI3, and CD3ND3PbI3 were synthesized. Devices made from regular CH3NH3PbI3 and deuterated CH3ND3PbI3 exhibit comparable performance in band gap, current-voltage, carrier mobility, and power conversion efficiency. However, a time-resolved photoluminescence (TRPL) study reveals that CH3NH3PbI3 exhibits notably longer carrier lifetime than that of CH3ND3PbI3, in both thin-film and single-crystal formats. Furthermore, the comparison in carrier lifetime between CD3NH3PbI3 and CH3ND3PbI3 single crystals suggests that vibrational modes in methylammonium (MA+) have little impact on carrier lifetime. In contrast, the fully deuterated compound CD3ND3PbI3 reconfirmed the trend of decreasing carrier lifetime upon the increasing moment of inertia of cationic MA+. Polaron model elucidates the electron-rotor interaction.

  13. Anomalous quantum and isotope effects in water clusters: Physical phenomenon, model artifact, or bad approximation?

    CERN Document Server

    Brown, Sandra E

    2014-01-01

    Free energy differences $\\Delta F:=F-F_{\\text{prism}}$ are computed for several isomers of water hexamer relative to the "prism" isomer using the self-consistent phonons method. %$\\Delta F:=F-F({prism})$ We consider the isotope effect defined by the quantity $\\delta F_{D_2O}:=\\Delta F_{\\rm D_2O}-\\Delta F_{\\rm H_2O}$, and the quantum effect, $\\delta F_{\\hbar=0}:=\\Delta F_{\\hbar=0}-\\Delta F_{\\rm H_2O}$, and evaluate them using different flexible water models. While both $\\delta F_{D_2O}$ and $\\delta F_{\\hbar=0}$ are found to be rather small for all of the potentials, they are especially small for two of the empirical models, q-TIP4P/F and TTM3-F, compared to q-SPC/Fw and the two {\\it abinitio}-based models, WHBB and HBB2-pol. This qualitative difference in the properties of different water models cannot be explained by one being "more accurate" than the other. We speculate as to whether the observed anomalies are caused by the special properties of water systems, or are an artifact of either the potential energ...

  14. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  15. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2

    Science.gov (United States)

    Angert, Alon; Rachmilevitch, Shimon; Barkan, Eugeni; Luz, Boaz

    2003-03-01

    The triple isotopic composition of atmospheric O2 is a new tracer used to estimate changes in global productivity. To estimate such changes, knowledge of the relationship between the discrimination against 17O and the discrimination against 18O is needed. This relationship is presented as θ = ln(17α)/ln(18α). Here, the value of theta was evaluated for the most important processes that affect the isotopic composition of oxygen. Similar values were found for dark respiration through the cytochrome pathway (0.516 ± 0.001) and the alternative pathway (0.514 ± 0.001), and slightly higher value was found for diffusion in air (0.521 ± 0.001). The combined effect of diffusion and respiration on the atmosphere was shown to be close to that of dark respiration. The value we found for photorespiration (0.506 ± 0.005) is considerably lower than that of dark respiration. Our results clearly show that the triple isotopic composition of the atmosphere is affected by the relative rates of photorespiration and dark respiration. Also, we show that closing the current global isotopic balance will enable the estimation of the current global rate of photorespiration. Using the Last Glacial Maximum as a case study, we show that variations in global rate of photorespiration affected the triple isotopic composition in the past. Strong fractionations measured in illuminated plants indicated that the alternative pathway is activated in the same conditions that favor high rate of photorespiration. This activation suggests that the global rate of the alternative pathway is higher than believed thus far, and may help to close the gap between the calculated and measured Dole Effect.

  16. Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2010-02-01

    SummaryStable isotopes of water, oxygen-18 and deuterium, were measured at biweekly to monthly intervals during the open-water season in a small, headwater lake (Pocket Lake, 4.8 ha) near Yellowknife Northwest Territories, and concurrently in a nearby string-of-lakes watershed (Baker Creek, 137 km 2) situated in the subarctic Precambrian Shield region. As measured in water samples collected over a 12 year period (1997-2008), the levels of evaporative isotopic enrichment in both lake and watershed outflow were differentially offset, and seasonal variations were found in both to be driven by variations in open-water evaporation. Systematic differences measured in the magnitude of the offset between the lake and watershed outflow are interpreted as being caused by changes in the effective drainage area contributing to runoff. Based on the observed and extremely consistent relationship between isotopic compositions of lake water and watershed outflow ( r2 = 0.849, p isotopic signals transferred downstream in a typical shield drainage system within the Mackenzie Basin.

  17. Explaining the isotope effect on heat transport in L-mode with the collisional electron-ion energy exchange

    Science.gov (United States)

    Schneider, P. A.; Bustos, A.; Hennequin, P.; Ryter, F.; Bernert, M.; Cavedon, M.; Dunne, M. G.; Fischer, R.; Görler, T.; Happel, T.; Igochine, V.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Morel, P.; Willensdorfer, M.; the ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-06-01

    In ASDEX Upgrade (AUG), the normalised gyroradius {ρ\\star} was varied via a hydrogen isotope scan while keeping other dimensionless parameters constant. This was done in L-mode, to minimise the impact of pedestal stability on confinement. Power balance and perturbative transport analyses reveal that the electron heat transport is unaffected by the differences in isotope mass. Nonlinear simulations with the Gene code suggest that these L-mode discharges are ion temperature gradient (ITG) dominated. The different gyroradii due to the isotope mass do not necessarily result in a change of the predicted heat fluxes. This result is used in simulations with the Astra transport code to match the experimental profiles. In these simulations the experimental profiles and confinement times are reproduced with the same transport coefficients for hydrogen and deuterium plasmas. The mass only enters in the energy exchange term between electrons and ions. These numerical observations are supported by additional experiments which show a lower ion energy confinement compared to that of the electrons. Additionally, hydrogen and deuterium plasmas have a similar confinement when the energy exchange time between electrons and ions is matched. This strongly suggests that the observed isotope dependence in L-mode is not dominated by a gyroradius effect, but a consequence of the mass dependence in the collisional energy exchange between electrons and ions.

  18. Isotopic quantum effects in the structure of liquid methanol: I. Experiments with high-energy photon diffraction

    Science.gov (United States)

    Tomberli, B.; Egelstaff, P. A.; Benmore, C. J.; Neuefeind, J.

    2001-12-01

    High-energy electromagnetic radiation scattering techniques have been used to measure the structural differences between four isotopic samples of methanol (CH3OH, CD3OD, CH3OD and CD3OH). The first series of experiments employed room temperature and ambient pressure. The carbon-oxygen intramolecular bond length was measured and found to depend more strongly on the isotopic substitution at the hydroxyl site than at the methyl sites. The oscillations in the isotopic difference of the x-ray structure factor, ΔSX(Q), are shown at room temperature to be about 2% as large as the oscillations in the total structure factor. Our uncertainties are an order of magnitude smaller than those of previous gamma ray measurements (Benmore C J and Egelstaff P A 1996 J. Phys.: Condens. Matter 8 9429-32). A second series of experiments was carried out at -80 °C at its vapour pressure in order to study the significant temperature dependence of these effects. The ΔSX(Q) difference at -80 °C is shown to be up to three times larger than the room temperature difference. These studies showed that isotopic structural differences in methanol may be represented as temperature shifts that vary as a function of thermodynamic state and substitution site.

  19. Effects of isotopic disorder on the Raman spectra of crystals: Theory and ab initio calculations for diamond and germanium

    Science.gov (United States)

    Vast, Nathalie; Baroni, Stefano

    2000-04-01

    We present a method to study the effects of isotopic composition on the Raman spectra of crystals, in which disorder is treated exactly without resorting to any kind of mean-field approximation. The Raman cross section is expressed in terms of a suitable diagonal element of the vibrational Green's function, which is accurately and efficiently calculated using the recursion technique. This method can be used in conjunction with both semiempirical lattice-dynamical models and with first-principles interatomic force constants. We have applied our technique to diamond and germanium using the most accurate interatomic force constants presently available, obtained from density-functional perturbation theory. Our method correctly reproduces the light scattering in diamond-where isotopic effects dominates over the anharmonic ones-as well as in germanium, where anharmonic effects are larger.

  20. Correction on Effect of Earth's Oblateness in Inversion of GPS Occultation Data

    Institute of Scientific and Technical Information of China (English)

    XU Xiaohua; LI Zhenghang; LUO Jia

    2005-01-01

    By using observed CHAMP orbit ephemeredes and MSISE-90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth's oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.