WorldWideScience

Sample records for invasive tephritid model

  1. Tephritid fruit fly transgenesis and applications

    Science.gov (United States)

    Tephritid fruit flies are among the most serious agricultural pests in the world, owing in large part to those species having broad host ranges including hundreds of fruits and vegetables. They are the largest group of insects subject to population control by a biologically-based systems, most notab...

  2. Host range and reproductive output of Diachasmimorpha kraussii (Hymenoptera: Braconidae), a parasitoid of tephritid fruit flies newly imported to Hawaii

    International Nuclear Information System (INIS)

    Messing, R.H.; Ramadan, M.M.

    2000-01-01

    Four exotic tephritid fruit fly pests have colonised the Hawaiian islands over the past 100 years, where they have become major pests infesting hundreds of horticultural crops. The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), Oriental fruit fly, Bactrocera dorsalis (Hendel), melon fly, B. cucurbitae (Coquillett), and Solanaceous fruit fly, B. latifrons (Hendel) are considered among the major obstacles to the development of a more robust agricultural economy in the state of Hawaii. Furthermore, the flies pose a continuous threat to agriculture in California and other areas in the southern United States, where it has been estimated that the establishment of the Medfly alone would result in losses of over one billion dollars annually (Andrew et al. 1978). Entomologists in Hawaii have conducted a number of classical biological control programmes against these tephritid pests over the years, resulting in the establishment of several parasitoid species and partial control of the flies in some crops (see reviews in Clausen et al. 1965, Wharton 1989). However, these programmes were conducted before the invasion of the state by the Solanaceous fruit fly; thus, there have been no biocontrol programmes targeted against this pest. Also, several entomologists have pointed out the potential of improved control over the other tephritid species in Hawaii by introducing new natural enemies (Gilstrap and Hart 1987, Messing 1995, Steck et al. 1986, Wharton 1989, Wong and Ramadan 1992). We have therefore renewed efforts to import parasitoids from tropical and sub-tropical areas around the world to attack tephritid fruit flies in Hawaii. As part of this effort, we imported Diachasmimorpha kraussii Fullaway from Queensland, Australia, where it is an endemic parasitoid of Bactrocera tryoni (Froggatt) and several other endemic Australian tephritids. This paper reports the results of initial host range tests and studies on the reproductive output of D. kraussii in quarantine

  3. New sanitation techniques for controlling tephritid fruit flies (Diptera ...

    African Journals Online (AJOL)

    New approaches to sanitation in a cropping system susceptible to tephritid fruit flies (Diptera tephritidae) in Hawaii have been investigated. Six trials were conducted in tent-like structures to demonstrate that melon fly larvae (Bacrocera cucurbitae, Coquillett) are not reliably controlled by malathion sprayed on the surface of ...

  4. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival.

    Science.gov (United States)

    Piper, Alexander M; Farnier, Kevin; Linder, Tomas; Speight, Robert; Cunningham, John Paul

    2017-09-01

    Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.

  5. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  6. Physiological control of behaviour in tephritid fruit flies

    International Nuclear Information System (INIS)

    Jang, Eric B.

    2000-01-01

    Studies on the behaviour of tephritid fruit flies have historically focused on the interaction of external stimuli such as temperature, semiochemicals, seasonality, etc., or the interactions of flies between and among species for a number of observed behaviours such as mating, pheromone calling and oviposition. While descriptive behaviour represent much of what we know about these pest species, less is known about the underlying physiological mechanisms which function in priming or modulation of the observed behaviour. Central to our understanding of tephritid behaviour are the multiple and often complex internal factors which are involved, and the path/mechanisms by which external stimuli result in observed behaviour. Tephritid fruit fly physiology is a vastly understudied research area which may provide important information on how peripheral receptors receive information, the transduction and coding of information centrally and how behaviour is regulated biochemically. The integration of physiology disciplines to help explain behaviour is central to the goal of developing new technology which may be useful in fruit fly control. In our laboratory, we have been studying the mechanisms of chemoreception and its link to behaviour in tephritids in such areas as olfaction, feeding, mating and oviposition. Our approach has been that tephritid behaviour can be largely influenced by their peripheral receptors which are responsible for receiving olfactory, gustatory, visual and tactile information inputs and their physiological state which controls internal modulation of behaviour. Thus, differences in behaviour between species might be explained on the basis of differences in their peripheral receptors, and the plasticity in which observed behaviour vary between the same species could very well be attributed to changes in their physiological state that are not readily apparent merely from visual observation. The importance of the physiological state in behavioural

  7. Modeling tumor invasion and metastasis in Drosophila

    Directory of Open Access Journals (Sweden)

    Wayne O. Miles

    2011-11-01

    Full Text Available Conservation of major signaling pathways between humans and flies has made Drosophila a useful model organism for cancer research. Our understanding of the mechanisms regulating cell growth, differentiation and development has been considerably advanced by studies in Drosophila. Several recent high profile studies have examined the processes constraining the metastatic growth of tumor cells in fruit fly models. Cell invasion can be studied in the context of an in vivo setting in flies, enabling the genetic requirements of the microenvironment of tumor cells undergoing metastasis to be analyzed. This Perspective discusses the strengths and limitations of Drosophila models of cancer invasion and the unique tools that have enabled these studies. It also highlights several recent reports that together make a strong case for Drosophila as a system with the potential for both testing novel concepts in tumor progression and cell invasion, and for uncovering players in metastasis.

  8. Lattice models for invasions through patchy environments.

    Science.gov (United States)

    Campos, Daniel; Méndez, Vicenç; Ortega-Cejas, Vicente

    2008-10-01

    We analyze traveling front solutions for a class of reaction-transport Lattice Models (LMs) in order to claim their interest on the description of biological invasions. As lattice models are spatially discrete models, we address here the problem of invasions trough patchy habitats, where every node in the lattice represents a different patch. Distributed generation times for the individuals are considered, so that different temporal patterns can be studied. Specifically, we explore some examples of seasonal and nonseasonal patterns which may be of ecological interest. The main advantage of the LMs described here is that a direct correspondence between these discrete models and a mesoscopic description of Continuous-Time Random Walks (CTRW) can be found. This point is of great importance, since many times one needs analytical expressions to support or validate numerical results, or vice versa. Finally, that correspondence allows us to provide a discussion about some general aspects of reaction-dispersal models.

  9. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni

    Science.gov (United States)

    van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Abstract Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (=“lures” based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. PMID:29220418

  10. Plant-Mediated Female Transcriptomic Changes Post-Mating in a Tephritid Fruit Fly, Bactrocera tryoni.

    Science.gov (United States)

    Kumaran, Nagalingam; van der Burg, Chloé A; Qin, Yujia; Cameron, Stephen L; Clarke, Anthony R; Prentis, Peter J

    2018-01-01

    Female post-mating behaviors are regulated by complex factors involving males, females, and the environment. In insects, plant secondary compounds that males actively forage for, may indirectly modify female behaviors by altering male behavior and physiology. In the tephritid fruit fly, Bactrocera tryoni, females mated with males previously fed on plant-derived phenylpropanoids (="lures" based on usage in tephritid literature), have longer mating refractoriness, greater fecundity, and reduced longevity than females mated with non-lure fed males. This system thus provides a model for studying transcriptional changes associated with those post-mating behaviors, as the genes regulating the phenotypic changes are likely to be expressed at a greater magnitude than in control females. We performed comparative transcriptome analyses using virgin B. tryoni females, females mated with control males (control-mated), and females mated with lure-fed males (lure-mated). We found 331 differentially expressed genes (DEGs) in control-mated females and 80 additional DEGs in lure-mated females. Although DEGs in control-mated females are mostly immune response genes and chorion proteins, as reported in Drosophila species, DEGs in lure-mated females are titin-like muscle proteins, histones, sperm, and testis expressed proteins which have not been previously reported. While transcripts regulating mating (e.g., lingerer) did not show differential expression in either of the mated female classes, the odorant binding protein Obp56a was down-regulated. The exclusively enriched or suppressed genes in lure-mated females, novel transcripts such as titin and histones, and several taxa-specific transcripts reported here can shed more light on post-mating transcriptional changes, and this can help understand factors possibly regulating female post-mating behaviors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  12. An Evolutionary Modelling Approach To Understanding The Factors Behind Plant Invasiveness And Community Susceptibility To Invasion

    DEFF Research Database (Denmark)

    Warren, John; Topping, Christopher John; James, Penri

    2011-01-01

    Ecologists have had limited success in understanding which introduced species may become invasive. An evolutionary model is used to investigate which traits are associated with invasiveness. Translocation experiments were simulated in which species were moved into similar but evolutionary younger...... observed to be species and community combination specific. This evolutionary study represents a novel in silico attempt to tackle invasiveness in an experimental framework, and may provide a new methodology for tackling these issues....

  13. Modelling Hotspots for Invasive Alien Plants in India.

    Science.gov (United States)

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species.

  14. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species.

    Science.gov (United States)

    Gilchrist, Anthony Stuart; Shearman, Deborah C A; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-12-20

    The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despite distinct morphologies and behaviours, can be force-mated in the laboratory to produce fertile hybrid offspring. To exploit the opportunities offered by genomics, such as the efficient identification of genetic loci central to pest behaviour and to the earliest stages of speciation, investigators require genomic resources for future investigations. We produced a draft de novo genome assembly of Australia's major tephritid pest species, Bactrocera tryoni. The male genome (650-700 Mbp) includes approximately 150 Mb of interspersed repetitive DNA sequences and 60 Mb of satellite DNA. Assessment using conserved core eukaryotic sequences indicated 98% completeness. Over 16,000 MAKER-derived gene models showed a large degree of overlap with other Dipteran reference genomes. The sequence of the ribosomal RNA transcribed unit was also determined. Unscaffolded assemblies of B. neohumeralis and B. jarvisi were then produced; comparison with B. tryoni showed that the species are more closely related than any Drosophila species pair. The similarity of the genomes was exploited to identify 4924 potentially diagnostic indels between the species, all of which occur in non-coding regions. This first draft B. tryoni genome resembles other dipteran genomes in terms of size and putative coding sequences. For all three species included in this study, we have identified a comprehensive set of non-redundant repetitive sequences, including the ribosomal RNA unit, and have quantified the major satellite DNA

  15. Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes

    Czech Academy of Sciences Publication Activity Database

    Kueffer, C.; Pyšek, Petr; Richardson, D. M.

    2013-01-01

    Roč. 200, č. 3 (2013), s. 615-633 ISSN 1469-8137 R&D Projects: GA ČR(CZ) GAP504/11/1028; GA ČR GA206/09/0563 Institutional support: RVO:67985939 Keywords : model systems * invasion syndromes * multi-site studies Subject RIV: EF - Botanics Impact factor: 6.545, year: 2013

  16. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  17. Buffelgrass-Integrated modeling of an invasive plant

    Science.gov (United States)

    Holcombe, Tracy R.

    2011-01-01

    Buffelgrass (Pennisetum ciliare) poses a problem in the deserts of the United States, growing in dense stands and introducing a wildfire risk in an ecosystem not adapted to fire. The Invasive Species Science Branch of the Fort Collins Science Center has worked with many partners to develop a decision support model and a data management system to address the problem. The decision support model evaluates potential strategies for resource use and allocation. The data management system is a portal where users can submit, view, and download buffelgrass data. These tools provide a case study showcasing how the FORT is working to address the urgent issue of invasive species in the United States.

  18. The cryptochrome (cry) Gene and a Mating Isolation Mechanism in Tephritid Fruit Flies

    OpenAIRE

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A.

    2004-01-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry i...

  19. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    OpenAIRE

    Raphael, Kathryn A; Shearman, Deborah CA; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control ...

  20. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    Science.gov (United States)

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  1. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  2. Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. Nov. using life-cycle simulation models: Implications for phytosanitary measures and management.

    Directory of Open Access Journals (Sweden)

    Chrysantus Mbi Tanga

    Full Text Available Integrative taxonomy has resolved the species status of the potentially invasive Ceratitis rosa Karsch into two separate species with distinct ecological requirements: C. rosa "lowland type" and the newly described species Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. "highland type". Both species are tephritid pests threatening the production of horticultural crops in Africa and beyond. Studies were carried out by constructing thermal reaction norms for each life stage of both species at constant and fluctuating temperatures. Non-linear functions were fitted to continuously model species development, mortality, longevity and oviposition to establish phenology models that were stochastically simulated to estimate the life table parameters of each species. For spatial analysis of pest risk, three generic risk indices were visualized using the advanced Insect Life Cycle Modeling software. The study revealed that the highest fecundity, intrinsic rate of natural increase and net reproductive rate for C. rosa and C. quilicii was at 25 and 30°C, respectively. The resulting model successfully fits the known distribution of C. rosa and C. quilicii in Africa and the two Indian Ocean islands of La Réunion and Mauritius. Globally, the model highlights the substantial invasion risk posed by C. rosa and C. quilicii to cropping regions in the Americas, Australia, India, China, Southeast Asia, Europe, and West and Central Africa. However, the proportion of the regions predicted to be climatically suitable for both pests is narrower for C. rosa in comparison with C. quilicii, suggesting that C. quilicii will be more tolerant to a wider range of climatic conditions than C. rosa. This implies that these pests are of significant concern to biosecurity agencies in the uninvaded regions. Therefore, these findings provide important information to enhance monitoring/surveillance and designing pest management strategies to limit the spread and reduce

  3. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P habitat suitability models can be highly useful tools for guiding invasive species monitoring

  4. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  5. A Practical and Less Invasive Total Cavopulmonary Connection Sheep Model

    OpenAIRE

    Wang, Dongfang; Plunkett, Mark; Gao, Guodong; Zhou, Xiaoqin; Ballard-Croft, Cherry; Reda, Hassan; Zwischenberger, Joseph B.

    2014-01-01

    Our goal is to develop a less invasive total cavopulmonary connection (TCPC) sheep model for testing total cavopulmonary assist (CPA) devices. Thirteen sheep underwent a right 4th intercostal lateral thoracotomy. In series I (n=6), a polytetrafluoroethylene (PTFE) extracardiac conduit (ECC) was connected to inferior vena cava (IVC) and superior vena cava (SVC) by end to side anastomosis. The SVC/IVC remained connected to right atrium (RA). A PTFE graft bridged ECC to right pulmonary artery (R...

  6. Tephritid taxonomy into the 21st century - Research opportunities and applications

    International Nuclear Information System (INIS)

    Drew, R.A.I.; Romig, M.C.

    2000-01-01

    We write with the firm conviction that taxonomic research forms the essential foundation for all other areas of investigation within the field of biology. This has been well demonstrated in the Tephritidae and is a position at which we have arrived through many years' experience in fruit fly systematic research covering taxonomy, behaviour, biology, ecology and pest control. The importance of sound taxonomic research is highlighted at this time by the known presence of many sibling species complexes across the family. Within the Dacinae, for example, major pest species often occur within groups of closely related species, most of which are not pests. The dorsalis complex of Southeast Asia and the musae complex of Papua New Guinea are examples. Tephritid taxonomy has a long history (over two centuries) and rich heritage with some 4,500 species having been described since the mid-1700s. This research has been carried out in major research centres around the world and particularly in Australia, Europe, Hawaii, mainland USA and South Africa. In Mexico in February 1998, a significant meeting was held on the biology/behaviour and taxonomy of Tephritidae. Specialist researchers in this area presented valuable and interesting data on 'Phylogeny and Evolution of Behaviour' in fruit flies. In summarising current knowledge on the taxonomy and biology of the Tephritidae, the meeting highlighted the outstanding achievements of taxonomy in its contributions to both basic research and pest management programmes over many decades of tephritid studies world-wide. This presentation provides a link between the meetings in Mexico and Penang and enables us to present a summary of our current knowledge and genuine valuable applications of tephritid taxonomy to the overall fruit fly research and pest management effort. In doing this, this presentation also fits into the theme of this conference in Penang, 'Fruit Flies- current global scenario'

  7. Minimally invasive resynchronization pacemaker: a pediatric animal model.

    Science.gov (United States)

    Jordan, Christopher P; Wu, Kyle; Costello, John P; Ishibashi, Nobuyuki; Krieger, Axel; Kane, Timothy D; Kim, Peter; Berul, Charles I

    2013-12-01

    We developed a minimally invasive epicardial pacemaker implantation method for infants and congenital heart disease patients for whom a transvenous approach is contraindicated. The piglet is an ideal model for technical development. In 5 piglets we introduced a needle through subxiphoid approach under thoracoscopic guidance, inserting a wire into the pericardial space. Pacing leads were affixed to the left ventricular free wall and left atrial appendage. After verifying functionality with atrial and ventricular pacing and sensing, animals were euthanized. Pacemaker monitoring occurred daily for 4 days in the fifth animal. Through minimally invasive pericardial access, we directly visualized and fixated pacing leads to the left ventricle and left atrial appendage, successfully pacing atrium and ventricle. Epicardial structures were visualized. One piglet had contralateral pneumothorax, which resolved with needle decompression. No other adverse events occurred. Minimally invasive epicardial pacemaker implantation in an infant model is feasible and effective. This innovation may be of value for pacing and resynchronization in infants and congenital heart disease patients. Survival studies with permanent generator implantation are under way. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Loopless nontrapping invasion-percolation model for fracking.

    Science.gov (United States)

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  9. A novel model of invasive fungal rhinosinusitis in rats.

    Science.gov (United States)

    Zhang, Fang; An, Yunfang; Li, Zeqing; Zhao, Changqing

    2013-01-01

    Invasive fungal rhinosinusitis (IFRS) is a life-threatening inflammatory disease that affects immunocompromised patients, but animal models of the disease are scarce. This study aimed to develop an IFRS model in neutropenic rats. The model was established in three consecutive steps: unilateral nasal obstruction with Merocel sponges, followed by administration of cyclophosphamide (CPA), and, finally, nasal inoculation with Aspergillus fumigatus. Fifty healthy Wistar rats were randomly divided into five groups, with group I as the controls, group II undergoing unilateral nasal obstruction alone, group III undergoing nasal obstruction with fungal inoculation, group IV undergoing nasal obstruction with administration of CPA, and group V undergoing nasal obstruction with administration of CPA and fungal inoculation. Hematology, histology, and mycology investigations were performed. The changes in the rat absolute neutrophil counts (ANCs) were statistically different across the groups. The administration of CPA decreased the ANCs, whereas nasal obstruction with fungal inoculation increased the ANCs, and nasal obstruction did not change them. Histological examination of the rats in group V revealed the hyphal invasion of sinus mucosa and bone, thrombosis, and tissue infarction. No pathology indicative of IFRS was observed in the remaining groups. Positive rates of fungal culture in tissue homogenates from the maxillary sinus (62.5%) and lung (25%) were found in group V, whereas groups I, II, III, and IV showed no fungal culture in the homogenates. A rat IFRS model was successfully developed through nasal obstruction, CPA-induced neutropenia, and fungal inoculation. The disease model closely mimics the pathophysiology of anthropic IFRS.

  10. Loopless nontrapping invasion-percolation model for fracking

    Science.gov (United States)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  11. Models of invasion and establishment of African Mustard (Brassica tournefortii)

    Science.gov (United States)

    Berry, Kristin H.; Gowan, Timothy A.; Miller, David M.; Brooks, Matthew L.

    2015-01-01

    Introduced exotic plants can drive ecosystem change. We studied invasion and establishment ofBrassica tournefortii (African mustard), a noxious weed, in the Chemehuevi Valley, western Sonoran Desert, California. We used long-term data sets of photographs, transects for biomass of annual plants, and densities of African mustard collected at irregular intervals between 1979 and 2009. We suggest that African mustard may have been present in low numbers along the main route of travel, a highway, in the late 1970s; invaded the valley along a major axial valley ephemeral stream channel and the highway; and by 2009, colonized 22 km into the eastern part of the valley. We developed predictive models for invasibility and establishment of African mustard. Both during the initial invasion and after establishment, significant predictor variables of African mustard densities were surficial geology, proximity to the highway and axial valley ephemeral stream channel, and number of small ephemeral stream channels. The axial valley ephemeral stream channel was the most vulnerable of the variables to invasions. Overall, African mustard rapidly colonized and quickly became established in naturally disturbed areas, such as stream channels, where geological surfaces were young and soils were weakly developed. Older geological surfaces (e.g., desert pavements with soils 140,000 to 300,000 years old) were less vulnerable. Microhabitats also influenced densities of African mustard, with densities higher under shrubs than in the interspaces. As African mustard became established, the proportional biomass of native winter annual plants declined. Early control is important because African mustard can colonize and become well established across a valley in 20 yr.

  12. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Science.gov (United States)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  13. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    KAUST Repository

    Li, YZ

    2014-08-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor and invade into the stroma, forming an irregular invasive morphology. Although cell movements involved in tumor invasion are ultimately driven by mechanical forces of cell-cell interactions and tumor-host interactions, how these mechanical properties affect tumor invasion is still poorly understood. In this study, we use a recently developed two-dimensional cellular model to study the effects of mechanical properties on tumor invasion. We study the effects of cell-cell adhesions as well as the degree of degradation and stiffness of extracellular matrix (ECM). Our simulation results show that cell-cell adhesion relationship must be satisfied for tumor invasion. Increased adhesion to ECM and decreased adhesion among tumor cells result in invasive tumor behaviors. When this invasive behavior occurs, ECM plays an important role for both tumor morphology and the shape of invasive cancer cells. Increased stiffness and stronger degree of degradation of ECM promote tumor invasion, generating more aggressive tumor invasive morphologies. It can also generate irregular shape of invasive cancer cells, protruding towards ECM. The capability of our model suggests it a useful tool to study tumor invasion and might be used to propose optimal treatment in clinical applications.

  14. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  15. Kinetic models for historical processes of fast invasion and aggression

    Science.gov (United States)

    Aristov, Vladimir V.; Ilyin, Oleg V.

    2015-04-01

    In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.

  16. Genetic signatures of natural selection in a model invasive ascidian

    Science.gov (United States)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  17. State-space modeling indicates rapid invasion of an alien shrub in coastal dunes

    DEFF Research Database (Denmark)

    Damgaard, Christian Frølund; Nygaard, Bettina; Ejrnæs, Rasmus

    2011-01-01

    Invasion by alien plants has negative effects on coastal dunes. Monitoring local spread of invasive species depends on long-term data with sufficient spatial resolution. Bayesian state-space models are a new method for monitoring invasive plants based on unbalanced permanent-plot data. The method...

  18. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  19. Comparison of invasive and non-invasive electromagnetic methods in soil water content estimation of a dike model

    International Nuclear Information System (INIS)

    Preko, Kwasi; Scheuermann, Alexander; Wilhelm, Helmut

    2009-01-01

    Water infiltration through a dike model under controlled flooding and drainage conditions was investigated using the gravimetric soil water sampling technique and electromagnetic techniques, in particular ground penetrating radar (GPR) applied in different forms, time domain reflectometry with intelligent microelements (TRIME-TDR) and spatial-time domain reflectometry (S-TDR). The experiments were conducted on the model in two phases. In the first phase, the model was flooded with varying water levels between 0 and 1.25 m above the waterproof base of the model. In the second phase, the characteristics of the temporal water content changes were investigated over a period of 65 days as the flood water drained off from the 1.25 m level. The dike model was constructed with soil of the texture class loamy sand. The aim of the experiment was to investigate whether GPR-based invasive and non-invasive methods were able to quantitatively observe and correctly monitor temporal changes in the volumetric water content (VWC) within embankment dams. The VWC values from the various techniques corresponded very well, especially with low VWC values. A comparison with the VWC of gravimetric soil water sampling showed a satisfactory reproducibility. Characteristic discrepancies were recorded with higher values of the VWC. Under saturated conditions only the invasive methods were able to produce reasonable values of the VWC. After the release of the highest flood level, the drainage phase could be characterized by two invasive methods based on the TDR and GPR techniques

  20. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    Science.gov (United States)

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; 'Ohukani'ohi'a Gon, Sam; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  1. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    Directory of Open Access Journals (Sweden)

    Adam E Vorsino

    Full Text Available Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75 as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1. This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  2. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    Science.gov (United States)

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  3. A practical and less invasive total cavopulmonary connection sheep model.

    Science.gov (United States)

    Wang, Dongfang; Plunkett, Mark; Gao, Guodong; Zhou, Xiaoqin; Ballard-Croft, Cherry; Reda, Hassan; Zwischenberger, Joseph B

    2014-01-01

    Our goal was to develop a less invasive total cavopulmonary connection (TCPC) sheep model for testing total cavopulmonary assist (CPA) devices. Thirteen sheep underwent a right fourth intercostal lateral thoracotomy. In series I (n = 6), a polytetrafluoroethylene (PTFE) extracardiac conduit (ECC) was connected to inferior vena cava (IVC) and superior vena cava (SVC) by end-to-side anastomosis. The SVC/IVC remained connected to right atrium (RA). A PTFE graft bridged ECC to right pulmonary artery (RPA). Clamps between SVC/IVC anastomoses and RA diverted total venous blood to pulmonary circulation. In series II (n = 7), temporary bypasses between SVC/IVC and RA allowed SVC/IVC to be cut off from RA for better RPA exposure. The ECC-SVC/IVC were end-end anastomosed and ECC-RPA side-side anastomosed for total SVC/IVC to pulmonary artery (PA) conversion. In each series, one sheep died of bleeding. In five sheep in series I and six sheep in series II, the TCPC model was successfully created with significantly increased central venous pressure and significantly decreased PA pressure/arterial blood pressure. Our acute TCPC sheep model has a less traumatic right thoracotomy with no cardiopulmonary bypass and less blood loss with no blood transfusion, facilitating future long-term CPA device evaluation.

  4. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes.

    Science.gov (United States)

    Schutze, Mark K; Virgilio, Massimiliano; Norrbom, Allen; Clarke, Anthony R

    2017-01-31

    Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.

  5. Utilisation of the egg-larval parasitoid, Fopius (Biosteres) arisanus, for augmentative biological control of tephritid fruit flies

    International Nuclear Information System (INIS)

    Harris, Ernest J.; Bautista, Renato C.; Spencer, John P.

    2000-01-01

    In Hawaii, entomologists concerned about tephritid fruit fly control recognise and accept the fact that the introduction of tephritid fruit flies consisting of the melon fly Bactrocera cucurbitae (Coquillet), Mediterranean fruit fly, C. capitata (Wiedemann), Oriental fruit fly, B. dorsalis (Hendel) and the Solanaceous fruit fly, B. latifrons (Hendel) required the introduction of many species of parasitoids into Hawaii (Clausen 1956) to reduce crop damage caused by tephritid fruit flies. The parasitoids established in the order of their succession were Diachasimorpha longicaudata (Ashmead), Biosteres vandenboschi (Fullaway), and Fopius (Biosteres) arisanus (Sonan). F. arisanus was first discovered in Hawaii in 1949 in a guava fruit collection (van den Bosch and Haramoto 1951). In 1950, the rate of parasitism caused F. arisanus to increase and this insect spread and became the dominant and most widely distributed parasitoid in Hawaii (Haramoto and Bess 1970). Entomologists investigating fruit fly ecology in Hawaii recognised that the four species of tephritid fruit flies differ in their distribution, abundance and host utilisation patterns in different habitats. The rapid spread and distribution of F. arisanus in Hawaii indicated the reality that among the parasitoids, F. arisanus has the highest adaptation capabilities in the Hawaiian ecosystem comparable to that of B. dorsalis and C. capitata, the most persistent fruit fly species in Hawaii. A strategy receiving high priority to improve biological control of tephritid fruit flies is foreign exploration to find new parasitoids for introduction into tephritid fruit fly invested areas including Guatemala and Hawaii. It is possible another species comparable to F. arisanus might be found. New introductions could increase the diversity of parasitoid species and result in the introduction of species more efficient for suppressing B. latifrons in Hawaii. The cost of parasitoid exploration is very expensive, US$100,000 or

  6. Predicting invasive fungal pathogens using invasive pest assemblages: testing model predictions in a virtual world.

    Directory of Open Access Journals (Sweden)

    Dean R Paini

    Full Text Available Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM, a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96-98% success rate (depending on the virtual world parameters. We also found that regions with fewer species present (i.e. 1-10 species were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84-98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk.

  7. Keratinocytes drive melanoma invasion in a reconstructed skin model.

    NARCIS (Netherlands)

    Kilsdonk, J.W.J. van; Bergers, M.; Kempen, L.C.L.T. van; Schalkwijk, J.; Swart, G.W.

    2010-01-01

    Melanoma progression is a multistep progression from a common melanocytic nevus through the radial growth phase, the invasive vertical growth phase finally leading to metastatic spread into distant organs. Migration and invasion of tumor cells requires secretion of proteases to facilitate remodeling

  8. The draft genome of the pest tephritid fruit fly Bactrocera tryoni: resources for the genomic analysis of hybridising species

    OpenAIRE

    Gilchrist, Anthony Stuart; Shearman, Deborah CA; Frommer, Marianne; Raphael, Kathryn A; Deshpande, Nandan P; Wilkins, Marc R; Sherwin, William B; Sved, John A

    2014-01-01

    Background The tephritid fruit flies include a number of economically important pests of horticulture, with a large accumulated body of research on their biology and control. Amongst the Tephritidae, the genus Bactrocera, containing over 400 species, presents various species groups of potential utility for genetic studies of speciation, behaviour or pest control. In Australia, there exists a triad of closely-related, sympatric Bactrocera species which do not mate in the wild but which, despit...

  9. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yang

    Full Text Available Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs. We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.

  10. Can species distribution models really predict the expansion of invasive species?

    Science.gov (United States)

    Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.

  11. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2015-08-01

    Tephritid fruit fly species display a diversity of host plant specialisation on a scale from monophagy to polyphagy. Furthermore, while some species prefer ripening fruit, a few are restricted to damaged or rotting fruit. Such a diversity of host plant use may be reflected in the microbial symbiont diversity of tephritids and their grade of dependency on their microbiomes. Here, we investigated the microbiome of six tephritid species from three genera, including species that are polyphagous pests (Bactrocera tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Ceratitis capitata) and a monophagous specialist (Bactrocera cacuminata). These were compared with the microbiome of a non-pestiferous but polyphagous tephritid species that is restricted to damaged or rotting fruit (Dirioxa pornia). The bacterial community associated with whole fruit flies was analysed by 16S ribosomal DNA (rDNA) amplicon pyrosequencing to detect potential drivers of taxonomic composition. Overall, the dominant bacterial families were Enterobacteriaceae and Acetobacteraceae (both Proteobacteria), and Streptococcaceae and Enterococcaceae (both Firmicutes). Comparisons across species and genera found different microbial composition in the three tephritid genera, but limited consistent differentiation between Bactrocera species. Within Bactrocera species, differentiation of microbial composition seemed to be influenced by the environment, possibly including their diets; beyond this, tephritid species identity or ecology also had an effect. The microbiome of D. pornia was most distinct from the other five species, which may be due to its ecologically different niche of rotting or damaged fruit, as opposed to ripening fruit favoured by the other species. Our study is the first amplicon pyrosequencing study to compare the microbiomes of tephritid species and thus delivers important information about the turnover of microbial diversity within and between fruit fly species and their potential

  12. Invasive growth of Saccharomyces cerevisiae depends on environmental triggers: a quantitative model.

    Science.gov (United States)

    Zupan, Jure; Raspor, Peter

    2010-04-01

    In this contribution, the influence of various physicochemical factors on Saccharomyces cerevisiae invasive growth is examined quantitatively. Agar-invasion assays are generally applied for in vitro studies on S. cerevisiae invasiveness, the phenomenon observed as a putative virulence trait in this clinically more and more concerning yeast. However, qualitative agar-invasion assays, used until now, strongly limit the feasibility and interpretation of analyses and therefore needed to be improved. Besides, knowledge in this field concerning the physiology of invasive growth, influenced by stress conditions related to the human alimentary tract and food, is poor and should be expanded. For this purpose, a quantitative agar-invasion assay, presented in our previous work, was applied in this contribution to clarify the significance of the stress factors controlling the adhesion and invasion of the yeast in greater detail. Ten virulent and non-virulent S. cerevisiae strains were assayed at various temperatures, pH values, nutrient starvation, modified atmosphere, and different concentrations of NaCl, CaCl2 and preservatives. With the use of specific parameters, like a relative invasion, eight invasive growth models were hypothesized, which enabled intelligible interpretation of the results. A strong preference for invasive growth (meaning high relative invasion) was observed when the strains were grown on nitrogen- and glucose-depleted media. A significant increase in the invasion of the strains was also determined at temperatures typical for human fever (37-39 degrees C). On the other hand, a strong repressive effect on invasion was found in the presence of salts, anoxia and some preservatives. Copyright 2010 John Wiley & Sons, Ltd.

  13. The cryptochrome (cry) gene and a mating isolation mechanism in tephritid fruit flies.

    Science.gov (United States)

    An, Xin; Tebo, Molly; Song, Sunmi; Frommer, Marianne; Raphael, Kathryn A

    2004-12-01

    Two sibling species of tephritid fruit fly, Bactrocera tryoni and Bactrocera neohumeralis, are differentiated by their time of mating, which is genetically determined and requires interactions between the endogenous circadian clock and light intensity. The cryptochrome (cry) gene, a light-sensitive component of the circadian clock, was isolated in the two Bactrocera species. The putative amino acid sequence is identical in the two species. In the brain, in situ hybridization showed that cry is expressed in the lateral and dorsal regions of the central brain where PER immunostaining was also observed and in a peripheral cell cluster of the antennal lobes. Levels of cry mRNA were analyzed in whole head, brain, and antennae. In whole head, cry is abundantly and constantly expressed. However, in brain and antennae the transcript cycles in abundance, with higher levels during the day than at night, and cry transcripts are more abundant in the brain and antennae of B. neohumeralis than in that of B. tryoni. Strikingly, these results are duplicated in hybrid lines, generated by rare mating between B. tryoni and B. neohumeralis and then selected on the basis of mating time, suggesting a role for the cry gene in the mating isolation mechanism that differentiates the species.

  14. Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM)

    OpenAIRE

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tama...

  15. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  16. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  17. Species invasion history influences community evolution in a tri-trophic food web model.

    Directory of Open Access Journals (Sweden)

    Akihiko Mougi

    2009-08-01

    Full Text Available Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views.We used a tri-trophic food web model to analyze the coevolutionary effects of ecological invasions by a mutant and by a predator and/or resource species of a native consumer species community and found that ecological invasions can lead to various evolutionary histories. The invasion of a predator makes multiple evolutionary community histories possible, and the evolutionary history followed can determine both the invasion success of the predator into the native community and the fate of the community. A slight difference in the timing of an ecological invasion can lead to a greatly different fate. In addition, even greatly different community histories can converge as a result of environmental changes such as a predator trait shift or a productivity change. Furthermore, the changes to the evolutionary history may be irreversible.Our modeling results suggest that the timing of ecological invasion of a species into a focal community can largely change the evolutionary consequences of the community. Our approach based on adaptive dynamics will be a useful tool to understand the effect of invasion history on evolutionary formation of community.

  18. Species invasion history influences community evolution in a tri-trophic food web model.

    Science.gov (United States)

    Mougi, Akihiko; Nishimura, Kinya

    2009-08-24

    Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views. We used a tri-trophic food web model to analyze the coevolutionary effects of ecological invasions by a mutant and by a predator and/or resource species of a native consumer species community and found that ecological invasions can lead to various evolutionary histories. The invasion of a predator makes multiple evolutionary community histories possible, and the evolutionary history followed can determine both the invasion success of the predator into the native community and the fate of the community. A slight difference in the timing of an ecological invasion can lead to a greatly different fate. In addition, even greatly different community histories can converge as a result of environmental changes such as a predator trait shift or a productivity change. Furthermore, the changes to the evolutionary history may be irreversible. Our modeling results suggest that the timing of ecological invasion of a species into a focal community can largely change the evolutionary consequences of the community. Our approach based on adaptive dynamics will be a useful tool to understand the effect of invasion history on evolutionary formation of community.

  19. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  20. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles.

    Science.gov (United States)

    Chen, Kun-Wan; Pienta, Kenneth J

    2011-10-03

    The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact). Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells. The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.

  1. Invasive and non-invasive evaluation of spontaneous arteriogenesis in a novel porcine model for peripheral arterial obstructive disease.

    Science.gov (United States)

    Buschmann, Ivo R; Voskuil, Michiel; van Royen, Niels; Hoefer, Imo E; Scheffler, Klaus; Grundmann, Sebastian; Hennig, Jürgen; Schaper, Wolfgang; Bode, Christoph; Piek, Jan J

    2003-03-01

    Our current knowledge regarding the efficacy of factors stimulating collateral artery growth in the peripheral circulation primarily stems from models in small animals. However, experimental models in large sized animals are a prerequisite for extrapolation of growth factor therapy to patients with peripheral atherosclerotic obstructive disease. Therefore, we have developed a novel porcine femoral artery ligation model using non-invasive and invasive evaluation techniques. In 12 young farm pigs and nine older minipigs, a ligation of the superficial femoral artery was performed. Using an intra-arterial catheter, phosphate buffered saline (PBS) was administered with a first-pass over the collateral vascular bed. Directly after ligation as well as after 2 weeks of continuous infusion of PBS, perfusion of the leg was measured using various flow and pressure parameters. Using a pump driven extracorporal system, collateral conductance was determined under maximal vasodilatation. Conductance decreased after acute ligation to similar levels in both young farm pigs as well as the older minipigs (both 9.3% of normal perfusion) and recovered after 2 weeks to a higher value in farm pigs compared with minipigs (22.4 vs. 12.7% of normal; Parteries. To the best of our knowledge this is the first in vivo pig model for hemodynamic assessment of growth of collateral arteries in the peripheral circulation, that is suitable for evaluation of arteriogenic effects of growth factors or genes.

  2. Development and reproductive biology of the egg-pupal parasite, Fopius arisanus in Anastrepha suspensa, a new tephritid host

    International Nuclear Information System (INIS)

    Lawrence, Pauline O.; Harris, Ernest J.; Bautist, Renato C.

    2000-01-01

    Fopius (=Biosteres) arisanus (Sonan) (=Opius oophilus Fullaway) (Hymenoptera: Braconidae) is a solitary egg parasite (parasitoid) that attacks tephritid fruit fly (Diptera: Tephritidae) eggs and first instars (Haramoto 1953, Clausen et al. 1965, Harris and Okamoto 1991). It completes its development within the host's larva and pupa and emerges from the latter as an adult and as such, is an egg-pupal endoparasite. F. arisanus is known to attack at least seven tephritid fruit fly species (Wharton and Gilstrap 1983) and appears to be the only egg-pupal parasite of tephritids in the Western Hemisphere. It is considered to be the most successful of the parasites that attack the Oriental fruit fly, Bactrocera dorsalis (Hendel) and the Mediterranean fruit fly (Medfly), Ceratitis capitata (Weidmann) in Hawaii (Knipling 1995), resulting in 74-92% of total parasites recovered from both host species (Wong and Ramadan 1987). However, in Malaysia, Palacio et al. (1992) found that F. arisanus was outcompeted by the larval endoparasite, Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) in multiple parasitised B. dorsalis. While several larval parasites of tephritids had been cultured successfully in the laboratory (Ramadan 1991) and utilised in inundative release programmes, F. arisanus proved difficult to maintain in culture. In recent years, a laboratory strain of F. arisanus (termed the 'Harris strain') has been established on B. dorsalis (Harris and Okamoto 1991). Efforts are currently in progress to mass rear this strain on the Medfly and other tephritid pests. F. arisanus was first released into Florida from Hawaii in 1974-75 as a biological control agent against the Caribbean fruit fly (Caribfly) Anastrepha suspensa (Loew) (Diptera: Tephritidae) but this was unsuccessful (Baranowski et al. 1993). Interestingly, it was also introduced into Costa Rica from Hawaii and was subsequently reared from puparia of Anastrepha spp. (Wharton et al. 1981), indicating its

  3. Product quality control, irradiation and shipping procedures for mass-reared tephritid fruit flies for sterile insect release programmes

    International Nuclear Information System (INIS)

    1999-05-01

    This document represents the recommendations, reached by consensus of an international group of quality control experts, on the standard procedures for product quality control (QC) for mass reared tephritid flies that are to be used in Sterile Insect Technique (SIT) programs. In addition, the manual describes recommended methods of handling and packaging pupae during irradiation and shipment. Most of the procedures were designed specifically for use with Mediterranean fruit flies, Ceratitis capitata (Wied.), but they are applicable, with minor modification in some cases, for other tephritid species such as Caribbean fruit fly Anastrepha suspense, Mexican fruit fly A. ludens, and various Bactrocera species. The manual is evolving and subject to periodic updates. The future additions will include other fruit flies as the need is identified. If followed, procedures described in this manual will help ensure that the quality of mass-produced flies is measured accurately in a standardised fashion, allowing comparisons of quality over time and across rearing facilities and field programmes. Problems in rearing, irradiation and handling procedures, and strain quality can be identified and hopefully corrected before control programmes are affected. Tests and procedures described in this document are only part of a total quality control programme for tephritid fly production. The product QC evaluations included in this manual are, unless otherwise noted, required to be conducted during SIT programmes by the Field programme staff not the production staff. Additional product QC tests have been developed and their use is optional (see ancillary test section). Production and process QC evaluations (e.g., analysis of diet components, monitoring the rearing environment, yield of larvae, development rate, etc.) are not within the scope of this document. Quality specifications are included for minimum and mean acceptability of conventional strains of C. capitata, A. ludens, and A

  4. The scarlet eye colour gene of the tephritid fruit fly: Bactrocera tryoni and the nature of two eye colour mutations.

    Science.gov (United States)

    Zhao, J T; Bennett, C L; Stewart, G J; Frommer, M; Raphael, K A

    2003-06-01

    A homologue of the Drosophila melanogaster eye-colour gene, scarlet (st), has been isolated from the genome of the tephritid fruit fly, Bactrocera tryoni. The comparison of the B. tryoni and D. melanogaster scarlet gene shows 71.2% and 79.3% sequence identity at the DNA and the derived amino acid level, respectively. Two allelic eye-colour mutations of B. tryoni, orange-eyes and lemon-eyes, have been recovered and found to be colocalized with the st gene. The st gene sequence in the two mutant strains has been examined for DNA sequence changes and expression levels.

  5. Invasive Species Distribution Modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?

    Science.gov (United States)

    Tomáš Václavík; Ross K. Meentemeyer

    2009-01-01

    Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...

  6. Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species

    Science.gov (United States)

    Murphy, James T.; Johnson, Mark P.; Walshe, Ray

    2013-07-01

    Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.

  7. Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Jian; Cao, Ziquan; Hosaka, Kayoko; Jensen, Lasse; Yang, Huasheng; Sun, Yuping; Zhuang, Rujie; Liu, Yizhi; Cao, Yihai

    2015-01-01

    Retinoblastoma is a highly invasive malignant tumor that often invades the brain and metastasizes to distal organs through the blood stream. Invasiveness and metastasis of retinoblastoma can occur at the early stage of tumor development. However, an optimal preclinical model to study retinoblastoma invasiveness and metastasis in relation to drug treatment has not been developed. Here, we developed an orthotopic zebrafish model in which retinoblastoma invasion and metastasis can be monitored at a single cell level. We took the advantages of immune privilege and transparent nature of developing zebrafish embryos. Intravitreal implantation of color-coded retinoblastoma cells allowed us to kinetically monitor tumor cell invasion and metastasis. Further, interactions between retinoblastoma cells and surrounding microvasculatures were studied using a transgenic zebrafish that exhibited green fluorescent signals in blood vessels. We discovered that tumor cells invaded neighboring tissues and blood stream when primary tumors were at the microscopic sizes. These findings demonstrate that retinoblastoma metastasis occurs at the early stage and antiangiogenic drugs such as Vegf morpholino and sunitinib could potentially interfere with tumor invasiveness and metastasis. Thus, this orthotopic retinoblastoma model offers a new and unique opportunity to study the early events of tumor invasion, metastasis and drug responses. PMID:26169357

  8. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    Science.gov (United States)

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies.

  9. A simple modeling approach to elucidate the main transport processes and predict invasive spread: River-mediated invasion of Ageratina adenophora in China

    Science.gov (United States)

    Horvitz, Nir; Wang, Rui; Zhu, Min; Wan, Fang-Hao; Nathan, Ran

    2014-12-01

    A constantly increasing number of alien species invade novel environments and cause enormous damage to both biodiversity and economics worldwide. This global problem is calling for better understanding of the different mechanisms driving invasive spread, hence quantification of a range of dispersal vectors. Yet, methods for elucidating the mechanisms underlying large-scale invasive spread from empirical patterns have not yet been developed. Here we propose a new computationally efficient method to quantify the contribution of different dispersal vectors to the spread rate of invasive plants. Using data collected over 30 years regarding the invasive species Ageratina adenophora since its detection at the Sichuan province, we explored its spread by wind and animals, rivers, and roads into 153 subcounties in the Sichuan, Chongqingshi, and Hubei provinces of China. We found that rivers are the most plausible vector for the rapid invasion of this species in the study area. Model explorations revealed robustness to changes in key assumptions and configuration. Future predictions of this ongoing invasion process project that the species will quickly spread along the Yangtze River and colonize large areas within a few years. Further model developments would provide a much needed tool to mechanistically and realistically describe large-scale invasive spread, providing insights into the underlying mechanisms and an ability to predict future spatial invasive dynamics.

  10. Citizen Science and Open Data: a Model for Invasive Alien Plant Species in Kenya's Northern Rangelands

    Science.gov (United States)

    Amirazodi, S.; Griffin, R.; Flores Cordova, A. I.; Ouko, E.; Omondi, S.; Mugo, R. M.; Farah, H.; Flores Cordova, A. I.; Adams, E. C.

    2017-12-01

    Invasive species in African savannas pose great threat to the native biodiversity and changes ecosystem functioning. In the forest sector, for instance Acacia species are important sources of fuel-wood, yet at the same time they have increased strain on water resources and shrunken forage spaces for both livestock and wildlife. In recently infested regions, invasive species can progress through the stages of introduction, establishment and dispersal to a full range. Currently there is much worldwide interest in predicting distributions of invasive species, and several organizations are faced with questions of whether and how to tackle such environmental challenges, or how to interpret predictions from the science community. Conservation practioners require mapped estimates of where species could persist in a given region, and this is associated to information about the biotope - i.e. the geographic location of the species' niche. The process of collecting species distribution data for identifying the potential distribution of the invasive species in the invaded ranges has become a challenge both in terms of resource and time allocation. This study highlights innovative approaches in crowdsourcing validation data in mapping and modelling invasive species (Acacia reficiens and Cactus) through involvement of the local communities. The general approach was to model the distribution of A. reficiens and Cactus (Opuntia Spp) using occurrence records from native range, then project the model into new regions to assess susceptibility to invasion using climatic and topographic environmental variables. The models performed better than random prediction (P 0.75.

  11. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several \\'acid-mediated tumour invasion\\' models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results suggest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.

  12. Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts.

    Science.gov (United States)

    Morrow, J L; Frommer, M; Shearman, D C A; Riegler, M

    2014-12-01

    Wolbachia are endosymbiotic bacteria that infect 40-65% of arthropod species. They are primarily maternally inherited with occasional horizontal transmission for which limited direct ecological evidence exists. We detected Wolbachia in 8 out of 24 Australian tephritid species. Here, we have used multilocus sequence typing (MLST) to further characterize these Wolbachia strains, plus a novel quantitative polymerase chain reaction method for allele assignment in multiple infections. Based on five MLST loci and the Wolbachia surface protein gene (wsp), five Bactrocera and one Dacus species harboured two identical strains as double infections; furthermore, Bactrocera neohumeralis harboured both of these as single or double infections, and sibling species B. tryoni harboured one. Two Bactrocera species contained Wolbachia pseudogenes, potentially within the fruit fly genomes. A fruit fly parasitoid, Fopius arisanus shared identical alleles with two Wolbachia strains detected in one B. frauenfeldi individual. We report an unprecedented high incidence of four shared Wolbachia strains in eight host species from two trophic levels. This suggests frequent exposure to Wolbachia in this tropical tephritid community that shares host plant and parasitoid species, and also includes species that hybridize. Such insect communities may act as horizontal transmission platforms that contribute to the ubiquity of the otherwise maternally inherited Wolbachia. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants.

    Science.gov (United States)

    Caplat, Paul; Coutts, Shaun; Buckley, Yvonne M

    2012-02-01

    Invasive plants cause substantial economic and environmental damage throughout the world. However, eradication of most invasive species is impossible and, in some cases, undesirable. An alternative is to slow the spread of an invasive species, which can delay impacts or reduce their extent. We identify three main areas where models are used extensively in the study of plant spread and its management: (i) identifying the key drivers of spread to better target management, (ii) determining the role spatial structure of landscapes plays in plant invasions, and (iii) integrating management structures and limitations to guide the implementation of control measures. We show how these three components have been approached in the ecological literature as well as their potential for improving management practices. Particularly, we argue that scientists can help managers of invasive species by providing information about plant invasion on which managers can base their decisions (i and ii) and by modeling the decision process through optimization and agent-based models (iii). Finally, we show how these approaches can be articulated for integrative studies. © 2012 New York Academy of Sciences.

  14. In vivo model for microbial invasion of tooth root dentinal tubules

    Directory of Open Access Journals (Sweden)

    Jane L. BRITTAN

    2016-04-01

    Full Text Available ABSTRACT Objective Bacterial penetration of dentinal tubules via exposed dentine can lead to root caries and promote infections of the pulp and root canal system. The aim of this work was to develop a new experimental model for studying bacterial invasion of dentinal tubules within the human oral cavity. Material and Methods Sections of human root dentine were mounted into lower oral appliances that were worn by four human subjects for 15 d. Roots were then fixed, sectioned, stained and examined microscopically for evidence of bacterial invasion. Levels of invasion were expressed as Tubule Invasion Factor (TIF. DNA was extracted from root samples, subjected to polymerase chain reaction amplification of 16S rRNA genes, and invading bacteria were identified by comparison of sequences with GenBank database. Results All root dentine samples with patent tubules showed evidence of bacterial cell invasion (TIF value range from 5.7 to 9.0 to depths of 200 mm or more. A spectrum of Gram-positive and Gram-negative cell morphotypes were visualized, and molecular typing identified species of Granulicatella, Streptococcus, Klebsiella, Enterobacter, Acinetobacter, and Pseudomonas as dentinal tubule residents. Conclusion A novel in vivo model is described, which provides for human root dentine to be efficiently infected by oral microorganisms. A range of bacteria were able to initially invade dentinal tubules within exposed dentine. The model will be useful for testing the effectiveness of antiseptics, irrigants, and potential tubule occluding agents in preventing bacterial invasion of dentine.

  15. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    Science.gov (United States)

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  16. Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk

    Science.gov (United States)

    Frank H. Koch; Denys Yemshanov; Daniel W. McKenney; William D. Smith

    2009-01-01

    Pest risk maps can provide useful decision support in invasive species management, but most do not adequately consider the uncertainty associated with predicted risk values. This study explores how increased uncertainty in a risk model’s numeric assumptions might affect the resultant risk map. We used a spatial stochastic model, integrating components for...

  17. A spatial-dynamic value transfer model of economic losses from a biological invasion

    Science.gov (United States)

    Thomas P. Holmes; Andrew M. Liebhold; Kent F. Kovacs; Betsy. Von Holle

    2010-01-01

    Rigorous assessments of the economic impacts of introduced species at broad spatial scales are required to provide credible information to policy makers. We propose that economic models of aggregate damages induced by biological invasions need to link microeconomic analyses of site-specific economic damages with spatial-dynamic models of value change associated with...

  18. Differentiating between borderline and invasive malignancies in ovarian tumors using a multivariate logistic regression model

    Directory of Open Access Journals (Sweden)

    Jiabin Chen

    2015-08-01

    Conclusion: Differentiation between borderline and invasive ovarian tumors can be achieved using a model based on the following criteria: menopausal status; cancer antigen 125 level; and ultrasound parameters. The model is helpful to oncologists and patients in the initial evaluation phase of ovarian tumors.

  19. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  20. Lipopolysaccharide-induced biliary factors enhance invasion of Salmonella enteritidis in a rat model.

    Science.gov (United States)

    Islam, A F; Moss, N D; Dai, Y; Smith, M S; Collins, A M; Jackson, G D

    2000-01-01

    In this study, the role of the hepatobiliary system in the early pathogenesis of Salmonella enteritidis infection was investigated in a rat model. Intravenous (i.v.) challenge with lipopolysaccharide (LPS) has previously been shown to enhance the translocation of normal gut flora. We first confirmed that LPS can similarly promote the invasion of S. enteritidis. Oral infection of outbred Australian Albino Wistar rats with 10(6) to 10(7) CFU of S. enteritidis led to widespread tissue invasion after days. If animals were similarly challenged after intravenous administration of S. enteritidis LPS (3 to 900 microg/kg of body weight), significant invasion of the livers and mesenteric lymph nodes (MLN) occurred within 24 h, with invasion of the liver increasing in a dose-dependent fashion (P < 0.01). If bile was prevented from reaching the intestine by bile duct ligation or cannulation, bacterial invasion of the liver and MLN was almost totally abrogated (P < 0.001). As i.v. challenge with LPS could induce the delivery of inflammatory mediators into the bile, biliary tumor necrosis factor alpha (TNF-alpha) concentrations were measured by bioassay. Biliary concentrations of TNF-alpha rose shortly after LPS challenge, peaked with a mean concentration of 27.0 ng/ml at around 1 h postchallenge, and returned to baseline levels (3.1 ng/ml) after 2.5 h. Although TNF-alpha cannot be directly implicated in the invasion process, we conclude that the invasiveness of the enteric pathogen S. enteritidis is enhanced by the presence of LPS in the blood and that this enhanced invasion is at least in part a consequence of the delivery of inflammatory mediators to the gastrointestinal tract by the hepatobiliary system.

  1. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia.

    Science.gov (United States)

    Cope, Robert C; Prowse, Thomas A A; Ross, Joshua V; Wittmann, Talia A; Cassey, Phillip

    2015-04-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events.

  2. Embryonic chicken transplantation is a promising model for studying the invasive behaviour of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Aparna eJayachandran

    2015-02-01

    Full Text Available Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology which enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labelled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 hours to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5 or trunk level (embryonic day 2.5. Chick embryos are reincubated and analysed after 48 hours for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence the embryonic chicken transplantation model has potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and

  3. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual‐based modelling study

    DEFF Research Database (Denmark)

    Merkey, Brian; Lardon, Laurent; Seoane, Jose Miguel

    2011-01-01

    Plasmid invasion in biofilms is often surprisingly limited in spite of the close contact of cells in a biofilm. We hypothesized that this poor plasmid spread into deeper biofilm layers is caused by a dependence of conjugation on the growth rate (relative to the maximum growth rate) of the donor...... and scan speed) and spatial reach (EPS yield, conjugal pilus length) are more important for successful plasmid invasion than the recipients' growth rate or the probability of segregational loss. While this study identifies one factor that can limit plasmid invasion in biofilms, the new individual....... By extending an individual‐based model of microbial growth and interactions to include the dynamics of plasmid carriage and transfer by individual cells, we were able to conduct in silico tests of this and other hypotheses on the dynamics of conjugal plasmid transfer in biofilms. For a generic model plasmid...

  4. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  5. Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region

    Science.gov (United States)

    Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse

    2011-01-01

    As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...

  6. Making Invasion models useful for decision makers; incorporating uncertainty, knowledge gaps, and decision-making preferences

    Science.gov (United States)

    Denys Yemshanov; Frank H Koch; Mark Ducey

    2015-01-01

    Uncertainty is inherent in model-based forecasts of ecological invasions. In this chapter, we explore how the perceptions of that uncertainty can be incorporated into the pest risk assessment process. Uncertainty changes a decision maker’s perceptions of risk; therefore, the direct incorporation of uncertainty may provide a more appropriate depiction of risk. Our...

  7. Abundance modelling of invasive and indigenous Culicoides species in Spain

    Directory of Open Access Journals (Sweden)

    Els Ducheyne

    2013-11-01

    Full Text Available In this paper we present a novel methodology applied in Spain to model spatial abundance patterns of potential vectors of disease at a medium spatial resolution of 5 x 5 km using a countrywide database with abundance data for five Culicoides species, random regression Forest modelling and a spatial dataset of ground measured and remotely sensed eco-climatic and environmental predictor variables. First the probability of occurrence was computed. In a second step a direct regression between the probability of occurrence and trap abundance was established to verify the linearity of the relationship. Finally the probability of occurrence was used in combination with the set of predictor variables to model abundance. In each case the variable importance of the predictors was used to biologically interpret results and to compare both model outputs, and model performance was assessed using four different accuracy measures. Results are shown for C. imicola, C. newsteadii, C. pulicaris group, C. punctatus and C. obsoletus group. In each case the probability of occurrence is a good predictor of abundance at the used spatial resolution of 5 x 5 km. In addition, the C. imicola and C. obsoletus group are highly driven by summer rainfall. The spatial pattern is inverse between the two species, indicating that the lower and upper thresholds are different. C. pulicaris group is mainly driven by temperature. The patterns for C. newsteadii and C. punctatus are less clear. It is concluded that the proposed methodology can be used as an input to transmission-infection-recovery (TIR models and R0 models. The methodology will become available to the general public as part of the VECMAPTM software.

  8. Phragmites australis as a model organism for studying plant invasions

    Czech Academy of Sciences Publication Activity Database

    Meyerson, L. A.; Cronin, J. T.; Pyšek, Petr

    2016-01-01

    Roč. 18, č. 9 (2016), s. 2421-2431 ISSN 1387-3547 R&D Projects: GA ČR(CZ) GA14-15414S Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : common reed * model species * global climate change Subject RIV: EH - Ecology , Behaviour Impact factor: 2.473, year: 2016

  9. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    Science.gov (United States)

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  10. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate

    OpenAIRE

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expec...

  11. Coupling ecological and social network models to assess "transmission" and "contagion" of an aquatic invasive species.

    Science.gov (United States)

    Haak, Danielle M; Fath, Brian D; Forbes, Valery E; Martin, Dustin R; Pope, Kevin L

    2017-04-01

    Network analysis is used to address diverse ecological, social, economic, and epidemiological questions, but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches that effectively address how complex systems are interdependent and connected to one another. Identifying and understanding these cross-boundary connections improves natural resource management and promotes proactive, rather than reactive, decisions. This research had two main objectives; first, adapt the framework and approach of infectious disease network modeling so that it may be applied to the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model of how anglers move on the landscape with new reservoir-specific ecological network models. This approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B. chinensis, 2) how B. chinensis alters energy flows within individual-reservoir food webs, and 3) a new method for assessing the spread of any number of non-native or invasive species within complex, social-ecological systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spatially explicit control of invasive species using a reaction-diffusion model

    Science.gov (United States)

    Bonneau, Mathieu; Johnson, Fred A.; Romagosa, Christina M.

    2016-01-01

    Invasive species, which can be responsible for severe economic and environmental damages, must often be managed over a wide area with limited resources, and the optimal allocation of effort in space and time can be challenging. If the spatial range of the invasive species is large, control actions might be applied only on some parcels of land, for example because of property type, accessibility, or limited human resources. Selecting the locations for control is critical and can significantly impact management efficiency. To help make decisions concerning the spatial allocation of control actions, we propose a simulation based approach, where the spatial distribution of the invader is approximated by a reaction–diffusion model. We extend the classic Fisher equation to incorporate the effect of control both in the diffusion and local growth of the invader. The modified reaction–diffusion model that we propose accounts for the effect of control, not only on the controlled locations, but on neighboring locations, which are based on the theoretical speed of the invasion front. Based on simulated examples, we show the superiority of our model compared to the state-of-the-art approach. We illustrate the use of this model for the management of Burmese pythons in the Everglades (Florida, USA). Thanks to the generality of the modified reaction–diffusion model, this framework is potentially suitable for a wide class of management problems and provides a tool for managers to predict the effects of different management strategies.

  13. Diagnostic performance and costs of contingent screening models for trisomy 21 incorporating non-invasive prenatal testing.

    Science.gov (United States)

    Maxwell, Susannah; O'Leary, Peter; Dickinson, Jan E; Suthers, Graeme K

    2017-08-01

    Contingent screening for trisomy 21 using non-invasive prenatal testing has the potential to reduce invasive diagnostic testing and increase the detection of trisomy 21. To describe the diagnostic and economic performance of prenatal screening models for trisomy 21 that use non-invasive prenatal testing as a contingent screen across a range of combined first trimester screening risk cut-offs from a public health system perspective. Using a hypothetical cohort of 300 000 pregnancies, we modelled the outcomes of 25 contingent non-invasive prenatal testing screening models and compared these to conventional screening, offering women with a high-risk (1 > 300) combined first trimester screening result an invasive test. The 25 models used a range of risk cut-offs. High-risk women were offered invasive testing. Intermediate-risk women were offered non-invasive prenatal testing. We report the cost of each model, detection rate, costs per diagnosis, invasive tests per diagnosis and the number of fetal losses per diagnosis. The cost per prenatal diagnosis of trisomy 21 using the conventional model was $51 876 compared to the contingent models which varied from $49 309-66 686. The number of diagnoses and cost per diagnosis increased as the intermediate-risk threshold was lowered. Results were sensitive to trisomy 21 incidence, uptake of testing and cost of non-invasive prenatal testing. Contingent non-invasive prenatal testing models using more sensitive combined first trimester screening risk cut-offs than conventional screening improved the detection rate of trisomy 21, reduced procedure-related fetal loss and could potentially be provided at a lower cost per diagnosis than conventional screening. © 2017 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  14. Design and pharmacophore modeling of biaryl methyl eugenol analogs as breast cancer invasion inhibitors.

    Science.gov (United States)

    Abdel Bar, Fatma M; Khanfar, Mohammad A; Elnagar, Ahmed Y; Badria, Farid A; Zaghloul, Ahmed M; Ahmad, Kadria F; Sylvester, Paul W; El Sayed, Khalid A

    2010-01-15

    Cell invasion and migration are required for the parent solid tumor cells to metastasize to distant organs. Microtubules form a polarized network, enabling organelle and protein movement throughout the cell. Cytoskeletal elements coordinately regulate cell's motility, adhesion, migration, exocytosis, endocytosis, and division. Thus, microtubule disruption can be a useful target to control cancer cell invasion and metastasis. The phenolic ether methyl eugenol (1), the major component of the essential oil of the leaves of Melaleuca ericifolia Sm. (Myrtaceae), was used as a starting scaffold to design eleven new and three known anti-tubulin agents 2-15 using carbon-carbon coupling reactions. A computer-assisted approach was used to design these new biaryl derivatives using colchicine-binding site of tubulin as the molecular target and colchicine as an active ligand. Several derivatives showed potent inhibitory activity against MDA-MB-231 cell migration at the 1-4microM dose range. The Z isomers, 4 and 15 were more active as invasion inhibitors compared to their structurally related E isomers, 2 and 14. The cytotoxic activities of compounds 2-15 against two breast cancer cell lines MDA-MB-231 and MCF-7 were evaluated. Anti-invasive activity of the semisynthetic derivatives is not due to a direct cytotoxic effect on MDA-MB-231. Analogs 2-15 may promote their anti-invasive activity through the induction of changes in cell morphology. A pharmacophore model was generated involving seven essential features for activity, which was consistent with a previously generated colchicine site inhibitors model. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. A temperature-dependent physiologically based model for the invasive apple snail Pomacea canaliculata

    Science.gov (United States)

    Gilioli, Gianni; Pasquali, Sara; Martín, Pablo R.; Carlsson, Nils; Mariani, Luigi

    2017-11-01

    In order to set priorities in management of costly and ecosystem-damaging species, policymakers and managers need accurate predictions not only about where a specific invader may establish but also about its potential abundance at different geographical scales. This is because density or biomass per unit area of an invasive species is a key predictor of the magnitude of environmental and economic impact in the invaded habitat. Here, we present a physiologically based demographic model describing and explaining the population dynamics of a widespread freshwater invader, the golden apple snail Pomacea canaliculata, which is causing severe environmental and economic impacts in invaded wetlands and rice fields in Southeastern Asia and has also been introduced to North America and Europe . The model is based on bio-demographic functions for mortality, development and fecundity rates that are driven by water temperature for the aquatic stages (juveniles and adults) and by air temperature for the aerial egg masses. Our model has been validated against data on the current distribution in South America and Japan, and produced consistent and realistic patterns of reproduction, growth, maturation and mortality under different scenarios in accordance to what is known from real P. canaliculata populations in different regions and climates. The model further shows that P. canaliculata will use two different reproductive strategies (semelparity and iteroparity) within the potential area of establishment, a plasticity that may explain the high invasiveness of this species across a wide range of habitats with different climates. Our results also suggest that densities, and thus the magnitude of environmental and agricultural damage, will be largely different in locations with distinct climatic regimes within the potential area of establishment. We suggest that physiologically based demographic modelling of invasive species will become a valuable tool for invasive species managers.

  16. A dispersal-constrained habitat suitability model for predicting invasion of alpine vegetation.

    Science.gov (United States)

    Williams, Nicholas S G; Hahs, Amy K; Morgan, John W

    2008-03-01

    Developing tools to predict the location of new biological invasions is essential if exotic species are to be controlled before they become widespread. Currently, alpine areas in Australia are largely free of exotic plant species but face increasing pressure from invasive species due to global warming and intensified human use. To predict the potential spread of highly invasive orange hawkweed (Hieracium aurantiacum) from existing founder populations on the Bogong High Plains in southern Australia, we developed an expert-based, spatially explicit, dispersal-constrained, habitat suitability model. The model combines a habitat suitability index, developed from disturbance, site wetness, and vegetation community parameters, with a phenomenological dispersal kernel that uses wind direction and observed dispersal distances. After generating risk maps that defined the relative suitability of H. aurantiacum establishment across the study area, we intensively searched several locations to evaluate the model. The highest relative suitability for H. aurantiacum establishment was southeast from the initial infestations. Native tussock grasslands and disturbed areas had high suitability for H. aurantiacum establishment. Extensive field searches failed to detect new populations. Time-step evaluation using the location of populations known in 1998-2000, accurately assigned high relative suitability for locations where H. aurantiacum had established post-2003 (AUC [area under curve] = 0.855 +/- 0.035). This suggests our model has good predictive power and will improve the ability to detect populations and prioritize areas for ongoing monitoring.

  17. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  18. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  19. A predictive model of suitability for minimally invasive parathyroid surgery in the treatment of primary hyperparathyroidism [corrected].

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2012-05-01

    Improved preoperative localizing studies have facilitated minimally invasive approaches in the treatment of primary hyperparathyroidism (PHPT). Success depends on the ability to reliably select patients who have PHPT due to single-gland disease. We propose a model encompassing preoperative clinical, biochemical, and imaging studies to predict a patient\\'s suitability for minimally invasive surgery.

  20. Source and kinetics of interleukin-6 in humans during exercise demonstrated by a minimally invasive model

    DEFF Research Database (Denmark)

    Toft, Anders Dyhr; Falahati, Ali; Steensberg, Adam

    2011-01-01

    The objective of this study was to use a novel and non-invasive model to explore whether: (1) exercise-induced increases in systemic levels of interleukin-6 (IL-6) and other cytokines can be ascribed to local production in working muscle; and (2) how acute release of retained blood from an exerci......The objective of this study was to use a novel and non-invasive model to explore whether: (1) exercise-induced increases in systemic levels of interleukin-6 (IL-6) and other cytokines can be ascribed to local production in working muscle; and (2) how acute release of retained blood from...... was inhibited for 18 min by inflating a cuff around the thigh as proximally as possible immediately following exercise. On the control occasion venous outflow was not inhibited. Venous blood samples were collected from an arm vein at 2-min intervals after exercise. During inhibition of venous outflow from...

  1. A Bioeconomic Model of Cattle Stocking on Rangeland Threatened by Invasive Plants and Nitrogen Deposition

    OpenAIRE

    David Finnoff; Aaron Strong; John Tschirhart

    2008-01-01

    Across western North America, invasive plant species and elevated levels of nitrogen are threatening the productivity of rangelands. A bioeconomic model of stocking cattle on these rangelands is used to show that optimal stocking depends on the competition between native grasses and the invaders. However, nitrogen deposition is important in determining the ultimate rangeland species composition. Endogenous changes in plant successional thresholds are due to the interplay of nitrogen depositio...

  2. Radiation-induced relief of pain in an animal model with bone invasion from cancer

    International Nuclear Information System (INIS)

    Seong, J.; Kim, J.; Kim, K.H.; Kim, U.J.; Lee, B.W.

    2003-01-01

    In clinic, local radiation is effective for relief of pain from cancer invasion into the bones. This effect is usually observed before the regression of tumor occurs, which implies radiation-induced pain relief by mechanisms other than tumor irradication. In this study, possible mechanisms were explored in animal model system. To establish an animal model, syngeneic hepatocarcinoma, HCa-I was transplanted on femoral periosteum of C3H/HeJ male mice and bone-invasive tumor growth was identified through the histological analysis. Development of tumor-induced pain was assessed by von Frey filament test, acetone test, and radiant heat test. Animals were also irradiated for their tumors. Any change in pain was analyzed by above tests for the quantitative change and by immunohistochemical stain for the expression of molecules such as c-fos, substance P, and calcitonin gene-related peptide (CGRP) in lumbar spinal cord. Cancer invasion into the bone was started from 7th day after transplantation and became evident at day 14. Objective increase of pain in the ipsilateral thigh was observed at day 14 on von Frey filament test and acetone test, while there was no remarkable regression of the tumors. In this model system, local radiation of tumor resulted in decrease in objective pain on von Frey filament test and acetone test. In the immunohistochemical stain for lumbar spinal cord, the expression of substance P and CGRP but not c-fos increased in tumor-bearing animal compared to the control. The expression of these molecules decreased in animals given local radiation. In summary, an animal model system was established for objective pain from cancer invasion into the bones. Local radiation of tumor induced objective pain relief and this effect seems to be mediated not by tumor regression but through altered production of pain-related molecules

  3. Subcutaneous preconditioning increases invasion and metastatic dissemination in mouse colorectal cancer models

    Directory of Open Access Journals (Sweden)

    Patricia Alamo

    2014-03-01

    Full Text Available Mouse colorectal cancer (CRC models generated by orthotopic microinjection of human CRC cell lines reproduce the pattern of lymphatic, haematological and transcoelomic spread but generate low metastatic efficiency. Our aim was to develop a new strategy that could increase the metastatic efficiency of these models. We used subcutaneous implantation of the human CRC cell lines HCT116 or SW48 prior to their orthotopic microinjection in the cecum of nude mice (SC+ORT. This subcutaneous preconditioning significantly enhanced metastatic dissemination. In the HCT116 model it increased the number and size of metastatic foci in lymph nodes, lung, liver and peritoneum, whereas, in the SW48 model, it induced a shift from non-metastatic to metastatic. In both models the number of apoptotic bodies in the primary tumour in the SC+ORT group was significantly reduced compared with that in the direct orthotopic injection (ORT group. Moreover, in HCT116 tumours the number of keratin-positive tumour buddings and single epithelial cells increased at the invasion front in SC+ORT mice. In the SW48 tumour model, we observed a trend towards a higher number of tumour buds and single cells in the SC+ORT group but this did not reach statistical significance. At a molecular level, the enhanced metastatic efficiency observed in the HCT116 SC+ORT model was associated with an increase in AKT activation, VEGF-A overexpression and downregulation of β1 integrin in primary tumour tissue, whereas, in SW48 SC+ORT mice, the level of expression of these proteins remained unchanged. In summary, subcutaneous preconditioning increased the metastatic dissemination of both orthotopic CRC models by increasing tumour cell survival and invasion at the tumour invasion front. This approach could be useful to simultaneously study the mechanisms of metastases and to evaluate anti-metastatic drugs against CRC.

  4. Global thermal niche models of two European grasses show high invasion risks in Antarctica.

    Science.gov (United States)

    Pertierra, Luis R; Aragón, Pedro; Shaw, Justine D; Bergstrom, Dana M; Terauds, Aleks; Olalla-Tárraga, Miguel Ángel

    2017-07-01

    The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species. © 2017 John Wiley & Sons Ltd.

  5. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Shauna-Lee Chai

    Full Text Available Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis, tamarisk (Tamarix chinensis, and alkali swainsonpea (Sphaerophysa salsula. We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  6. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.

    Science.gov (United States)

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta's biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as 'extremely invasive', with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is 'extremely invasive' with a 64% increase in suitable habitat, and alkali swainsonpea is 'highly invasive' with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change.

  7. The protective effect of apolipoprotein in models of trophoblast invasion and preeclampsia.

    Science.gov (United States)

    Charlton, Francesca; Bobek, Gabriele; Stait-Gardner, Tim; Price, William S; Mirabito Colafella, Katrina M; Xu, Bei; Makris, Angela; Rye, Kerry-Anne; Hennessy, Annemarie

    2017-01-01

    Preeclampsia is a hypertensive disorder of pregnancy. It is associated with abnormal placentation via poor placental invasion of the uterine vasculature by trophoblast cells, leading to poor placental perfusion, oxidative stress, and inflammation, all of which are implicated in its pathogenesis. A dyslipidemia characterized by low plasma levels of high-density lipoproteins (HDL) and elevated triglycerides has been described in preeclampsia. Apolipoprotein A-I (apoA-I), a constituent of HDL is an anti-inflammatory agent. This study investigated whether apoA-I protects against hypertension and adverse placental changes in a proinflammatory cytokine (TNF-α)-induced model of preeclampsia. Further, this study investigated whether apoA-I protects against the inhibitory effect of TNF-α in a human in vitro model of trophoblast invasion. Administration of apoA-I to pregnant mice before infusion with TNF-α resulted in a significant reduction in the cytokine-induced increase in systolic blood pressure. MRI measurement of T 2 relaxation, a parameter that is tissue specific and sensitive to physiological changes within tissues, showed a reversal of TNF-α-induced placental changes. Preincubation of endothelial cells with apoA-I protected against the TNF-α-induced inhibition of HTR-8/SVneo (trophoblast) cell integration into endothelial (UtMVEC) networks. These data suggest that a healthy lipid profile may affect pregnancy outcomes by priming endothelial cells in preparation for trophoblast invasion. Copyright © 2017 the American Physiological Society.

  8. Optimal control applied to native-invasive species competition via a PDE model

    Directory of Open Access Journals (Sweden)

    Wandi Ding

    2012-12-01

    Full Text Available We consider an optimal control problem of a system of parabolic partial differential equations modelling the competition between an invasive and a native species. The motivating example is cottonwood-salt cedar competition, where the effect of disturbance in the system (such as flooding is taken to be a control variable. Flooding being detrimental at low and high levels, and advantageous at medium levels led us to consider the quadratic growth function of the control. The objective is to maximize the native species and minimize the invasive species while minimizing the cost of implementing the control. An existence result for an optimal control is given. Numerical examples are presented to illustrate the results.

  9. An improved in vitro model to characterize invasive growing cancer cells simultaneously by function and genetic aberrations.

    Science.gov (United States)

    Jung, V; Wullich, B; Kamradt, J; Stöckle, M; Unteregger, G

    2007-03-01

    Invasion into the surrounding tissue and bone metastasis is a common feature of advanced prostate cancer. Chromosomal and other genetic or epigenetic abnormalities were aligned to this behaviour mostly by using permanent cell lines, paraffin embedded tissue or primary tumour samples. Both attempts fail to reflect either the original situation or functional information in the patient's tissue. Thus, we developed an improved in vitro assay to follow invasion of prostate cancer cells derived from fresh samples of radical prostatectomy specimens. Fresh tumour samples were applied onto Matrigeltrade mark-coated invasion chambers using a cocultivation model. Invasive growing cells were harvested from the bottom of the membrane or from the underlying gel and further characterized using comparative genomic hybridization. Prostate cancer cells have the capability to invasively grow through the barrier of a Matrigeltrade mark and could easily be sampled in a pad of Matrigeltrade mark. Comparative genomic hybridization revealed characteristic chromosomal aberrations of the invasive growing cells. Noteworthy is their ability to spheroid formation, which allows for further cell propagation by standard cell culture methods. Thus, our improved invasion model is a tool for the sampling of invasive growing cancer cells from fresh human tumour material allowing for functional as well as genetic studies.

  10. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-12-31

    This thesis studies simulations of the slow displacement of a wetting fluid by a non-wetting fluid in porous media and in a single fracture. The simulations are based on the invasion percolation model. New modified versions of the model are presented that simulate migration, fragmentation and coalescence processes of the clusters of non-wetting fluid. The resulting displacement patterns are characterized by scaling laws. In particular, simulations of the secondary migration of oil through porous homogeneous rock are discussed. Fractured rocks are extreme cases of inhomogeneous porous media. Simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a single fracture using the standard invasion model are presented. There is a discussion of a scenario in which a cluster of non-wetting fluid migrates through a porous medium that was saturated with a wetting fluid. The migration is driven by continuously driven buoyancy forces. Both experiments and simulations are described. The same scenario is also studied theoretically and by simulations using a simplified percolation model of fluid migration in one dimension. The migration model in two dimensions, with constant buoyancy forces, is also discussed. Simulations of fluid migration, such as the secondary migration of oil, in two- and three-dimensional media are examined, the media having multi-affine properties rather than being homogeneous. Slow immiscible displacement processes in single fractures are studied using fractal geometries to model single fractures. 167 refs., 123 figs.

  11. Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah

    Science.gov (United States)

    Jin, Zhenyu

    Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates

  12. Hyperspectral Mapping of the Invasive Species Pepperweed and the Development of a Habitat Suitability Model

    Science.gov (United States)

    Nguyen, A.; Gole, A.; Randall, J.; Dlott, G. A.; Zhang, S.; Alfaro, B.; Schmidt, C.; Skiles, J. W.

    2011-12-01

    Mapping and predicting the spatial distribution of invasive plant species is central to habitat management, however difficult to implement at landscape and regional scales. Remote sensing techniques can reduce the cost of field campaigns and can provide a regional and multi-temporal view of invasive species spread. Invasive perennial pepperweed (Lepidium latifolium) is now widespread in fragmented estuaries of the South San Francisco Bay, and is shown to degrade native vegetation in estuaries and adjacent habitats, thereby reducing forage and shelter for wildlife. The purpose of this study is to map the current distribution of pepperweed in estuarine areas of the South San Francisco Bay Salt Pond Restoration Project, and create a habitat suitability model to predict future spread. Pepperweed reflectance data were collected in-situ with a GER 1500 spectroradiometer along with 88 corresponding pepperweed presence and absence points used for building the statistical models. The spectral angle mapper (SAM) classification algorithm was used to distinguish the reflectance spectrum of pepperweed and map its distribution using an EO-1 Hyperion satellite image. To map pepperweed, a supervised classification was performed on an ASTER image with a resulting classification accuracy of 71.8%. We generated a weighted overlay analysis model within a geographic information system (GIS) framework to predict areas in the study site most susceptible to pepperweed colonization. Variables for the model included propensity for disturbance, status of pond restoration, proximity to water channels, and terrain curvature. A Generalized Additive Model (GAM) was also used to generate a probability map and investigate the statistical probability that each variable contributed to predict pepperweed spread. Results from the GAM revealed distance to channels, distance to ponds and curvature were statistically significant (p < 0.01) in determining the locations of suitable pepperweed habitats.

  13. A modeling framework for the establishment and spread of invasive species in heterogeneous environments.

    Science.gov (United States)

    Lustig, Audrey; Worner, Susan P; Pitt, Joel P W; Doscher, Crile; Stouffer, Daniel B; Senay, Senait D

    2017-10-01

    Natural and human-induced events are continuously altering the structure of our landscapes and as a result impacting the spatial relationships between individual landscape elements and the species living in the area. Yet, only recently has the influence of the surrounding landscape on invasive species spread started to be considered. The scientific community increasingly recognizes the need for broader modeling framework that focuses on cross-study comparisons at different spatiotemporal scales. Using two illustrative examples, we introduce a general modeling framework that allows for a systematic investigation of the effect of habitat change on invasive species establishment and spread. The essential parts of the framework are (i) a mechanistic spatially explicit model (a modular dispersal framework-MDIG) that allows population dynamics and dispersal to be modeled in a geographical information system (GIS), (ii) a landscape generator that allows replicated landscape patterns with partially controllable spatial properties to be generated, and (iii) landscape metrics that depict the essential aspects of landscape with which dispersal and demographic processes interact. The modeling framework provides functionality for a wide variety of applications ranging from predictions of the spatiotemporal spread of real species and comparison of potential management strategies, to theoretical investigation of the effect of habitat change on population dynamics. Such a framework allows to quantify how small-grain landscape characteristics, such as habitat size and habitat connectivity, interact with life-history traits to determine the dynamics of invasive species spread in fragmented landscape. As such, it will give deeper insights into species traits and landscape features that lead to establishment and spread success and may be key to preventing new incursions and the development of efficient monitoring, surveillance, control or eradication programs.

  14. Hyperspectral Mapping of the Invasive Species Pepperweed and the Development of a Habitat Suitability Model

    Science.gov (United States)

    Nguyen, Andrew; Gole, Alexander; Randall, Jarom; Dlott, Glade; Zhang, Sylvia; Alfaro, Brian; Schmidt, Cindy; Skiles, J. W.

    2011-01-01

    Mapping and predicting the spatial distribution of invasive plant species is central to habitat management, however difficult to implement at landscape and regional scales. Remote sensing techniques can reduce the impact field campaigns have on these ecologically sensitive areas and can provide a regional and multi-temporal view of invasive species spread. Invasive perennial pepperweed (Lepidium latifolium) is now widespread in fragmented estuaries of the South San Francisco Bay, and is shown to degrade native vegetation in estuaries and adjacent habitats, thereby reducing forage and shelter for wildlife. The purpose of this study is to map the present distribution of pepperweed in estuarine areas of the South San Francisco Bay Salt Pond Restoration Project (Alviso, CA), and create a habitat suitability model to predict future spread. Pepperweed reflectance data were collected in-situ with a GER 1500 spectroradiometer along with 88 corresponding pepperweed presence and absence points used for building the statistical models. The spectral angle mapper (SAM) classification algorithm was used to distinguish the reflectance spectrum of pepperweed and map its distribution using an image from EO-1 Hyperion. To map pepperweed, we performed a supervised classification on an ASTER image with a resulting classification accuracy of 71.8%. We generated a weighted overlay analysis model within a geographic information system (GIS) framework to predict areas in the study site most susceptible to pepperweed colonization. Variables for the model included propensity for disturbance, status of pond restoration, proximity to water channels, and terrain curvature. A Generalized Additive Model (GAM) was also used to generate a probability map and investigate the statistical probability that each variable contributed to predict pepperweed spread. Results from the GAM revealed distance to channels, distance to ponds and curvature were statistically significant (p suitable pepperweed

  15. Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM).

    Science.gov (United States)

    West, Amanda M; Evangelista, Paul H; Jarnevich, Catherine S; Young, Nicholas E; Stohlgren, Thomas J; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-10-11

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  16. Integrating remote sensing with species distribution models; Mapping tamarisk invasions using the Software for Assisted Habitat Modeling (SAHM)

    Science.gov (United States)

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  17. Modeling the compensatory response of an invasive tree to specialist insect herbivory

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Don; Zhai, Lu; Rayamajhi, Min B.; Ju, Shu

    2018-01-01

    The severity of the effects of herbivory on plant fitness can be moderated by the ability of plants to compensate for biomass loss. Compensation is an important component of the ecological fitness in many plants, and has been shown to reduce the effects of pests on agricultural plant yields. It can also reduce the effectiveness of biocontrol through introduced herbivores in controlling weedy invasive plants. This study used a modeling approach to predict the effect of different levels of foliage herbivory by biological control agents introduced to control the invasive tree Melaleuca quinquennervia (melaleuca) in Florida. It is assumed in the model that melaleuca can optimally change its carbon and nitrogen allocation strategies in order to compensate for the effects of herbivory. The model includes reallocation of more resources to production and maintenance of photosynthetic tissues at the expense of roots. This compensation is shown to buffer the severity of the defoliation effect, but the model predicts a limit on the maximum herbivory that melaleuca can tolerate and survive. The model also shows that the level of available limiting nutrient (e.g., soil nitrogen) may play an important role in a melaleuca’s ability to compensate for herbivory. This study has management implications for the best ways to maximize the level of damage using biological control or other means of defoliation.

  18. The invasive potential of Giardia intestinalis in an in vivo model.

    Science.gov (United States)

    Reynoso-Robles, R; Ponce-Macotela, M; Rosas-López, L E; Ramos-Morales, A; Martínez-Gordillo, M N; González-Maciel, A

    2015-10-16

    Giardiasis is a neglected parasitic disease that affects primarily children, in whom it delays physical and mental development. The pathophysiology of giardiasis in not well understood, and most reports have identified Giardia intestinalis trophozoites only in the lumen and on the brush border of the small intestine. We identified Giardia trophozoites within the epithelium of the small intestine of a lactose intolerance patient. The Giardia trophozoites were obtained and cultured in vitro. In addition, we demonstrated Giardia trophozoite invasion in an animal model. Giardia trophozoites invaded the intestinal mucosa and submucosa of infected gerbils. The invasive trophozoites were observed at 21, 30 and 60 days age, and the average numbers of invaded sites were 17 ± 5, 15 ± 4, and 9 ± 3, respectively. We found trophozoites between epithelial cells, at the base of empty goblet cells, in lacteal vessels and within the submucosa. The morphological integrity of the invasive trophozoites was demonstrated via electron microscopy. The analysis of the gerbils infected with the trophozoites of the WB reference strain did not show intraepithelial trophozoites. These results demonstrate another Giardia pathogenic mechanism, opening the door to numerous future studies.

  19. Optimal control of an invasive species using a reaction-diffusion model and linear programming

    Science.gov (United States)

    Bonneau, Mathieu; Johnson, Fred A.; Smith, Brian J.; Romagosa, Christina M.; Martin, Julien; Mazzotti, Frank J.

    2017-01-01

    Managing an invasive species is particularly challenging as little is generally known about the species’ biological characteristics in its new habitat. In practice, removal of individuals often starts before the species is studied to provide the information that will later improve control. Therefore, the locations and the amount of control have to be determined in the face of great uncertainty about the species characteristics and with a limited amount of resources. We propose framing spatial control as a linear programming optimization problem. This formulation, paired with a discrete reaction-diffusion model, permits calculation of an optimal control strategy that minimizes the remaining number of invaders for a fixed cost or that minimizes the control cost for containment or protecting specific areas from invasion. We propose computing the optimal strategy for a range of possible model parameters, representing current uncertainty on the possible invasion scenarios. Then, a best strategy can be identified depending on the risk attitude of the decision-maker. We use this framework to study the spatial control of the Argentine black and white tegus (Salvator merianae) in South Florida. There is uncertainty about tegu demography and we considered several combinations of model parameters, exhibiting various dynamics of invasion. For a fixed one-year budget, we show that the risk-averse strategy, which optimizes the worst-case scenario of tegus’ dynamics, and the risk-neutral strategy, which optimizes the expected scenario, both concentrated control close to the point of introduction. A risk-seeking strategy, which optimizes the best-case scenario, focuses more on models where eradication of the species in a cell is possible and consists of spreading control as much as possible. For the establishment of a containment area, assuming an exponential growth we show that with current control methods it might not be possible to implement such a strategy for some of the

  20. Linking disturbance and resistance to invasion via changes in biodiversity: a conceptual model and an experimental test on rocky reefs.

    Science.gov (United States)

    Bulleri, Fabio; Benedetti-Cecchi, Lisandro; Jaklin, Andrej; Iveša, Ljiljana

    2016-04-01

    Biological invasions threaten biodiversity worldwide. Nonetheless, a unified theory linking disturbance and resistance to invasion through a mechanistic understanding of the changes caused to biodiversity is elusive. Building on different forms of the disturbance-biodiversity relationship and on the Biotic Resistance Hypothesis (BRH), we constructed conceptual models showing that, according to the main biodiversity mechanism generating invasion resistance (complementary vs. identity effects), disturbance can either promote or hinder invasion. Following the Intermediate Disturbance Hypothesis (IDH), moderate levels of disturbance (either frequency or intensity) are expected to enhance species richness. This will promote invasion resistance when complementarity is more important than species identity. Negative effects of severe disturbance on invasion resistance, due to reductions in species richness, can be either overcompensated or exacerbated by species identity effects, depending on the life-traits becoming dominant within the native species pool. Different invasion resistance scenarios are generated when the diversity-disturbance relationship is negative or positive monotonic. Predictions from these models were experimentally tested on rocky reefs. Macroalgal canopies differing in species richness (1 vs. 2 vs. 3) and identity, were exposed to either a moderate or a severe pulse disturbance. The effects of different canopy-forming species on the seaweed, Caulerpa cylindracea, varied from positive (Cystoseira crinita) to neutral (Cystoseira barbata) to negative (Cystoseira compressa). After 2 years, severely disturbed plots were monopolized by C. compressa and supported less C. cylindracea. Our study shows that the effects of disturbance on invasion depend upon its intensity, the main mechanism through which biodiversity generates invasion resistance and the life-traits selected within the native species pool. Disturbance can sustain invasion resistance when

  1. Usefulness of bioclimatic models for studying climate change and invasive species.

    Science.gov (United States)

    Jeschke, Jonathan M; Strayer, David L

    2008-01-01

    Bioclimatic models (also known as envelope models or, more broadly, ecological niche models or species distribution models) are used to predict geographic ranges of organisms as a function of climate. They are widely used to forecast range shifts of organisms due to climate change, predict the eventual ranges of invasive species, infer paleoclimate from data on species occurrences, and so forth. Several statistical techniques (including general linear models, general additive models, climate envelope models, classification and regression trees, and genetic algorithms) have been used in bioclimatic modeling. Recently developed techniques tend to perform better than older techniques, although it is unlikely that any single statistical approach will be optimal for all applications and species. Proponents of bioclimatic models have stressed their apparent predictive power, whereas opponents have identified the following unreasonable model assumptions: biotic interactions are unimportant in determining geographic ranges or are constant over space and time; the genetic and phenotypic composition of species is constant over space and time; and species are unlimited in their dispersal. In spite of these problematic assumptions, bioclimatic models often successfully fit present-day ranges of species. Their ability to forecast the effects of climate change or the spread of invaders has rarely been tested adequately, however, and we urge researchers to tie the evaluation of bioclimatic models more closely to their intended uses.

  2. Canis familiaris As a Model for Non-Invasive Comparative Neuroscience.

    Science.gov (United States)

    Bunford, Nóra; Andics, Attila; Kis, Anna; Miklósi, Ádám; Gácsi, Márta

    2017-07-01

    There is an ongoing need to improve animal models for investigating human behavior and its biological underpinnings. The domestic dog (Canis familiaris) is a promising model in cognitive neuroscience. However, before it can contribute to advances in this field in a comparative, reliable, and valid manner, several methodological issues warrant attention. We review recent non-invasive canine neuroscience studies, primarily focusing on (i) variability among dogs and between dogs and humans in cranial characteristics, and (ii) generalizability across dog and dog-human studies. We argue not for methodological uniformity but for functional comparability between methods, experimental designs, and neural responses. We conclude that the dog may become an innovative and unique model in comparative neuroscience, complementing more traditional models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    International Nuclear Information System (INIS)

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Jenkins, Bruce G.; Isacson, Ole

    2005-01-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders

  4. Practical guidelines for modelling post-entry spread in invasion ecology

    Directory of Open Access Journals (Sweden)

    Hazel Parry

    2013-09-01

    Full Text Available In this article we review a variety of methods to enable understanding and modelling the spread of a pest or pathogen post-entry. Building upon our experience of multidisciplinary research in this area, we propose practical guidelines and a framework for model development, to help with the application of mathematical modelling in the field of invasion ecology for post-entry spread. We evaluate the pros and cons of a range of methods, including references to examples of the methods in practice. We also show how issues of data deficiency and uncertainty can be addressed. The aim is to provide guidance to the reader on the most suitable elements to include in a model of post-entry dispersal in a risk assessment, under differing circumstances. We identify both the strengths and weaknesses of different methods and their application as part of a holistic, multidisciplinary approach to biosecurity research.

  5. Simulated lumbar minimally invasive surgery educational model with didactic and technical components.

    Science.gov (United States)

    Chitale, Rohan; Ghobrial, George M; Lobel, Darlene; Harrop, James

    2013-10-01

    The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. To confirm the importance of establishing an educational curriculum for teaching minimally invasive techniques of pedicle screw placement using a computer-enhanced physical model of percutaneous pedicle screw placement with simultaneous didactic and technical components. A 2-hour educational curriculum was created to educate neurosurgical residents on anatomy, pathophysiology, and technical aspects associated with image-guided pedicle screw placement. Predidactic and postdidactic practical and written scores were analyzed and compared. Scores were calculated for each participant on the basis of the optimal pedicle screw starting point and trajectory for both fluoroscopy and computed tomographic navigation. Eight trainees participated in this module. Average mean scores on the written didactic test improved from 78% to 100%. The technical component scores for fluoroscopic guidance improved from 58.8 to 52.9. Technical score for computed tomography-navigated guidance also improved from 28.3 to 26.6. Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.

  6. Modeling the long-term effects of introduced herbivores on the spread of an invasive tree

    Science.gov (United States)

    Zhang, Bo; DeAngelis, Don; Rayamajhi, Min B.; Botkin, Daniel B.

    2017-01-01

    ContextMelaleuca quinquenervia (Cav.) Blake (hereafter melaleuca) is an invasive tree from Australia that has spread over the freshwater ecosystems of southern Florida, displacing native vegetation, thus threatening native biodiversity. Suppression of melaleuca appears to be progressing through the introduction of insect species, the weevil, Oxiops vitiosa, and the psyllid, Boreioglycaspis melaleucae.ObjectiveTo improve understanding of the possible effects of herbivory on the landscape dynamics of melaleuca in native southern Florida plant communities.MethodsWe projected likely future changes in plant communities using the individual based modeling platform, JABOWA-II, by simulating successional processes occurring in two types of southern Florida habitat, cypress swamp and bay swamp, occupied by native species and melaleuca, with the impact of insect herbivores.ResultsComputer simulations show melaleuca invasion leads to decreases in density and basal area of native species, but herbivory would effectively control melaleuca to low levels, resulting in a recovery of native species. When herbivory was modeled on pure melaleuca stands, it was more effective in stands with initially larger-sized melaleuca. Although the simulated herbivory did not eliminate melaleuca, it decreased its presence dramatically in all cases, supporting the long-term effectiveness of herbivory in controlling melaleuca invasion.ConclusionsThe results provide three conclusions relevant to management: (1) The introduction of insect herbivory that has been applied to melaleuca appears sufficient to suppress melaleuca over the long term, (2) dominant native species may recover in about 50 years, and (3) regrowth of native species will further suppress melaleuca through competition.

  7. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-09-01

    In oil reservoir engineering, multi-phase displacement processes are important. This doctoral thesis describes simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a complex, random porous medium and in a single fracture. The study is restricted to two-phase flow in the quasi-static limit in which viscous forces can be neglected. The secondary migration of oil takes place in this regime, however, the discussion is broader in scope. The thesis connects the problem of slow two-phase flow to percolation theory and discusses the mechanisms that control immiscible displacements. A new, modified version of the invasion percolation model is used to simulate an imbibition process in a porous medium and the migration of a cluster of non-wetting fluid through a porous medium saturated with a wetting fluid. The simulations include the secondary migration of oil through porous homogeneous rock. Fluid migration through heterogeneous porous media is simulated qualitatively. Slow displacement of a wetting fluid by a non-wetting fluid in a single rock fracture is simulated by using the standard invasion percolation model. Experiments and simulations are performed to study the fragmentation of invasion percolation-like structures of non-wetting fluid in a porous medium saturated with a wetting fluid. A scenario is studied in which a cluster of non-wettable fluid migrates through a porous medium that is saturated with a wetting fluid, the migration being driven by continuously increasing buoyancy forces. There is a simulation of the secondary migration of oil in both two- and three-dimensional media. 361 refs., 115 figs.

  8. A Class of Parameter Estimation Methods for Nonlinear Muskingum Model Using Hybrid Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Aijia Ouyang

    2015-01-01

    Full Text Available Nonlinear Muskingum models are important tools in hydrological forecasting. In this paper, we have come up with a class of new discretization schemes including a parameter θ to approximate the nonlinear Muskingum model based on general trapezoid formulas. The accuracy of these schemes is second order, if θ≠1/3, but interestingly when θ=1/3, the accuracy of the presented scheme gets improved to third order. Then, the present schemes are transformed into an unconstrained optimization problem which can be solved by a hybrid invasive weed optimization (HIWO algorithm. Finally, a numerical example is provided to illustrate the effectiveness of the present methods. The numerical results substantiate the fact that the presented methods have better precision in estimating the parameters of nonlinear Muskingum models.

  9. The application of artificial neural network model in the non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    Bo LI

    2012-12-01

    Full Text Available Objective  To construct and evaluate an artificial neural network (ANN model as a new non-invasive diagnostic method for clinical assessment of liver fibrosis at early stage. Methods  The model was set up and tested among 683 chronic hepatitis B (CHB patients, with authentic positive clinical biopsy results, proved to have liver fibrosis or cirrhosis, admitted to 302 Hospital of PLA from May 2008 to March 2011. Among 683 samples, 504 samples were diagnosed as cirrhosis as a result of CHB, and 179 liver fibrosis due to other liver diseases. 134 out of 683 patients were included in training group by stratified sampling, and the others for verification. Six items (age, AST, PTS, PLT, GGT and DBil were selected as input layer indexes to set up the model for evaluation. Results  The ANN model for diagnosis of liver fibrosis was set up. The diagnostic accuracy was 77.4%, sensitivity was 76.8%, and specificity was 77.8%. Its Kappa concordance tests showed the diagnosis result of the model was consistent with biopsy result (Kappa index=0.534. The accuracy, sensitivity and specificity of CHB patients were 80.4%, 79.9% and 80.7% (Kappa index=0.598 respectively, and those for other liver diseases were 67.9%, 64.3% and 69.7% (Kappa index=0.316. Conclusion  The artificial neural network model established by the authors demonstrates its high sensitivity and specificity as a new non-invasive diagnostic method for liver fibrosis induced by HBV infection. However, it shows limited diagnostic reliability to fibrosis as a result of other liver diseases.

  10. Modeling the effect of climate change to the potential invasion range of Piper aduncum Linnaeus

    Directory of Open Access Journals (Sweden)

    J.C. Paquit

    2018-01-01

    Full Text Available The potential effect of invasive plant species on biodiversity is one of most important subject of inquiry at present. In many parts of the world, the alarming spread of these plants has been documented. Knowing that climate exerts a dominant control over the distribution of plant species, predictions can therefore be made to determine which areas the species would likely spread under a climate change scenario and that is what this study aims to tackle. In the current study, a total of 211 species occurrence points were used to model the current and projected suitability of Piper aduncum in Bukidnon, Philippines using Maxent. Results revealed that the suitability of the species was determined primarily by climatic factors with Bio 18 (precipitation of the warmest quarter as the strongest influencing variable with a mean percent contribution of 22.1%. The resulting model was highly accurate based on its mean test Area Under Curve that is equal to 0.917. Current prediction shows that suitable areas for Piper are concentrated along the southern portion of Bukidnon. Only 9% of the province is suitable for the species at present but is predicted to increase to 27% because of climate change. The central and southwestern parts of the province are the areas of high threat for invasion by Piper.

  11. Chemo-elastic modeling of invasive carcinoma development accompanied by oncogenic epithelial-mesenchymal transition

    Science.gov (United States)

    Bratsun, D. A.; Krasnyakov, I. V.; Pismen, L.

    2017-09-01

    We present a further development of a multiscale chemo-mechanical model of carcinoma growth in the epithelium tissue proposed earlier. The epithelium is represented by an elastic 2D array of polygonal cells, each with its own gene regulation dynamics. The model allows the simulation of evolution of multiple cells interacting via the chemical signaling or mechanically induced strain. The algorithm takes into account the division and intercalation of cells. The latter is most important since, first of all, carcinoma cells lose cell-cell adhesion and polarity via the oncogenic variant of the epithelial-mesenchymal transition (EMT) at which cells gain migratory and invasive properties. This process is mediated by E-cadherin repression and requires the differentiation of tumor cells with respect to the edge of the tumor that means that front cells should be most mobile. Taking into account this suggestion, we present the results of simulations demonstrating different patterns of carcinoma invasion. The comparison of our results with recent experimental observations is given and discussed.

  12. Novel application of explicit dynamics occupancy models to ongoing aquatic invasions

    Science.gov (United States)

    Sepulveda, Adam J.

    2018-01-01

    Identification of suitable habitats, where invasive species can establish, is an important step towards controlling their spread. Accurate identification is difficult for new or slow invaders because unoccupied habitats may be suitable, given enough time for dispersal, while occupied habitats may prove to be unsuitable for establishment.To identify the suitable habitat of a recent invader, I used an explicit dynamics occupancy modelling framework to evaluate habitat covariates related to successful and failed establishments of American bullfrogs (Lithobates catesbeianus) within the Yellowstone River floodplain of Montana, USA from 2012-2016.During this five-year period, bullfrogs failed to establish at most sites they colonized. Bullfrog establishment was most likely to occur and least likely to fail at sites closest to human-modified ponds and lakes and those with emergent vegetation. These habitat covariates were generally associated with the presence of permanent water.Suitable habitat for bullfrog establishment is abundant in the Yellowstone River floodplain, though many sites with suitable habitat remain uncolonized. Thus, the maximum distribution of bullfrogs is much greater than their current distribution.Synthesis and applications. Focused control efforts on habitats with or proximate to permanent waters are most likely to reduce the potential for invasive bullfrog establishment and spread in the Yellowstone River. The novel application of explicit dynamics occupancy models is a useful and widely applicable tool for guiding management efforts towards those habitats where new or slow invaders are most likely to establish and persist.

  13. Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.

    Directory of Open Access Journals (Sweden)

    Jaime C Piñero

    Full Text Available Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus cucurbitae (Coquillett (Diptera: Tephritidae was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya. It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

  14. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  15. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching

    Science.gov (United States)

    Cristini, Vittorio; Li, Xiangrong; Lowengrub, John S.; Wise, Steven M.

    2011-01-01

    We develop a thermodynamically consistent mixture model for avascular solid tumor growth which takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. The mixture model is well-posed and the governing equations are of Cahn–Hilliard type. When there are only two phases, our asymptotic analysis shows that earlier single-phase models may be recovered as limiting cases of a two-phase model. To solve the governing equations, we develop a numerical algorithm based on an adaptive Cartesian block-structured mesh refinement scheme. A centered-difference approximation is used for the space discretization so that the scheme is second order accurate in space. An implicit discretization in time is used which results in nonlinear equations at implicit time levels. We further employ a gradient stable discretization scheme so that the nonlinear equations are solvable for very large time steps. To solve those equations we use a nonlinear multilevel/multigrid method which is of an optimal order O (N) where N is the number of grid points. Spherically symmetric and fully two dimensional nonlinear numerical simulations are performed. We investigate tumor evolution in nutrient-rich and nutrient-poor tissues. A number of important results have been uncovered. For example, we demonstrate that the tumor may suffer from taxis-driven fingering instabilities which are most dramatic when cell proliferation is low, as predicted by linear stability theory. This is also observed in experiments. This work shows that taxis may play a role in tumor invasion and that when nutrient plays the role of a chemoattractant, the diffusional instability is exacerbated by nutrient gradients. Accordingly, we believe this model is capable of describing complex invasive patterns observed in experiments. PMID:18787827

  16. Hierarchical modeling of an invasive spread: The eurasian collared-dove streptopelia decaocto in the United States

    Science.gov (United States)

    Bled, F.; Royle, J. Andrew; Cam, E.

    2011-01-01

    Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the

  17. Modeling of a Non-invasive Electromagnetic Sensor for the Measurement Glycaemia

    Directory of Open Access Journals (Sweden)

    A. Rouane

    2011-06-01

    Full Text Available In this paper, we present the modeling of a non-invasive electromagnetic sensor for the measurement glycaemia. The model is based on a bio-impedance measurement. First, we optimized the dimensions of the sensor’s parameters that can influence on measurement. Second, we investigated the influence of the dielectric parameters on the conductivity and its impact on the measurement of glycaemia. Results from this study demonstrate that the variation of the sensor impedance depends on the resistance and the inductance, which depend on the conductivity. The sensitivity of the output and input signal ratio strongly depends on the conductivity of the medium under investigation. Maximum conductivity at the resonance frequency was demonstrated.

  18. Characterization of Pneumococcal Genes Involved in Bloodstream Invasion in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Layla K Mahdi

    Full Text Available Streptococcus pneumoniae (the pneumococcus continues to account for significant morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteremia and meningitis, as well as less serious infections such as sinusitis, conjunctivitis and otitis media. Current polysaccharide vaccines are strictly serotype-specific and also drive the emergence of non-vaccine serotype strains. In this study, we used microarray analysis to compare gene expression patterns of either serotype 4 or serotype 6A pneumococci in the nasopharynx and blood of mice, as a model to identify genes involved in invasion of blood in the context of occult bacteremia in humans. In this manner, we identified 26 genes that were significantly up-regulated in the nasopharynx and 36 genes that were significantly up-regulated in the blood that were common to both strains. Gene Ontology classification revealed that transporter and DNA binding (transcription factor activities constitute the significantly different molecular functional categories for genes up-regulated in the nasopharynx and blood. Targeted mutagenesis of selected genes from both niches and subsequent virulence and pathogenesis studies identified the manganese-dependent superoxide dismutase (SodA as most likely to be essential for colonization, and the cell wall-associated serine protease (PrtA as important for invasion of blood. This work extends our previous analyses and suggests that both PrtA and SodA warrant examination in future studies aimed at prevention and/or control of pneumococcal disease.

  19. Performance of serum biomarkers for the early detection of invasive aspergillosis in febrile, neutropenic patients: a multi-state model.

    Directory of Open Access Journals (Sweden)

    Michaël Schwarzinger

    Full Text Available The performance of serum biomarkers for the early detection of invasive aspergillosis expectedly depends on the timing of test results relative to the empirical administration of antifungal therapy during neutropenia, although a dynamic evaluation framework is lacking.We developed a multi-state model describing simultaneously the likelihood of empirical antifungal therapy and the risk of invasive aspergillosis during neutropenia. We evaluated whether the first positive test result with a biomarker is an independent predictor of invasive aspergillosis when both diagnostic information used to treat and risk factors of developing invasive aspergillosis are taken into account over time. We applied the multi-state model to a homogeneous cohort of 185 high-risk patients with acute myeloid leukemia. Patients were prospectively screened for galactomannan antigenemia twice a week for immediate treatment decision; 2,214 serum samples were collected on the same days and blindly assessed for (1->3- β-D-glucan antigenemia and a quantitative PCR assay targeting a mitochondrial locus.The usual evaluation framework of biomarker performance was unable to distinguish clinical benefits of β-glucan or PCR assays. The multi-state model evidenced that the risk of invasive aspergillosis is a complex time function of neutropenia duration and risk management. The quantitative PCR assay accelerated the early detection of invasive aspergillosis (P = .010, independently of other diagnostic information used to treat, while β-glucan assay did not (P = .53.The performance of serum biomarkers for the early detection of invasive aspergillosis is better apprehended by the evaluation of time-varying predictors in a multi-state model. Our results provide strong rationale for prospective studies testing a preemptive antifungal therapy, guided by clinical, radiological, and bi-weekly blood screening with galactomannan antigenemia and a standardized quantitative PCR assay.

  20. Comparison of Different Calibration Methods in a Non-invasive ICP Assessment Model.

    Science.gov (United States)

    Schmidt, Bernhard; Cardim, Danilo; Weinhold, Marco; Streif, Stefan; McLeod, Damian D; Czosnyka, Marek; Klingelhöfer, Jürgen

    2018-01-01

    Previously we described the method of continuous intracranial pressure (ICP) estimation using arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). The model was constructed using reference patient data. Various individual calibration strategies were used in the current attempt to improve the accuracy of this non-invasive ICP (nICP) assessment tool. Forty-one patients (mean, 52 years; range, 18-77 years) with severe brain injuries were studied. CBFV in the middle cerebral artery (MCA), ABP and invasively assessed ICP were simultaneously recorded for 1 h. Recording was repeated at days 2, 4 and 7. In the first recording, invasively assessed ICP was recorded to calibrate the nICP procedure by means of either a constant shift of nICP (snICP), a constant shift of nICP/ABP ratio (anICP) or by including this recording for a model reconstruction (cnICP). At follow-up days, the calibrated nICP procedures were applied and the results compared to the original nICP. In 76 follow-up recordings, the mean differences (Bias), the SD and the mean absolute differences (ΔICP) between ICP and the nICP methods were (in mmHg): nICP, -5.6 ± 5.72, 6.5; snICP, +0.7 ± 6.98, 5.5, n.s.; anICP, +1.0 ± 7.22, 5.6, n.s.; cnICP, -3.4 ± 5.68, 5.4, p ICP. This overestimation could be reduced by cnICP calibration, but not completely avoided. Constant shift calibrations (snICP, anICP) decrease the Bias to ICP, but increase SD and, therefore, increase the 95% confidence interval (CI = 2 × SD). This calibration method cannot be recommended. Compared to nICP, the cnICP method reduced the Bias and slightly reduced SD, and showed significantly decreased ΔICP. Compared to snICP and anICP, the Bias was higher. This effect was probably caused by the patients with craniotomy. The cnICP calibration method using initial recordings for model reconstruction showed the best results.

  1. Comparison of Nonculture Blood-Based Tests for Diagnosing Invasive Aspergillosis in an Animal Model.

    Science.gov (United States)

    White, P Lewis; Wiederhold, Nathan P; Loeffler, Juergen; Najvar, Laura K; Melchers, Willem; Herrera, Monica; Bretagne, Stephane; Wickes, Brian; Kirkpatrick, William R; Barnes, Rosemary A; Donnelly, J Peter; Patterson, Thomas F

    2016-04-01

    The EuropeanAspergillusPCR Initiative (EAPCRI) has provided recommendations for the PCR testing of whole blood (WB) and serum/plasma. It is important to test these recommended protocols on nonsimulated "in vivo" specimens before full clinical evaluation. The testing of an animal model of invasive aspergillosis (IA) overcomes the low incidence of disease and provides experimental design and control that is not possible in the clinical setting. Inadequate performance of the recommended protocols at this stage would require reassessment of methods before clinical trials are performed and utility assessed. The manuscript describes the performance of EAPCRI protocols in an animal model of invasive aspergillosis. Blood samples taken from a guinea pig model of IA were used for WB and serum PCR. Galactomannan and β-d-glucan detection were evaluated, with particular focus on the timing of positivity and on the interpretation of combination testing. The overall sensitivities for WB PCR, serum PCR, galactomannan, and β-d-glucan were 73%, 65%, 68%, and 46%, respectively. The corresponding specificities were 92%, 79%, 80%, and 100%, respectively. PCR provided the earliest indicator of IA, and increasing galactomannan and β-d-glucan values were indicators of disease progression. The combination of WB PCR with galactomannan and β-d-glucan proved optimal (area under the curve [AUC], 0.95), and IA was confidently diagnosed or excluded. The EAPRCI-recommended PCR protocols provide performance comparable to commercial antigen tests, and clinical trials are warranted. By combining multiple tests, IA can be excluded or confirmed, highlighting the need for a combined diagnostic strategy. However, this approach must be balanced against the practicality and cost of using multiple tests. Copyright © 2016 White et al.

  2. Invasive and non-invasive evaluation of spontaneous arteriogenesis in a novel porcine model for peripheral arterial obstructive disease

    NARCIS (Netherlands)

    Buschmann, Ivo R.; Voskuil, Michiel; van Royen, Niels; Hoefer, Imo E.; Scheffler, Klaus; Grundmann, Sebastian; Hennig, Jürgen; Schaper, Wolfgang; Bode, Christoph; Piek, Jan J.

    2003-01-01

    Our current knowledge regarding the efficacy of factors stimulating collateral artery growth in the peripheral circulation primarily stems from models in small animals. However, experimental models in large sized animals are a prerequisite for extrapolation of growth factor therapy to patients with

  3. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model.

    Science.gov (United States)

    Huang, Yanqi; He, Lan; Dong, Di; Yang, Caiyun; Liang, Cuishan; Chen, Xin; Ma, Zelan; Huang, Xiaomei; Yao, Su; Liang, Changhong; Tian, Jie; Liu, Zaiyi

    2018-02-01

    To develop and validate a radiomics prediction model for individualized prediction of perineural invasion (PNI) in colorectal cancer (CRC). After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation (separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram. The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index (c-index): 0.817; 95% confidence interval (95% CI): 0.811-0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination (c-index: 0.803; 95% CI: 0.794-0.812). Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.

  4. Modeling habitat suitability of the invasive clam Corbicula fluminea in a Neotropical shallow lagoon, southern Brazil.

    Science.gov (United States)

    Silveira, T C L; Gama, A M S; Alves, T P; Fontoura, N F

    2016-04-19

    This study aimed to model the habitat suitability for an invasive clam Corbicula fluminea in a coastal shallow lagoon in the southern Neotropical region (-30.22, -50.55). The lagoon (19km2, maximum deep 2.5m) was sampled with an Ekman dredge in an orthogonal matrix comprising 84 points. At each sampling point, were obtained environmental descriptors as depth, organic matter content (OMC), average granulometry (Avgran), and the percentage of sand (Pcsand). Prediction performance of Generalized Linear Models (GLM), Generalized Additive Models (GAM) and Boosted Regression Tree (BRT) were compared. Also, niche overlapping with other native clam species (Castalia martensi, Neocorbicula limosa and Anodontites trapesialis) was examined. A BRT model with 1400 trees was selected as the best model, with cross-validated correlation of 0.82. The relative contributions of predictors were Pcsand-42.6%, OMC-35.8%, Avgran-10.9% and Depth-10.8%. Were identified that C. fluminea occur mainly in sandy sediments with few organic matter, in shallow areas nor by the shore. The PCA showed a wide niche overlap with the native clam species C. martensi, N. limosa and A. trapesialis.

  5. Modeling habitat suitability of the invasive clam Corbicula fluminea in a Neotropical shallow lagoon, southern Brazil

    Directory of Open Access Journals (Sweden)

    T. C. L. Silveira

    Full Text Available Abstract This study aimed to model the habitat suitability for an invasive clam Corbicula fluminea in a coastal shallow lagoon in the southern Neotropical region (–30.22, –50.55. The lagoon (19km2, maximum deep 2.5m was sampled with an Ekman dredge in an orthogonal matrix comprising 84 points. At each sampling point, were obtained environmental descriptors as depth, organic matter content (OMC, average granulometry (Avgran, and the percentage of sand (Pcsand. Prediction performance of Generalized Linear Models (GLM, Generalized Additive Models (GAM and Boosted Regression Tree (BRT were compared. Also, niche overlapping with other native clam species (Castalia martensi, Neocorbicula limosa and Anodontites trapesialis was examined. A BRT model with 1400 trees was selected as the best model, with cross-validated correlation of 0.82. The relative contributions of predictors were Pcsand-42.6%, OMC-35.8%, Avgran-10.9% and Depth-10.8%. Were identified that C. fluminea occur mainly in sandy sediments with few organic matter, in shallow areas nor by the shore. The PCA showed a wide niche overlap with the native clam species C. martensi, N. limosa and A. trapesialis.

  6. Hybrid model of arm for analysis of regional blood oxygenation in non-invasive optical diagnostics

    Science.gov (United States)

    Nowocień, Sylwester; Mroczka, Janusz

    2017-06-01

    The paper presents a new comprehensive approach to modeling and analysis of processes occurring during the blood flow in the arm's small vessels as well as non-invasive measurement method of mixed venous oxygen saturation. During the work, a meta-analysis of available physiological data was performed and based on its result a hybrid model of forearm vascular tree was proposed. The model, in its structure, takes into account a classical nonlinear hydro-electric analogy in conjunction with light-tissue interaction. Several geometries of arm vascular tree obtained from magnetic resonance angiography (MRA) image were analyzed which allowed to proposed the structure of electrical analog network. Proposed model allows to simulate the behavior of forearm blood flow from the vascular tree mechanics point of view, as well as effects of the impact of cuff and vessel wall mechanics on the recorded photoplethysmographic signals. In particular, it allows to analyze the reaction and anatomical effects in small vessels and microcirculation caused by occlusive maneuver in selected techniques, what was of particular interest to authors and motivation to undertake research in this area. Preliminary studies using proposed model showed that inappropriate selection of occlusion maneuver parameters (e.g. occlusion time, cuff pressure etc.), cause dangerous turbulence of blood flow in the venous section of the vascular tree.

  7. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    Science.gov (United States)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  8. Purification and partial characterization of an entomopoxvirus (DlEPV from a parasitic wasp of tephritid fruit flies

    Directory of Open Access Journals (Sweden)

    Pauline O. Lawrence

    2002-05-01

    Full Text Available An insect poxvirus [entomopoxvirus (EPV] occurs in the poison gland apparatus of female Diachasmimorpha longicaudata , a parasitic wasp of the Caribbean fruit fly, Anastrepha suspensa and other tephritid fruit flies. The DlEPV virion is 250-300 nm in diameter, has a "bumpy" appearance and a unipartite double stranded DNA genome of 290-300 kb. DlEPV DNA restriction fragment profiles differed from those reported for Amsacta moorei EPV (AmEPV and Melanoplus sanguinipes EPV (MsEPV, the only two EPVs whose genomes have been sequenced, and from those reported for vaccinia (Vac, a vertebrate poxvirus (chordopoxvirus, ChPV. Blast search and ClustalW alignment of the amino acids deduced from the 2316 nucleotides of a DlEPV DNA fragment cloned from an EcoR1 genomic library revealed 75-78% homology with the putative DNA-directed RNA polymerases of AmEPV, MsEPV, and two ChPV homologs of the Vac J6R gene. Of the deduced 772 amino acids in the DlEPV sequence, 28.4% are conserved/substituted among the four poxviruses aligned, 12.9% occur in at least one EPV, 6.5% in at least one ChPV, 3.1 % in at least one EPV and one ChPV, and 49.1% occur only in DlEPV. Although the RI-36-1 fragment represents a portion of the gene, it contains nucleotides that encode the NADFDGDE consensus sequence of known DNA-directed RNA polymerases. Western blots using a mouse polyclonal anti-DlEPV serum recognized six major protein bands in combined fractions of sucrose-purified DlEPV, at least one band in homogenates of male and female wasps, and at least two bands in host hemolymph that contained DlEPV virions. A digoxigenin-labeled DlEPV genomic DNA probe recognized DNA in dot-blots of male and female wasps. These results confirm that DlEPV is a true EPV and probably a member of the Group C EPVs. Unlike other EPVs, DlEPV does not express the spheroidin protein. Since it also replicates in both the wasp and fly, members of two different insect Orders, DlEPV may represent a new EPV

  9. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Science.gov (United States)

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  10. Treatment-based Markov chain models clarify mechanisms of invasion in an invaded grassland community.

    Science.gov (United States)

    Nelis, Lisa Castillo; Wootton, J Timothy

    2010-02-22

    What are the relative roles of mechanisms underlying plant responses in grassland communities invaded by both plants and mammals? What type of community can we expect in the future given current or novel conditions? We address these questions by comparing Markov chain community models among treatments from a field experiment on invasive species on Robinson Crusoe Island, Chile. Because of seed dispersal, grazing and disturbance, we predicted that the exotic European rabbit (Oryctolagus cuniculus) facilitates epizoochorous exotic plants (plants with seeds that stick to the skin an animal) at the expense of native plants. To test our hypothesis, we crossed rabbit exclosure treatments with disturbance treatments, and sampled the plant community in permanent plots over 3 years. We then estimated Markov chain model transition probabilities and found significant differences among treatments. As hypothesized, this modelling revealed that exotic plants survive better in disturbed areas, while natives prefer no rabbits or disturbance. Surprisingly, rabbits negatively affect epizoochorous plants. Markov chain dynamics indicate that an overall replacement of native plants by exotic plants is underway. Using a treatment-based approach to multi-species Markov chain models allowed us to examine the changes in the importance of mechanisms in response to experimental impacts on communities.

  11. Alginate oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive human candidosis.

    Science.gov (United States)

    Pritchard, M F; Jack, A A; Powell, L C; Sadh, H; Rye, P D; Hill, K E; Thomas, D W

    2017-09-01

    A novel alginate oligomer (OligoG CF-5/20) has been shown to potentiate antifungal therapy against a range of fungal pathogens. The current study assessed the effect of this oligomer on in vitro virulence factor expression and epithelial invasion by Candida species. Plate substrate assays and epithelial models were used to assess Candida albicans (CCUG 39343 and ATCC 90028) invasion, in conjunction with confocal laser scanning microscopy and histochemistry. Expression of candidal virulence factors was determined biochemically and by quantitative PCR (qPCR). Changes in surface charge of C. albicans following OligoG treatment were analysed using electrophoretic light scattering. OligoG induced marked alterations in hyphal formation in the substrate assays and reduced invasion in the epithelial model (P albicans was evident following OligoG treatment (P  0·05), qPCR demonstrated a reduction in phospholipase B (PLB2) and SAPs (SAP4 and SAP6) expression. OligoG CF-5/20 reduced in vitro virulence factor expression and invasion by C. albicans. These results, and the previously described potentiation of antifungal activity, define a potential therapeutic opportunity in the treatment of invasive candidal infections. © 2017 The Society for Applied Microbiology.

  12. Resistance to DNA Damaging Agents Produced Invasive Phenotype of Rat Glioma Cells—Characterization of a New in Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Stojković

    2016-06-01

    Full Text Available Chemoresistance and invasion properties are severe limitations to efficient glioma therapy. Therefore, development of glioma in vivo models that more accurately resemble the situation observed in patients emerges. Previously, we established RC6 rat glioma cell line resistant to DNA damaging agents including antiglioma approved therapies such as 3-bis(2-chloroethyl-1-nitrosourea (BCNU and temozolomide (TMZ. Herein, we evaluated the invasiveness of RC6 cells in vitro and in a new orthotopic animal model. For comparison, we used C6 cells from which RC6 cells originated. Differences in cell growth properties were assessed by real-time cell analyzer. Cells’ invasive potential in vitro was studied in fluorescently labeled gelatin and by formation of multicellular spheroids in hydrogel. For animal studies, fluorescently labeled cells were inoculated into adult male Wistar rat brains. Consecutive coronal and sagittal brain sections were analyzed 10 and 25 days post-inoculation, while rats’ behavior was recorded during three days in the open field test starting from 25th day post-inoculation. We demonstrated that development of chemoresistance induced invasive phenotype of RC6 cells with significant behavioral impediments implying usefulness of orthotopic RC6 glioma allograft in preclinical studies for the examination of new approaches to counteract both chemoresistance and invasion of glioma cells.

  13. Polymorphic microsatellite markers for population analysis of a tephritid pest species, Bactrocera tryoni.

    Science.gov (United States)

    Kinnear, M W; Bariana, H S; Sved, J A; Frommer, M

    1998-11-01

    To obtain a set of microsatellite markers for the Queensland fruit fly Bactrocera tryoni, a genomic library was screened with a number of simple repeat oligonucleotide probes. Sequencing recovered 22 repeat loci. The microsatellite sequences were short, with repeat numbers ranging from five to 11. Of these, 16 polymerase chain reaction (PCR) primer sets yielded amplifiable products, which were tested on 53 flies from five widely separated sites. All loci showed polymorphism in the population sample, with the number of alleles ranging from two to 16. Several dinucleotide repeats showed alleles separated by single-base differences and multiple steps, suggesting a mutation process more complex than the stepwise mutation model.

  14. Linking a Large-Watershed Hydrogeochemical Model to a Wetland Community-Ecosystem Model to Estimate Plant Invasion Risk in the Coastal Great Lakes Region, USA

    Science.gov (United States)

    Currie, W. S.; Bourgeau-Chavez, L. L.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hart, S.; Hyndman, D. W.; Kendall, A. D.; Martin, S. L.; Martina, J. P.

    2014-12-01

    In the Laurentian Great Lakes region of the Upper Midwest, USA, agricultural and urban land uses together with high N deposition are contributing to elevated flows of N in rivers and groundwater to coastal wetlands. The functioning of coastal wetlands, which provide a vital link between land and water, are imperative to maintaining the health of the entire Great Lakes Basin. Elevated N inflows are believed to facilitate the spread of large-stature invasive plants (cattails and Phragmites) that reduce biodiversity and have complex effects on other ecosystem services including wetland N retention and C accretion. We enhanced the ILHM (Integrated Landscape Hydrology Model) to simulate the effects of land use on N flows in streams, rivers, and groundwater throughout the Lower Peninsula of Michigan. We used the hydroperiods and N loading rates simulated by ILHM as inputs to the Mondrian model of wetland community-ecosystem processes to estimate invasion risk and other ecosystem services in coastal wetlands around the Michigan coast. Our linked models produced threshold behavior in the success of invasive plants in response to N loading, with the threshold ranging from ca. 8 to 12 g N/m2 y, depending on hydroperiod. Plant invasions increased wetland productivity 3-fold over historically oligotrophic native communities, decreased biodiversity but slightly increased wetland N retention. Regardless of invasion, elevated N loading resulted in significantly enhanced rates of C accretion, providing an important region-wide mechanism of C storage. The linked models predicted a general pattern of greater invasion risk in the southern basins of lakes Michigan and Huron relative to northern areas. The basic mechanisms of invasion have been partially validated in our field mesocosms constructed for this project. The general regional patterns of increased invasion risk have been validated through our field campaigns and remote sensing conducted for this project.

  15. Doppler Non-invasive Monitoring of ICP in an Animal Model of Acute Intracranial Hypertension.

    Science.gov (United States)

    Robba, Chiara; Donnelly, Joseph; Bertuetti, Rita; Cardim, Danilo; Sekhon, Mypinder S; Aries, Marcel; Smielewski, Peter; Richards, Hugh; Czosnyka, Marek

    2015-12-01

    In many neurological diseases, intracranial pressure (ICP) is elevated and needs to be actively managed. ICP is typically measured with an invasive transducer, which carries risks. Non-invasive techniques for monitoring ICP (nICP) have been developed. The aim of this study was to compare three different methods of transcranial Doppler (TCD) assessment of nICP in an animal model of acute intracranial hypertension. In 28 rabbits, ICP was increased to 70-80 mmHg by infusion of Hartmann's solution into the lumbar subarachnoid space. Doppler flow velocity in the basilar artery was recorded. nICP was assessed through three different methods: Gosling's pulsatility index PI (gPI), Aaslid's method (AaICP), and a method based on diastolic blood flow velocity (FVdICP). We found a significant correlation between nICP and ICP when all infusion experiments were combined (FVdICP: r = 0.77, AaICP: r = 0.53, gPI: r = 0.54). The ability to distinguish between raised and 'normal' values of ICP was greatest for FVdICP (AUC 0.90 at ICP >40 mmHg). When infusion experiments were considered independently, FVdICP demonstrated again the strongest correlation between changes in ICP and changes in nICP (mean r = 0.85). TCD-based methods of nICP monitoring are better at detecting changes of ICP occurring in time, rather than absolute prediction of ICP as a number. Of the studied methods of nICP, the method based on FVd is best to discriminate between raised and 'normal' ICP and to monitor relative changes of ICP.

  16. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    Science.gov (United States)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  17. Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling

    Directory of Open Access Journals (Sweden)

    Hunter KS

    2014-03-01

    Full Text Available Kendall S Hunter,1 Todd Fjield,2 Hal Heitzmann,2 Robin Shandas,1 Malik Y Kahook3 1Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; 2Glaukos Corporation, Laguna Hills, CA, USA; 3University of Colorado Hospital Eye Center, Aurora, CO, USA Abstract: Micro-invasive glaucoma surgery with the Glaukos iStent® or iStent inject® (Glaukos Corporation, Laguna Hills, CA, USA is intended to create a bypass through the trabecular meshwork to Schlemm's canal to improve aqueous outflow through the natural physiologic pathway. While the iStent devices have been evaluated in ex vivo anterior segment models, they have not previously been evaluated in whole eye perfusion models nor characterized by computational fluid dynamics. Intraocular pressure (IOP reduction with the iStent was evaluated in an ex vivo whole human eye perfusion model. Numerical modeling, including computational fluid dynamics, was used to evaluate the flow through the stents over physiologically relevant boundary conditions. In the ex vivo model, a single iStent reduced IOP by 6.0 mmHg from baseline, and addition of a second iStent further lowered IOP by 2.9 mmHg, for a total IOP reduction of 8.9 mmHg. Computational modeling showed that simulated flow through the iStent or iStent inject is smooth and laminar at physiological flow rates. Each stent was computed to have a negligible flow resistance consistent with an expected significant decrease in IOP. The present perfusion results agree with prior clinical and laboratory studies to show that both iStent and iStent inject therapies are potentially titratable, providing clinicians with the opportunity to achieve lower target IOPs by implanting additional stents. Keywords: glaucoma, iStent, trabecular bypass, intraocular pressure, ab-interno, CFD

  18. Combining tape stripping and non-invasive reflectance confocal microscopy : an in vivo model to study skin damage

    NARCIS (Netherlands)

    Peppelman, M.; Eijnde, W.A. van den; Jaspers, E.J.; Gerritsen, M.J.P.; Erp, P.E.J. van

    2015-01-01

    BACKGROUND: Evaluation of (immuno)histological and cell biological changes in damaged skin requires often an invasive skin biopsy, making in vivo models inappropriate to study skin damage. Reflectance confocal microscopy (RCM) might overcome this limitation. Therefore, we evaluated the use of a

  19. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale

    Czech Academy of Sciences Publication Activity Database

    Thuiller, W.; Richardson, D. M.; Pyšek, Petr; Midgley, G. F.; Hughes, G. O.; Rouget, M.

    2005-01-01

    Roč. 11, - (2005), s. 2234-2250 ISSN 1354-1013 R&D Projects: GA ČR GA206/03/1216 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioclimatic modelling * biological invasions * risk assessment Subject RIV: EF - Botanics Impact factor: 4.075, year: 2005

  20. [Research of the Bt crop biomass dynamics upon the invasion of Bt-resistant pests. A mathematical model].

    Science.gov (United States)

    Rusakov, A V; Medvinskiĭ, A B; Li, B -L; Gonik, M M

    2009-01-01

    The results of simulations of some consequences of the invasion of Bt-resistant pests into an agricultural ecosystem containing a Bt crop are presented. It is shown that the invasion of Bt-resistant pests leads to changes in the plant biomass dynamics, a decrease in the Bt crop production, and the deterioration of the predictability of the Bt crop production. We show that the parameter values at which the badly predictable Bt crop production takes place, occupy a minor area in the model parameter space. The size of the area depends on the insect reproduction period and the duration of the growing season.

  1. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  2. Development of an in vivo model for study of intestinal invasion by Salmonella enterica in chickens

    DEFF Research Database (Denmark)

    Aabo, Søren; Christensen, J.P.; Chadfield, M.S.

    2000-01-01

    , followed by a 1-h incubation with gentamicin in order to kill noninvading bacteria. After euthanasia, Salmonella invasiveness was measured as tissue-associated counts relative to a reference strain. The ability of Salmonella invasion was 1 log(10) CFU higher per 42-mm(2) mucosal tissue in the anterior than...

  3. Creating a Successful Citizen Science Model to Detect and Report Invasive Species

    Science.gov (United States)

    Gallo, Travis; Waitt, Damon

    2011-01-01

    The Invaders of Texas program is a successful citizen science program in which volunteers survey and monitor invasive plants throughout Texas. Invasive plants are being introduced at alarming rates, and our limited knowledge about their distribution is a major cause for concern. The Invaders of Texas program trains citizen scientists to detect the…

  4. The challenge of modelling and mapping the future distribution and impact of invasive alien species

    Science.gov (United States)

    Robert C. Venette

    2015-01-01

    Invasions from alien species can jeopardize the economic, environmental or social benefits derived from biological systems. Biosecurity measures seek to protect those systems from accidental or intentional introductions of species that might become injurious. Pest risk maps convey how the probability of invasion by an alien species or the potential consequences of that...

  5. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  6. Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions

    Directory of Open Access Journals (Sweden)

    Rethabile Motloung

    2014-01-01

    Full Text Available Climate is frequently used to predict the outcome of species introductions based on the results from species distribution models (SDMs. However, despite the widespread use of SDMs for pre- and post-border risk assessments, data that can be used to validate predictions is often not available until after an invasion has occurred. Here we explore the potential for using historical forestry trials to assess the performance of climate-based SDMs. SDMs were parameterized based on the native range distribution of 36 Australian acacias, and predictions were compared against both the results of 150 years of government forestry trials, and current invasive distribution in southern Africa using true skill statistic, sensitivity and specificity. Classification tree analysis was used to evaluate why some Australian acacias failed in trials while others were successful. Predicted suitability was significantly related to the invaded range (sensitivity = 0.87 and success in forestry trials (sensitivity = 0.80, but forestry trial failures were under-predicted (specificity = 0.35. Notably, for forestry trials, the success in trials was greater for species invasive somewhere in the world. SDM predictions also indicate a considerable invasion potential of eight species that are currently naturalized but not yet widespread. Forestry trial data clearly provides a useful additional source of data to validate and refine SDMs in the context of risk assessment. Our study identified the climatic factors required for successful invasion of acacias, and accentuates the importance of integration of status elsewhere for risk assessment.

  7. High invasion potential ofHydrilla verticillatain the Americas predicted using ecological niche modeling combined with genetic data.

    Science.gov (United States)

    Zhu, Jinning; Xu, Xuan; Tao, Qing; Yi, Panpan; Yu, Dan; Xu, Xinwei

    2017-07-01

    Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.

  8. Remote Sensing Dynamic Monitoring of Biological Invasive Species Based on Adaptive PCNN and Improved C-V Model

    Directory of Open Access Journals (Sweden)

    PENG Gang

    2014-12-01

    Full Text Available Biological species invasion problem bring serious damage to the ecosystem, and have become one of the six major enviromental problems that affect the future economic development, also have become one of the hot topic in domestic and foreign scholars. Remote sensing technology has been successfully used in the investigation of coastal zone resources, dynamic monitoring of the resources and environment, and other fields. It will cite a new remote sensing image change detection algorithm based on adaptive pulse coupled neural network (PCNN and improved C-V model, for remote sensing dynamic monitoring of biological species invasion. The experimental results show that the algorithm is effective in the test results of biological species invasions.

  9. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    Science.gov (United States)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  10. Modelling Interactions between forest pest invasions and human decisions regarding firewood transport restrictions.

    Science.gov (United States)

    Barlow, Lee-Ann; Cecile, Jacob; Bauch, Chris T; Anand, Madhur

    2014-01-01

    The invasion of nonnative, wood-boring insects such as the Asian longhorned beetle (A. glabripennis) and the emerald ash borer (A. planipennis) is a serious ecological and economic threat to Canadian deciduous and mixed-wood forests. Humans act as a major vector for the spread of these pests via firewood transport, although existing models do not explicitly capture human decision-making regarding firewood transport. In this paper we present a two-patch coupled human-environment system model that includes social influence and long-distance firewood transport and examines potential strategies for mitigating pest spread. We found that increasing concern regarding infestations (f) significantly reduced infestation. Additionally it resulted in multiple thresholds at which the intensity of infestation in a patch was decreased. It was also found that a decrease in the cost of firewood purchased in the area where it is supposed to be burned (Cl) resulted in an increased proportion of local-firewood strategists, and a 67% decrease in Cl from $6.75 to $4.50 was sufficient to eliminate crosspatch infestation. These effects are synergistic: increasing concern through awareness and education campaigns acts together with reduced firewood costs, thereby reducing the required threshold of both awareness and economic incentives. Our results indicate that the best management strategy includes a combination of public education paired with firewood subsidization.

  11. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides in Austria and first range predictions for alpine environments

    Directory of Open Access Journals (Sweden)

    Duscher Tanja

    2017-01-01

    Full Text Available Species distribution models are important tools for wildlife management planning, particularly in the case of invasive species. We employed a recent framework for niche-based invasive species distribution modeling to predict the probability of presence for the invasive raccoon dog (Nyctereutes procyonoides in Austria. The raccoon dog is an adaptive, mobile and highly reproductive Asiatic canid that has successfully invaded many parts of Europe. It is known to occur in Austria since 1963 and is now widespread in the northern and eastern parts of the country, but its population density remains low. With the help of a species distribution model we identified focal areas for future monitoring and management actions, and we address some management implications for the raccoon dog in Austria. We also determined the environmental predictors of raccoon dog distribution in this alpine country. Its distribution seems to be mainly limited by climatic factors (snow depth, duration of snow cover, winter precipitation and mean annual temperature and is thus linked to elevation. Consequently, we assumed the Alps to be a barrier for the spread of the invasive raccoon dog in Europe; however, its ecological permeability is expected to increase with ongoing climate change.

  12. Modelling detection probabilities to evaluate management and control tools for an invasive species

    Science.gov (United States)

    Christy, M.T.; Yackel Adams, A.A.; Rodda, G.H.; Savidge, J.A.; Tyrrell, C.L.

    2010-01-01

    For most ecologists, detection probability (p) is a nuisance variable that must be modelled to estimate the state variable of interest (i.e. survival, abundance, or occupancy). However, in the realm of invasive species control, the rate of detection and removal is the rate-limiting step for management of this pervasive environmental problem. For strategic planning of an eradication (removal of every individual), one must identify the least likely individual to be removed, and determine the probability of removing it. To evaluate visual searching as a control tool for populations of the invasive brown treesnake Boiga irregularis, we designed a mark-recapture study to evaluate detection probability as a function of time, gender, size, body condition, recent detection history, residency status, searcher team and environmental covariates. We evaluated these factors using 654 captures resulting from visual detections of 117 snakes residing in a 5-ha semi-forested enclosure on Guam, fenced to prevent immigration and emigration of snakes but not their prey. Visual detection probability was low overall (= 0??07 per occasion) but reached 0??18 under optimal circumstances. Our results supported sex-specific differences in detectability that were a quadratic function of size, with both small and large females having lower detection probabilities than males of those sizes. There was strong evidence for individual periodic changes in detectability of a few days duration, roughly doubling detection probability (comparing peak to non-elevated detections). Snakes in poor body condition had estimated mean detection probabilities greater than snakes with high body condition. Search teams with high average detection rates exhibited detection probabilities about twice that of search teams with low average detection rates. Surveys conducted with bright moonlight and strong wind gusts exhibited moderately decreased probabilities of detecting snakes. Synthesis and applications. By

  13. Innate and Learned Responses of the Tephritid Parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to Olive Volatiles Induced by Bactrocera oleae (Diptera: Tephritidae) Infestation.

    Science.gov (United States)

    Giunti, Giulia; Benelli, Giovanni; Flamini, Guido; Michaud, J P; Canale, Angelo

    2016-12-01

    Parasitic wasps can learn cues that alter their behavioral responses and increase their fitness, such as those that improve host location efficiency. Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) is a koinobiont endoparasitoid of 14 economically important tephritid species, including the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In this research, we investigated the nature of olfactory cues mediating this tritrophic interaction. First, we identified the chemical stimuli emanating from uninfested and B. oleae-infested olive fruits via solid phase microextraction and gas chromatography-mass spectrometry analyses and identified >70 volatile organic compounds (VOCs). Two of these were increased by B. oleae infestation, (E)-β-ocimene and 2-methyl-6-methylene-1,7-octadien-3-one, and four were decreased, α-pinene, β-pine ne, limonene, and β-elemene. Innate positive chemotaxis of mated P. concolor females toward these VOCs was then tested in olfactometer assays. Females were attracted only by (E)-β-ocimene, at both tested dosages, indicating an intrinsic response to this compound as a short-range attractant. Next, we tested whether mated P. concolor females could learn to respond to innately unattractive VOCs if they were first presented with a food reward. Two nonassociative controls were conducted, i.e., "odor only" and "reward only." Following training, females showed positive chemotaxis toward these VOCs in all tested combinations, with the exception of limonene, a VOC commonly produced by flowers. Control females showed no significant preferences, indicating that positive associative learning had occurred. These results clarify how learned cues can fine-tune innate responses to B. oleae-induced VOCs in this generalist parasitoid of tephritid flies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The role of myosin II in glioma invasion: A mathematical model.

    Directory of Open Access Journals (Sweden)

    Wanho Lee

    Full Text Available Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization.

  15. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection.

    Directory of Open Access Journals (Sweden)

    Girish Ramachandran

    2017-08-01

    Full Text Available Salmonella Typhimurium sequence type (ST 313 produces septicemia in infants in sub-Saharan Africa. Although there are known genetic and phenotypic differences between ST313 strains and gastroenteritis-associated ST19 strains, conflicting data about the in vivo virulence of ST313 strains have been reported. To resolve these differences, we tested clinical Salmonella Typhimurium ST313 and ST19 strains in murine and rhesus macaque infection models. The 50% lethal dose (LD50 was determined for three Salmonella Typhimurium ST19 and ST313 strains in mice. For dissemination studies, bacterial burden in organs was determined at various time-points post-challenge. Indian rhesus macaques were infected with one ST19 and one ST313 strain. Animals were monitored for clinical signs and bacterial burden and pathology were determined. The LD50 values for ST19 and ST313 infected mice were not significantly different. However, ST313-infected BALB/c mice had significantly higher bacterial numbers in blood at 24 h than ST19-infected mice. ST19-infected rhesus macaques exhibited moderate-to-severe diarrhea while ST313-infected monkeys showed no-to-mild diarrhea. ST19-infected monkeys had higher bacterial burden and increased inflammation in tissues. Our data suggest that Salmonella Typhimurium ST313 invasiveness may be investigated using mice. The non-human primate results are consistent with clinical data, suggesting that ST313 strains do not cause diarrhea.

  16. Citizen Science and Open Data: a model for Invasive Alien Species in Europe

    Directory of Open Access Journals (Sweden)

    Ana Cristina Cardoso

    2017-07-01

    Full Text Available Invasive Alien Species (IAS are a growing threat to Europe's biodiversity. The implementation of European Union Regulation on IAS can benefit from the involvement of the public in IAS recording and management through Citizen Science (CS initiatives. Aiming to tackle issues related with the use of CS projects on IAS topics, a dedicated workshop titled “Citizen Science and Open Data: a model for Invasive Alien Species in Europe” was organized by the Joint Research Centre (JRC and the European Cooperation in Science and Technology (COST Association. Fifty key stakeholders from all Europe, including two Members of the European Parliament, attended the workshop. With a clear focus on IAS, the workshop aimed at addressing the following issues: a CS and policy, b citizen engagement, and c CS data management. Nine short presentations provided input on CS and IAS issues. Participants discussed specific topics in several round tables (“world café” style and reported back their conclusions to the audience and full assembly moderated discussions. Overall, the workshop enabled the sharing of ideas, approaches and best practices regarding CS and IAS. Specific opportunities and pitfalls of using CS data in the whole policy cycle for IAS were recognized. Concerning the implementation of the IAS Regulation, CS data could complement official surveillance systems, and contribute to the early warning of the IAS of Union concern after appropriate validation by the Member States’ competent authorities. CS projects can additionally increase awareness and empower citizens. Attendees pointed out the importance for further public engagement in CS projects on IAS that demonstrate specific initiatives and approaches and analyze lessons learned from past experiences. In addition, the workshop noted that the data gathered from different CS projects on IAS are fragmented. It highlighted the need for using an open and accessible platform to upload data originating

  17. A comparison of leak compensation in acute care ventilators during noninvasive and invasive ventilation: a lung model study.

    Science.gov (United States)

    Oto, Jun; Chenelle, Christopher T; Marchese, Andrew D; Kacmarek, Robert M

    2013-12-01

    Although leak compensation has been widely introduced to acute care ventilators to improve patient-ventilator synchronization in the presence of system leaks, there are no data on these ventilators' ability to prevent triggering and cycling asynchrony. The goal of this study was to evaluate the ability of leak compensation in acute care ventilators during invasive and noninvasive ventilation (NIV). Using a lung simulator, the impact of system leaks was compared on 7 ICU ventilators and 1 dedicated NIV ventilator during triggering and cycling at 2 respiratory mechanics (COPD and ARDS models) settings, various modes of ventilation (NIV mode [pressure support ventilation], and invasive mode [pressure support and continuous mandatory ventilation]), and 2 PEEP levels (5 and 10 cm H(2)O). Leak levels used were up to 35-36 L/min in NIV mode and 26-27 L/min in invasive mode. Although all of the ventilators were able to synchronize with the simulator at baseline, only 4 of the 8 ventilators synchronized to all leaks in NIV mode, and 2 of the 8 ventilators in invasive mode. The number of breaths to synchronization was higher during increasing than during decreasing leak. In the COPD model, miss-triggering occurred more frequently and required a longer time to stabilize tidal volume than in the ARDS model. The PB840 required fewer breaths to synchronize in both invasive and noninvasive modes, compared with the other ventilators (P ventilators. The PB840 and the V60 were the only ventilators to acclimate to all leaks, but there were differences in performance between these 2 ventilators. It is not clear if these differences have clinical importance.

  18. Application of the EDYS Model to Evaluate Control Methods for Invasive Plants at Fort Carson, Colorado

    National Research Council Canada - National Science Library

    Hunter, Rachael G

    2004-01-01

    .... Non-indigenous invasive plants can also reduce and destroy forage for livestock and wildlife, displace native plant species, increase fire frequency, reduce recreational opportunities, and can poison domestic animals...

  19. Modeling suitable habitat of invasive red lionfish Pterois volitans (Linnaeus, 1758) in North and South America’s coastal waters

    Science.gov (United States)

    Evangelista, Paul H.; Young, Nicholas E.; Schofield, Pamela J.; Jarnevich, Catherine S.

    2016-01-01

    We used two common correlative species-distribution models to predict suitable habitat of invasive red lionfish Pterois volitans (Linnaeus, 1758) in the western Atlantic and eastern Pacific Oceans. The Generalized Linear Model (GLM) and the Maximum Entropy (Maxent) model were applied using the Software for Assisted Habitat Modeling. We compared models developed using native occurrences, using non-native occurrences, and using both native and non-native occurrences. Models were trained using occurrence data collected before 2010 and evaluated with occurrence data collected from the invaded range during or after 2010. We considered a total of 22 marine environmental variables. Models built with non-native only or both native and non-native occurrence data outperformed those that used only native occurrences. Evaluation metrics based on the independent test data were highest for models that used both native and non-native occurrences. Bathymetry was the strongest environmental predictor for all models and showed increasing suitability as ocean floor depth decreased, with salinity ranking the second strongest predictor for models that used native and both native and non-native occurrences, indicating low habitat suitability for salinities model results also suggest that red lionfish could continue to invade southern latitudes in the western Atlantic Ocean and may establish localized populations in the eastern Pacific Ocean. We reiterate the importance in the choice of the training data source (native, non-native, or native/non-native) used to develop correlative species distribution models for invasive species.

  20. Coupling ecological and social network models to assess “transmission” and “contagion” of an aquatic invasive species

    Science.gov (United States)

    Haak, Danielle M.; Fath, Brian D.; Forbes, Valery E.; Martin, Dustin R.; Pope, Kevin L.

    2017-01-01

    Network analysis is used to address diverse ecological, social, economic, and epidemiological questions, but few efforts have been made to combine these field-specific analyses into interdisciplinary approaches that effectively address how complex systems are interdependent and connected to one another. Identifying and understanding these cross-boundary connections improves natural resource management and promotes proactive, rather than reactive, decisions. This research had two main objectives; first, adapt the framework and approach of infectious disease network modeling so that it may be applied to the socio-ecological problem of spreading aquatic invasive species, and second, use this new coupled model to simulate the spread of the invasive Chinese mystery snail (Bellamya chinensis) in a reservoir network in Southeastern Nebraska, USA. The coupled model integrates an existing social network model of how anglers move on the landscape with new reservoir-specific ecological network models. This approach allowed us to identify 1) how angler movement among reservoirs aids in the spread of B. chinensis, 2) how B. chinensisalters energy flows within individual-reservoir food webs, and 3) a new method for assessing the spread of any number of non-native or invasive species within complex, social-ecological systems.

  1. Species Distribution Model for Management of an Invasive Vine in Forestlands of Eastern Texas

    Directory of Open Access Journals (Sweden)

    Hsiao-Hsuan Wang

    2015-11-01

    Full Text Available Invasive plants decrease biodiversity, modify vegetation structure, and inhibit growth and reproduction of native species. Japanese honeysuckle (Lonicera japonica Thunb. is the most prevalent invasive vine in the forestlands of eastern Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor, and test possible management strategies. We analyzed an extensive dataset collected as part of the Forest Inventory and Analysis Program of the United States Department of Agriculture (USDA Forest Service to quantify the range expansion of Japanese honeysuckle in the forestlands of eastern Texas from 2006 to 2011. We then identified potential factors influencing the likelihood of presence of Japanese honeysuckle using boosted regression trees. Our results indicated that the presence of Japanese honeysuckle on sampled plots almost doubled during this period (from 352 to 616 plots, spreading extensively, geographically. The probability of invasion was correlated with variables representing landscape conditions, climatic conditions, forest features, disturbance factors, and forest management activities. Habitats most at risk to invasion under current conditions occurred primarily in northeastern Texas, with a few invasion hotspots in the south. Estimated probabilities of invasion were reduced most by artificial site regeneration, with habitats most at risk again occurring primarily in northeastern Texas.

  2. Using a Population Model to Inform the Management of River Flows and Invasive Carp ( Cyprinus carpio)

    Science.gov (United States)

    Koehn, John D.; Todd, Charles R.; Zampatti, Brenton P.; Stuart, Ivor G.; Conallin, Anthony; Thwaites, Leigh; Ye, Qifeng

    2018-03-01

    Carp are a highly successful invasive fish species, now widespread, abundant and considered a pest in south-eastern Australia. To date, most management effort has been directed at reducing abundances of adult fish, with little consideration of population growth through reproduction. Environmental water allocations are now an important option for the rehabilitation of aquatic ecosystems, particularly in the Murray-Darling Basin. As carp respond to flows, there is concern that environmental watering may cause floodplain inundation and provide access to spawning habitats subsequently causing unwanted population increase. This is a management conundrum that needs to be carefully considered within the context of contemporary river flow management (natural, environmental, irrigation). This paper uses a population model to investigate flow-related carp population dynamics for three case studies in the Murray-Darling Basin: (1) river and terminal lakes; (2) wetlands and floodplain lakes; and (3) complex river channel and floodplain system. Results highlight distinctive outcomes depending on site characteristics. In particular, the terminal lakes maintain a significant source carp population regardless of river flow; hence any additional within-channel environmental flows are likely to have little impact on carp populations. In contrast, large-scale removal of carp from the lakes may be beneficial, especially in times of extended low river flows. Case studies 2 and 3 show how wetlands, floodplain lakes and the floodplain itself can now often be inundated for several months over the carp spawning season by high volume flows provided for irrigation or water transfers. Such inundations can be a major driver of carp populations, compared to within channel flows that have relatively little effecton recruitment. The use of a population model that incorporates river flows and different habitats for this flow-responsive species, allows for the comparison of likely population

  3. The Invasive Species Forecasting System (ISFS): An iRODS-Based, Cloud-Enabled Decision Support System for Invasive Species Habitat Suitability Modeling

    Science.gov (United States)

    Gill, Roger; Schnase, John L.

    2012-01-01

    The Invasive Species Forecasting System (ISFS) is an online decision support system that allows users to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of interest, such as a national park, monument, forest, or refuge. Target customers for ISFS are natural resource managers and decision makers who have a need for scientifically valid, model- based predictions of the habitat suitability of plant species of management concern. In a joint project involving NASA and the Maryland Department of Natural Resources, ISFS has been used to model the potential distribution of Wavyleaf Basketgrass in Maryland's Chesapeake Bay Watershed. Maximum entropy techniques are used to generate predictive maps using predictor datasets derived from remotely sensed data and climate simulation outputs. The workflow to run a model is implemented in an iRODS microservice using a custom ISFS file driver that clips and re-projects data to geographic regions of interest, then shells out to perform MaxEnt processing on the input data. When the model completes, all output files and maps from the model run are registered in iRODS and made accessible to the user. The ISFS user interface is a web browser that uses the iRODS PHP client to interact with the ISFS/iRODS- server. ISFS is designed to reside in a VMware virtual machine running SLES 11 and iRODS 3.0. The ISFS virtual machine is hosted in a VMware vSphere private cloud infrastructure to deliver the online service.

  4. Assessment of the inflammatory factor as well as invasion and apoptosis gene expression in endometriosis model rats after mifepristone intervention

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-05-01

    Full Text Available Objective: To study the effect of mifepristone intervention on the inflammatory factor as well as invasion and apoptosis gene expression in endometriosis lesions of endometriosis model rats. Method: SD female rats were selected as experimental animals, divided into model group (EMs group and mifepristone group (RU486 group and made into endometriosis models, then the EMs group received saline intervention and RU486 group received 2.6 mg/kg/d RU486 intervention. 4 weeks after intervention, endometriosis lesions were anatomized to determine the expression of inflammatory factors (COX-2, PGE2, TNF-α, IL-1β and IL-6, invasion genes (OPN, MMP2, MMP9, uPA and S100A6 as well as apoptosis genes (Bcl-2, Livin, Smac and PTEN. Results: COX-2, PGE2, TNF-α, IL-1β, IL-6, OPN, MMP2, MMP9, uPA, S100A6, Bcl-2 and Livin protein expression in endometriosis lesions of Ru486 group were significantly lower than those of EMs group while Smac and PTEN protein expression were higher than those of EMs group. Conclusion: Mifepristone for endometriosis model rats can inhibit the expression of inflammatory factors, invasion genes and anti-apoptosis genes, and increase the expression of pro-apoptosis genes.

  5. Improving Transferability of Introduced Species’ Distribution Models: New Tools to Forecast the Spread of a Highly Invasive Seaweed

    Science.gov (United States)

    Verbruggen, Heroen; Tyberghein, Lennert; Belton, Gareth S.; Mineur, Frederic; Jueterbock, Alexander; Hoarau, Galice; Gurgel, C. Frederico D.; De Clerck, Olivier

    2013-01-01

    The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpacylindracea (previously Caulerparacemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpacylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia. PMID:23950789

  6. The Bifurcation and Control of a Single-Species Fish Population Logistic Model with the Invasion of Alien Species

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2014-01-01

    Full Text Available The objective of this paper is to study systematically the bifurcation and control of a single-species fish population logistic model with the invasion of alien species based on the theory of singular system and bifurcation. It regards Spartina anglica as an invasive species, which invades the fisheries and aquaculture. Firstly, the stabilities of equilibria in this model are discussed. Moreover, the sufficient conditions for existence of the trans-critical bifurcation and the singularity induced bifurcation are obtained. Secondly, the state feedback controller is designed to eliminate the unexpected singularity induced bifurcation by combining harvested effort with the purification capacity. It obviously inhibits the switch of population and makes the system stable. Finally, the numerical simulation is proposed to show the practical significance of the bifurcation and control from the biological point of view.

  7. Digital Invasions: from Point Clouds to Historical Building Object Modeling H-Bom of a Unesco Whl Site

    Science.gov (United States)

    Chiabrando, F.; Lo Turco, M.; Santagati, C.

    2017-02-01

    The paper here presented shows the outcomes of a research/didactic activity carried out within a workshop titled "Digital Invasions. From point cloud to Heritage Building Information Modeling" held at Politecnico di Torino (29th September-5th October 2016). The term digital invasions refers to an Italian bottom up project born in the 2013 with the aim of promoting innovative digital ways for the enhancement of Cultural Heritage by the co-creation of cultural contents and its sharing through social media platforms. At this regard, we have worked with students of Architectural Master of Science degree, training them with a multidisciplinary teaching team (Architectural Representation, History of Architecture, Restoration, Digital Communication and Geomatics). The aim was also to test if our students could be involved in a sort of niche crowdsourcing for the creation of a library of H-BOMS (Historical-Building Object Modeling) of architectural elements.

  8. Increasing Model Complexity: Unit Testing and Validation of a Coupled Electrical Resistive Heating and Macroscopic Invasion Percolation Model

    Science.gov (United States)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2016-12-01

    Geoenvironmental models are becoming increasingly sophisticated as they incorporate rising numbers of mechanisms and process couplings to describe environmental scenarios. When combined with advances in computing and numerical techniques, these already complicated models are experiencing large increases in code complexity and simulation time. Although, this complexity has enabled breakthroughs in the ability to describe environmental problems, it is difficult to ensure that complex models are sufficiently robust and behave as intended. Many development tools used for testing software robustness have not seen widespread use in geoenvironmental sciences despite an increasing reliance on complex numerical models, leaving many models at risk of undiscovered errors and potentially improper validations. This study explores the use of unit testing, which independently examines small code elements to ensure each unit is working as intended as well as their integrated behaviour, to test the functionality and robustness of a coupled Electrical Resistive Heating (ERH) - Macroscopic Invasion Percolation (MIP) model. ERH is a thermal remediation technique where the soil is heated until boiling and volatile contaminants are stripped from the soil. There is significant interest in improving the efficiency of ERH, including taking advantage of low-temperature co-boiling behaviour which may reduce energy consumption. However, at lower co-boiling temperatures gas bubbles can form, mobilize and collapse in cooler areas, potentially contaminating previously clean zones. The ERH-MIP model was created to simulate the behaviour of gas bubbles in the subsurface and to evaluate ERH during co-boiling1. This study demonstrates how unit testing ensures that the model behaves in an expected manner and examines the robustness of every component within the ERH-MIP model. Once unit testing is established, the MIP module (a discrete gas transport algorithm for gas expansion, mobilization and

  9. The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing.

    Science.gov (United States)

    Choudhary, Jaipal S; Naaz, Naiyar; Prabhakar, Chandra S; Rao, Mathukumalli Srinivasa; Das, Bikash

    2015-09-15

    Mitochondrial genome can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. The complete 15,935 bp mitochondrial genome of Bactrocera zonata (Diptera: Tephritidae), is assembled from Illumina MiSeq read data. The mitogenome information for B. zonata was compared to the homologous sequences of other tephritids. Annotation indicated that the structure and orientation of 13 protein coding genes (PCGs), 22 tRNA and 2 rRNA sequences were typical of, and similar to, the ten closely related tephritid species. The nucleotide composition shows heavily biased toward As and Ts accounting 73.34% and exhibits a slightly positive AT skew, which is similar to other known tephritid species. All PCGs are initiated by ATN codons, except for cox1 with TCG and atp8 with GTG. Nine PCGs use a common stop codon of TAA or TAG, whereas the remaining four use an incomplete termination codon T or TA likely to be completed by adenylation. All tRNAs have the typical clover-leaf structure, with an exception for trnS((AGN)). Four short intergenic spacers showed high degree of conservation among B. zonata and other ten tephritids. A poly(T) stretch at the 5' end followed by [TA(A)]n-like stretch and a tandem repeats of 39 bp has been observed in CR. The analysis of gene evolutionary rate revealed that the cox1 and atp6 exhibits lowest and highest gene substitution rates, respectively than other genes. The phylogenetic relationships based on Maximum Likelihood method using all protein-coding genes and two ribosomal RNA genes confirmed that B. zonata is closely related to Bactrocera correcta, Bactrocera carambolae, Bactrocera papayae, and Bactrocera philippinensis and Bactrocera dorsalis belonging to B. dorsalis species complex forms a monophyletic clade, which is in accordance with the traditional morphological classification and recent molecular works. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment.

    Science.gov (United States)

    Manem, V S K; Kaveh, K; Kohandel, M; Sivaloganathan, S

    2015-01-01

    Numerous experimental studies have demonstrated that the microenvironment is a key regulator influencing the proliferative and migrative potentials of species. Spatial and temporal disturbances lead to adverse and hazardous microenvironments for cellular systems that is reflected in the phenotypic heterogeneity within the system. In this paper, we study the effect of microenvironment on the invasive capability of species, or mutants, on structured grids (in particular, square lattices) under the influence of site-dependent random proliferation in addition to a migration potential. We discuss both continuous and discrete fitness distributions. Our results suggest that the invasion probability is negatively correlated with the variance of fitness distribution of mutants (for both advantageous and neutral mutants) in the absence of migration of both types of cells. A similar behaviour is observed even in the presence of a random fitness distribution of host cells in the system with neutral fitness rate. In the case of a bimodal distribution, we observe zero invasion probability until the system reaches a (specific) proportion of advantageous phenotypes. Also, we find that the migrative potential amplifies the invasion probability as the variance of fitness of mutants increases in the system, which is the exact opposite in the absence of migration. Our computational framework captures the harsh microenvironmental conditions through quenched random fitness distributions and migration of cells, and our analysis shows that they play an important role in the invasion dynamics of several biological systems such as bacterial micro-habitats, epithelial dysplasia, and metastasis. We believe that our results may lead to more experimental studies, which can in turn provide further insights into the role and impact of heterogeneous environments on invasion dynamics.

  11. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  12. Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions.

    Science.gov (United States)

    Vicente, J R; Fernandes, R F; Randin, C F; Broennimann, O; Gonçalves, J; Marcos, B; Pôças, I; Alves, P; Guisan, A; Honrado, J P

    2013-12-15

    Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  14. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    Science.gov (United States)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  15. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling.

    Science.gov (United States)

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.

  16. Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling

    Science.gov (United States)

    Marras, Stefano; Cucco, Andrea; Antognarelli, Fabio; Azzurro, Ernesto; Milazzo, Marco; Bariche, Michel; Butenschön, Momme; Kay, Susan; Di Bitetto, Massimiliano; Quattrocchi, Giovanni; Sinerchia, Matteo; Domenici, Paolo

    2015-01-01

    Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species. PMID:27293680

  17. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations.

    Science.gov (United States)

    Gilbert, Jessica R; Symmonds, Mkael; Hanna, Michael G; Dolan, Raymond J; Friston, Karl J; Moran, Rosalyn J

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Testing an Invasive Weed Prediction Model for Leafy Spurge using Hyperspectral Remote Sensing

    Science.gov (United States)

    Leafy spurge (Euphorbia esula L.) is a noxious invasive weed that infests over 1.2 million hectares of land in North America. One of the fundamental needs in leafy spurge management is cost-effective, large-scale, and long-term documentation and monitoring of plant populations. Leafy spurge is a g...

  19. Modelling obstructive sleep apnea susceptibility using non-invasive inflammatory biomarkers

    Directory of Open Access Journals (Sweden)

    Lucy Abd El Mabood Suliman

    2017-10-01

    Conclusion: OSA patients have increased level of HS-CRP, ESR, and Exhaled FENO which confirm association of inflammation in OSA. These simple inflammatory markers may be used also as simple non invasive predictors to diagnose OSA. Moreover, the HS-CRP may be used as a useful parameter to predict OSA severity.

  20. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe

    NARCIS (Netherlands)

    Soliman, T.; Mourits, M.C.M.; Werf, van der W.; Hengeveld, G.M.; Robinet, C.; Oude Lansink, A.G.J.M.

    2012-01-01

    Background Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood

  1. A simulation model of plant invasion: long-distance dispersal determines the pattern of spread

    Czech Academy of Sciences Publication Activity Database

    Nehrbass, N.; Winkler, E.; Müllerová, Jana; Pergl, Jan; Pyšek, Petr; Perglová, Irena

    2007-01-01

    Roč. 9, č. 4 (2007), s. 383-395 ISSN 1387-3547 Grant - others:Energy, Environment and Sustainable Development Programme(XE) EVK2-CT-2001-00128 Institutional research plan: CEZ:AV0Z60050516 Keywords : giant hogweed * invasions * population dynamics Subject RIV: EF - Botanics Impact factor: 2.125, year: 2007

  2. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Directory of Open Access Journals (Sweden)

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  3. An application of structural equation modeling to detect response shifts and true change in quality of life data from cancer patients undergoing invasive surgery

    NARCIS (Netherlands)

    Oort, Frans J.; Visser, Mechteld R. M.; Sprangers, Mirjam A. G.

    2005-01-01

    The objective is to show how structural equation modeling can be used to detect reconceptualization, reprioritization, and recalibration response shifts in quality of life data from cancer patients undergoing invasive surgery. A consecutive series of 170 newly diagnosed cancer patients,

  4. Invasive Species

    Science.gov (United States)

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  5. A review of operations research models in invasive species management: state of the art, challenges, and future directions

    Science.gov (United States)

    İ. Esra Büyüktahtakın; Robert G. Haight

    2017-01-01

    Invasive species are a major threat to the economy, the environment, health, and thus human well-being. The international community, including the United Nations' Global Invasive Species Program (GISP), National Invasive Species Council (NISC), and Center for Invasive Species Management (CISM), has called for a rapid control of invaders in order to minimize their...

  6. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota

    Directory of Open Access Journals (Sweden)

    Kaushi S. T. Kanankege

    2018-01-01

    Full Text Available Zebra mussels (ZMs (Dreissena polymorpha and Eurasian watermilfoil (EWM (Myriophyllum spicatum are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78. The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76. Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45% or EWM (12.43% invasions, whereas only 125/18,411 (0.67% and 304/18,411 (1.65% are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  7. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota.

    Science.gov (United States)

    Kanankege, Kaushi S T; Alkhamis, Moh A; Phelps, Nicholas B D; Perez, Andres M

    2017-01-01

    Zebra mussels (ZMs) ( Dreissena polymorpha ) and Eurasian watermilfoil (EWM) ( Myriophyllum spicatum ) are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78). The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76). Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45%) or EWM (12.43%) invasions, whereas only 125/18,411 (0.67%) and 304/18,411 (1.65%) are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  8. Investigating the effect of invasion characteristics on onion thrips (Thysanoptera: Thripidae) populations in onions with a temperature-driven process model.

    Science.gov (United States)

    Mo, Jianhua; Stevens, Mark; Liu, De Li; Herron, Grant

    2009-12-01

    A temperature-driven process model was developed to describe the seasonal patterns of populations of onion thrips, Thrips tabaci Lindeman, in onions. The model used daily cohorts (individuals of the same developmental stage and daily age) as the population unit. Stage transitions were modeled as a logistic function of accumulated degree-days to account for variability in development rate among individuals. Daily survival was modeled as a logistic function of daily mean temperature. Parameters for development, survival, and fecundity were estimated from published data. A single invasion event was used to initiate the population process, starting at 1-100 d after onion emergence (DAE) for 10-100 d at the daily rate of 0.001-0.9 adults/plant/d. The model was validated against five observed seasonal patterns of onion thrips populations from two unsprayed sites in the Riverina, New South Wales, Australia, during 2003-2006. Performance of the model was measured by a fit index based on the proportion of variations in observed data explained by the model (R (2)) and the differences in total thrips-days between observed and predicted populations. Satisfactory matching between simulated and observed seasonal patterns was obtained within the ranges of invasion parameters tested. Model best-fit was obtained at invasion starting dates of 6-98 DAE with a daily invasion rate of 0.002-0.2 adults/plant/d and an invasion duration of 30-100 d. Under the best-fit invasion scenarios, the model closely reproduced the observed seasonal patterns, explaining 73-95% of variability in adult and larval densities during population increase periods. The results showed that small invasions of adult thrips followed by a gradual population build-up of thrips within onion crops were sufficient to bring about the observed seasonal patterns of onion thrips populations in onion. Implications of the model on timing of chemical controls are discussed.

  9. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhao, Hui; Hua, Ye; Dai, Tu; He, Jian; Tang, Min; Fu, Xu; Mao, Liang; Jin, Huihan; Qiu, Yudong

    2017-01-01

    Highlights: • This study aimed to establish a novel predictive scoring model of MVI in HCC patients. • Preoperative imaging features on CECT, such as intratumoral arteries, non-nodule type and absence of radiological tumor capsule were independent predictors for MVI. • The predictive scoring model is of great value in prediction of MVI regardless of tumor size. - Abstract: Purpose: Microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) cannot be accurately predicted preoperatively. This study aimed to establish a predictive scoring model of MVI in solitary HCC patients without macroscopic vascular invasion. Methods: A total of 309 consecutive HCC patients who underwent curative hepatectomy were divided into the derivation (n = 206) and validation cohort (n = 103). A predictive scoring model of MVI was established according to the valuable predictors in the derivation cohort based on multivariate logistic regression analysis. The performance of the predictive model was evaluated in the derivation and validation cohorts. Results: Preoperative imaging features on CECT, such as intratumoral arteries, non-nodular type of HCC and absence of radiological tumor capsule were independent predictors for MVI. The predictive scoring model was established according to the β coefficients of the 3 predictors. Area under receiver operating characteristic (AUROC) of the predictive scoring model was 0.872 (95% CI, 0.817-0.928) and 0.856 (95% CI, 0.771-0.940) in the derivation and validation cohorts. The positive and negative predictive values were 76.5% and 88.0% in the derivation cohort and 74.4% and 88.3% in the validation cohort. The performance of the model was similar between the patients with tumor size ≤5 cm and >5 cm in AUROC (P = 0.910). Conclusions: The predictive scoring model based on intratumoral arteries, non-nodular type of HCC, and absence of the radiological tumor capsule on preoperative CECT is of great value in the prediction of MVI

  10. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Hepatopancreatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second People' s Hospital, Wuxi, Jiangsu (China); Hua, Ye [Department of Neurology, Nanjing Medical University Affiliated Wuxi Second People’s Hospital, Wuxi, Jiangsu (China); Dai, Tu [Department of Hepatopancreatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second People' s Hospital, Wuxi, Jiangsu (China); He, Jian; Tang, Min [Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu (China); Fu, Xu; Mao, Liang [Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu (China); Jin, Huihan, E-mail: 45687061@qq.com [Department of Hepatopancreatobiliary Surgery, Nanjing Medical University Affiliated Wuxi Second People' s Hospital, Wuxi, Jiangsu (China); Qiu, Yudong, E-mail: yudongqiu510@163.com [Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu (China)

    2017-03-15

    Highlights: • This study aimed to establish a novel predictive scoring model of MVI in HCC patients. • Preoperative imaging features on CECT, such as intratumoral arteries, non-nodule type and absence of radiological tumor capsule were independent predictors for MVI. • The predictive scoring model is of great value in prediction of MVI regardless of tumor size. - Abstract: Purpose: Microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) cannot be accurately predicted preoperatively. This study aimed to establish a predictive scoring model of MVI in solitary HCC patients without macroscopic vascular invasion. Methods: A total of 309 consecutive HCC patients who underwent curative hepatectomy were divided into the derivation (n = 206) and validation cohort (n = 103). A predictive scoring model of MVI was established according to the valuable predictors in the derivation cohort based on multivariate logistic regression analysis. The performance of the predictive model was evaluated in the derivation and validation cohorts. Results: Preoperative imaging features on CECT, such as intratumoral arteries, non-nodular type of HCC and absence of radiological tumor capsule were independent predictors for MVI. The predictive scoring model was established according to the β coefficients of the 3 predictors. Area under receiver operating characteristic (AUROC) of the predictive scoring model was 0.872 (95% CI, 0.817-0.928) and 0.856 (95% CI, 0.771-0.940) in the derivation and validation cohorts. The positive and negative predictive values were 76.5% and 88.0% in the derivation cohort and 74.4% and 88.3% in the validation cohort. The performance of the model was similar between the patients with tumor size ≤5 cm and >5 cm in AUROC (P = 0.910). Conclusions: The predictive scoring model based on intratumoral arteries, non-nodular type of HCC, and absence of the radiological tumor capsule on preoperative CECT is of great value in the prediction of MVI

  11. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma.

    Science.gov (United States)

    Nader, Joëlle S; Abadie, Jérôme; Deshayes, Sophie; Boissard, Alice; Blandin, Stéphanie; Blanquart, Christophe; Boisgerault, Nicolas; Coqueret, Olivier; Guette, Catherine; Grégoire, Marc; Pouliquen, Daniel L

    2018-03-27

    Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.

  12. Biological Control of Tephritid Fruit Flies in Argentina: Historical Review, Current Status, and Future Trends for Developing a Parasitoid Mass-Release Program.

    Science.gov (United States)

    Ovruski, Sergio M; Schliserman, Pablo

    2012-09-14

    In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina's various fruit growing regions.

  13. Biological Control of Tephritid Fruit Flies in Argentina: Historical Review, Current Status, and Future Trends for Developing a Parasitoid Mass-Release Program

    Directory of Open Access Journals (Sweden)

    Sergio M. Ovruski

    2012-09-01

    Full Text Available In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina’s various fruit growing regions.

  14. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland.

    Science.gov (United States)

    Annunziato, Stefano; Kas, Sjors M; Nethe, Micha; Yücel, Hatice; Del Bravo, Jessica; Pritchard, Colin; Bin Ali, Rahmen; van Gerwen, Bas; Siteur, Bjørn; Drenth, Anne Paulien; Schut, Eva; van de Ven, Marieke; Boelens, Mirjam C; Klarenbeek, Sjoerd; Huijbers, Ivo J; van Miltenburg, Martine H; Jonkers, Jos

    2016-06-15

    Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice. © 2016 Annunziato et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables

    Directory of Open Access Journals (Sweden)

    MD Oliveira

    Full Text Available The invasive golden mussel, Limnoperna fortunei (Dunker, 1857, was introduced into the La Plata River estuary and quickly expanded upstream to the North, into the Paraguay and Paraná rivers. An ecological niche modeling approach, based on limnological variables, was used to predict the expansion of the golden mussel in the Paraguay River and its tributaries. We used three approaches to predict the geographic distribution: 1 the spatial distribution of calcium concentration and the saturation index for calcium carbonate (calcite; 2 the Genetic Algorithm for Rule-Set Production (GARP model; and the 3 Maximum Entropy Method (Maxent model. Other limnological variables such as temperature, dissolved oxygen, pH, and Total Suspended Solids (TSS were used in the latter two cases. Important tributaries of the Paraguay River such as the Cuiabá and Miranda/Aquidauana rivers exhibit high risk of invasion, while lower risk was observed in the chemically dilute waters of the middle basin where shell calcification may be limited by low calcium concentrations and carbonate mineral undersaturation.

  16. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland

    Science.gov (United States)

    Annunziato, Stefano; Kas, Sjors M.; Nethe, Micha; Yücel, Hatice; Del Bravo, Jessica; Pritchard, Colin; Bin Ali, Rahmen; van Gerwen, Bas; Siteur, Bjørn; Drenth, Anne Paulien; Schut, Eva; van de Ven, Marieke; Boelens, Mirjam C.; Klarenbeek, Sjoerd; Huijbers, Ivo J.; van Miltenburg, Martine H.; Jonkers, Jos

    2016-01-01

    Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell–cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice. PMID:27340177

  17. Explanative power of variables used in species distribution modelling: an issue of general model transferability or niche shift in the invasive Greenhouse frog ( Eleutherodactylus planirostris)

    Science.gov (United States)

    Rödder, Dennis; Lötters, Stefan

    2010-09-01

    The use of species distribution models (SDMs) to predict potential distributions of species is steadily increasing. A necessary assumption when projecting models throughout space or time is that climatic niches are conservative, but recent findings of niche shifts during biological invasion of particular plant and animal species have indicated that this assumption is not categorically valid. One reason for observed shifts may relate to variable selection for modelling. In this study, we assess differences in climatic niches in the native and invasive ranges of the Greenhouse frog ( Eleutherodactylus planirostris). We analyze which variables are more ‘conserved’ in comparison to more ‘relaxed’ variables (i.e. subject to niche shift) and how they influence transferability of SDMs developed with Maxent on the basis of ten bioclimatic layers best describing the climatic requirements of the target species. We focus on degrees of niche similarity and conservatism using Schoener's index and Hellinger distance. Significance of results are tested with null models. Results indicate that the degrees of niche similarity and conservatism vary greatly among the predictive variables. Some shifts can be attributed to active habitat selection, whereas others apparently reflect variation in the availability of climate conditions or biotic interactions between the frogs' native and invasive ranges. Patterns suggesting active habitat selection also vary among variables. Our findings evoke considerable implications on the transferability of SDMs over space and time, which is strongly affected by the choice and number of predictors. The incorporation of ‘relaxed’ predictors not or only indirectly correlated with biologically meaningful predictors may lead to erroneous predictions when projecting SDMs. We recommend thorough assessments of invasive species' ecology for the identification biologically meaningful predictors facilitating transferability.

  18. Long time behavior of a PDE model for invasive species control

    KAUST Repository

    Parshad, R.D.

    2011-01-01

    The Trojan Y Chromosome strategy (TYC) is a theoretical method for eradication of invasive species. It requires constant introduction of artificial individuals into a target population, causing a shift in the sex ratio, that ultimately leads to local extinction. In this work we consider a modified version of the TYC system. We first demonstrate the existence of a unique weak solution to the system. Furthermore, we prove the existence of a compact finite dimensional global attractor for the modified system, in L 2(Ω) × L 2(Ω)× L 2(Ω).

  19. Dynamic modeling predicts continued bioaccumulation of polybrominated diphenyl ethers (PBDEs) in smallmouth bass (Micropterus dolomiu) post phase-out due to invasive prey and shifts in predation

    International Nuclear Information System (INIS)

    Wallace, Joshua S.; Blersch, David M.

    2015-01-01

    Unprecedented food chain links between benthic and pelagic organisms are often thought to disrupt traditional contaminant transport and uptake due to changes in predation and mobilization of otherwise sequestered pollutants. A bioaccumulation model for polybrominated diphenyl ethers (PBDEs) is developed to simulate increases in biotic congener loads based upon trophic transfer through diet and gill uptake for a Lake Erie food chain including two invasive species as a benthic-pelagic link. The model utilizes species-specific bioenergetic parameters in a four-level food chain including the green alga Scenedesmus quadricauda, zebra mussels (Dreissena polymorpha), round goby (Appollonia melanostoma), and the smallmouth bass (Micropterus dolomiu). The model was calibrated to current biotic concentrations and predicts an increase in contaminant load by almost 48% in the upper trophic level in two years. Validation to archival data resulted in <2% error from reported values following a two-year simulation. - Highlights: • A dynamic model assesses continued bioaccumulation of PBDEs in predators of invasive prey. • The model incorporates novel benthic-pelagic energy links due to invasive prey. • Increases in total PBDEs in smallmouth bass due to invasive energy pathways are simulated. • The model is validated to archival data obtained prior to invasion of zebra mussels and round goby. - A dynamic model is developed to simulate continued bioaccumulation of polybrominated diphenyl ethers (PBDEs) in smallmouth bass due to emerging benthic-pelagic energy pathways.

  20. A Simple Model to Assess the Probability of Invasion in Ductal Carcinoma In Situ of the Breast Diagnosed by Needle Biopsy

    Directory of Open Access Journals (Sweden)

    Oldřich Coufal

    2014-01-01

    Full Text Available Objectives. The aim of the study was to develop a clinical prediction model for assessing the probability of having invasive cancer in the definitive surgical resection specimen in patients with biopsy diagnosis of ductal carcinoma in situ (DCIS of the breast, to facilitate decision making regarding axillary surgery. Methods. In 349 women with DCIS, predictors of invasion in the definitive resection specimen were identified. A model to predict the probability of invasion was developed and subsequently simplified to divide patients into two risk categories. The model’s performance was validated on another patient population. Results. Multivariate logistic regression revealed four independent predictors of invasion: (i suspicious (microinvasion in the biopsy specimen; (ii visibility of the lesion on ultrasonography; (iii size of the lesion on mammography >30 mm; (iv clinical palpability of the lesion. The actual frequency of invasion in the high-risk patient group in the test and validation population was 52.6% and 48.3%, respectively; in the low-risk group it was 16.8% and 7.1%, respectively. Conclusion. The model proved to have good performance. In patients with a low probability of invasion, an axillary procedure can be omitted without a substantial risk of additional surgery.

  1. Over-invasion by functionally equivalent invasive species.

    Science.gov (United States)

    Russell, James C; Sataruddin, Nurul S; Heard, Allison D

    2014-08-01

    Multiple invasive species have now established at most locations around the world, and the rate of new species invasions and records of new invasive species continue to grow. Multiple invasive species interact in complex and unpredictable ways, altering their invasion success and impacts on biodiversity. Incumbent invasive species can be replaced by functionally similar invading species through competitive processes; however the generalized circumstances leading to such competitive displacement have not been well investigated. The likelihood of competitive displacement is a function of the incumbent advantage of the resident invasive species and the propagule pressure of the colonizing invasive species. We modeled interactions between populations of two functionally similar invasive species and indicated the circumstances under which dominance can be through propagule pressure and incumbent advantage. Under certain circumstances, a normally subordinate species can be incumbent and reject a colonizing dominant species, or successfully colonize in competition with a dominant species during simultaneous invasion. Our theoretical results are supported by empirical studies of the invasion of islands by three invasive Rattus species. Competitive displacement is prominent in invasive rats and explains the replacement of R. exulans on islands subsequently invaded by European populations of R. rattus and R. norvegicus. These competition outcomes between invasive species can be found in a broad range of taxa and biomes, and are likely to become more common. Conservation management must consider that removing an incumbent invasive species may facilitate invasion by another invasive species. Under very restricted circumstances of dominant competitive ability but lesser impact, competitive displacement may provide a novel method of biological control.

  2. Early engagement of stakeholders with individual-based modelling can inform research for improving invasive species management: the round goby as a case study

    DEFF Research Database (Denmark)

    Samson, Emma; Hirsch, Philipp E.; Palmer, Stephen C.

    2017-01-01

    that subsequent models can provide robust insight into potential management interventions. The round goby, Neogobius melanostomus, is currently spreading through the Baltic Sea, with major negative effects being reported in the wake of its invasion. Together with stakeholders, we parameterize an IBM...... to investigate the goby's potential spread pattern throughout the Gulf of Gdansk and the Baltic Sea. Model parameters were assigned by integrating information obtained through stakeholder interaction, from scientific literature, or estimated using an inverse modeling approach when not available. IBMs can provide...... valuable direction to research on invasive species even when there is limited data and/or time available to parameterize/fit them to the degree to which we might aspire in an ideal world. Co-development of models with stakeholders can be used to recognize important invasion patterns, in addition...

  3. Heterogeneity and proliferation of invasive cancer subclones in game theory models of the Warburg effect.

    Science.gov (United States)

    Archetti, M

    2015-04-01

    The Warburg effect, a switch from aerobic energy production to anaerobic glycolysis, promotes tumour proliferation and motility by inducing acidification of the tumour microenvironment. Therapies that reduce acidity could impair tumour growth and invasiveness. I analysed the dynamics of cell proliferation and of resistance to therapies that target acidity, in a population of cells, under the Warburg effect. The dynamics of mutant cells with increased glycolysis and motility has been assessed in a multi-player game with collective interactions in the framework of evolutionary game theory. Perturbations of the level of acidity in the microenvironment have been used to simulate the effect of therapies that target glycolysis. The non-linear effects of glycolysis induce frequency-dependent clonal selection leading to coexistence of glycolytic and non-glycolytic cells within a tumour. Mutants with increased motility can invade such a polymorphic population and spread within the tumour. While reducing acidity may produce a sudden reduction in tumour cell proliferation, frequency-dependent selection enables it to adapt to the new conditions and can enable the tumour to restore its original levels of growth and invasiveness. The acidity produced by glycolysis acts as a non-linear public good that leads to coexistence of cells with high and low glycolysis within the tumour. Such a heterogeneous population can easily adapt to changes in acidity. Therapies that target acidity can only be effective in the long term if the cost of glycolysis is high, that is, under non-limiting oxygen concentrations. Their efficacy, therefore, is reduced when combined with therapies that impair angiogenesis. © 2015 The Authors Cell Proliferation Published by John Wiley & Sons Ltd.

  4. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe.

    Directory of Open Access Journals (Sweden)

    Tarek Soliman

    Full Text Available BACKGROUND: Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood nematode, Bursaphelenchus xylophilus, which threatens the European forestry industry. The effect of spatial resolution on the assessment result is analysed. METHODOLOGY/PRINCIPAL FINDINGS: Direct economic impacts resulting from wood loss are computed using partial budgeting at regional scale, while impacts on social welfare are computed by a partial equilibrium analysis of the round wood market at EU scale. Substantial impacts in terms of infested stock are expected in Portugal, Spain, Southern France, and North West Italy but not elsewhere in EU in the near future. The cumulative value of lost forestry stock over a period of 22 years (2008-2030, assuming no regulatory control measures, is estimated at €22 billion. The greatest yearly loss of stock is expected to occur in the period 2014-2019, with a peak of three billion euros in 2016, but stabilizing afterwards at 300-800 million euros/year. The reduction in social welfare follows the loss of stock with considerable delay because the yearly harvest from the forest is only 1.8%. The reduction in social welfare for the downstream round wood market is estimated at €218 million in 2030, whereby consumers incur a welfare loss of €357 million, while producers experience a €139 million increase, due to higher wood prices. The societal impact is expected to extend to well beyond the time horizon of the analysis, and long after the invasion has stopped. CONCLUSIONS/SIGNIFICANCE: Pinewood nematode has large economic consequences for the conifer forestry industry in the EU. A change in spatial resolution affected the calculated directed losses by 24%, but did not critically affect conclusions.

  5. Ovarian tumor attachment, invasion and vascularization reflect unique microenvironments in the peritoneum:Insights from xenograft and mathematical models

    Directory of Open Access Journals (Sweden)

    Mara P. Steinkamp

    2013-05-01

    Full Text Available Ovarian cancer relapse is often characterized by metastatic spread throughout the peritoneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian tumor cells with the peritoneal tumor microenvironment was evaluated in a xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells. Intra-vital microscopy of mixed GFP-RFP cell populations injected into the peritoneum demonstrated that tumor cells aggregate and attach as mixed spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Electron microscopy provided high resolution structural information about local attachment sites. Experimental measurements from the mouse model were used to build a three-dimensional cellular Potts ovarian tumor model (OvTM that examines ovarian tumor cell attachment, chemotaxis, growth and vascularization. OvTM simulations provide insight into the relative influence of tumor cell-cell adhesion, oxygen availability, and local architecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum or spleen readily invade the open architecture, while tumors attached to the gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive release of angiogenic factors in the absence of hypoxia. This research highlights the importance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations indicate that invasion is strongly influenced by features underlying the mesothelial lining at different sites, but is also affected by local production of chemotactic factors. The integrated in vivo mouse model and computer simulations provide a unique platform for evaluating targeted therapies for ovarian cancer relapse.

  6. Early Engagement of Stakeholders with Individual-Based Modeling Can Inform Research for Improving Invasive Species Management: The Round Goby as a Case Study

    Directory of Open Access Journals (Sweden)

    Emma Samson

    2017-11-01

    Full Text Available Individual-based models (IBMs incorporating realistic representations of key range-front processes such as dispersal can be used as tools to investigate the dynamics of invasive species. Managers can apply insights from these models to take effective action to prevent further spread and prioritize measures preventing establishment of invasive species. We highlight here how early-stage IBMs (constructed under constraints of time and data availability can also play an important role in defining key research priorities for providing key information on the biology of an invasive species in order that subsequent models can provide robust insight into potential management interventions. The round goby, Neogobius melanostomus, is currently spreading through the Baltic Sea, with major negative effects being reported in the wake of its invasion. Together with stakeholders, we parameterize an IBM to investigate the goby's potential spread pattern throughout the Gulf of Gdansk and the Baltic Sea. Model parameters were assigned by integrating information obtained through stakeholder interaction, from scientific literature, or estimated using an inverse modeling approach when not available. IBMs can provide valuable direction to research on invasive species even when there is limited data and/or time available to parameterize/fit them to the degree to which we might aspire in an ideal world. Co-development of models with stakeholders can be used to recognize important invasion patterns, in addition to identifying and estimating unknown environmental parameters, thereby guiding the direction of future research. Well-parameterized and validated models are not required in the earlier stages of the modeling cycle where their main utility is as a tool for thought.

  7. Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora in Ethiopia's Afar region

    Directory of Open Access Journals (Sweden)

    Matthew W. Luizza

    2016-03-01

    Full Text Available The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine in Ethiopia's Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC and showed good fit across the jackknife models (average AUC = 0.80 and the final model (test AUC = 0.96. Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local

  8. Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in Ethiopia’s Afar region

    Science.gov (United States)

    Luizza, Matthew; Wakie, Tewodros; Evangelista, Paul; Jarnevich, Catherine S.

    2016-01-01

    The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine) in Ethiopia’s Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC) and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test AUC = 0.96). Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local ecological

  9. Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes

    Science.gov (United States)

    Wan, Ji-Zhong; Wang, Chun-Jing; Yu, Fei-Hai

    2017-11-01

    Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS). However, until now, there is little knowledge on how human footprint and soil variability affect the potential distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS with wide distributions and long introduction histories in China based on various combinations of climatic correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the prevention and control of plant invasion.

  10. Destruction of the hepatocyte junction by intercellular invasion of Leptospira causes jaundice in a hamster model of Weil's disease.

    Science.gov (United States)

    Miyahara, Satoshi; Saito, Mitsumasa; Kanemaru, Takaaki; Villanueva, Sharon Y A M; Gloriani, Nina G; Yoshida, Shin-ichi

    2014-08-01

    Weil's disease, the most severe form of leptospirosis, is characterized by jaundice, haemorrhage and renal failure. The mechanisms of jaundice caused by pathogenic Leptospira remain unclear. We therefore aimed to elucidate the mechanisms by integrating histopathological changes with serum biochemical abnormalities during the development of jaundice in a hamster model of Weil's disease. In this work, we obtained three-dimensional images of infected hamster livers using scanning electron microscope together with freeze-cracking and cross-cutting methods for sample preparation. The images displayed the corkscrew-shaped bacteria, which infiltrated the Disse's space, migrated between hepatocytes, detached the intercellular junctions and disrupted the bile canaliculi. Destruction of bile canaliculi coincided with the elevation of conjugated bilirubin, aspartate transaminase and alkaline phosphatase levels in serum, whereas serum alanine transaminase and γ-glutamyl transpeptidase levels increased slightly, but not significantly. We also found in ex vivo experiments that pathogenic, but not non-pathogenic leptospires, tend to adhere to the perijunctional region of hepatocyte couplets isolated from hamsters and initiate invasion of the intercellular junction within 1 h after co-incubation. Our results suggest that pathogenic leptospires invade the intercellular junctions of host hepatocytes, and this invasion contributes in the disruption of the junction. Subsequently, bile leaks from bile canaliculi and jaundice occurs immediately. Our findings revealed not only a novel pathogenicity of leptospires, but also a novel mechanism of jaundice induced by bacterial infection. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  11. Utility of the microculture method in non-invasive samples obtained from an experimental murine model with asymptomatic leishmaniasis.

    Science.gov (United States)

    Allahverdiyev, Adil M; Bagirova, Malahat; Cakir-Koc, Rabia; Elcicek, Serhat; Oztel, Olga Nehir; Canim-Ates, Sezen; Abamor, Emrah Sefik; Yesilkir-Baydar, Serap

    2012-07-01

    The sensitivity of diagnostic methods for visceral leishmaniasis (VL) decreases because of the low number of parasites and antibody amounts in asymptomatic healthy donors who are not suitable for invasive sample acquisition procedures. Therefore, new studies are urgently needed to improve the sensitivity and specificity of the diagnostic approaches in non-invasive samples. In this study, the sensitivity of the microculture method (MCM) was compared with polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescent antibody test (IFAT) methods in an experimental murine model with asymptomatic leishmaniasis. Results showed that the percent of positive samples in ELISA, IFAT, and peripheral blood (PB) -PCR tests were 17.64%, 8.82%, and 5.88%, respectively, whereas 100% positive results were obtained with MCM and MCM-PCR methods. Thus, this study, for the first time, showed that MCM is more sensitive, specific, and economic than other methods, and the sensitivity of PCR that was performed to samples obtained from MCM was higher than sensitivity of the PCR method sampled by PB.

  12. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Kanjoormana Aryan Manu

    Full Text Available Accumulating evidence(s indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s, it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.

  13. Phenological shifts of native and invasive species under climate change: insights from the Boechera-Lythrum model.

    Science.gov (United States)

    Colautti, Robert I; Ågren, Jon; Anderson, Jill T

    2017-01-19

    Warmer and drier climates have shifted phenologies of many species. However, the magnitude and direction of phenological shifts vary widely among taxa, and it is often unclear when shifts are adaptive or how they affect long-term viability. Here, we model evolution of flowering phenology based on our long-term research of two species exhibiting opposite shifts in floral phenology: Lythrum salicaria, which is invasive in North America, and the sparse Rocky Mountain native Boechera stricta Genetic constraints are similar in both species, but differences in the timing of environmental conditions that favour growth lead to opposite phenological shifts under climate change. As temperatures increase, selection is predicted to favour earlier flowering in native B. stricta while reducing population viability, even if populations adapt rapidly to changing environmental conditions. By contrast, warming is predicted to favour delayed flowering in both native and introduced L. salicaria populations while increasing long-term viability. Relaxed selection from natural enemies in invasive L. salicaria is predicted to have little effect on flowering time but a large effect on reproductive fitness. Our approach highlights the importance of understanding ecological and genetic constraints to predict the ecological consequences of evolutionary responses to climate change on contemporary timescales.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  14. Invasive alien species in the food chain: Advancing risk assessment models to address climate change, economics and uncertainty

    Directory of Open Access Journals (Sweden)

    Darren Kriticos

    2013-09-01

    Full Text Available Pest risk maps illustrate where invasive alien arthropods, molluscs, pathogens, and weeds might become established, spread, and cause harm to natural and agricultural resources within a pest risk area. Such maps can be powerful tools to assist policymakers in matters of international trade, domestic quarantines, biosecurity surveillance, or pest-incursion responses. The International Pest Risk Mapping Workgroup (IPRMW is a group of ecologists, economists, modellers, and practising risk analysts who are committed to improving the methods used to estimate risks posed by invasive alien species to agricultural and natural resources. The group also strives to improve communication about pest risks to biosecurity, production, and natural-resource-sector stakeholders so that risks can be better managed. The IPRMW previously identified ten activities to improve pest risk assessment procedures, among these were: “improve representations of uncertainty, … expand communications with decision-makers on the interpretation and use of risk maps, … increase international collaboration, … incorporate climate change, … [and] study how human and biological dimensions interact” (Venette et al. 2010.

  15. Non-invasive near-infrared fluorescence imaging of the neutrophil response in a mouse model of transient cerebral ischaemia.

    Science.gov (United States)

    Vaas, Markus; Enzmann, Gaby; Perinat, Therese; Siler, Ulrich; Reichenbach, Janine; Licha, Kai; Kipar, Anja; Rudin, Markus; Engelhardt, Britta; Klohs, Jan

    2017-08-01

    Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.

  16. Examining Ecological and Ecosystem Level Impacts of Aquatic Invasive Species in Lake Michigan Using An Ecosystem Productivity Model, LM-Eco

    Science.gov (United States)

    Ecological and ecosystem-level impacts of aquatic invasive species in Lake Michigan were examined using the Lake Michigan Ecosystem Model (LM-Eco). The LM-Eco model includes a detailed description of trophic levels and their interactions within the lower food web of Lake Michiga...

  17. Dynamic models of pneumococcal carriage and the impact of the Heptavalent Pneumococcal Conjugate Vaccine on invasive pneumococcal disease

    Directory of Open Access Journals (Sweden)

    Edmunds W John

    2010-04-01

    Full Text Available Abstract Background The 7-valent pneumococcal conjugate vaccine has been introduced in national immunisation programmes of most industrialised countries and recently in two African GAVI eligible countries (Rwanda and The Gambia. However the long term effects of PCV are still unclear, as beneficial direct and herd immunity effects might be countered by serotype replacement. Method A dynamic, age-structured, compartmental model of Streptococcus pneumoniae transmission was developed to predict the potential impact of PCV7 on the incidence of invasive disease accounting for both herd immunity and serotype replacement effects. The model was parameterised using epidemiological data from England and Wales and pre and post-vaccination surveillance data from the US. Results Model projections showed that serotype replacement plays a crucial role in determining the overall effect of a PCV7 vaccination programme and could reduce, negate or outweigh its beneficial impact. However, using the estimate of the competition parameter derived from the US post-vaccination experience, an infant vaccination programme would prevent 39,000 IPD cases in the 20 years after PCV7 introduction in the UK. Adding a catch-up campaign for under 2 or under 5 year olds would provide a further reduction of 1,200 or 3,300 IPD cases respectively, mostly in the first few years of the programme. Conclusions This analysis suggests that a PCV vaccination programme would eradicate vaccine serotypes from circulation. However, the increase in carriage of non-vaccine serotypes, and the consequent increase in invasive disease, could reduce, negate or outweigh the benefit. These results are sensitive to changes in the protective effect of the vaccine, and, most importantly, to the level of competition between vaccine and non-vaccine types. The techniques developed here can be used to assess the introduction of vaccination programmes in developing countries and provide the basis for cost

  18. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    Science.gov (United States)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  19. Effects of Zeaxanthin on Growth and Invasion of Human Uveal Melanoma in Nude Mouse Model

    Directory of Open Access Journals (Sweden)

    Xiaoliang L. Xu

    2015-01-01

    Full Text Available Uveal melanoma cells were inoculated into the choroid of nude mice and treated with or without intraocular injection of zeaxanthin. After 21 days, mice were sacrificed and the eyes enucleated. Histopathological analysis was performed in hematoxylin and eosin stained frozen sections. Melanoma developed rapidly in the control group (without treatment of zeaxanthin. Tumor-bearing eye mass and tumor mass in the control group were significantly greater than those in zeaxanthin treated group. Melanoma in the controlled eyes occupied a large part of the eye, was epithelioid in morphology, and was with numerous mitotic figures. Scleral perforation and extraocular extension were observed in half of the eyes. Melanomas in zeaxanthin treated eyes were significantly smaller with many necrosis and apoptosis areas and no extraocular extension could be found. Quantitative image analysis revealed that the tumor size was reduced by 56% in eyes treated with low dosages of zeaxanthin and 92% in eyes treatment with high dosages of zeaxanthin, as compared to the controls. This study demonstrated that zeaxanthin significantly inhibits the growth and invasion of human uveal melanoma in nude mice, suggesting that zeaxanthin may be a promising agent to be explored for the prevention and treatment of uveal melanoma.

  20. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models

    Directory of Open Access Journals (Sweden)

    Testa Antonia C

    2010-10-01

    Full Text Available Abstract Background Hitherto, risk prediction models for preoperative ultrasound-based diagnosis of ovarian tumors were dichotomous (benign versus malignant. We develop and validate polytomous models (models that predict more than two events to diagnose ovarian tumors as benign, borderline, primary invasive or metastatic invasive. The main focus is on how different types of models perform and compare. Methods A multi-center dataset containing 1066 women was used for model development and internal validation, whilst another multi-center dataset of 1938 women was used for temporal and external validation. Models were based on standard logistic regression and on penalized kernel-based algorithms (least squares support vector machines and kernel logistic regression. We used true polytomous models as well as combinations of dichotomous models based on the 'pairwise coupling' technique to produce polytomous risk estimates. Careful variable selection was performed, based largely on cross-validated c-index estimates. Model performance was assessed with the dichotomous c-index (i.e. the area under the ROC curve and a polytomous extension, and with calibration graphs. Results For all models, between 9 and 11 predictors were selected. Internal validation was successful with polytomous c-indexes between 0.64 and 0.69. For the best model dichotomous c-indexes were between 0.73 (primary invasive vs metastatic and 0.96 (borderline vs metastatic. On temporal and external validation, overall discrimination performance was good with polytomous c-indexes between 0.57 and 0.64. However, discrimination between primary and metastatic invasive tumors decreased to near random levels. Standard logistic regression performed well in comparison with advanced algorithms, and combining dichotomous models performed well in comparison with true polytomous models. The best model was a combination of dichotomous logistic regression models. This model is available online

  1. Use of non-invasive imaging to monitor response to aflibercept treatment in murine models of colorectal cancer liver metastases.

    Science.gov (United States)

    Fleten, Karianne G; Bakke, Kine M; Mælandsmo, Gunhild M; Abildgaard, Andreas; Redalen, Kathrine Røe; Flatmark, Kjersti

    2017-01-01

    The liver is the most frequent metastatic site in colorectal cancer (CRC), and relevant orthotopic in vivo models are needed to study the efficacy of anticancer drugs in the metastatic setting. A challenge when utilizing such models is monitoring tumor growth during the experiments. In this study, experimental liver metastases were established in nude mice by splenic injection of the CRC cell lines HT29 and HCT116, and the mice were treated with the antiangiogenic drug aflibercept. Tumor growth was monitored using magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). Aflibercept treatment was well tolerated and resulted in increased animal survival in HCT116, but not in HT29, while inhibited tumor growth was observed in both models. Treatment efficacy was monitored with high precision using MRI, while BLI detected small-volume disease with high sensitivity, but was less accurate in end-stage disease. Apparent diffusion coefficient (ADC) values obtained by diffusion weighted MRI (DW-MRI) were highly predictive of treatment response, with increased ADC corresponding well with areas of necrosis observed by histological evaluation of aflibercept-treated xenografts. The results showed that the efficacy of the antiangiogenic drug aflibercept varied between the two models, possibly reflecting unique growth patterns in the liver that may be representative of human disease. Non-invasive imaging, especially MRI and DW-MRI, can be used to effectively monitor tumor growth and treatment response in orthotopic liver metastasis models.

  2. Effect of minimally invasive surgery for cerebral hematoma evacuation in different stages on motor evoked potential and thrombin in dog model of intracranial hemorrhage.

    Science.gov (United States)

    Wu, Guofeng; Zhong, Weibin

    2010-03-01

    To observe the effect of minimally invasive surgery for cerebral hematoma evacuation in different stages on motor evoked potential (MEP) and thrombin in dog model of intracranial hemorrhage. Twenty dogs were selected to prepare the intracranial hemorrhage model, which were randomly divided into 6, 12, 18 and 24 hour groups, respectively. The animals in each group underwent a minimally invasive surgery to evacuate the cerebral hematoma after the models were prepared. Before and after procedures, Purdy score, MEP and thrombin in hematoma region were determined and compared. Significant decreases in Purdy score, latency of MEP and thrombin expression were observed in 6 and 12 hour groups as compared with the 18 and 24 hour groups (pintracranial hemorrhage, which was minimally invasive, easy to operate, highly repeated, simulating the pathological and physiological changes of clinical hypertensive intracranial hemorrhage. Both the latency of MEP and the expression of thrombin decreased after evacuation of intracranial hematoma in early stages by minimally invasive procedures, indicating that minimally invasive procedures for cerebral hematoma in ultra-early and early stages might be more effective to limit brain injury and decrease the latency of MEP and thrombin expression.

  3. Runge-Kutta and Hermite Collocation for a biological invasion problem modeled by a generalized Fisher equation

    International Nuclear Information System (INIS)

    Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G

    2014-01-01

    Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods

  4. Modeling the Potential for Vaccination to Diminish the Burden of Invasive Non-typhoidal Salmonella Disease in Young Children in Mali, West Africa.

    Science.gov (United States)

    Bornstein, Kristin; Hungerford, Laura; Hartley, David; Sorkin, John D; Tapia, Milagritos D; Sow, Samba O; Onwuchekwa, Uma; Simon, Raphael; Tennant, Sharon M; Levine, Myron M

    2017-02-01

    In sub-Saharan Africa, systematic surveillance of young children with suspected invasive bacterial disease (e.g., septicemia, meningitis) has revealed non-typhoidal Salmonella (NTS) to be a major pathogen exhibiting high case fatality (~20%). Where infant vaccination against Haemophilus influenzae type b (Hib) and Streptococcus pneumoniae has been introduced to prevent invasive disease caused by these pathogens, as in Bamako, Mali, their burden has decreased markedly. In parallel, NTS has become the predominant invasive bacterial pathogen in children aged vaccines to prevent invasive NTS (iNTS) disease. We developed a mathematical model to estimate the potential impact of NTS vaccination programs in Bamako. A Markov chain transmission model was developed utilizing age-specific Bamako demographic data and hospital surveillance data for iNTS disease in children aged vaccine coverage and efficacy similar to the existing, successfully implemented, Hib vaccine. Annual iNTS hospitalizations and deaths in children vaccine, were the model's outcomes of interest. Per the model, high coverage/high efficacy iNTS vaccination programs would drastically diminish iNTS disease except among infants age vaccination shifts as disease burden, vaccine coverage, and serovar distribution vary. Our model shows that implementing an iNTS vaccine through an analogous strategy to the Hib vaccination program in Bamako would markedly reduce cases and deaths due to iNTS among the pediatric population. The model can be adjusted for use elsewhere in Africa where NTS epidemiologic patterns, serovar prevalence, and immunization schedules differ from Bamako.

  5. 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery

    Science.gov (United States)

    Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel

    2009-02-01

    In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.

  6. Modelling Ball Circulation in Invasion Team Sports: A Way to Promote Learning Games through Understanding

    Science.gov (United States)

    Grehaigne, Jean-Francis; Caty, Didier; Godbout, Paul

    2010-01-01

    Background: Sport Education and "Tactical decision learning model" (TDLM) are two curriculum models used by physical education teachers in France to help students in the development of a tactical intelligence of game play in the didactics of team sports. Purpose: Identify prototypic configurations of play in the sense that they represent…

  7. Forest product trade impacts of an invasive species: modeling structure and intervention trade-offs

    Science.gov (United States)

    Jeffrey Prestemon; Shushuai Zhu; James A. Turner; Joseph Buongiorno; Ruhong Li

    2006-01-01

    Asian gypsy and nun moth introductions into the United States, possibly arriving on imported Siberian coniferous logs, threaten domestic forests and product markers and could have global market consequences. We simulate, using the Global Forest Products Model (a spatial equilibrium model of the world forest sector), the consequences under current policies of a...

  8. Understanding macroscale invasion patterns and processes with FIA data

    Science.gov (United States)

    Songlin Fei; Basil V. Iannone III; Christopher M. Oswalt; Qinfeng Guo; Kevin M. Potter; Sonja N. Oswalt; Bryan C. Pijanowski; Gabriela C. Nunez-Mir

    2015-01-01

    Using empirical data from FIA, we modeled invasion richness and invasion prevalence as functions of 22 factors reflective of propagule pressure and/or habitat invasibility across the continental US. Our statistical models suggest that both propagule pressure and habitat invasibility contribute to macroscale patterns of forest plant invasions. Our investigation provides...

  9. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  10. Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.

    Science.gov (United States)

    Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M; Huang, Feng; Ma, Lin; Burris, Thomas P; You, Zongbing

    2017-06-01

    Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. History, Epidemic Evolution, and Model Burn-In for a Network of Annual Invasion: Soybean Rust.

    Science.gov (United States)

    Sanatkar, M R; Scoglio, C; Natarajan, B; Isard, S A; Garrett, K A

    2015-07-01

    Ecological history may be an important driver of epidemics and disease emergence. We evaluated the role of history and two related concepts, the evolution of epidemics and the burn-in period required for fitting a model to epidemic observations, for the U.S. soybean rust epidemic (caused by Phakopsora pachyrhizi). This disease allows evaluation of replicate epidemics because the pathogen reinvades the United States each year. We used a new maximum likelihood estimation approach for fitting the network model based on observed U.S. epidemics. We evaluated the model burn-in period by comparing model fit based on each combination of other years of observation. When the miss error rates were weighted by 0.9 and false alarm error rates by 0.1, the mean error rate did decline, for most years, as more years were used to construct models. Models based on observations in years closer in time to the season being estimated gave lower miss error rates for later epidemic years. The weighted mean error rate was lower in backcasting than in forecasting, reflecting how the epidemic had evolved. Ongoing epidemic evolution, and potential model failure, can occur because of changes in climate, host resistance and spatial patterns, or pathogen evolution.

  12. A red fluorescent nude mouse model of human endometriosis: advantages of a non-invasive imaging method.

    Science.gov (United States)

    Wang, Ningning; Hong, Shanshan; Tan, Jinfeng; Ke, Peiqi; Liang, Lili; Fei, Hui; Liu, Bin; Liu, Liqun; Liu, Yongdong; Yu, Bingjun

    2014-05-01

    To establish red fluorescent human endometriosis lesions in a nude mouse model and dynamically and non-invasively to compare intraperitoneal and subcutaneous injection models. Primary cultures of endometrial stromal cells (ESCs) and epithelial cells (EECs) isolated from 24 patients with a normal uterine cavity were transfected with 2.5×10(8) (Group 1) and 1.25×10(8) (Group 2) plaque-forming units (PFU) of adenovirus encoding red fluorescent protein (Ad-RFP). Transfection efficiencies, fluorescence intensity and apoptosis rate of the two types of cells were compared in vitro. A mixture of 2.5×10(8) PFU Ad-RFP-infected approximately 400 EECs cell mass and 2×10(6) ESCs for 36h was injected individually into 24 female nude mice subcutaneously (Group A) or intraperitoneally (Group B). From Day 5 after injection, an in vivo imaging system (IVIS) was used to non-invasively observe and compare the lesions of the two groups every week until Day 33. Specifically, the fluorescent intensity, positive rates, persistence time and lesion weight in the implanted human endometriosis lesions were compared. A parametric Student's t-test and two-way analysis of variance were used for statistical analysis. Compared with 1.25×10(8) PFU RFP, a titre of 2.5×10(8) PFU RFP ESCs and EECs incubated for 36h exhibited higher transfection efficiencies and higher fluorescence intensities in vitro. In vivo imaging of the fluorescent human endometriosis lesions originating from an RFP titre of 2.5×10(8) PFU showed that the intensity and lesion weight in Group A were significantly higher than in Group B. However, the two groups had the same RFP-positive rates and fluorescence persistence. The structure of each lesion was evaluated by immunohistochemistry to confirm its human endometrial origin. The red fluorescent human endometriosis model established by subcutaneously injecting 2.5×10(8) PFU RFP-transfected stromal cells and epithelial cells into nude mice had a higher fluorescent positive

  13. Risk estimation of multiple recurrence and progression of non muscle invasive bladder carcinoma using new mathematical models.

    Science.gov (United States)

    Luján, S; Santamaría, C; Pontones, J L; Ruiz-Cerdá, J L; Trassierra, M; Vera-Donoso, C D; Solsona, E; Jiménez-Cruz, F

    2014-12-01

    To apply new mathematical models according to Non Muscle Invasive Bladder Carcinoma (NMIBC) biological characteristics and enabling an accurate risk estimation of multiple recurrences and tumor progression. The classical Cox model is not valid for the assessment of this kind of events becausethe time betweenrecurrencesin the same patientmay be stronglycorrelated. These new models for risk estimation of recurrence/progression lead to individualized monitoring and treatment plan. 960 patients with primary NMIBC were enrolled. The median follow-up was 48.1 (3-160) months. Results obtained were validated in 240 patients from other center. Transurethral resection of the bladder (TURB) and random bladder biopsy were performed. Subsequently, adjuvant localized chemotherapy was performed. The variables analyzed were: number and tumor size, age, chemotherapy and histopathology. The endpoints were time to recurrence and time to progression. Cox model and its extensions were used as joint frailty model for multiple recurrence and progression. Model accuracy was calculated using Harrell's concordance index (c-index). 468 (48.8%) patients developed at least one tumor recurrence and tumor progression was reported in 52 (5.4%) patients. Variables for multiple-recurrence risk are: age, grade, number, size, treatment and the number of prior recurrences. All these together with age, stage and grade are the variables for progression risk. Concordance index was 0.64 and 0.85 for multiple recurrence and progression respectively. the high concordance reported besides to the validation process in external source, allow accurate multi-recurrence/progression risk estimation. As consequence, it is possible to schedule a follow-up and treatment individualized plan in new and recurrent NMCB cases. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  14. The Impact of a Hybrid Sport Education-Invasion Games Competence Model Soccer Unit on Students' Decision Making, Skill Execution and Overall Game Performance

    Science.gov (United States)

    Mesquita, Isabel; Farias, Claudio; Hastie, Peter

    2012-01-01

    The purpose of this study was to examine the impact of a hybrid Sport Education-Invasion Games Competence Model (SE-IGCM) unit application on students' improvements in decision making, skill execution and overall game performance, during a soccer season. Twenty-six fifth-grade students from a Portuguese public elementary school participated in a…

  15. Minimally invasive prediction of ScvO2 in high-risk surgery : The introduction of a model Index of Oxygenation

    NARCIS (Netherlands)

    de Grooth, Harm-Jan S.; Vos, Jaap Jan; Scheeren, Thomas; van Beest, Paul

    2014-01-01

    INTRODUCTION: The purpose of this study was to examine the trilateral relationship between cardiac index (CI), tissue oxygen saturation (StO2) and central venous oxygen saturation (ScvO2) and subsequently develop a model to predict ScvO2 on minimal invasive manner in patients undergoing major

  16. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts

    Science.gov (United States)

    Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin

    2018-01-01

    Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.

  17. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion

    OpenAIRE

    Elsarraj, Hanan S.; Hong, Yan; Valdez, Kelli E.; Michaels, Whitney; Hook, Marcus; Smith, William P.; Chien, Jeremy; Herschkowitz, Jason I.; Troester, Melissa A.; Beck, Moriah; Inciardi, Marc; Gatewood, Jason; May, Lisa; Cusick, Therese; McGinness, Marilee

    2015-01-01

    Introduction: There are an estimated 60,000 new cases of ductal carcinoma in situ (DCIS) each year. A lack of understanding in DCIS pathobiology has led to overtreatment of more than half of patients. We profiled the temporal molecular changes during DCIS transition to invasive ductal carcinoma (IDC) using in vivo DCIS progression models. These studies identified B cell lymphoma-9 (BCL9) as a potential molecular driver of early invasion. BCL9 is a newly found co-activator of Wnt-stimulated β-...

  18. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure.

    Science.gov (United States)

    Leung, Brian; Mandrak, Nicholas E

    2007-10-22

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.

  19. Wolbachia pseudogenes and low prevalence infections in tropical but not temperate Australian tephritid fruit flies: manifestations of lateral gene transfer and endosymbiont spillover?

    Science.gov (United States)

    Morrow, Jennifer L; Frommer, Marianne; Royer, Jane E; Shearman, Deborah C A; Riegler, Markus

    2015-09-18

    Maternally inherited Wolbachia bacteria infect many insect species. They can also be transferred horizontally into uninfected host lineages. A Wolbachia spillover from an infected source population must occur prior to the establishment of heritable infections, but this spillover may be transient. In a previous study of tephritid fruit fly species of tropical Australia we detected a high incidence of identical Wolbachia strains in several species as well as Wolbachia pseudogenes. Here, we have investigated this further by analysing field specimens of 24 species collected along a 3,000 km climate gradient of eastern Australia. Wolbachia sequences were detected in individuals of nine of the 24 (37 %) species. Seven (29 %) species displayed four distinct Wolbachia strains based on characterisation of full multi locus sequencing (MLST) profiles; the strains occurred as single and double infections in a small number of individuals (2-17 %). For the two remaining species all individuals had incomplete MLST profiles and Wolbachia pseudogenes that may be indicative of lateral gene transfer into host genomes. The detection of Wolbachia was restricted to northern Australia, including in five species that only occur in the tropics. Within the more widely distributed Bactrocera tryoni and Bactrocera neohumeralis, Wolbachia also only occurred in the north, and was not linked to any particular mitochondrial haplotypes. The presence of Wolbachia pseudogenes at high prevalence in two species in absence of complete MLST profiles may represent footprints of historic infections that have been lost. The detection of identical low prevalence strains in a small number of individuals of seven species may question their role as reproductive manipulator and their vertical inheritance. Instead, the findings may be indicative of transient infections that result from spillover events from a yet unknown source. These spillover events appear to be restricted to northern Australia, without

  20. Inferential and forward projection modeling to evaluate options for controlling invasive mammals on islands.

    Science.gov (United States)

    Anderson, D P; McMurtrie, P; Edge, K-A; Baxter, P W J; Byrom, A E

    2016-12-01

    Successful pest-mammal eradications from remote islands have resulted in important biodiversity benefits. Near-shore islands can also serve as refuges for native biota but require ongoing effort to maintain low-pest or pest-free status. Three management options are available in the presence of reinvasion risk: (1) control-to-zero density, in which immigration may occur but reinvaders are removed; (2) sustained population suppression (to relatively low numbers); or (3) no action. Biodiversity benefits can result from options one and two. The management challenge is to make evidence-based decisions on the selection of an appropriate objective and to identify a financially feasible control strategy that has a high probability of success. This requires understanding the pest species population dynamics and how it will respond to a range of potential management strategies, each with an associated financial cost. We developed a two-stage modeling approach that consisted of (1) Bayesian inferential modeling to estimate parameters for a model of pest population dynamics and control, and (2) a forward projection model to simulate a range of plausible management scenarios and quantify the probability of obtaining zero density within four years. We applied the model to an ongoing, six-year trapping program to control stoats (Mustela erminea) on Resolution Island, New Zealand. Zero density has not yet been achieved. Results demonstrate that management objectives were impeded by a combination of a highly fecund population, insufficient trap attractiveness, and a substantial proportion of the population that did not enter traps. Immigration is known to occur because the founding population arrived on the island by swimming from the mainland. However, immigration rate during this study was indistinguishable from zero. The forward projection modeling showed that control-to-zero density was feasible but required greater than a two-fold budget increase to intensify the trapping

  1. The nude mouse as an in vivo model for human breast cancer invasion and metastasis

    DEFF Research Database (Denmark)

    Brünner, N; Boysen, B; Rømer, J

    1993-01-01

    Human breast cancer xenografts only rarely invade and metastasize in nude mice, and have therefore only had limited use as a model for studying mechanisms involved in breast cancer spreading. However, recent reports describe differences not only between various cell lines but also between strains...

  2. A minimally invasive human in vivo cutaneous wound model for the evaluation of innate skin reactivity and healing status.

    Science.gov (United States)

    Varol, Alexandra L; Anderson, Chris D

    2010-07-01

    Individual variability in skin reactivity and healing capacity after trauma are important clinical issues. The aims were to develop an in vivo, human wound model based on a standardised minimal skin injury and to demonstrate therapeutic effect of simple wound therapies in terms of morphological wound outcome with changes in skin blood perfusion as a quantified indicator of wound healing. In a series of experiments, wounds were induced on the normal forearm skin of volunteers using a blood collection lancet. This was well tolerated. Wounds were assessed by naked eye examination or laser Doppler perfusion imaging (LDPI) at baseline and at up to 6 further time points up to 96 h in control wounds and wounds treated by commonly used occlusive dressing options. Assessment by clinical observation with 10x magnification showed over 96 h a progression of erythema, surface crust, a new keratinisation layer and finally healed areas. LDPI quantifying wound erythema showed a peak at 24 h and near normal levels at 96 h. Inter-individual variability was evident but intra-individual variability was much less pronounced. Wounds treated with occlusion showed a statistically significant more rapid return to baseline blood perfusion as measured by LDPI compared to controls supported by favourable healing parameters in the clinical assessment. The paper exemplifies use of non-invasive, bioengineering technique for quantification of individual innate variability in skin reactivity, wound healing capacity and therapeutic effect in a well-tolerated in vivo, human, minimal skin trauma model.

  3. Fires, invasives, migrations, oh my! Scaling spatial processes into earth system models and global change projections. (Invited)

    Science.gov (United States)

    Dietze, M.

    2013-12-01

    Spatial processes often drive ecosystem processes, biogeochemical cycles, and land-atmosphere feedbacks at the landscape-scale. Long-term responses of ecosystems to climate change requires dispersal and species migrations. Climate-sensitive disturbances, such as fire, pests, and pathogens, often spread contagiously across the landscape. Land-use change has created a highly fragmented landscape with a large fraction of 'edge' habitat that alters the surface energy dynamics and microclimate. These factors all interact, with fragmentation creating barriers for fire and migrations while creating corridors for rapid invasion. While the climate-change implications of these factors are often discussed, none of these processes are incorporated into earth system models because they occur at a spatial scale well below model resolution. Here we present a novel second-order spatially-implicit scheme for representing the spatial adjacencies of different vegetation types and edaphic classes. Adjacencies direct affect dispersal, contagious disturbance, radiation, and microclimate. We also demonstrate a means for approximating the size distribution of spatially contagious disturbances, such as fire, insects, and disease. Finally, we demonstrate a means for dynamically evolving spatial adjacency through time in response to disturbance and succession. This scheme is tested under a range of dispersal, disturbance, and land-use scenarios in comparison to a spatially explicit and conventional non-spatial alternatives. This scheme lays the ground for a more realistic global-scale exploration of how spatially-complex and heterogenous landscapes interact with climate-change drivers.

  4. Global existence and asymptotic behavior of a model for biological control of invasive species via supermale introduction

    KAUST Repository

    Parshad, Rana

    2013-01-01

    The purpose of this manuscript is to propose a model for the biological control of invasive species, via introduction of phenotypically modified organisms into a target population. We are inspired by the earlier Trojan Y Chromosome model [J.B. Gutierrez, J.L. Teem, J. Theo. Bio., 241(22), 333-341, 2006]. However, in the current work, we remove the assumption of logisticgrowth rate, and do not consider the addition of sex-reversed supermales. Also the constant birth and death coefficients, considered earlier, are replaced by functionally dependent ones. In this case the nonlinearities present serious difficulties since they change sign, and the components of the solution are not a priori bounded, in some Lp-space for p large, to permit theapplication of the well known regularizing effect principle. Thus functional methods to deducethe global existence in time, for the system in question, are not applicable. Our techniques are based on the Lyapunov functional method. We prove global existence of solutions, as well asexistence of a finite dimensional global attractor, that supports states of extinction. Our analytical finding are in accordance with numerical simulations, which we also present. © 2013 International Press.

  5. Uncharismatic Invasives

    Directory of Open Access Journals (Sweden)

    Clark, Jonathan L.

    2015-05-01

    Full Text Available Although philosophers have examined the ethics of invasive species management, there has been little research approaching this topic from a descriptive, ethnographic perspective. In this article I examine how invasive species managers think about the moral status of the animals they seek to manage. I do so through a case study of Oregon’s efforts to manage the invasive species that are rafting across the Pacific attached to tsunami debris in the wake of the Japanese tsunami of 2011. Focusing on the state’s response to a dock that washed ashore on Agate Beach with various marine invertebrates attached to it, I argue that these animals’ position on two intersecting scales of moral worth—the sociozoologic scale and the phylogenetic scale—rendered them unworthy of moral consideration.

  6. Mathematical Modeling of the Consumption of Low Invasive Plastic Surgery Practices: The Case of Spain

    Directory of Open Access Journals (Sweden)

    E. De la Poza

    2013-01-01

    Full Text Available Plastic surgery practice grows continuously among the women in Western countries due to their body image dissatisfaction, aging anxiety, and an ideal body image propagated by the media. The consumption growth is so important that plastic surgery is becoming a normal practice among women, like any other cosmetic product, with the risk of suffering psychopathology disorders in the sense that plastic surgery could be employed as an instrument to recover personal self-esteem or even happiness. Plastic surgery practice depends on economic, demographic, and social contagion factors. In this paper, a mathematical epidemiological model to forecast female plastic surgery consumption in Spain is fully constructed. Overconsumer subpopulation is predicted and simulated. Robustness of the model versus uncertain parameters is studied throughout a sensitivity analysis.

  7. Development of a System Model for Non-Invasive Quantification of Bilirubin in Jaundice Patients

    Science.gov (United States)

    Alla, Suresh K.

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. Excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. An optical system integrated with a signal processing system is used as a platform to noninvasively quantify bilirubin concentration through the measurement of diffuse skin reflectance. Initial studies have lead to the generation of a clinical analytical model for neonatal jaundice which generates spectral reflectance data for jaundiced skin with varying levels of bilirubin concentration in the tissue. The spectral database built using the clinical analytical model is then used as a test database to validate the signal processing system in real time. This evaluation forms the basis for understanding the translation of this research to human trials. The clinical analytical model and signal processing system have been successful validated on three spectral databases. First spectral database is constructed using a porcine model as a surrogate for neonatal skin tissue. Samples of pig skin were soaked in bilirubin solutions of varying concentrations to simulate jaundice skin conditions. The resulting skins samples were analyzed with our skin reflectance systems producing bilirubin concentration values that show a high correlation (R2 = 0.94) to concentration of the bilirubin solution that each porcine tissue sample is soaked in. The second spectral database is the spectral measurements collected on human volunteers to quantify the different chromophores and other physical properties of the tissue such a Hematocrit, Hemoglobin etc. The third spectral database is the spectral data collected at different time periods from the moment a bruise is induced.

  8. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Rockhill, J; Phillips, M [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3 cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to

  9. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    International Nuclear Information System (INIS)

    Kim, M; Rockhill, J; Phillips, M

    2016-01-01

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3 cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to

  10. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  11. Sunitinib malate provides activity against murine bladder tumor growth and invasion in a preclinical orthotopic model.

    Science.gov (United States)

    Chan, Eddie Shu-yin; Patel, Amit R; Hansel, Donna E; Larchian, William A; Heston, Warren D

    2012-09-01

    To evaluate the effects of sunitinib on localized bladder cancer in a mouse orthotopic bladder tumor model. We used an established orthotopic mouse bladder cancer model in syngeneic C3H/He mice. Treatment doses of 40 mg/kg of sunitinib or placebo sterile saline were administrated daily by oral gavage. Tumor volume, intratumoral perfusion, and in vivo vascular endothelial growth factor receptor-2 expression were measured using a targeted contrast-enhanced micro-ultrasound imaging system. The findings were correlated with the total bladder weight, tumor stage, and survival. The effects of sunitinib malate on angiogenesis and cellular proliferation were measured by immunostaining of CD31 and Ki-67. Significant inhibition of tumor growth was seen after sunitinib treatment compared with the control. The incidence of extravesical extension of the bladder tumor and hydroureter in the sunitinib-treated group (30% and 20%, respectively) was lower than the incidence in the control group (66.7% and 55.6%, respectively). Sunitinib therapy prolonged the survival in mice, with statistical significance (log-rank test, P = .03). On targeted contrast-enhanced micro-ultrasound imaging, in vivo vascular endothelial growth factor receptor-2 expression was reduced in the sunitinib group and correlated with a decrease in microvessel density. The results of our study have demonstrated the antitumor effects of sunitinib in the mouse localized bladder cancer model. Sunitinib inhibited the growth of bladder tumors and prolonged survival. Given that almost 30% of cases in our treatment arm developed extravesical disease, sunitinib might be suited as a part of a multimodal treatment regimen for bladder cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Non-invasive monitoring and modelling of the root active zones: progresses, caveats and outlook.

    Science.gov (United States)

    Cassiani, G.; Putti, M.; Boaga, J.; Busato, L.; Vanella, D.; Consoli, S.

    2016-12-01

    Roots play a fundamental role in soil-plant-atmosphere interactions as they not only control water and nutrient exchanges necessary for plant sustenance, but also largely contribute, through the plant system, to the mass and energy exchanges between soil and atmosphere. Therefore understanding root zone processes is of major importance not only for crop management but also for wider scale catchment and global issues. Geophysical methods can greatly contribute to imaging the root zone geometry and processes, provided that high-resolution, time-lapse measurements are set up, and provided that the survey design takes into due considerations the expected processes to be imaged. In this respect, modelling and monitoring go hand in hand not only a-posteriori to try and interpret the data, but also a-priori in the attempt to optimise monitoring strategies. In this work we present a few case studies concerning root monitoring using ERT with the support of ancillary data of hydrological and physiological nature. Different degrees of integration with modelling will be presented, with the aim of showing how a full Data Assimilation scheme can be built. In addition, the results will help address fundamental questions such as: (a) is root growth controlled by optimality principles under the constraints posed by soil hydraulic and mechanical properties, by water and nutrient availability and by plant competition? (b) is the optimality above also controlling the dynamic processing of root adaptation to changing constraints? (c) to what extent can these processes of soil-plant interaction be monitored in controlled conditions as well as in true-life environments? These questions, and the availability of ever advancing modelling and monitoring capabilities, are likely to develop into a growing and exciting field of research.

  13. Claims of potential expansion throughout the U.S. by invasive python species are contradicted by ecological niche models.

    Directory of Open Access Journals (Sweden)

    R Alexander Pyron

    Full Text Available BACKGROUND: Recent reports from the United States Geological Survey (USGS suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range. CONCLUSIONS/SIGNIFICANCE: The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species.

  14. The need for non- or minimally-invasive biomonitoring strategies and the development of pharmacokinetic/pharmacodynamic models for quantification

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Charles; Weber, Thomas J.; Smith, Jordan N.

    2017-06-01

    Advancements in Exposure Science involving the development and deployment of biomarkers of exposure and biological response are anticipated to significantly (and positively) influence health outcomes associated with occupational, environmental and clinical exposure to chemicals/drugs. To achieve this vision, innovative strategies are needed to develop multiplex sensor platforms capable of quantifying individual and mixed exposures (i.e. systemic dose) by measuring biomarkers of dose and biological response in readily obtainable (non-invasive) biofluids. Secondly, the use of saliva (alternative to blood) for biomonitoring coupled with the ability to rapidly analyze multiple samples in real-time offers an innovative opportunity to revolutionize biomonitoring assessments. In this regard, the timing and number of samples taken for biomonitoring will not be limited as is currently the case. In addition, real-time analysis will facilitate identification of work practices or conditions that are contributing to increased exposures and will make possible a more rapid and successful intervention strategy. The initial development and application of computational models for evaluation of saliva/blood analyte concentration at anticipated exposure levels represents an important opportunity to establish the limits of quantification and robustness of multiplex sensor systems by exploiting a unique computational modeling framework. The use of these pharmacokinetic models will also enable prediction of an exposure dose based on the saliva/blood measurement. This novel strategy will result in a more accurate prediction of exposures and, once validated, can be employed to assess dosimetry to a broad range of chemicals in support of biomonitoring and epidemiology studies.

  15. Effect of mitomycin combined with Nd-YAG laser on cell proliferation and invasion as well as MEK/ERK signaling pathway in obstructive lacrimal duct model

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2017-11-01

    Full Text Available Objective: To study the effect of mitomycin (MMC combined with Nd-YAG laser on cell proliferation and invasion as well as MEK/ERK signaling pathway in obstructive lacrimal duct model. Methods: New Zealand rabbits were selected as experimental animals and divided into model group, laser group and MMC + laser group; obstructive lacrimal duct model was established, then laser group were given Nd-YAG laser intervention, and MMC + laser group were given Nd-YAG laser combined with mitomycin intervention. 2 months after intervention, the expression of proliferation molecules, invasion molecules and MEK-ERK signaling molecules in lacrimal duct tissue were measured. Results: TGF-β, CTGF, PCNA, Ki-67, Col-I, Col-III, MEK, ERK1/2, MMP2 and MMP9 protein levels in lacrimal duct tissue of laser group were significantly higher than those of model group while TSG-6, Cthrc1 and TIMP1 protein levels were significantly lower than those of model group; TGF-β, CTGF, PCNA, Ki- 67, Col-I, Col-III, MEK, ERK1/2, MMP2 and MMP9 protein levels in lacrimal duct tissue of MMC + laser group were significantly lower than those of laser group while TSG-6, Cthrc1 and TIMP1 protein levels were significantly higher than those of laser group. Conclusion: Mitomycin can inhibit cell proliferation and invasion as well as MEK/ERK signaling pathway activation in obstructive lacrimal duct model after Nd-YAG laser treatment.

  16. Comparative Pharmacodynamics of Posaconazole in Neutropenic Murine Models of Invasive Pulmonary Aspergillosis and Mucormycosis

    Science.gov (United States)

    Albert, Nathaniel D.

    2014-01-01

    We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs. PMID:25182639

  17. β1-Integrin via NF-κB signaling is essential for acquisition of invasiveness in a model of radiation treated in situ breast cancer.

    Science.gov (United States)

    Nam, Jin-Min; Ahmed, Kazi M; Costes, Sylvain; Zhang, Hui; Onodera, Yasuhito; Olshen, Adam B; Hatanaka, Kanako C; Kinoshita, Rumiko; Ishikawa, Masayori; Sabe, Hisataka; Shirato, Hiroki; Park, Catherine C

    2013-01-01

    Ductal carcinoma in situ (DCIS) is characterized by non-invasive cancerous cell growth within the breast ducts. Although radiotherapy is commonly used in the treatment of DCIS, the effect and molecular mechanism of ionizing radiation (IR) on DCIS are not well understood, and invasive recurrence following radiotherapy remains a significant clinical problem. This study investigated the effects of IR on a clinically relevant model of Akt-driven DCIS and identified possible molecular mechanisms underlying invasive progression in surviving cells. We measured the level of phosphorylated-Akt (p-Akt) in a cohort of human DCIS specimens by immunohistochemistry (IHC) and correlated it with recurrence risk. To model human DCIS, we used Akt overexpressing human mammary epithelial cells (MCF10A-Akt) which, in three-dimensional laminin-rich extracellular matrix (lrECM) and in vivo, form organotypic DCIS-like lesions with lumina expanded by pleiomorphic cells contained within an intact basement membrane. In a population of cells that survived significant IR doses in three-dimensional lrECM, a malignant phenotype emerged creating a model for invasive recurrence. P-Akt was up-regulated in clinical DCIS specimens and was associated with recurrent disease. MCF10A-Akt cells that formed DCIS-like structures in three-dimensional lrECM showed significant apoptosis after IR, preferentially in the luminal compartment. Strikingly, when cells that survived IR were repropagated in three-dimensional lrECM, a malignant phenotype emerged, characterized by invasive activity, up-regulation of fibronectin, α5β1-integrin, matrix metalloproteinase-9 (MMP-9) and loss of E-cadherin. In addition, IR induced nuclear translocation and binding of nuclear factor-kappa B (NF-κB) to the β1-integrin promoter region, associated with up-regulation of α5β1-integrins. Inhibition of NF-κB or β1-integrin signaling abrogated emergence of the invasive activity. P-Akt is up-regulated in some human DCIS lesions

  18. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

    Science.gov (United States)

    Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.

    2017-03-01

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

  19. Non-Invasive Brain Stimulation to Enhance Upper Limb Motor Practice Poststroke: A Model for Selection of Cortical Site

    Directory of Open Access Journals (Sweden)

    Michelle L. Harris-Love

    2017-05-01

    Full Text Available Motor practice is an essential part of upper limb motor recovery following stroke. To be effective, it must be intensive with a high number of repetitions. Despite the time and effort required, gains made from practice alone are often relatively limited, and substantial residual impairment remains. Using non-invasive brain stimulation to modulate cortical excitability prior to practice could enhance the effects of practice and provide greater returns on the investment of time and effort. However, determining which cortical area to target is not trivial. The implications of relevant conceptual frameworks such as Interhemispheric Competition and Bimodal Balance Recovery are discussed. In addition, we introduce the STAC (Structural reserve, Task Attributes, Connectivity framework, which incorporates patient-, site-, and task-specific factors. An example is provided of how this framework can assist in selecting a cortical region to target for priming prior to reaching practice poststroke. We suggest that this expanded patient-, site-, and task-specific approach provides a useful model for guiding the development of more successful approaches to neuromodulation for enhancing motor recovery after stroke.

  20. Protective effect of Carnobacterium spp. against Listeria monocytogenes during host cell invasion using in vitro HT29 model

    Directory of Open Access Journals (Sweden)

    Tereza Pilchova

    2016-08-01

    Full Text Available The pathogenesis of listeriosis results mainly from the ability of Listeria monocytogenes to attach, invade, replicate and survive within various cell types in mammalian tissues. In this work, the effect of two bacteriocin-producing Carnobacterium (C. divergens V41 and C. maltaromaticum V1 and three non-bacteriocinogenic strains: (C. divergens V41C9, C. divergens 2763 and C. maltaromaticum 2762 was investigated on the reduction of L. monocytogenes Scott A plaque-forming during human infection using the HT-29 in vitro model. All Carnobacteria tested resulted in a reduction in the epithelial cell invasion caused by L. monocytogenes Scott A. To understand better the mechanism underlying the level of L. monocytogenes infection inhibition by Carnobacteria, infection assays from various pretreatments of Carnobacteria were assessed. The results revealed the influence of bacteriocin production combined with a passive mechanism of mammalian cell monolayers protection by Carnobacteria. These initial results showing a reduction in L. monocytogenes virulence on epithelial cells by Carnobacteria would be worthwhile analyzing further as a promising probiotic tool for human health.

  1. Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model

    Directory of Open Access Journals (Sweden)

    Matheus HW Crommentuijn

    2016-01-01

    Full Text Available Adeno-associated virus (AAV vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise, however, invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA promoter and the neuron-specific enolase (NSE promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns, although the NSE promoter yielded 100-fold lower expression in the abdomen (liver, with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes, neurons and endothelial cells, while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival, with the CBA promoter having higher efficacy. To our knowledge, this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.

  2. Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community-ecosystem model

    Czech Academy of Sciences Publication Activity Database

    Currie, W. S.; Goldberg, D. E.; Martina, J.; Wildová, Radka; Farrer, E.; Elgersma, K. J.

    2014-01-01

    Roč. 282, 24 JUNE (2014), s. 69-82 ISSN 0304-3800 Institutional support: RVO:67985939 Keywords : wetland * invasive species * biodiversity Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.321, year: 2014

  3. Application of the EDYS Model to Evaluate Control Methods for Invasive Plants at Yakima Training Center, Washington

    National Research Council Canada - National Science Library

    Hunter, Rachael G; Mata-Gonzalez, Ricardo; McLendon, Terry

    2004-01-01

    .... Non-indigenous invasive plants can also reduce and destroy forage for livestock and wildlife, displace native plant species, increase fire frequency, reduce recreational opportunities, and can poison domestic animals...

  4. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  5. Naturally Occurring Canine Invasive Urinary Bladder Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs

    Directory of Open Access Journals (Sweden)

    Christopher M. Fulkerson

    2017-01-01

    Full Text Available Genomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and immune cell response critical to predict success or failure of emerging therapies in humans. There is growing evidence, however, that dogs with specific forms of naturally occurring cancer can serve as highly relevant animal models to complement traditional models. Invasive urinary bladder cancer (invasive urothelial carcinoma (InvUC in dogs, for example, closely mimics the cancer in humans in pathology, molecular features, biological behavior including sites and frequency of distant metastasis, and response to chemotherapy. Genomic analyses are defining further intriguing similarities between InvUC in dogs and that in humans. Multiple canine clinical trials have been completed, and others are in progress with the aim of translating important findings into humans to increase the success rate of human trials, as well as helping pet dogs. Examples of successful targeted therapy studies and the challenges to be met to fully utilize naturally occurring dog models of cancer will be reviewed.

  6. Modeling the Potential for Vaccination to Diminish the Burden of Invasive Non-typhoidal Salmonella Disease in Young Children in Mali, West Africa.

    Directory of Open Access Journals (Sweden)

    Kristin Bornstein

    2017-02-01

    Full Text Available In sub-Saharan Africa, systematic surveillance of young children with suspected invasive bacterial disease (e.g., septicemia, meningitis has revealed non-typhoidal Salmonella (NTS to be a major pathogen exhibiting high case fatality (~20%. Where infant vaccination against Haemophilus influenzae type b (Hib and Streptococcus pneumoniae has been introduced to prevent invasive disease caused by these pathogens, as in Bamako, Mali, their burden has decreased markedly. In parallel, NTS has become the predominant invasive bacterial pathogen in children aged <5 years. While NTS is believed to be acquired orally via contaminated food/water, epidemiologic studies have failed to identify the reservoir of infection or vehicles of transmission. This has precluded targeting food chain interventions to diminish disease transmission but conversely has fostered the development of vaccines to prevent invasive NTS (iNTS disease. We developed a mathematical model to estimate the potential impact of NTS vaccination programs in Bamako.A Markov chain transmission model was developed utilizing age-specific Bamako demographic data and hospital surveillance data for iNTS disease in children aged <5 years and assuming vaccine coverage and efficacy similar to the existing, successfully implemented, Hib vaccine. Annual iNTS hospitalizations and deaths in children <5 years, with and without a Salmonella Enteritidis/Salmonella Typhimurium vaccine, were the model's outcomes of interest. Per the model, high coverage/high efficacy iNTS vaccination programs would drastically diminish iNTS disease except among infants age <8 weeks.The public health impact of NTS vaccination shifts as disease burden, vaccine coverage, and serovar distribution vary. Our model shows that implementing an iNTS vaccine through an analogous strategy to the Hib vaccination program in Bamako would markedly reduce cases and deaths due to iNTS among the pediatric population. The model can be adjusted for

  7. VAP score as a novel non-invasive liver fibrosis model in patients with chronic hepatitis C.

    Science.gov (United States)

    Ahmed Hassan, Elham; Sharaf El-Din Abd El-Rehim, Abeer; Ahmed Sayed, Zain El-Abdeen; Farah Mohamed Kholef, Emad; Sabry, Abeer; Abd El-Rehim Abo Elhagag, Noha

    2017-12-01

    Assessment of liver fibrosis in chronic hepatitis C (CHC) patients is necessary before antiviral treatment. This study aimed to evaluate the effectiveness of eight non-invasive models (aspartate aminotransferase [AST]/alanine transaminase ratio [AAR], AST/platelet ratio index [APRI], fibrosis-cirrhosis index [FCI], fibrosis index [FI], fibrosis-4 [FIB-4] score, fibrosis quotient [FibroQ], King, and von Willebrand factor antigen (vWF-Ag)/thrombocyte ratio [VITRO] scores) for predicting fibrosis compared with liver biopsy and to create a new score for predicting different fibrosis stages with increased accuracy. We prospectively studied 127 treatment-naive CHC patients who underwent liver biopsy. The AAR, APRI, FCI, FI, FIB-4, FibroQ, King and VITRO scores were calculated and correlated with fibrosis stages. A new score (VAP) was derived from vWF-Ag, AST, and platelets: [VAP = (AST (U/L) × vWF-Ag)/platelets (10 9 /L)]. Apart from AAR, readily available scores were correlated with liver fibrosis stages. VITRO (r = 0.62) and APRI (r = 0.46) showed the closest correlation. Our new (VAP) score significantly correlated with fibrosis stages (r = 0.702, P 1, VAP had 75.2% sensitivity and 100% positive predictive value for predicting mild fibrosis. At a cut-off value >2.3 for predicting cirrhosis, VAP had 73% sensitivity and 81.7% positive predictive value. The VAP score is a novel model that had higher diagnostic performance to predict different fibrosis stages and subclinical cirrhosis among CHC patients compared to the other studied scores and hence may offer a useful strategy to stratify patients who would benefit from direct-acting antivirals. © 2017 The Japan Society of Hepatology.

  8. Modelling the distribution of the invasive Roesel’s bush-cricket (Metrioptera roeselii in a fragmented landscape

    Directory of Open Access Journals (Sweden)

    Sonja Preuss

    2011-11-01

    Full Text Available The development of conservation strategies to mitigate the impact of invasive species requires knowledge of the species ecology and distribution. This is, however, often lacking as collecting biological data may be both time-consuming and resource intensive. Species distribution models can offer a solution to this dilemma by analysing the species-environment relationship with help of Geographic information systems (GIS. In this study, we model the distribution of the non-native bush-cricket Metrioptera roeselii in the agricultural landscape in mid-Sweden where the species has been rapidly expanding in its range since the 1990s. We extract ecologically relevant landscape variables from Swedish CORINE land-cover maps and use species presence-absence data from large-scale surveys to construct a species distribution model (SDM. The aim of the study is to increase the knowledge of the species range expansion pattern by examining how its distribution is affected by landscape composition and structure, and to evaluate SDM performance at two different spatial scales. We found that models including data on a scale of 1 × 1 km were able to explain more of the variation in species distribution than those on the local scale (10 m buffer on each side of surveyed road. The amount of grassland in the landscape, estimated from the area of arable land, pasture and rural settlements, was a good predictor of the presence of the species on both scales. The measurements of landscape structure – linear elements and fragmentation - gave ambivalent results which differed from previous small scaled studies on species dispersal behaviour and occupancy patterns. The models had good predictive ability and showed that areas dominated by agricultural fields and their associated grassland edges have a high probability being colonised by the species. Our study identified important landscape variables that explain the distribution of M. roeselii in Mid-Sweden that may also

  9. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae, by using CLIMEX

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available Lycorma delicatula is one of the major invasive pests of Korea. Careful monitoring is required to protect domestic agriculture as this pest causes severe damage to agricultural crops, such as wilting and sooty mold. This study was designed to confirm the potential distribution of L. delicatula using the modeling software CLIMEX and to suggest fundamental data for preventing agricultural damage by L. delicatula. Our results show that Korean weather seems to be adequate for L. delicatula habitation, indicating that approximately 60% of areas examined have a very high possibility of potential distribution. Particularly, we showed that Gyeongsang-do and Jeonla-do, which have not yet been invaded by L. delicatula, were very suitable locations for its growth. Therefore, although it is necessary to set up feasible strategies for preventing further L. delicatula invasions, subsequent studies are needed for assessing other invasive species considering the impact of future climate change. Keywords: CLIMEX software, invasive pest, Lycorma delicatula, potential distribution

  10. Reductions in native grass biomass associated with drought facilitates the invasion of an exotic grass into a model grassland system.

    Science.gov (United States)

    Manea, Anthony; Sloane, Daniel R; Leishman, Michelle R

    2016-05-01

    The invasion success of exotic plant species is often dependent on resource availability. Aspects of climate change such as rising atmospheric CO2 concentration and extreme climatic events will directly and indirectly alter resource availability in ecological communities. Understanding how these climate change-associated changes in resource availability will interact with one another to influence the invasion success of exotic plant species is complex. The aim of the study was to assess the establishment success of an invasive exotic species in response to climate change-associated changes in resource availability (CO2 levels and soil water availability) as a result of extreme drought. We grew grassland mesocosms consisting of four co-occurring native grass species common to the Cumberland Plain Woodland of western Sydney, Australia, under ambient and elevated CO2 levels and subjected them to an extreme drought treatment. We then added seeds of a highly invasive C3 grass, Ehrharta erecta, and assessed its establishment success (biomass production and reproductive output). We found that reduced biomass production of the native grasses in response to the extreme drought treatment enhanced the establishment success of E. erecta by creating resource pulses in light and space. Surprisingly, CO2 level did not affect the establishment success of E. erecta. Our results suggest that the invasion risk of grasslands in the future may be coupled to soil water availability and the subsequent response of resident native vegetation therefore making it strongly context- dependent.

  11. Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius) improves model fit to predict potential for further spread.

    Science.gov (United States)

    de Villiers, Marelize; Kriticos, Darren J; Veldtman, Ruan

    2017-01-01

    The European wasp, Vespula germanica (Fabricius) (Hymenoptera: Vespidae), is of Palaearctic origin, being native to Europe, northern Africa and Asia, and introduced into North America, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and New Zealand. Due to its polyphagous nature and scavenging behaviour, V. germanica threatens agriculture and silviculture, and negatively affects biodiversity, while its aggressive nature and venomous sting pose a health risk to humans. In areas with warmer winters and longer summers, queens and workers can survive the winter months, leading to the build-up of large nests during the following season; thereby increasing the risk posed by this species. To prevent or prepare for such unwanted impacts it is important to know where the wasp may be able to establish, either through natural spread or through introduction as a result of human transport. Distribution data from Argentina and Australia, and seasonal phenology data from Argentina were used to determine the potential distribution of V. germanica using CLIMEX modelling. In contrast to previous models, the influence of irrigation on its distribution was also investigated. Under a natural rainfall scenario, the model showed similarities to previous models. When irrigation is applied, dry stress is alleviated, leading to larger areas modelled climatically suitable compared with previous models, which provided a better fit with the actual distribution of the species. The main areas at risk of invasion by V. germanica include western USA, Mexico, small areas in Central America and in the north-western region of South America, eastern Brazil, western Russia, north-western China, Japan, the Mediterranean coastal regions of North Africa, and parts of southern and eastern Africa.

  12. Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius improves model fit to predict potential for further spread.

    Directory of Open Access Journals (Sweden)

    Marelize de Villiers

    Full Text Available The European wasp, Vespula germanica (Fabricius (Hymenoptera: Vespidae, is of Palaearctic origin, being native to Europe, northern Africa and Asia, and introduced into North America, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and New Zealand. Due to its polyphagous nature and scavenging behaviour, V. germanica threatens agriculture and silviculture, and negatively affects biodiversity, while its aggressive nature and venomous sting pose a health risk to humans. In areas with warmer winters and longer summers, queens and workers can survive the winter months, leading to the build-up of large nests during the following season; thereby increasing the risk posed by this species. To prevent or prepare for such unwanted impacts it is important to know where the wasp may be able to establish, either through natural spread or through introduction as a result of human transport. Distribution data from Argentina and Australia, and seasonal phenology data from Argentina were used to determine the potential distribution of V. germanica using CLIMEX modelling. In contrast to previous models, the influence of irrigation on its distribution was also investigated. Under a natural rainfall scenario, the model showed similarities to previous models. When irrigation is applied, dry stress is alleviated, leading to larger areas modelled climatically suitable compared with previous models, which provided a better fit with the actual distribution of the species. The main areas at risk of invasion by V. germanica include western USA, Mexico, small areas in Central America and in the north-western region of South America, eastern Brazil, western Russia, north-western China, Japan, the Mediterranean coastal regions of North Africa, and parts of southern and eastern Africa.

  13. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG.

    Science.gov (United States)

    Manikandan, Palrasu; Murugan, Ramalingam Senthil; Priyadarsini, Ramamurthi Vidya; Vinothini, Govindarajah; Nagini, Siddavaram

    2010-06-19

    Combining apoptosis induction with anti-invasive and anti-angiogenic treatment is gaining increasing attention as a promising strategy for cancer chemoprevention. In the present study, eugenol (4-allyl-2-methoxyphenol) was evaluated for its chemopreventive effects on N-methyl-N(')-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis in Wistar rats by analyzing markers of apoptosis, invasion and angiogenesis. The expressions of markers of apoptosis (Bcl-2, Bcl-xL, Bax, Apaf-1, cytochrome C, caspase-9, caspase-3 and poly(ADP-ribose)polymerase; PARP), invasion (matrix metalloproteinase-2; MMP-2, matrix metalloproteinase-9; MMP-9, reversion-inducing cysteine rich protein with Kazal motifs; RECK and tissue inhibitors of metalloproteinase-2; TIMP-2) and angiogenesis (vascular endothelial growth factor; VEGF and VEGF receptor1; VEGFR1) in stomach tissue of experimental and control animals were measured by gelatin zymogram, immunohistochemical, Western blot and RT-PCR analysis. Rats administered MNNG developed gastric carcinomas that displayed apoptosis avoidance coupled to upregulation of pro-invasive and angiogenic factors. Administration of eugenol induced apoptosis via the mitochondrial pathway by modulating the Bcl-2 family proteins, Apaf-1, cytochrome C, and caspases and inhibiting invasion, and angiogenesis as evidenced by changes in the activities of MMPs and the expression of MMP-2 and -9, VEGF, VEGFR1, TIMP-2 and RECK. Phytochemicals such as eugenol that are capable of manipulating the equilibrium between pro- and anti-apoptotic proteins as well as the delicate balance between stimulators and inhibitors of invasion and angiogenesis are attractive candidates for preventing tumour progression. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  15. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Energy Technology Data Exchange (ETDEWEB)

    Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)

    2007-10-15

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  16. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Science.gov (United States)

    Rybynok, V. O.; Kyriacou, P. A.

    2007-10-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  17. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    International Nuclear Information System (INIS)

    Rybynok, V O; Kyriacou, P A

    2007-01-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media

  18. Review of methods for developing regional probabilistic risk assessments, part 2: modeling invasive plant, insect, and pathogen species

    Science.gov (United States)

    P. B. Woodbury; D. A. Weinstein

    2010-01-01

    We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...

  19. Mapping invasive species risks with stochastic models: a cross-border United States-Canada application for Sirex noctilio fabricius

    Science.gov (United States)

    Denys Yemshanov; Frank H. Koch; Daniel W. McKenney; Marla C. Downing; Frank Sapio

    2009-01-01

    Nonindigenous species have caused significant impacts to North American forests despite past and present international phytosanitary efforts. Though broadly acknowledged, the risks of pest invasions are difficult to quantify as they involve interactions between many factors that operate across a range of spatial and temporal scales: the transmission of invading...

  20. Contribution of climate, soil, and MODIS predictors when modeling forest inventory invasive species distribution using forest inventory data

    Science.gov (United States)

    Dumitru Salajanu; Dennis Jacobs

    2010-01-01

    Forest inventory and analysis data are used to monitor the presence and extent of certain non-native invasive species. Effective control of its spread requires quality spatial distribution information. There is no clear consensus why some ecosystems are more favorable to non-native species. The objective of this study is to evaluate the reelative contribution of geo-...

  1. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  2. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  3. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  4. Spontaneous bone metastases in a preclinical orthotopic model of invasive lobular carcinoma; the effect of pharmacological targeting TGFβ receptor I kinase.

    Science.gov (United States)

    Buijs, Jeroen T; Matula, Kasia M; Cheung, Henry; Kruithof-de Julio, Marianna; van der Mark, Maaike H; Snoeks, Thomas J; Cohen, Ron; Corver, Willem E; Mohammad, Khalid S; Jonkers, Jos; Guise, Theresa A; van der Pluijm, Gabri

    2015-04-01

    Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80-90% and 10-15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E-cadherin and p53 in a conditional K14cre;Cdh1((F/F));Trp53((F/F)) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD-208 (60 mg/kg per day), an orally available TGFβ receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD-208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD-208 treatment reduced TGFβ signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti-tumour effects of TGFβ. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on

  5. Development and evaluation of a prediction model for underestimated invasive breast cancer in women with ductal carcinoma in situ at stereotactic large core needle biopsy.

    Directory of Open Access Journals (Sweden)

    Suzanne C E Diepstraten

    Full Text Available BACKGROUND: We aimed to develop a multivariable model for prediction of underestimated invasiveness in women with ductal carcinoma in situ at stereotactic large core needle biopsy, that can be used to select patients for sentinel node biopsy at primary surgery. METHODS: From the literature, we selected potential preoperative predictors of underestimated invasive breast cancer. Data of patients with nonpalpable breast lesions who were diagnosed with ductal carcinoma in situ at stereotactic large core needle biopsy, drawn from the prospective COBRA (Core Biopsy after RAdiological localization and COBRA2000 cohort studies, were used to fit the multivariable model and assess its overall performance, discrimination, and calibration. RESULTS: 348 women with large core needle biopsy-proven ductal carcinoma in situ were available for analysis. In 100 (28.7% patients invasive carcinoma was found at subsequent surgery. Nine predictors were included in the model. In the multivariable analysis, the predictors with the strongest association were lesion size (OR 1.12 per cm, 95% CI 0.98-1.28, number of cores retrieved at biopsy (OR per core 0.87, 95% CI 0.75-1.01, presence of lobular cancerization (OR 5.29, 95% CI 1.25-26.77, and microinvasion (OR 3.75, 95% CI 1.42-9.87. The overall performance of the multivariable model was poor with an explained variation of 9% (Nagelkerke's R(2, mediocre discrimination with area under the receiver operating characteristic curve of 0.66 (95% confidence interval 0.58-0.73, and fairly good calibration. CONCLUSION: The evaluation of our multivariable prediction model in a large, clinically representative study population proves that routine clinical and pathological variables are not suitable to select patients with large core needle biopsy-proven ductal carcinoma in situ for sentinel node biopsy during primary surgery.

  6. Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales.

    Directory of Open Access Journals (Sweden)

    Yoon Hong Choi

    Full Text Available England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7 with its 13-valent equivalent (PCV13, partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether.A compartmental deterministic model was used to estimate parameters governing transmission of infection and competition between different groups of pneumococcal serotypes prior to the introduction of PCV13. The best-fitting parameters were used in an individual based model to describe pneumococcal transmission dynamics and effects of various options for the vaccination programme change in England and Wales. A number of scenarios were conducted using (i different assumptions about the number of invasive pneumococcal disease cases adjusted for the increasing trend in disease incidence prior to PCV7 introduction in England and Wales, and (ii a range of values representing serotype replacement induced by vaccination of the additional six serotypes in PCV13.Most of the scenarios considered suggest that ceasing pneumococcal conjugate vaccine use would cause an increase in invasive pneumococcal disease incidence, while replacing PCV7 with PCV13 would cause an overall decrease. However, the size of this reduction largely depends on the level of competition induced by the additional serotypes in PCV13. The model estimates that over 20 years of PCV13 vaccination, around 5000-62000 IPD cases could be prevented compared to stopping pneumococcal conjugate vaccination altogether.Despite inevitable uncertainty around serotype replacement effects following introduction of PCV13, the model suggests a reduction in overall invasive pneumococcal disease incidence in all cases. Our results provide useful evidence on the benefits of PCV13 to countries replacing or considering replacing PCV7 with PCV13, as well as data that can be used to evaluate the cost-effectiveness of such a switch.

  7. Non-invasive optical imaging of eosinophilia during the course of an experimental allergic airways disease model and in response to therapy.

    Directory of Open Access Journals (Sweden)

    M Andrea Markus

    Full Text Available BACKGROUND: Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared fluorescence (NIRF imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils. METHODOLOGY/PRINCIPAL FINDINGS: An ovalbumin (OVA-based model was used to induce asthma-like experimental allergic airway disease (EAAD in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h-72 h after intravenous (i.v. application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of EAAD lungs as opposed to control lungs. CONCLUSION/SIGNIFICANCE: We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma, by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging approach to assess EAAD and therapeutic response in mice over time.

  8. Non-invasive optical imaging of eosinophilia during the course of an experimental allergic airways disease model and in response to therapy.

    Science.gov (United States)

    Markus, M Andrea; Dullin, Christian; Mitkovski, Miso; Prieschl-Grassauer, Eva; Epstein, Michelle M; Alves, Frauke

    2014-01-01

    Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared fluorescence (NIRF) imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils. An ovalbumin (OVA)-based model was used to induce asthma-like experimental allergic airway disease (EAAD) in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h-72 h after intravenous (i.v.) application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of EAAD lungs as opposed to control lungs. We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma, by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging approach to assess EAAD and therapeutic response in mice over time.

  9. Invasion Precedes Tumor Mass Formation in a Malignant Brain Tumor Model of Genetically Modified Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Oltea Sampetrean

    2011-09-01

    Full Text Available Invasiveness, cellular atypia, and proliferation are hallmarks of malignant gliomas. To effectively target each of these characteristics, it is important to understand their sequence during tumorigenesis. However, because most gliomas are diagnosed at an advanced stage, the chronology of gliomagenesis milestones is not well understood. The aim of the present study was to determine the onset of these characteristics during tumor development. Brain tumor-initiating cells (BTICs were established by overexpressing H-RasV12 in normal neural stem/progenitor cells isolated from the subventricular zone of adult mice harboring a homozygous deletion of the Ink4a/Arf locus. High-grade malignant brain tumors were then created by orthotopic implantation of 105 BTICs into the forebrain of 6-week-old wild-type mice. Micewere killed every week for 5 weeks, and tumors were assessed for cellular atypia, proliferation, hemorrhage, necrosis, and invasion. All mice developed highly invasive, hypervascular glioblastoma-like tumors. A 100% penetrance rate and a 4-week median survival were achieved. Tumor cell migration along fiber tracts started within days after implantation and was followed by perivascular infiltration of tumor cells with marked recruitment of reactive host cells. Next, cellular atypia became prominent. Finally, mass proliferation and necrosis were observed in the last stage of the disease. Video monitoring of BTICs in live brain slices confirmed the early onset of migration, as well as the main cell migration patterns. Our results showed that perivascular and intraparenchymal tumor cell migration precede tumor mass formation in the adult brain, suggesting the need for an early and sustained anti-invasion therapy.

  10. Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry.

    Directory of Open Access Journals (Sweden)

    Suzanne Humphrey

    Full Text Available Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21 showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.

  11. Invasive amebiasis.

    Science.gov (United States)

    Grecu, F; Bulgariu, Teodora; Blanaru, Oana; Dragomir, C; Lunca, Claudia; Stratan, I; Manciuc, Carmen; Luca, V

    2006-01-01

    Digestive amoebiasis with his invasive form is an unusual pathology encountered in the temperate zone. This could lead to a life threatening complication: systemic amoebiasis. A 55-year-old male was treated successfully of systemic amoebiasis in a third referral hospital. The diagnosis was established based on epidemiology data and microscopical identification of trophozoites of Entamoeba histolytica. The amoebicidal, antibiotic and supportive treatments was firstly administrated. The clinical picture of intestinal amoebiasis raised from dysenteric syndrome to necrotizing enteritis. The bowel perforation with localized peritonitis was followed by chronic enteric fistula. Amoebic liver abscess, as the most frequent extraintestinal complication, was concomitantly diagnosed and treated. Urinary amoebiasis was considered as complication in the context of systemic dissemination: any other location could become a site of an amoebic abscess. Multidisciplinary approach was the successful key in the management of the patient, including antiparasitic therapy and antibiotic prophylaxis, intensive care and multiple surgical approaches. The diagnosis of digestive amoebiasis and systemic complication may be delayed in nonendemic areas, leading to advanced and complicated stages of the disease. The surgical approach is most efficiently to treat a large liver amoebic abscess and intraperitoneal collections.

  12. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier.

    Directory of Open Access Journals (Sweden)

    Christian Schwerk

    Full Text Available Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB. Although human brain microvascular endothelial cells (HBMEC constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP, which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.

  13. Non-invasive characterization of normal and pathological tissues through dynamic infrared imaging in the hamster cheek pouch oral cancer model

    Science.gov (United States)

    Herrera, María. S.; Monti Hughes, Andrea; Salva, Natalia; Padra, Claudio; Schwint, Amanda; Santa Cruz, Gustavo A.

    2017-05-01

    Biomedical infrared thermography, a non-invasive and functional imaging method, provides information on the normal and abnormal status and response of tissues in terms of spatial and temporal variations in body infrared radiance. It is especially attractive in cancer research due to the hypervascular and hypermetabolic activity of solid tumors. Moreover, healthy tissues like skin or mucosa exposed to radiation can be examined since inflammation, changes in water content, exudation, desquamation, erosion and necrosis, between others, are factors that modify their thermal properties. In this work we performed Dynamic Infrared Imaging (DIRI) to contribute to the understanding and evaluation of normal tissue, tumor and precancerous tissue response and radiotoxicity in an in vivo model, the hamster cheek pouch, exposed to Boron Neutron Capture Therapy. In this study, we particularly focused on the observation of temperature changes under forced transient conditions associated with mass moisture transfer in the tissue-air interface, in each tissue with or without treatment. We proposed a simple mathematical procedure that considerers the heat transfer from tissue to ambient through convection and evaporation to model the transient (exponential decay o recover) thermal study. The data was fitted to determined the characteristic decay and recovery time constants of the temperature as a function of time. Also this model allowed to explore the mass flux of moisture, as a degree of evaporation occurring on the tissue surface. Tissue thermal responses under provocation tests could be used as a non-invasive method to characterize tissue physiology.

  14. Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy

    KAUST Repository

    Pham, Kara

    2012-01-01

    Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.

  15. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Nancy Du

    2007-10-01

    Full Text Available Tumors develop through multiple stages, implicating multiple effectors, but the tools to assess how candidate genes contribute to stepwise tumor progression have been limited. We have developed a novel system in which progression of phenotypes in a mouse model of pancreatic islet cell tumorigenesis can be used to measure the effects of genes introduced by cell-type-specific infection with retroviral vectors. In this system, bitransgenic mice, in which the rat insulin promoter (RIP drives expression of both the SV40 T antigen (RIP-Tag and the receptor for subgroup A avian leukosis virus (RIP-tva, are infected with avian viral vectors carrying cDNAs encoding candidate progression factors. Like RIP-Tag mice, RIP-Tag; RIP-tva bitransgenic mice develop isolated carcinomas by approximately 14 wk of age, after progression through well-defined stages that are similar to aspects of human tumor progression, including hyperplasia, angiogenesis, adenoma, and invasive carcinoma. When avian retroviral vectors carrying a green fluorescent protein marker were introduced into RIP-Tag; RIP-tva mice by intra-cardiac injection at the hyperplastic or early dysplastic stage of tumorigenesis, approximately 20% of the TVA-positive cells were infected and expressed green fluorescent proteins as measured by flow cytometry. Similar infection with vectors carrying cDNA encoding either of two progression factors, a dominant-negative version of cadherin 1 (dnE-cad or Bcl-xL, accelerated the formation of islet tumors with invasive properties and pancreatic lymph node metastasis. To begin studying the mechanism by which Bcl-xL, an anti-apoptotic protein, promotes invasion and metastasis, RIP-Tag; RIP-tva pancreatic islet tumor cells were infected in vitro with RCASBP-Bcl-xL. Although no changes were observed in rates of proliferation or apoptosis, Bcl-xL altered cell morphology, remodeled the actin cytoskeleton, and down-regulated cadherin 1; it also induced cell migration and

  16. lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis

    DEFF Research Database (Denmark)

    Brünner, N; Thompson, E W; Spang-Thomsen, M

    1992-01-01

    . The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacZ gene codes for beta-D-galactosidase, and cells expressing this gene stain blue...... with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells...

  17. Adaptive Management Using Remote Sensing and Ecosystem Modeling in Response to Climate Variability and Invasive Aquatic Plants for the California Sacramento-San Joaquin Delta Water Resource

    Science.gov (United States)

    Bubenheim, D.; Potter, C. S.; Zhang, M.; Madsen, J.

    2017-12-01

    The California Sacramento-San Joaquin River Delta is the hub for California's water supply and supports important ecosystem services, agriculture, and communities in Northern and Southern California. Expansion of invasive aquatic plants in the Delta coupled with impacts of changing climate and long-term drought is detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California to develop science-based, adaptive-management strategies for invasive aquatic plant management in the California Sacramento-San Joaquin Delta. Specific mapping tools developed utilizing satellite and airborne platforms provide regular assessments of population dynamics on a landscape scale and support both strategic planning and operational decision making for resource managers. San Joaquin and Sacramento River watersheds water quality input to the Delta is modeled using the Soil-Water Assessment Tool (SWAT) and a modified SWAT tool has been customized to account for unique landscape and management of agricultural water supply and drainage within the Delta. Environmental response models for growth of invasive aquatic weeds are being parameterized and coupled with spatial distribution/biomass density mapping and water quality to study ecosystem response to climate and aquatic plant management practices. On the water validation and operational utilization of these tools by management agencies and how they improve decision making, management effectiveness and efficiency will be discussed. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and water resource managers make science-informed decisions regarding management and outcomes.

  18. Artificial neural networks can be effectively used to model changes of intracranial pressure (ICP) during spinal surgery using different non invasive ICP surrogate estimators.

    Science.gov (United States)

    Watad, Abdulla; Bragazzi, Nicola L; Bacigaluppi, Susanna; Amital, Howard; Watad, Samaa; Sharif, Kassem; Bisharat, Bishara; Siri, Anna; Mahamid, Ala; Abu Ras, Hakim; Nasr, Ahmed; Bilotta, Federico; Robba, Chiara; Adawi, Mohammad

    2018-02-23

    Artificial Intelligence (AI) techniques play a major role in anesthesiology, even though their importance is often overlooked. In the extant literature, AI approaches, such as Artificial Neural Networks (ANNs), have been underutilized, mainly being used to model patient's consciousness state, to predict the precise amount of anesthetic gases, the level of analgesia, or the need of anesthesiological blocks, among others. In the field of neurosurgery, ANNs have been effectively applied to the diagnosis and prognosis of cerebral tumors, seizures, low back pain, and also to the monitoring of intracranial pressure (ICP). A MultiLayer Perceptron (MLP), which is a feedforward ANN, with hyperbolic tangent as activation function in the input/hidden layers, softmax as activation function in the output layer, and cross-entropy as error function, was used to model the impact of prone versus supine position and the use of positive end expiratory pressure (PEEP) on ICP in a sample of 30 patients undergoing spinal surgery. Different non invasive surrogate estimations of ICP have been used and compared: namely, mean optic nerve sheath diameter (ONSD), non invasive estimated cerebral perfusion pressure (NCPP), pulsatility index (PI), ICP derived from PI (ICP-PI), and flow velocity diastolic formula (FVDICP). ONSD proved to be a more robust surrogate estimation of ICP, with a predictive power of 75%, whilst the power of NCPP, ICP-PI, PI, and FVDICP were 60.5%, 54.8%, 53.1%, and 47.7%, respectively. Our MLP analysis confirmed our findings previously obtained with regression, correlation, multivariate Receiving Operator Curve (multi-ROC) analyses. ANNs can be successfully used to predict the effects of prone versus supine position and PEEP on ICP in patients undergoing spinal surgery using different non invasive surrogate estimators of ICP.

  19. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.

    Directory of Open Access Journals (Sweden)

    Vivi Andasari

    Full Text Available In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008 where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.

  20. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    Science.gov (United States)

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  1. Will climate change promote future invasions?

    Science.gov (United States)

    Bellard, Celine; Thuiller, Wilfried; Leroy, Boris; Genovesi, Piero; Bakkenes, Michel; Courchamp, Franck

    2013-12-01

    Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity. © 2013 John Wiley & Sons Ltd.

  2. Economic Analysis of Biological Invasions in Forests

    Science.gov (United States)

    Tomas P. Holmes; Julian Aukema; Jeffrey Englin; Robert G. Haight; Kent Kovacs; Brian Leung

    2014-01-01

    Biological invasions of native forests by nonnative pests result from complex stochastic processes that are difficult to predict. Although economic optimization models describe efficient controls across the stages of an invasion, the ability to calibrate such models is constrained by lack of information on pest population dynamics and consequent economic damages. Here...

  3. Combining a Climatic Niche Model of an Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia psidii Sensu Lato in Australia

    Science.gov (United States)

    Kriticos, Darren J.; Morin, Louise; Leriche, Agathe; Anderson, Robert C.; Caley, Peter

    2013-01-01

    Puccinia psidii sensu lato (s.l.) is an invasive rust fungus threatening a wide range of plant species in the family Myrtaceae. Originating from Central and South America, it has invaded mainland USA and Hawai'i, parts of Asia and Australia. We used CLIMEX to develop a semi-mechanistic global climatic niche model based on new data on the distribution and biology of P. psidii s.l. The model was validated using independent distribution data from recently invaded areas in Australia, China and Japan. We combined this model with distribution data of its potential Myrtaceae host plant species present in Australia to identify areas and ecosystems most at risk. Myrtaceaeous species richness, threatened Myrtaceae and eucalypt plantations within the climatically suitable envelope for P. psidii s.l in Australia were mapped. Globally the model identifies climatically suitable areas for P. psidii s.l. throughout the wet tropics and sub-tropics where moist conditions with moderate temperatures prevail, and also into some cool regions with a mild Mediterranean climate. In Australia, the map of species richness of Myrtaceae within the P. psidii s.l. climatic envelope shows areas where epidemics are hypothetically more likely to be frequent and severe. These hotspots for epidemics are along the eastern coast of New South Wales, including the Sydney Basin, in the Brisbane and Cairns areas in Queensland, and in the coastal region from the south of Bunbury to Esperance in Western Australia. This new climatic niche model for P. psidii s.l. indicates a higher degree of cold tolerance; and hence a potential range that extends into higher altitudes and latitudes than has been indicated previously. The methods demonstrated here provide some insight into the impacts an invasive species might have within its climatically suited range, and can help inform biosecurity policies regarding the management of its spread and protection of valued threatened assets. PMID:23704988

  4. Validation of minimally invasive, image-guided cochlear implantation using Advanced Bionics, Cochlear, and Medel electrodes in a cadaver model.

    Science.gov (United States)

    McRackan, Theodore R; Balachandran, Ramya; Blachon, Grégoire S; Mitchell, Jason E; Noble, Jack H; Wright, Charles G; Fitzpatrick, J Michael; Dawant, Benoit M; Labadie, Robert F

    2013-11-01

    Validation of a novel minimally invasive, image-guided approach to implant electrodes from three FDA-approved manufacturers-Medel, Cochlear, and Advanced Bionics-in the cochlea via a linear tunnel from the lateral cranium through the facial recess to the cochlea. Custom microstereotactic frames that mount on bone-implanted fiducial markers and constrain the drill along the desired path were utilized on seven cadaver specimens. A linear tunnel was drilled from the lateral skull to the cochlea followed by a marginal, round window cochleostomy and insertion of the electrode array into the cochlea through the drilled tunnel. Post-insertion CT scan and histological analysis were used to analyze the results. All specimens ([Formula: see text]) were successfully implanted without visible injury to the facial nerve. The Medel electrodes ([Formula: see text]) had minimal intracochlear trauma with 8, 8, and 10 (out of 12) electrodes intracochlear. The Cochlear lateral wall electrodes (straight research arrays) ([Formula: see text]) had minimal trauma with 20 and 21 of 22 electrodes intracochlear. The Advanced Bionics electrodes ([Formula: see text]) were inserted using their insertion tool; one had minimal insertion trauma and 14 of 16 electrodes intracochlear, while the other had violation of the basilar membrane just deep to the cochleostomy following which it remained in scala vestibuli with 13 of 16 electrodes intracochlear. Minimally invasive, image-guided cochlear implantation is possible using electrodes from the three FDA-approved manufacturers. Lateral wall electrodes were associated with less intracochlear trauma suggesting that they may be better suited for this surgical technique.

  5. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  6. A non-invasive approach to study lifetime exposure and bioaccumulation of PCBs in protected marine mammals: PBPK modeling in harbor porpoises

    International Nuclear Information System (INIS)

    Weijs, Liesbeth; Covaci, Adrian; Yang, Raymond S.H.; Das, Krishna; Blust, Ronny

    2011-01-01

    In the last decade, physiologically based pharmacokinetic (PBPK) models have increasingly been developed to explain the kinetics of environmental pollutants in wildlife. For marine mammals specifically, these models provide a new, non-destructive tool that enables the integration of biomonitoring activities and in vitro studies. The goals of the present study were firstly to develop PBPK models for several environmental relevant PCB congeners in harbor porpoises (Phocoena phocoena), a species that is sensitive to pollution because of its limited metabolic capacity for pollutant transformation. These models were tested using tissue data of porpoises from the Black Sea. Secondly, the predictive power of the models was investigated for time trends in the PCB concentrations in North Sea harbor porpoises between 1990 and 2008. Thirdly, attempts were made to assess metabolic capacities of harbor porpoises for the investigated PCBs. In general, results show that parameter values from other species (rodents, humans) are not always suitable in marine mammal models, most probably due to differences in physiology and exposure. The PCB 149 levels decrease the fastest in male harbor porpoises from the North Sea in a time period of 18 years, whereas the PCB 101 levels decrease the slowest. According to the models, metabolic breakdown of PCB 118 is probably of lesser importance compared to other elimination pathways. For PCB 101 and 149 however, the presence of their metabolites can be attributed to bioaccumulation of metabolites from the prey and to metabolic breakdown of the parent compounds in the harbor porpoises. - Highlights: → PBPK modeling was used to study the kinetics of several PCBs in a marine mammal. → Harbor porpoises are sensitive to pollution and therefore ideal model organisms. → Black Sea data were used for parameterization. → North Sea data for assessing temporal trends (1990-2008). → PBPK modeling is a non-invasive and non-destructive tool.

  7. Elementos estruturais de um modelo formal dos esportes coletivos de invasão Elementos estructurales de un modelo formal del los deportes de equipo y invasion Structural elements of a formal model for invasion team sports

    Directory of Open Access Journals (Sweden)

    Leonardo Lamas

    2012-12-01

    ón estratégica por los jugadores. La estructura formal presentada comienza una línea de investigación que puede ayudar a reducir la subjetividad en la definición de los criterios para el análisis de los futuros diseños experimentales, dando lugar a interpretaciones más precisas y comparaciones mas acuradas de los resultados del los estudios.The development of a formal model integrating the strategy and the match dynamics constitute an original scientific contribution in the context of invasion team sports. The constructive procedure of a team strategy defined by the model is composed of sets of hierarchically organized elements, which support the design of strategies that can adequatelly orient a team in a match. Once defined the strategy model, the formalization of the match dynamics contextualizes the strategy on its application to orient players in the opposition. The match structure was decomposed and its main dynamical properties were defined. Thus, the modeling of the match dynamics complements the strategy model, since the first of them defines the circunstances in which the strategic information is applied by the players. The formal model presented inaugurates a research field which may contribute to limit the subjectivity in the definition of analysis criteria of future research designs, leading to more accurate interpretation and comparisons between results of studies.

  8. Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye.

    Science.gov (United States)

    Chan, Marion M; Gray, Brian D; Pak, Koon Y; Fong, Dunne

    2015-03-09

    Development of non-invasive molecular imaging techniques that are based on cellular changes in inflammation has been of active interest for arthritis diagnosis. This technology will allow real-time detection of tissue damage and facilitate earlier treatment of the disease, thus representing an improvement over X-rays, which detect bone damage at the advanced stage. Tracing apoptosis, an event occurring in inflammation, has been a strategy used. PSVue 794 is a low-molecular-weight, near-infrared (NIR)-emitting complex of bis(zinc2+-dipicolylamine) (Zn-DPA) that binds to phosphatidylserine (PS), a plasma membrane anionic phospholipid that becomes flipped externally upon cell death by apoptosis. In this study, we evaluated the capacity of PSVue 794 to act as an in vivo probe for non-invasive molecular imaging assessment of rheumatoid arthritis (RA) via metabolic function in murine collagen-induced arthritis, a widely adopted animal model for RA. Male DBA/1 strain mice were treated twice with chicken collagen type II in Freund's adjuvant. Their arthritis development was determined by measuring footpad thickness and confirmed with X-ray analysis and histology. In vivo imaging was performed with the NIR dye and the LI-COR Odyssey Image System. The level of emission was compared among mice with different disease severity, non-arthritic mice and arthritic mice injected with a control dye without the Zn-DPA targeting moiety. Fluorescent emission correlated reliably with the degree of footpad swelling and the manifestation of arthritis. Ex vivo examination showed emission was from the joint. Specificity of binding was confirmed by the lack of emission when arthritic mice were given the control dye. Furthermore, the PS-binding protein annexin V displaced the NIR dye from binding, and the difference in emission was numerically measurable on a scale. This report introduces an economical alternative method for assessing arthritis non-invasively in murine models. Inflammation in

  9. Integrating spatial modeling, climate change scenarios, invasive species risk, and public perceptions to inform sustainable management in mixed hemlock-hardwood forests in Maine

    Science.gov (United States)

    Dunckel, Kathleen Lois

    Introduced invasive pests and climate change are perhaps the most important and persistent catalyst for changes in forest composition. Infestation and outbreak of the hemlock woolly adelgid (HWA, Adelges tsugae) along the eastern coast of the USA, has led to widespread loss of hemlock (Tsuga canadensis (L.) Carr.), and a shift in tree species composition towards hardwood stands. Maine's forest dominated landscape and position at the leading edge of the HWA invasion provides an excellent opportunity to inform sustainable forest management (SFM) practices by using spatially explicit models to predict current tree species distribution, future range shifts, and solicit broad based feedback from Maine residents about forest management goals and preferences. This paper describes an interdisciplinary study of the ecological and social implications of changes in mixed northern hardwood forests due to disturbance. A two stage mapping approach was used where presence/absence of eastern hemlock is predicted with an overall accuracy of 85% and the continuous distribution (% basal area) was predicted with an accuracy of 83%. Given the importance of climate variables in predicting eastern hemlock, forecasts of future range shifts are possible using data generated through climate scenarios. The NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset was used to model future shifts in the geographic range of eastern hemlock throughout the state of Maine. The results clearly describe a significant shift in eastern hemlock range with gains in total geographic area that is suitable habitat. Sustaining forest systems across the landscape requires not only ecological knowledge, but also the integration of multiple socio-economic criteria as well, including data obtained through broad-based public participation approaches. Here, 3000 Maine residents were surveyed and asked how they: (1) value local forests; (2) view forest management goals and threats to forest

  10. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  11. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model.

    Science.gov (United States)

    Gogoi-Tiwari, Jully; Williams, Vincent; Waryah, Charlene Babra; Costantino, Paul; Al-Salami, Hani; Mathavan, Sangeetha; Wells, Kelsi; Tiwari, Harish Kumar; Hegde, Nagendra; Isloor, Shrikrishna; Al-Sallami, Hesham; Mukkur, Trilochan

    2017-01-01

    Biofilm formation by Staphylococcus aureus is an important virulence attribute because of its potential to induce persistent antibiotic resistance, retard phagocytosis and either attenuate or promote inflammation, depending upon the disease syndrome, in vivo. This study was undertaken to evaluate the potential significance of strength of biofilm formation by clinical bovine mastitis-associated S. aureus in mammary tissue damage by using a mouse mastitis model. Two S. aureus strains of the same capsular phenotype with different biofilm forming strengths were used to non-invasively infect mammary glands of lactating mice. Biofilm forming potential of these strains were determined by tissue culture plate method, ica typing and virulence gene profile per detection by PCR. Delivery of the infectious dose of S. aureus was directly through the teat lactiferous duct without invasive scraping of the teat surface. Both bacteriological and histological methods were used for analysis of mammary gland pathology of mice post-infection. Histopathological analysis of the infected mammary glands revealed that mice inoculated with the strong biofilm forming S. aureus strain produced marked acute mastitic lesions, showing profuse infiltration predominantly with neutrophils, with evidence of necrosis in the affected mammary glands. In contrast, the damage was significantly less severe in mammary glands of mice infected with the weak biofilm-forming S. aureus strain. Although both IL-1β and TNF-α inflammatory biomarkers were produced in infected mice, level of TNF-α produced was significantly higher (pmastitis model, and offers an opportunity for the development of novel strategies for reduction of mammary tissue damage, with or without use of antimicrobials and/or anti-inflammatory compounds for the treatment of bovine mastitis.

  12. Raman microspectroscopy as a diagnostic tool for the non-invasive analysis of fibrillin-1 deficiency in the skin and in the in vitro skin models.

    Science.gov (United States)

    Brauchle, Eva; Bauer, Hannah; Fernes, Patrick; Zuk, Alexandra; Schenke-Layland, Katja; Sengle, Gerhard

    2017-04-01

    Fibrillin microfibrils and elastic fibers are critical determinants of elastic tissues where they define as tissue-specific architectures vital mechanical properties such as pliability and elastic recoil. Fibrillin microfibrils also facilitate elastic fiber formation and support the association of epithelial cells with the interstitial matrix. Mutations in fibrillin-1 (FBN1) are causative for the Marfan syndrome, a congenital multisystem disorder characterized by progressive deterioration of the fibrillin microfibril/ elastic fiber architecture in the cardiovascular, musculoskeletal, ocular, and dermal system. In this study, we utilized Raman microspectroscopy in combination with principal component analysis (PCA) to analyze the molecular consequences of fibrillin-1 deficiency in skin of a mouse model (GT8) of Marfan syndrome. In addition, full-thickness skin models incorporating murine wild-type and Fbn1 GT8/GT8 fibroblasts as well as human HaCaT keratinocytes were generated and analyzed. Skin models containing GT8 fibroblasts showed an altered epidermal morphology when compared to wild-type models indicating a new role for fibrillin-1 in dermal-epidermal crosstalk. Obtained Raman spectra together with PCA allowed to discriminate between healthy and deficient microfibrillar networks in murine dermis and skin models. Interestingly, results obtained from GT8 dermis and skin models showed similar alterations in molecular signatures triggered by fibrillin-1 deficiency such as amide III vibrations and decreased levels of glycan vibrations. Overall, this study indicates that Raman microspectroscopy has the potential to analyze subtle changes in fibrillin-1 microfibrils and elastic fiber networks. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Mutations in building blocks of the fibrillin microfibril/ elastic fiber network manifest in disease

  13. Invasive plants have broader physiological niches.

    Science.gov (United States)

    Higgins, Steven I; Richardson, David M

    2014-07-22

    Invasive species cost the global economy billions of dollars each year, but ecologists have struggled to predict the risk of an introduced species naturalizing and invading. Although carefully designed experiments are needed to fully elucidate what makes some species invasive, much can be learned from unintentional experiments involving the introduction of species beyond their native ranges. Here, we assess invasion risk by linking a physiologically based species distribution model with data on the invasive success of 749 Australian acacia and eucalypt tree species that have, over more than a century, been introduced around the world. The model correctly predicts 92% of occurrences observed outside of Australia from an independent dataset. We found that invasiveness is positively associated with the projection of physiological niche volume in geographic space, thereby illustrating that species tolerant of a broader range of environmental conditions are more likely to be invasive. Species achieve this broader tolerance in different ways, meaning that the traits that define invasive success are context-specific. Hence, our study reconciles studies that have failed to identify the traits that define invasive success with the urgent and pragmatic need to predict invasive success.

  14. National invasive species program

    Science.gov (United States)

    Anna Rinick

    2007-01-01

    The structure and function of the National Invasive Species Council was presented below. The names and contact information for the USDA Invasive Species coordinators as of February 2006 were presented on the next page.

  15. Herbivory of an invasive slug in a model grassland community can be affected by earthworms and mycorrhizal fungi.

    Science.gov (United States)

    Trouvé, Raphaël; Drapela, Thomas; Frank, Thomas; Hadacek, Franz; Zaller, Johann G

    Invasion of non-native species is among the top threats for the biodiversity and functioning of native and agricultural ecosystems worldwide. We investigated whether the herbivory of the slug Arion vulgaris (formerly Arion lusitanicus ; Gastropoda), that is listed among the 100 worst alien species in Europe, is affected by soil organisms commonly present in terrestrial ecosystems (i.e. earthworms-Annelida: Lumbricidae and arbuscular mycorrhizal fungi-AMF, Glomerales). We hypothesized that slug herbivory would be affected by soil organisms via altered plant nutrient availability and plant quality. In a greenhouse experiment, we created a simple plant community consisting of a grass, a forb, and a legume species and inoculated these systems with either two earthworm species and/or four AMF taxa. Slugs were introduced after plants were established. Earthworms significantly reduced total slug herbivory in AMF-inoculated plant communities ( P  = 0.013). Across plant species, earthworms increased leaf total N and secondary metabolites, AMF decreased leaf thickness. Mycorrhizae induced a shift in slug feeding preference from non-legumes to legumes; the grass was generally avoided by slugs. AMF effects on legume herbivory can partly be explained by the AMF-induced increase in total N and decrease in C/N ratio; earthworm effects are less clear as no worm-induced alterations of legume plant chemistry were observed. The presence of earthworms increased average AMF colonization of plant roots by 140 % ( P  slug is altered by a belowground control of plant chemical quality and community structure.

  16. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    International Nuclear Information System (INIS)

    Pasco, Sylvie; Ramont, Laurent; Venteo, Lydie; Pluot, Michel; Maquart, Francois-Xavier; Monboisse, Jean-Claude

    2004-01-01

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  17. Invasive American bullfrogs and African clawed frogs in South America

    DEFF Research Database (Denmark)

    Barbosa, Fabiana G.; Both, Camila; Bastos, Miguel

    2017-01-01

    Invasion of protected areas by non-native species is currently one of the main threats to global biodiversity. Using an ensemble of bioclimatic envelope models we quantify the degree of exposure of South American protected areas to invasion by two invasive amphibian species. We focus on protected.......5%). Conservation plans for these regions should, therefore, consider latent threats from multiple sources including invasion by highly competitive non-native species such as the ones modeled in our study....

  18. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Numerical modeling of simultaneous tracer release and piscicide treatment for invasive species control in the Chicago Sanitary and Ship Canal, Chicago, Illinois

    Science.gov (United States)

    Zhu, Zhenduo; Motta, Davide; Jackson, P. Ryan; Garcia, Marcelo H.

    2017-01-01

    In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.

  20. Terminalia larval host fruit reduces the response of Bactrocera dorsalis adults to the male lure methyl eugenol

    Science.gov (United States)

    Methyl eugenol(ME) is a powerful semiochemical attractant to males of the oriental fruit fly, Bactrocera dorsalis, and is the keystone of detection, control, and eradication programs against this polyphagous and highly invasive tephritid pest. Despite its status as a model lure against B.dorsalis, v...

  1. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    Science.gov (United States)

    Acosta, André L; Giannini, Tereza C; Imperatriz-Fonseca, Vera L; Saraiva, Antonio M

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.

  2. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    Directory of Open Access Journals (Sweden)

    André L Acosta

    Full Text Available The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.

  3. A network model to help land managers predict and prevent spread of invasive plants from roads to river systems in Alaska

    Science.gov (United States)

    Matthew J. Macander; Tricia L. Wurtz

    2007-01-01

    Alaska has relatively few invasive plants, and most of them are found only along the state's limited road system. Melilotus alba, or sweetclover, is one of the most widely distributed invasives in the state. Melilotus has recently moved from roadsides to the flood plains of at least three glacial rivers. We developed a network...

  4. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. What makes the plant invasion possible? Paradigm of invasion mechanisms, theories and attributes

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-06-01

    Full Text Available Plant invasion is the second most severe threat to biodiversity after habitat fragmentation. Invasive species are alien species whose introduction and spread threatens ecosystems, habitats or species with socio-cultural, economic and/or environmental harm, and harm to human health. Present review precisely describes the global problems of invasion in different ecosystems, continents and its multifaceted impacts. Plant invasion is now increasingly being recognized as global problem and various continents are adversely affected, although to a differential scale. Quest for the ecological mechanism lying behind the success of invasive species over native species has drawn the attention of researches worldwide particularly in context of diversity-stability relationship. Transport, colonization, establishment and landscape spread may be different steps in success of invasive plants and each and every step is checked through several ecological attributes. Further, several ecological attribute and hypothesis (enemy release, novel weapon, empty niche, evolution of increased competitive ability etc. were proposed pertaining to success of invasive plant species. However, single theory will not be able to account for invasion success among all environments as it may vary spatially and temporally. Therefore, in order to formulate a sustainable management plan for invasive plants, it is necessary to develop a synoptic view of the dynamic processes involved in the invasion process. Moreover, invasive species can act synergistically with other elements of global change, including land-use change, climate change, increased concentrations of atmospheric carbon dioxide and nitrogen deposition. Henceforth, a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frame-works into a single conceptual model that can be applied to all human-mediated invasions.

  6. Proposed model for ONCHIT pre-case biosurveillance using multiple array sensing and non-invasive data capture.

    Science.gov (United States)

    Churchill, Richard; Lorence, Daniel; Richards, Michael

    2010-08-01

    Recent initiatives by the US ONCHIT highlight the need for electronic population health data collection relating to aspects of Public Health Case (PH Case) reporting and Adverse Event (AE) reporting. Proposed solutions to date have been primarily provider-based, limited by organization-wide startup & maintenance costs, and hampered by risk-averse data distribution policies. Little attention has been given to consumer-focused, distributed data collection models, where objective, consumer-provided standardized data can be used prior to case identification to facilitate earlier use of extensible and distributed information networks in biosurveillance. We propose here one promising model for pre-case biosurveillance management, employing the use of breath-based, multiple array sensing and data capture. The conceptual applications employed in this technology set are provided by way of illustration, and may also serve as a transformative model for emerging EMR/EHR requirements.

  7. Modeling metal bioaccumulation in the invasive mussels Dreissena polymorpha and Dreissena rostriformis bugensis in the rivers Rhine and Meuse.

    Science.gov (United States)

    Le, T T Yen; Leuven, Rob S E W; Hendriks, A Jan

    2011-12-01

    The metal-specific covalent index and the species-specific size-based filtration rate were integrated into a biokinetic model estimating metal bioaccumulation in mussels from the dissolved phase and phytoplankton. The model was validated for zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels in the rivers Rhine and Meuse, the Netherlands. The model performed well in predicting tissue concentrations in different-sized zebra mussels from various sampling sites for (55) Mn, (56) Fe, (59) Co, (60) Ni, (82) Se, (111) Cd, (118) Sn, and (208) Pb (r(2) =0.71-0.99). Performance for (52) Cr, (63) Cu, (66) Zn, (68) Zn, and (112) Cd was moderate (r(2) quagga mussels, approximately 73 to 94% of the variability in concentrations of (82) Se, (111) Cd, (112) Cd, and (208) Pb was explained by the model (r(2) =0.73-0.94), followed by (52) Cr, (55) Mn, (56) Fe, (60) Ni, and (63) Cu (r(2) =0.48-0.61). Additionally, in both zebra and quagga mussels, average modeled concentrations were within approximately one order of magnitude of the measured values. In particular, in zebra mussels, estimations of (60) Ni and (82) Se concentrations were equal to 51 and 76% of the measurements, respectively. Higher deviations were observed for (52) Cr, (59) Co, (55) Mn, (56) Fe, (111) Cd, (63) Cu, and (112) Cd (underestimation), and (66) Zn, (68) Zn, (208) Pb, and (118) Sn (overestimation). For quagga mussels, modeled concentrations of (66) Zn and (68) Zn differed approximately 14% from the measured levels. Differences between predictions and measurements were higher for other metals. Copyright © 2011 SETAC.

  8. Adjust cut-off values of immunohistochemistry models to predict risk of distant recurrence in invasive breast carcinoma patients

    Directory of Open Access Journals (Sweden)

    Yen-Ying Chen

    2016-12-01

    Conclusion: It is necessary to adjust the cut-off values of IHC-based prognostic models to fit the purpose. If the estimated risk is clearly high or low, it may be reasonable to omit multigene assays when cost is a consideration.

  9. Epidemiological modeling of invasion in heterogeneous landscapes: Spread of sudden oak death in California (1990-2030)

    Science.gov (United States)

    R.K. Meentemeyer; N.J. Cunniffe; A.R. Cook; J.A.N. Filipe; R.D. Hunter; D.M. Rizzo; C.A. Gilligan

    2011-01-01

    The spread of emerging infectious diseases (EIDs) in natural environments poses substantial risks to biodiversity and ecosystem function. As EIDs and their impacts grow, landscape- to regional-scale models of disease dynamics are increasingly needed for quantitative prediction of epidemic outcomes and design of practicable strategies for control. Here we use spatio-...

  10. Combination of Voriconazole and Anidulafungin for Treatment of Triazole-Resistant Aspergillus fumigatus in an In Vitro Model of Invasive Pulmonary Aspergillosis

    Science.gov (United States)

    Jeans, Adam R.; Howard, Susan J.; Al-Nakeeb, Zaid; Goodwin, Joanne; Gregson, Lea; Warn, Peter A.

    2012-01-01

    Voriconazole is a first-line agent for the treatment of invasive pulmonary aspergillosis. Isolates with elevated voriconazole MICs are increasingly being seen, and the optimal treatment regimen is not defined. We investigated whether the combination of voriconazole with anidulafungin may be beneficial for the treatment of A. fumigatus strains with elevated voriconazole MICs. We used an in vitro model of the human alveolus to define the exposure-response relationships for a wild-type strain (voriconazole MIC, 0.5 mg/liter) and strains with defined molecular mechanisms of triazole resistance (MICs, 4 to 16 mg/liter). All strains had anidulafungin minimum effective concentrations (MECs) of 0.0078 mg/liter. Exposure-response relationships were estimated using galactomannan as a biomarker. Concentrations of voriconazole and anidulafungin were measured using high-performance liquid chromatography (HPLC). The interaction of voriconazole and anidulafungin was described using the Greco model. Fungal growth was progressively inhibited with higher drug exposures of voriconazole. Strains with elevated voriconazole MICs required proportionally greater voriconazole exposures to achieve a comparable antifungal effect. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy. An additive effect between voriconazole and anidulafungin was apparent. In conclusion, the addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment. PMID:22825124

  11. Invasive and Ultrasound Based Monitoring of the Intracranial Pressure in an Experimental Model of Epidural Hematoma Progressing towards Brain Tamponade on Rabbits

    Directory of Open Access Journals (Sweden)

    Konstantinos Kasapas

    2014-01-01

    Full Text Available Introduction. An experimental epidural hematoma model was used to study the relation of ultrasound indices, namely, transcranial color-coded-Doppler (TCCD derived pulsatility index (PI, optic nerve sheath diameter (ONSD, and pupil constriction velocity (V which was derived from a consensual sonographic pupillary light reflex (PLR test with invasive intracranial pressure (ICP measurements. Material and Methods. Twenty rabbits participated in the study. An intraparenchymal ICP catheter and a 5F Swan-Ganz catheter (SG for the hematoma reproduction were used. We successively introduced 0.1 mL increments of autologous blood into the SG until the Cushing reaction occurred. Synchronous ICP and ultrasound measurements were performed accordingly. Results. A constant increase of PI and ONSD and a decrease of V values were observed with increased ICP values. The relationship between the ultrasound variables and ICP was exponential; thus curved prediction equations of ICP were used. PI, ONSD, and V were significantly correlated with ICP (r2=0.84±0.076, r2=0.62±0.119, and r2=0.78±0.09, resp. (all P<0.001. Conclusion. Although statistically significant prediction models of ICP were derived from ultrasound indices, the exponential relationship between the parameters underpins that results should be interpreted with caution and in the current experimental context.

  12. A novel mouse model for non-invasive single marker tracking of mammary stem cells in vivo reveals stem cell dynamics throughout pregnancy.

    Directory of Open Access Journals (Sweden)

    Benjamin J Tiede

    Full Text Available Mammary stem cells (MaSCs play essential roles for the development of the mammary gland and its remodeling during pregnancy. However, the precise localization of MaSCs in the mammary gland and their regulation during pregnancy is unknown. Here we report a transgenic mouse model for luciferase-based single marker detection of MaSCs in vivo that we used to address these issues. Single transgene expressing mammary epithelial cells were shown to reconstitute mammary glands in vivo while immunohistochemical staining identified MaSCs in basal and luminal locations, with preponderance towards the basal position. By quantifying luciferase expression using bioluminescent imaging, we were able to track MaSCs non-invasively in individual mice over time. Using this model to monitor MaSC dynamics throughout pregnancy, we found that MaSCs expand in both total number and percentage during pregnancy and then drop down to or below baseline levels after weaning. However, in a second round of pregnancy, this expansion was not as extensive. These findings validate a powerful system for the analysis of MaSC dynamics in vivo, which will facilitate future characterization of MaSCs during mammary gland development and breast cancer.

  13. Age, growth and population structure of invasive lionfish (Pterois volitans/miles in northeast Florida using a length-based, age-structured population model

    Directory of Open Access Journals (Sweden)

    Eric G. Johnson

    2016-12-01

    Full Text Available The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1 lionfish exhibited rapid growth with seasonal variation in growth rates; (2 distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3 the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

  14. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model.

    Science.gov (United States)

    Dostal, Alexandra; Gagnon, Mélanie; Chassard, Christophe; Zimmermann, Michael Bruce; O'Mahony, Liam; Lacroix, Christophe

    2014-01-01

    In regions with a high infectious disease burden, concerns have been raised about the safety of iron supplementation because higher iron concentrations in the gut lumen may increase risk of enteropathogen infection. The aim of this study was to investigate interactions of the enteropathogen Salmonella enterica ssp. enterica Typhimurium with intestinal cells under different iron concentrations encountered in the gut lumen during iron deficiency and supplementation using an in vitro colonic fermentation system inoculated with immobilized child gut microbiota combined with Caco-2/HT29-MTX co-culture monolayers. Colonic fermentation effluents obtained during normal, low (chelation by 2,2'-dipyridyl) and high iron (26.5 mg iron/L) fermentation conditions containing Salmonella or pure Salmonella cultures with similar iron conditions were applied to cellular monolayers. Salmonella adhesion and invasion capacity, cellular integrity and immune response were assessed. Under high iron conditions in pure culture, Salmonella adhesion was 8-fold increased compared to normal iron conditions while invasion was not affected leading to decreased invasion efficiency (-86%). Moreover, cellular cytokines IL-1β, IL-6, IL-8 and TNF-α secretion as well as NF-κB activation in THP-1 cells were attenuated under high iron conditions. Low iron conditions in pure culture increased Salmonella invasion correlating with an increase in IL-8 release. In fermentation effluents, Salmonella adhesion was 12-fold and invasion was 428-fold reduced compared to pure culture. Salmonella in high iron fermentation effluents had decreased invasion efficiency (-77.1%) and cellular TNF-α release compared to normal iron effluent. The presence of commensal microbiota and bacterial metabolites in fermentation effluents reduced adhesion and invasion of Salmonella compared to pure culture highlighting the importance of the gut microbiota as a barrier during pathogen invasion. High iron concentrations as

  15. External validation of non-invasive prediction models for identifying ultrasonography-diagnosed fatty liver disease in a Chinese population.

    Science.gov (United States)

    Shen, Ya-Nan; Yu, Ming-Xing; Gao, Qian; Li, Yan-Yan; Huang, Jian-Jun; Sun, Chen-Ming; Qiao, Nan; Zhang, Hai-Xia; Wang, Hui; Lu, Qing; Wang, Tong

    2017-07-01

    Several prediction models for fatty liver disease (FLD) are available with limited externally validation and less comprehensive evaluation. The aim was to perform external validation and direct comparison of 4 prediction models (the Fatty Liver Index, the Hepatic Steatosis Index, the ZJU index, and the Framingham Steatosis Index) for FLD both in the overall population and the obese subpopulation.This cross-sectional study included 4247 subjects aged 20 to 65 years recruited from the north of Shanxi Province in China. Anthropometric and biochemical features were collected using standard protocols. FLD was diagnosed by liver ultrasonography. We assessed all models in terms of discrimination, calibration, and decision curve analysis.The original models performed well in terms of discrimination for the overall population, with the area under the receiver operating characteristic curves (AUCs) around 0.85, while AUCs for obese individuals were around 0.68. Nevertheless, the predicted risks did not match well with the observed risks both in the overall population and the obese subpopulation. The FLI 2006 was 1 of the 2 best models in terms of discrimination (AUCs were 0.87 and 0.72 for the overall population and the obese subgroup, respectively) and had the best performance in terms of calibration, and attained the highest net benefit.The FLI 2006 is overall the best tool to identify high risk individuals and has great clinical utility. Nonetheless, it does not perform well enough to quantify the actual risk of FLD, which need to be (re)calibrated for clinical use.

  16. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients.

    Science.gov (United States)

    Sherman, Mark E; Ichikawa, Laura; Pfeiffer, Ruth M; Miglioretti, Diana L; Kerlikowske, Karla; Tice, Jeffery; Vacek, Pamela M; Gierach, Gretchen L

    2016-01-01

    Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown. Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC) for 37,939 invasive breast cancers (1996-2007), we estimated 5-year breast cancer risk (models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions); Breast Cancer Risk Assessment Tool (BCRAT); and BCSC 5-year risk model (BCSC-5). Breast cancer-specific mortality post-diagnosis (range: 1-13 years; median: 5.4-5.6 years) was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35-44; 45-54; 55-69; 70-89 years) models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years. Of 6,021 deaths, 2,993 (49.7%) were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus cancer death; BCSC-1: hazard ratio (HR) = 0.82 (95% CI = 0.75-0.90); BCRAT: HR = 0.72 (95% CI = 0.65-0.81) and BCSC-5: HR = 0.84 (95% CI = 0.75-0.94). Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55-69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35-44 years. Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering women counseling, it may be useful to note that high predicted risk of developing breast cancer does not imply that if cancer develops it will

  17. Expression of tumor invasion factors determines systemic engraftment and induction of humoral hypercalcemia in a mouse model of adult T-cell leukemia.

    Science.gov (United States)

    Parrula, C; Zimmerman, B; Nadella, P; Shu, S; Rosol, T; Fernandez, S; Lairmore, M; Niewiesk, S

    2009-09-01

    Infection with human T-cell leukemia virus type 1 (HTLV-1) leads sometimes to the development of adult T-cell lymphoma/leukemia (ATL), which is invariably fatal and often associated with humoral hypercalcemia of malignancy. The transformation of infected CD4 T cells and the pathogenesis of leukemia have been studied with great limitation in tissue culture and patients. To better understand the pathogenesis and perform preclinical drug studies, animal models of ATL are urgently needed. In mice, inoculation of HTLV-1 cell lines mostly leads to development of localized lymphomas. To develop an ATL animal model with leukemic spread of ATL cells, mouse strains with different well-defined immune deficiencies were inoculated intraperitoneally with different HTLV-1-infected cell lines (ACH.2, C8166, MT-2, MET-1). Inoculation of MET-1 cells into NOD/SCID mice provided the best model system for slowly developing T-cell leukemia with multiple organ involvement. In leukemic mice, an increase in serum calcium levels correlated with expression of receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand on leukemic cells and secretion of parathyroid hormone-related protein and interleukin-6. In contrast to the other cell lines that did not spread systemically, MET-1 expressed both the adhesion molecules CD11a (LFA-1alpha) and CD49d (VLA-4alpha) and produced or induced expression of matrix metalloproteinases 1, 2, 3, and 9, thus underlining the importance of these molecules in the spread of adult T-cell leukemia cells. The MET-1/NOD/SCID model will be useful for developing interventions against invasion and spread of leukemic cells and subsequent humoral hypercalcemia of malignancy.

  18. A new experimental model of calculous cholecystitis suitable for the evaluation and training of minimally invasive approaches to cholecystectomy

    Czech Academy of Sciences Publication Activity Database

    Ryska, Ondřej; Šerclová, Z.; Martínek, J.; Doležel, R.; Kalvach, J.; Juhás, Štefan; Juhásová, Jana; Bunganič, B.; Lasziková, E.; Ryska, M.

    2017-01-01

    Roč. 31, č. 2 (2017), s. 987-994 ISSN 0930-2794 R&D Projects: GA MZd(CZ) NT13634; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : animal model * cholecystolithiasis * learning curve Subject RIV: FE - Other Internal Medicine Disciplines OBOR OECD: Gastroenterology and hepatology Impact factor: 3.747, year: 2016

  19. Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells.

    Science.gov (United States)

    Massaro, R R; Faião-Flores, F; Rebecca, V W; Sandri, S; Alves-Fernandes, D K; Pennacchi, P C; Smalley, K S M; Maria-Engler, S S

    2017-05-01

    Despite the recent advances in the clinical management of melanoma, there remains a need for new pharmacological approaches to treat this cancer. 2-methoxyestradiol (2ME) is a metabolite of estrogen that has shown anti-tumor effects in many cancer types. In this study we show that 2ME treatment leads to growth inhibition in melanoma cells, an effect associated with entry into senescence, decreased pRb and Cyclin B1 expression, increased p21/Cip1 expression and G2/M cell cycle arrest. 2ME treatment also inhibits melanoma cell growth in colony formation assay, including cell lines with acquired resistance to BRAF and BRAF+MEK inhibitors. We further show that 2ME is effective against melanoma with different BRAF and NRAS mutational status. Moreover, 2ME induced the retraction of cytoplasmic projections in a 3D spheroid model and significantly decreased cell proliferation in a 3D skin reconstruct model. Together our studies bring new insights into the mechanism of action of 2ME allowing melanoma targeted therapy to be further refined. Continued progress in this area is expected to lead to improved anti-cancer treatments and the development of new and more effective clinical analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Construction of predictive models for recurrence and progression in >1000 patients with non-muscle-invasive bladder cancer (NMIBC) from a single centre.

    Science.gov (United States)

    Ali-El-Dein, Bedeir; Sooriakumaran, Prasanna; Trinh, Quoc-Dien; Barakat, Tamer S; Nabeeh, Adel; Ibrahiem, El-Housseiny I

    2013-06-01

    To construct predictive models based on the objectively calculated risks of progression and recurrence of non-muscle-invasive bladder cancer (NMIBC) in a large cohort of patients from a single centre. Between October 1984 and March 2009 a cohort of 1019 patients (877 males; 142 females; median age 44 years) with histologically confirmed NMIBC was included in this study. Among these patients, 74% received bacillus Calmette-Guérin (BCG)-based therapy. Complete transurethral resection of bladder tumour of all visible tumours was carried out in all patients, and the stage and grade were determined. Univariate analysis and multivariate Cox regression were used to identify predictors of recurrence and progression. The studied predictors included age, sex, stage, grade, associated carcinoma in situ, tumour size, multiplicity, macroscopic appearance of the tumour, history of recurrence and type of adjuvant intravesical therapy. Multivariate logistic regression models were used to develop the 12- and 60-month recurrence and progression predictive models. The predictive accuracy of the models was assessed for discrimination as well as calibration. The median (range) follow-up was 44 (6-254) months. On multivariate analysis, stage, multiplicity, history of recurrence and adjuvant intravesical therapy were significantly associated with recurrence, whereas for progression only tumour grade and size were significant independent predictors. The constructed nomograms had a 64.9% and 69.4% chance of correctly distinguishing between two patients, one destined to have a recurrence and one not at 12 and 60 months, respectively. The constructed nomograms had a 70.2% and 73.5% chance of correctly distinguishing between two patients, one destined to progress and one not at 12 and 60 months, respectively. All predictive models were well calibrated. Based on multivariate analysis of the studied prognostic factors nomograms for predicting recurrence and progression in NMIBC were

  1. Modelling the Contributions of Malaria, HIV, Malnutrition and Rainfall to the Decline in Paediatric Invasive Non-typhoidal Salmonella Disease in Malawi.

    Directory of Open Access Journals (Sweden)

    Nicholas A Feasey

    Full Text Available Nontyphoidal Salmonellae (NTS are responsible for a huge burden of bloodstream infection in Sub-Saharan African children. Recent reports of a decline in invasive NTS (iNTS disease from Kenya and The Gambia have emphasised an association with malaria control. Following a similar decline in iNTS disease in Malawi, we have used 9 years of continuous longitudinal data to model the interrelationships between iNTS disease, malaria, HIV and malnutrition.Trends in monthly numbers of childhood iNTS disease presenting at Queen's Hospital, Blantyre, Malawi from 2002 to 2010 were reviewed in the context of longitudinal monthly data describing malaria slide-positivity among paediatric febrile admissions, paediatric HIV prevalence, nutritional rehabilitation unit admissions and monthly rainfall over the same 9 years, using structural equation models (SEM.Analysis of 3,105 iNTS episodes identified from 49,093 blood cultures, showed an 11.8% annual decline in iNTS (p < 0.001. SEM analysis produced a stable model with good fit, revealing direct and statistically significant seasonal effects of malaria and malnutrition on the prevalence of iNTS disease. When these data were smoothed to eliminate seasonal cyclic changes, these associations remained strong and there were additional significant effects of HIV prevalence.These data suggest that the overall decline in iNTS disease observed in Malawi is attributable to multiple public health interventions leading to reductions in malaria, HIV and acute malnutrition. Understanding the impacts of public health programmes on iNTS disease is essential to plan and evaluate interventions.

  2. The invasive kelp Undaria pinnatifida (Laminariales, Ochrophyta) along the north coast of Portugal: distribution model versus field observations.

    Science.gov (United States)

    Veiga, P; Torres, A C; Rubal, M; Troncoso, J; Sousa-Pinto, I

    2014-07-15

    After the first report of Undaria pinnatifida in north Portugal (between 1999 and 2007), a rapid spread of this species could be expected due to the presence of a stable population and the favourable environmental conditions proposed by distribution models. However, field surveys showed that U. pinnatifida was not present in most of the rocky shores in north Portugal. It seems that U. pinnatifida cannot outcompete native species outside of marinas in north Portugal. The only population in natural rocky shores was found in Buarcos, where this species was frequent. This study provides density data of U. pinnatifida that will be useful in the future to monitor changes on its abundance and distribution in the centre and south of Portugal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copper-free click chemistry.

    Science.gov (United States)

    Lee, Si Yeon; Lee, Sangmin; Lee, Jangwook; Yhee, Ji Young; Yoon, Hwa In; Park, Soon-Jung; Koo, Heebeom; Moon, Sung-Hwan; Lee, Hyukjin; Cho, Yong Woo; Kang, Sun Woong; Lee, Sang-Yup; Kim, Kwangmeyung

    2016-10-28

    Labeling of stem cells aims to distinguish transplanted cells from host cells, understand in vivo fate of transplanted cells, particularly important in stem cell therapy. Adipose-derived mesenchymal stem cells (ASCs) are considered as an emerging therapeutic option for tissue regeneration, but much remains to be understood regarding the in vivo evidence. In this study, a simple and efficient cell labeling method for labeling and tracking of stem cells was developed based on bio-orthogonal copper-free click chemistry, and it was applied in a mouse hindlimb ischemia model. The human ASCs were treated with tetra-acetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz) to generate glycoprotein with unnatural azide groups on the cell surface, and the generated azide groups were fluorescently labeled by specific binding of dibenzylcyclooctyne-conjugated Cy5 (DBCO-Cy5). The safe and long-term labeling of the hASCs by this method was first investigated in vitro. Then the DBCO-Cy5-hASCs were transplanted into the hindlimb ischemia mice model, and we could monitor and track in vivo fate of the cells using optical imaging system. We could clearly observe the migration potent of the hASCs toward the ischemic lesion. This approach to design and tailor new method for labeling of stem cells may be useful to provide better understanding on the therapeutic effects of transplanted stem cells into the target diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  5. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  6. Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2⁺ breast cancer.

    Science.gov (United States)

    Doornebal, Chris W; Vrijland, Kim; Hau, Cheei-Sing; Coffelt, Seth B; Ciampricotti, Metamia; Jonkers, Jos; de Visser, Karin E; Hollmann, Markus W

    2015-08-01

    Morphine and other opioid analgesics are potent pain-relieving agents routinely used for pain management in patients with cancer. However, these drugs have recently been associated with a worse relapse-free survival in patients with surgical cancer, thus suggesting that morphine adversely affects cancer progression and relapse. In this study, we evaluated the impact of morphine on breast cancer progression, metastatic dissemination, and outgrowth of minimal residual disease. Using preclinical mouse models for metastatic invasive lobular and HER2 breast cancer, we show that analgesic doses of morphine do not affect mammary tumor growth, angiogenesis, and the composition of tumor-infiltrating immune cells. Our studies further demonstrate that morphine, administered in the presence or absence of surgery-induced tissue damage, neither facilitates de novo metastatic dissemination nor promotes outgrowth of minimal residual disease after surgery. Together, these findings indicate that opioid analgesics can be used safely for perioperative pain management in patients with cancer and emphasize that current standards of "good clinical practice" should be maintained.

  7. Delayed minimally invasive injection of allogenic bone marrow stromal cell sheets regenerates large bone defects in an ovine preclinical animal model.

    Science.gov (United States)

    Berner, Arne; Henkel, Jan; Woodruff, Maria A; Steck, Roland; Nerlich, Michael; Schuetz, Michael A; Hutmacher, Dietmar W

    2015-05-01

    Cell-based tissue engineering approaches are promising strategies in the field of regenerative medicine. However, the mode of cell delivery is still a concern and needs to be significantly improved. Scaffolds and/or matrices loaded with cells are often transplanted into a bone defect immediately after the defect has been created. At this point, the nutrient and oxygen supply is low and the inflammatory cascade is incited, thus creating a highly unfavorable microenvironment for transplanted cells to survive and participate in the regeneration process. We therefore developed a unique treatment concept using the delayed injection of allogenic bone marrow stromal cell (BMSC) sheets to regenerate a critical-sized tibial defect in sheep to study the effect of the cells' regeneration potential when introduced at a postinflammatory stage. Minimally invasive percutaneous injection of allogenic BMSCs into biodegradable composite scaffolds 4 weeks after the defect surgery led to significantly improved bone regeneration compared with preseeded scaffold/cell constructs and scaffold-only groups. Biomechanical testing and microcomputed tomography showed comparable results to the clinical reference standard (i.e., an autologous bone graft). To our knowledge, we are the first to show in a validated preclinical large animal model that delayed allogenic cell transplantation can provide applicable clinical treatment alternatives for challenging bone defects in the future. ©AlphaMed Press.

  8. A comparison of the effectiveness of waxed paper and Gore-Tex on the minimally invasive epidural fibrosis model.

    Science.gov (United States)

    Kurt, Gokhan; Celik, Bulent; Cemil, Berker; Doğulu, Fikret; Baykaner, Mustafa Kemali; Ceviker, Necdet

    2009-02-01

    Experimental animal study. The authors conducted a study to determine the effectiveness of waxed paper in preventing postlaminectomy epidural fibrosis in rats. Extensive epidural fibrosis after lumbar surgery may be the underlying cause in most cases of failed back surgery syndrome. Various materials have been used to prevent epidural fibrosis, but only moderate success has been shown. Laminectomies were performed at the fourth lumbar vertebra (L-4) in 30 rats. Waxed paper or Gore-Tex was applied in a blinded fashion to the operative sites. In the control group, only the L-4 laminectomy was performed. The rats were killed 28 days after surgery. The extent of epidural fibrosis was evaluated by histologic analysis. There was a meaningful statistical difference among the waxed paper group and the Gore-Tex group compared with the control group, but there was no difference when the effectiveness of waxed paper was compared with that of Gore-Tex. In this experimental model, the waxed paper applied locally effectively reduced epidural fibrosis, completely avoided dural adherence, and induced no side effects.

  9. A spatio-temporal model for the invasion of New Zealand archipelago by the Pacific rat Rattus exulans

    International Nuclear Information System (INIS)

    Holdaway, R.N.

    1999-01-01

    New Zealand is at the southern limits of the human-extended geographic range of the Pacific rat Rattus exulans. On the two main islands, radiocarbon dates on rat bones from natural sites show that rat populations were established more than 1000 years before permanent human settlement, presumably during transient visits by Polynesian voyagers. Both main islands were colonised after these first contacts, but offshore and outlying islands were not reached by rats until after Polynesian settlement about 700 years BP. Chatham Island was not colonised by Pacific rats until about 650 years BP. I present a model that relates the time of first appearance of rats in the fossil record and the exploitation of native fauna to the pattern of spread of the rat through the archipelago. I hypothesise that the stepwise spread of the rat through the archipelago is mirrored by the pattern of reduction and extinction of indigenous fauna vulnerable to rat predation. The 1000 year delay between the arrival of rats and permanent human settlement suggests that the New Zealand biota was already stressed by an introduced predator before humans added habitat destruction and over-hunting. (author). 65 refs., 2 figs., 1 tab

  10. Non-invasive tumescent cryolipolysis using a new 4D handpiece: a comparative study with a porcine model.

    Science.gov (United States)

    Jeong, S Y; Kwon, T R; Seok, J; Park, K Y; Kim, B J

    2017-02-01

    The growing demand for a youthful appearance, including a favorable body shape, has motivated recent developments in noninvasive body contouring techniques. Our aim was to investigate the efficacy and safety of a new version of a 4D handpiece-mounted cooling device for cryolipolysis with or without tumescent injections. We conducted a side-by-side comparative study using two female porcine models. Two areas of each pig's left abdomen were treated using a conventional device and the new cooling device, and two areas of the right abdomen were also treated using the conventional and new cooling device, but both were combined with tumescent-solution injections. The conventional method alone yielded a 75.25% reduction in skin thickness, while the new cooling device alone yielded a 81.63% reduction. When paired with tumescent injections, the conventional device yielded a 86.3% reduction in skin thickness and the cooling device yielded a 85.9% reduction. Using histological analysis with H&E, oil red O, and toluidine blue stain, we confirmed that selective cryolipolysis was able to induce selective apoptosis of fat cells. This in vivo study presents a new 4D handpiece-assisted cooling device with tumescent anesthesia that is safe and effective for fat reduction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Non-invasive volumetric optoacoustic imaging of cardiac cycles in acute myocardial infarction model in real-time

    Science.gov (United States)

    Lin, Hasiao-Chun Amy; Déan-Ben, Xosé Luís.; Kimm, Melanie; Kosanke, Katja; Haas, Helena; Meier, Reinhard; Lohöfer, Fabian; Wildgruber, Moritz; Razansky, Daniel

    2017-03-01

    Extraction of murine cardiac functional parameters on a beat-by-beat basis remains challenging with the existing imaging modalities. Novel methods enabling in vivo characterization of functional parameters at a high temporal resolution are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. Acute myocardial infarction was surgically induced in murine models, and the method was modified to optimize for acquisition of artifact-free optoacoustic data. Infarcted hearts could be differentiated from healthy controls based on a significantly higher pulmonary transit time (PTT: infarct 2.07 s vs. healthy 1.34 s), while no statistically significant difference was observed in the heart rate (318 bpm vs. 309 bpm). In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method is capable of depicting cardiac anatomy, function, and molecular signatures on a beat-by-beat basis, both with high spatial and temporal resolution, thus providing new insights into the study of myocardial ischemia.

  12. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Science.gov (United States)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  13. Demographic modelling approach for assessment of environmental conditions which control the population of the invasive Ctenophore Mnemiopsis leidyi in the Mediterranean Seas.

    Science.gov (United States)

    Shiganova, Tamara; Nival, Paul; Carlotti, Francois; Alekseenko, Elena

    2017-04-01

    , demographic model (MBd) was validated for the Black Sea ecosystem basing on the unique database of long-term field data of ctenophores (including M.l. and B.o.), mesozooplankton, ichtyoplankton, bacteria in the Black Sea (1992-present). Then comparative analysis of the ecosystem conditions for the productive Black Sea and oligrotrophic areas of the north-western Mediterranean Sea favorable for M.l. blooms have been performed using the developed modelling approach. References : Ghabooli Sara, Shiganova Tamara A., Elizabeta Briski, Stefano Piraino, Veronica Fuentes, Delphine Thibault-Botha, Dror L. Angel, Melania E. Cristescu, Hugh J. MacIsaac (2013) Invasion pathway of the ctenophore Mnemiopsis leidyi in the Mediterranean Sea. PLOS ONE. Open Access PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e81067: DOI: 10.1371/journal.pone.0081067 Impact factor 3,534 Shiganova Tamara A., Louis Legendre, Alexander S. Kazmin, Paul Nival 2014. Interactions between invasive ctenophores in the Black Sea: assessment of control mechanisms based on long-term observations. Marine ecology Prog.Ser. Vol. 507: 111-123 doi: 10.3354/meps10806.

  14. Ecology of forest insect invasions

    Science.gov (United States)

    E.G. Brockerhoff; A.M. Liebhold

    2017-01-01

    Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions...

  15. Severity of post-ERCP pancreatitis directly proportional to the invasiveness of endoscopic intervention: a pilot study in a canine model.

    Science.gov (United States)

    Buscaglia, J M; Simons, B W; Prosser, B J; Ruben, D S; Giday, S A; Magno, P; Clarke, J O; Shin, E J; Kalloo, A N; Kantsevoy, S V; Gabrielson, K L; Jagannath, S B

    2008-06-01

    Pancreatitis complicates 1% - 22% of endoscopic retrograde cholangiopancreatography procedures. The study aims were to develop a reproducible animal model of post-ERCP pancreatitis (PEP), and investigate the impact of endoscopic technique on severity of PEP. ERCP was carried out in six male hound dogs. Pancreatitis was induced by one of three escalating methods: 1) pancreatic acinarization with 20 - 30 mL of contrast; 2) acinarization + ductal balloon occlusion + sphincterotomy; 3) acinarization + intraductal synthetic bile injection + ductal balloon occlusion + sphincterotomy. Dogs 5 and 6 received a pancreatic stent. Necropsy was performed on postoperative day 5. All pancreatic specimens were graded by two blinded pathologists according to a validated scoring system. All dogs were compared with three control dogs. Dogs 1 - 4 developed clinical pancreatitis and hyperamylasemia (11 736 vs. 722 U/L, P = 0.02). Total injury scores were significantly elevated compared with controls (6.85 vs. 1.06, P = 0.004). There was significant increase in acinar cell necrosis (0.86 vs. 0.06, P = Dogs 5 and 6 developed clinical pancreatitis without significant hyperamylasemia; total injury scores were elevated compared with controls (4.83 vs. 1.06, P = 0.01), but lower than in Dogs 1 - 4 (4.83 vs. 6.85, P = 0.25). There was escalating severity of pancreatic injury from Dogs 1 to 4 correlating with the method of endoscopic injury used. Severity of PEP is directly proportional to invasiveness of endoscopic intervention. Pancreatic acinarization, even without balloon occlusion and sphincterotomy, can be used as a reliable animal model for future studies investigating therapy and prevention of disease.

  16. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Science.gov (United States)

    Morris, Stephen; Karlsen, Saffron; Chung, Nancy; Hill, Melissa; Chitty, Lyn S

    2014-01-01

    Non-invasive prenatal testing (NIPT) for Down's syndrome (DS) using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service. We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost. At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000) at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs. NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  17. Ecological effects of the invasive giant madagascar day gecko on endemic mauritian geckos: applications of binomial-mixture and species distribution models.

    Directory of Open Access Journals (Sweden)

    Steeves Buckland

    Full Text Available The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp. that have survived on mainland Mauritius. We had two main aims: (i to predict the spatial distribution and overlap of P. grandis and the endemic geckos at a landscape level; and (ii to investigate the effects of P. grandis on the abundance and risks of extinction of the endemic geckos at a local scale. An ensemble forecasting approach was used to predict the spatial distribution and overlap of P. grandis and the endemic geckos. We used hierarchical binomial mixture models and repeated visual estimate surveys to calculate the abundance of the endemic geckos in sites with and without P. grandis. The predicted range of each species varied from 85 km2 to 376 km2. Sixty percent of the predicted range of P. grandis overlapped with the combined predicted ranges of the four endemic geckos; 15% of the combined predicted ranges of the four endemic geckos overlapped with P. grandis. Levin's niche breadth varied from 0.140 to 0.652 between P. grandis and the four endemic geckos. The abundance of endemic geckos was 89% lower in sites with P. grandis compared to sites without P. grandis, and the endemic geckos had been extirpated at four of ten sites we surveyed with P. grandis. Species Distribution Modelling, together with the breadth metrics, predicted that P. grandis can partly share the equivalent niche with endemic species and survive in a range of environmental conditions. We provide strong evidence that smaller endemic geckos are unlikely to survive in sympatry with P. grandis. This is a cause of concern in both Mauritius and other countries with endemic species of Phelsuma.

  18. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-02-06

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-ations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de-livery protocol.

  19. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang [Central Michigan Univ., Mount Pleasant, MI (United States); Kim, JongWon [Central Michigan Univ., Mount Pleasant, MI (United States); Si, Xiuhua A. [California Baptist Univ., Riverside, CA (United States); Corley, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kabilan, Senthil [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shengyu [First Affliliated Hospital of Xi' an Medical Univ., Shaanxi (China)

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de- livery protocol.

  20. Ecological effects of the invasive giant madagascar day gecko on endemic mauritian geckos: applications of binomial-mixture and species distribution models.

    Science.gov (United States)

    Buckland, Steeves; Cole, Nik C; Aguirre-Gutiérrez, Jesús; Gallagher, Laura E; Henshaw, Sion M; Besnard, Aurélien; Tucker, Rachel M; Bachraz, Vishnu; Ruhomaun, Kevin; Harris, Stephen

    2014-01-01

    The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P. grandis and the endemic geckos at a landscape level; and (ii) to investigate the effects of P. grandis on the abundance and risks of extinction of the endemic geckos at a local scale. An ensemble forecasting approach was used to predict the spatial distribution and overlap of P. grandis and the endemic geckos. We used hierarchical binomial mixture models and repeated visual estimate surveys to calculate the abundance of the endemic geckos in sites with and without P. grandis. The predicted range of each species varied from 85 km2 to 376 km2. Sixty percent of the predicted range of P. grandis overlapped with the combined predicted ranges of the four endemic geckos; 15% of the combined predicted ranges of the four endemic geckos overlapped with P. grandis. Levin's niche breadth varied from 0.140 to 0.652 between P. grandis and the four endemic geckos. The abundance of endemic geckos was 89% lower in sites with P. grandis compared to sites without P. grandis, and the endemic geckos had been extirpated at four of ten sites we surveyed with P. grandis. Species Distribution Modelling, together with the breadth metrics, predicted that P. grandis can partly share the equivalent niche with endemic species and survive in a range of environmental conditions. We provide strong evidence that smaller endemic geckos are unlikely to survive in sympatry with P. grandis. This is a cause of concern in both Mauritius and other countries with endemic species of Phelsuma.

  1. Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: comparison of a minimally invasive closed-chest model with open-chest surgery

    Directory of Open Access Journals (Sweden)

    Katsanos Konstantinos

    2012-02-01

    Full Text Available Abstract Introduction To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery. Methods New Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG, cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining. Results In total, 38 subjects underwent EMI with a surgical (n = 17 or endovascular (n = 21 approach. ST-segment elevation (1.90 ± 0.71 mm occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68 within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05. Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68. Conclusion The proposed model of transauricular coronary coil embolization avoids

  2. Cryptic invasions: a review

    Czech Academy of Sciences Publication Activity Database

    Morais, Pedro Miguel; Reichard, Martin

    613-614, February (2018), s. 1438-1448 ISSN 0048-9697 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : Conspecific invader * Biological invasions * Bibliometric * Invasiveness Subject RIV: EG - Zoology OBOR OECD: Environmental science s (social aspects to be 5.7) Impact factor: 4.900, year: 2016

  3. Candida albicans hyphal invasion: thigmotropism or chemotropism?

    Science.gov (United States)

    Davies, J M; Stacey, A J; Gilligan, C A

    1999-02-15

    Hyphae of the human pathogenic fungus Candida albicans exhibit thigmotropic behaviour in vitro, in common with phytopathogenic and saprotrophic fungi. An examination of the literature on C. albicans hyphal penetration of epithelial and endothelial membranes does not support the premise that hyphal thigmotropism plays a major role in tissue invasion. Further experimentation is now required to assess thigmotropic behaviour on host membranes and vaginal epithelial cells are suggested as a test model. It is proposed that while thigmotropism may and invasion of tissue invaginations, chemotropism can explain C. albicans hyphal invasion patterns of both endothelium and epithelium.

  4. Dynamics of cancerous tissue correlates with invasiveness

    Science.gov (United States)

    West, Ann-Katrine Vransø; Wullkopf, Lena; Christensen, Amalie; Leijnse, Natascha; Tarp, Jens Magelund; Mathiesen, Joachim; Erler, Janine Terra; Oddershede, Lene Broeng

    2017-03-01

    Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.

  5. Arabinoxylans, inulin and Lactobacillus reuteri 1063 repress the adherent-invasive Escherichia coli from mucus in a mucosa-comprising gut model.

    Science.gov (United States)

    Van den Abbeele, Pieter; Marzorati, Massimo; Derde, Melanie; De Weirdt, Rosemarie; Joan, Vermeiren; Possemiers, Sam; Van de Wiele, Tom

    2016-01-01

    The microbiota that colonises the intestinal mucus may particularly affect human health given its proximity to the epithelium. For instance, the presence of the adherent-invasive Escherichia coli (AIEC) in this mucosal microbiota has been correlated with Crohn's disease. Using short-term screening assays and a novel long-term dynamic gut model, which comprises a simulated mucosal environment (M-SHIME), we investigated how (potential) pro- and prebiotics may repress colonisation of AIEC from mucus. Despite that during the short-term screening assays, some of the investigated Lactobacillus strains adhered strongly to mucins, none of them competed with AIEC for mucin-adhesion. In contrast, AIEC survival and growth during co-culture batch incubations was decreased by Lactobacillus rhamnosus GG and L. reuteri 1063, which correlated with (undissociated) lactic acid and reuterin levels. Regarding the prebiotics, long-chain arabinoxylans (LC-AX) lowered the initial mucin-adhesion of AIEC, while both inulin (IN) and galacto-oligosaccharides (GOS) limited AIEC survival and growth during batch incubations. L. reuteri 1063, LC-AX and IN were thus retained for a long-term study with the M-SHIME. All treatments repressed AIEC from mucus without affecting AIEC numbers in the luminal content. As a possible explanation, L. reuteri 1063 treatment increased lactobacilli levels in mucus, while LC-AX and IN additionally increased mucosal bifidobacteria levels, thus leading to antimicrobial effects against AIEC in mucus. Overall, this study shows that pro- and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium.

  6. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague.

    Science.gov (United States)

    Sha, Jian; Rosenzweig, Jason A; Kirtley, Michelle L; van Lier, Christina J; Fitts, Eric C; Kozlova, Elena V; Erova, Tatiana E; Tiner, Bethany L; Chopra, Ashok K

    2013-02-01

    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersinia pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD(50). Intranasal infection of mice with 15 LD(50) of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24-72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy

  7. Climate suitability and human influences combined explain the range expansion of an invasive horticultural plant

    Science.gov (United States)

    Carolyn M. Beans; Francis F. Kilkenny; Laura F. Galloway

    2012-01-01

    Ecological niche models are commonly used to identify regions at risk of species invasions. Relying on climate alone may limit a model's success when additional variables contribute to invasion. While a climate-based model may predict the future spread of an invasive plant, we hypothesized that a model that combined climate with human influences would most...

  8. Guidelines for the Use of Mathematics in Operational Area-Wide Integrated Pest Management Programmes Using the Sterile Insect Technique with a Special Focus on Tephritid Fruit Flies

    International Nuclear Information System (INIS)

    Barclay, H.L.; Enkerlin, W.R.; Manoukis, N.C.; Reyes-Flores, J.

    2016-01-01

    This guideline attempts to assist managers in the use of mathematics in area-wide Integrated Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes mathematical tools that can be used at different stages of suppression/eradication programmes. For instance, it provides simple methods for calculating the various quantities of sterile insects required in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be achieved. The calculations, for the most part, only involve high school mathematics and can be done easily with small portable computers or calculators. The guideline is intended to be a reference book, to be consulted when necessary. As such, any particular AW-IPM programme using the SIT will probably only need certain sections, and much of the book can be ignored if that is the case. For example, if the intervention area is relatively small and well isolated, then the section on dispersal can safely be ignored, as the boundedness of the area means that dispersal should not be a problem, and so the section on diffusion equations can be ignored. An overview is given in each chapter to try to let the programme manager make a decision about where to put the programme efforts. On the other hand, most SIT programmes have an information system (many of them based on GIS) that produces reliable profiles of historic information. Based on the results of past activities they describe what has happened in the last days or weeks but usually do not explain, or barely explain, what is expected in the following days or weeks. Current AW-IPM progammes using the SIT have produced over many years a vast amount of every-day data from the field operations and from the mass rearing facility and packing and sterile insect releasing centres. With the help of this guideline, that information can be used to develop predictive models for their particular conditions to better plan control measures.

  9. Perspectives on invasive amphibians in Brazil.

    Directory of Open Access Journals (Sweden)

    Lucas Rodriguez Forti

    Full Text Available Introduced species have the potential to become invasive and jeopardize entire ecosystems. The success of species establishing viable populations outside their original extent depends primarily on favorable climatic conditions in the invasive ranges. Species distribution modeling (SDM can thus be used to estimate potential habitat suitability for populations of invasive species. Here we review the status of six amphibian species with invasive populations in Brazil (four domestic species and two imported species. We (i modeled the current habitat suitability and future potential distribution of these six focal species, (ii reported on the disease status of Eleutherodactylus johnstonei and Phyllodytes luteolus, and (iii quantified the acoustic overlap of P. luteolus and Leptodactylus labyrinthicus with three co-occurring native species. Our models indicated that all six invasive species could potentially expand their ranges in Brazil within the next few decades. In addition, our SDMs predicted important expansions in available habitat for 2 out of 6 invasive species under future (2100 climatic conditions. We detected high acoustic niche overlap between invasive and native amphibian species, underscoring that acoustic interference might reduce mating success in local frogs. Despite the American bullfrog Lithobates catesbeianus being recognized as a potential reservoir for the frog-killing fungus Batrachochytrium dendrobatidis (Bd in Brazil, we did not detect Bd in the recently introduced population of E. johnstonei and P. luteolus in the State of São Paulo. We emphasize that the number of invasive amphibian species in Brazil is increasing exponentially, highlighting the urgent need to monitor and control these populations and decrease potential impacts on the locally biodiverse wildlife.

  10. Invasion biology of thrips.

    Science.gov (United States)

    Morse, Joseph G; Hoddle, Mark S

    2006-01-01

    Thrips are among the stealthiest of insect invaders due to their small size and cryptic habits. Many invasive thrips are notorious for causing extensive crop damage, vectoring viral diseases, and permanently destabilizing IPM systems owing to irruptive outbreaks that require remediation with insecticides, leading to the development of insecticide resistance. Several challenges surface when attempting to manage incursive thrips species. Foremost among these is early recognition, followed by rapid and accurate identification of emergent pest species, elucidation of the region of origin, development of a management program, and the closing of conduits for global movement of thrips. In this review, we examine factors facilitating invasion by thrips, damage caused by these insects, pre- and post-invasion management tactics, and challenges looming on the horizon posed by invasive Thysanoptera, which continually challenge the development of sustainable management practices.

  11. Model-based analysis of costs and outcomes of non-invasive prenatal testing for Down's syndrome using cell free fetal DNA in the UK National Health Service.

    Directory of Open Access Journals (Sweden)

    Stephen Morris

    Full Text Available Non-invasive prenatal testing (NIPT for Down's syndrome (DS using cell free fetal DNA in maternal blood has the potential to dramatically alter the way prenatal screening and diagnosis is delivered. Before NIPT can be implemented into routine practice, information is required on its costs and benefits. We investigated the costs and outcomes of NIPT for DS as contingent testing and as first-line testing compared with the current DS screening programme in the UK National Health Service.We used a pre-existing model to evaluate the costs and outcomes associated with NIPT compared with the current DS screening programme. The analysis was based on a hypothetical screening population of 10,000 pregnant women. Model inputs were taken from published sources. The main outcome measures were number of DS cases detected, number of procedure-related miscarriages and total cost.At a screening risk cut-off of 1∶150 NIPT as contingent testing detects slightly fewer DS cases, has fewer procedure-related miscarriages, and costs the same as current DS screening (around UK£280,000 at a cost of £500 per NIPT. As first-line testing NIPT detects more DS cases, has fewer procedure-related miscarriages, and is more expensive than current screening at a cost of £50 per NIPT. When NIPT uptake increases, NIPT detects more DS cases with a small increase in procedure-related miscarriages and costs.NIPT is currently available in the private sector in the UK at a price of £400-£900. If the NHS cost was at the lower end of this range then at a screening risk cut-off of 1∶150 NIPT as contingent testing would be cost neutral or cost saving compared with current DS screening. As first-line testing NIPT is likely to produce more favourable outcomes but at greater cost. Further research is needed to evaluate NIPT under real world conditions.

  12. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C [GSI Helmholtz Center, Darmstadt, DE (Germany); Lehmann, H I; Takami, M; Packer, D L [Mayo Clinic, Rochester, Minnesota (United States); Lugenbiel, P; Thomas, D [University of Heidelberg, Heidelberg, DE (Germany); Richter, D; Bert, C [University Clinic Erlangen, Erlagen, DE (Germany)

    2015-06-15

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the

  13. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  14. Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: a comparison of approaches using expert-opinion and habitat suitability modelling.

    Directory of Open Access Journals (Sweden)

    Claire D Stevenson-Holt

    Full Text Available Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a least-cost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a least-cost approach to mapping ecological networks.

  15. Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: a comparison of approaches using expert-opinion and habitat suitability modelling.

    Science.gov (United States)

    Stevenson-Holt, Claire D; Watts, Kevin; Bellamy, Chloe C; Nevin, Owen T; Ramsey, Andrew D

    2014-01-01

    Least-cost models are widely used to study the functional connectivity of habitat within a varied landscape matrix. A critical step in the process is identifying resistance values for each land cover based upon the facilitating or impeding impact on species movement. Ideally resistance values would be parameterised with empirical data, but due to a shortage of such information, expert-opinion is often used. However, the use of expert-opinion is seen as subjective, human-centric and unreliable. This study derived resistance values from grey squirrel habitat suitability models (HSM) in order to compare the utility and validity of this approach with more traditional, expert-led methods. Models were built and tested with MaxEnt, using squirrel presence records and a categorical land cover map for Cumbria, UK. Predictions on the likelihood of squirrel occurrence within each land cover type were inverted, providing resistance values which were used to parameterise a least-cost model. The resulting habitat networks were measured and compared to those derived from a least-cost model built with previously collated information from experts. The expert-derived and HSM-inferred least-cost networks differ in precision. The HSM-informed networks were smaller and more fragmented because of the higher resistance values attributed to most habitats. These results are discussed in relation to the applicability of both approaches for conservation and management objectives, providing guidance to researchers and practitioners attempting to apply and interpret a least-cost approach to mapping ecological networks.

  16. A variable-instar climate-driven individual beetle-based phenology model for the invasive Asian longhorned beetle (Coleoptera: Cerambycidae)

    Science.gov (United States)

    R. Talbot Trotter, III; Melody A. Keena

    2016-01-01

    Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology...

  17. Ecological Effects of the Invasive Giant Madagascar Day Gecko on Endemic Mauritian Geckos: Applications of Binomial-Mixture and Species Distribution Models

    NARCIS (Netherlands)

    Buckland, S.; Cole, N.C.; Aguirre-Gutiérrez, J.; Gallagher, L.E.; Henshaw, S.M.; Besnard, A.; Tucker, R.M.; Bachraz, V.; Ruhomaun, K.; Harris, S.

    2014-01-01

    The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P. grandis and the endemic geckos

  18. The prioritisation of invasive alien plant control projects using a multi-criteria decision model informed by stakeholder input and spatial data

    CSIR Research Space (South Africa)

    Forsyth, GG

    2012-07-01

    Full Text Available operations in the Western Cape, South Africa. Stakeholder workshops were held to identify a goal and criteria and to conduct pair-wise comparisons to weight the criteria with respect to invasive alien plant control. The combination of stakeholder input (to...

  19. Integrated Spatial Models of Non Native Plant Invasion, Fire Risk, and Wildlife Habitat to Support Conservation of Military and Adjacent Lands in the Arid Southwest

    Science.gov (United States)

    2015-12-01

    that can effectively benefit 8 rare and sensitive species by adequately addressing biological invasions, disturbance, climate change , and their...Italy, University of Sassari Press. Allen, L. H. 1991. Effects of increasing carbon dioxide levels and climate change on plant growth... Climate change 2013: the physicals basis. Intergovernmental Panel on Climate Change , Working Group I Contribution to the IPCC Fifth Assessment

  20. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    International Nuclear Information System (INIS)

    Korvala, Johanna; Jee, Kowan; Porkola, Emmi; Almangush, Alhadi; Mosakhani, Neda; Bitu, Carolina; Cervigne, Nilva K.; Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes; Coletta, Ricardo D.

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  1. Development and validation of a risk model for identification of non-neutropenic, critically ill adult patients at high risk of invasive Candida infection: the Fungal Infection Risk Evaluation (FIRE) Study.

    Science.gov (United States)

    Harrison, D; Muskett, H; Harvey, S; Grieve, R; Shahin, J; Patel, K; Sadique, Z; Allen, E; Dybowski, R; Jit, M; Edgeworth, J; Kibbler, C; Barnes, R; Soni, N; Rowan, K

    2013-02-01

    There is increasing evidence that invasive fungal disease (IFD) is more likely to occur in non-neutropenic patients in critical care units. A number of randomised controlled trials (RCTs) have evaluated antifungal prophylaxis in non-neutropenic, critically ill patients, demonstrating a reduction in the risk of proven IFD and suggesting a reduction in mortality. It is necessary to establish a method to identify and target antifungal prophylaxis at those patients at highest risk of IFD, who stand to benefit most from any antifungal prophylaxis strategy. To develop and validate risk models to identify non-neutropenic, critically ill adult patients at high risk of invasive Candida infection, who would benefit from antifungal prophylaxis, and to assess the cost-effectiveness of targeting antifungal prophylaxis to high-risk patients based on these models. Systematic review, prospective data collection, statistical modelling, economic decision modelling and value of information analysis. Ninety-six UK adult general critical care units. Consecutive admissions to participating critical care units. None. Invasive fungal disease, defined as a blood culture or sample from a normally sterile site showing yeast/mould cells in a microbiological or histopathological report. For statistical and economic modelling, the primary outcome was invasive Candida infection, defined as IFD-positive for Candida species. Systematic review: Thirteen articles exploring risk factors, risk models or clinical decision rules for IFD in critically ill adult patients were identified. Risk factors reported to be significantly associated with IFD were included in the final data set for the prospective data collection. Data were collected on 60,778 admissions between July 2009 and March 2011. Overall, 383 patients (0.6%) were admitted with or developed IFD. The majority of IFD patients (94%) were positive for Candida species. The most common site of infection was blood (55%). The incidence of IFD

  2. Introduced and invasive cactus species: a global review.

    Science.gov (United States)

    Novoa, Ana; Le Roux, Johannes J; Robertson, Mark P; Wilson, John R U; Richardson, David M

    2014-12-03

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion-in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  3. Development of a non-invasive model to improve the accuracy of determining liver fibrosis stage in nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Yu.M. Stepanov

    2017-11-01

    Full Text Available Background. The differentiation of mild (F1-F2 and advanced fibrosis (F3-F4, as well as the exclusion of fibrosis in patients with nonalcoholic fatty liver disease (NAFLD, are extremely important for prediction of the disease course. Integrative analyses of serum markers have been proposed as promising alternatives to biopsy method. Our study was targeted to develop a new model for determining the stage of fibrosis based on a more efficient combination of serological markers and to compare it with well-established algorithms. Materials and methods. Sixty patients with biopsy-proven NAFLD, including 26 (43 % men and 34 (57 % women, with average age of 37.10 ± 12.4 and 44.30 ± 7.25 years, respectively, were recruited for the study. Particularly, advanced fibrosis was diagnosed in 8 patients, 28 had mild fibrosis and 24 didn’t have any fibrosis according to morphological study. The following fibrosis markers were calculated: aspartate aminotransferase and alanine aminotransferase ratio (AAR, aspartate aminotransferase to platelet ratio index (APRI, fibrosis index based on the 4 factor (FIB-4. Among many variables, hyaluronic acid, α2-macroglobulin, apolipoprotein A1, fibronectin, and haptoglobin were included in comprehensive study. Integrative model have been built up to determine the stage of fibrosis. The models were compared with the area under the receiver operating characteristic (AUROC curves. Results. The ROC analysis showed that the FIB-4 demonstrated the largest AUROC, for the F2 — 0.72, F3 — 0.8, F4 — 0.82, respectively. Obtained results of the APRI were significantly higher for mild and advanced fibrosis (F2 — 0.74, F3 — 0.82. The AAR values were reliable only for liver cirrhosis (AUROC 0.89. A strong direct correlation was determined between the stage of fibrosis and the level of hyaluronic acid, α2-macroglobulin and fibronectin (r = 0.72, 0.93 and 0.71, p < 0.05, respectively. Whereas, we observed a moderate negative

  4. The stock of invasive insect species and its economic determinants.

    Science.gov (United States)

    Hlasny, Vladimir

    2011-06-01

    Invasions of nonindigenous organisms have long been linked to trade, but the contribution of individual trade pathways remains poorly understood, because species are not observed immediately upon arrival and the number of species arriving annually is unknown. Species interception records may count both new arrivals and species long introduced. Furthermore, the stock of invasive insect species already present is unknown. In this study, a state-space model is used to infer the stock of detected as well as undetected invasive insect species established in the United States. A system of equations is estimated jointly to distinguish the patterns of introduction, identification, and eradication. Introductions of invasive species are modeled as dependent on the volume of trade and arrival of people. Identifications depend on the public efforts at invasive species research, as well as on the established stock of invasive species that remain undetected. Eradications of both detected and undetected invasive species depend on containment and quarantine efforts, as well as on the stock of all established invasive species. These patterns are estimated by fitting the predicted number of invasive species detections to the observed record in the North American Non-Indigenous Arthropod Database. The results indicate that agricultural imports are the most important pathway of introduction, followed by immigration of people. Expenditures by the U.S. Department of Agriculture and the Agricultural Research Service are found to explain the species identification record well. Between three and 38 invasive insect species are estimated to be established in the United States undetected.

  5. Paradigm of plant invasion: multifaceted review on sustainable management.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2015-12-01

    A cascade of reviews and growing body of literature exists on forest invasion ecology, its mechanism or causes; however, no review addressed the sustainable management of invasive plants of forest in totality. Henceforth, the present paper aims to provide a critical review on the management of invasive species particularly in the context of forest plants. Plant invasion in forest is now increasingly being recognized as a global problem, and various continents are adversely affected, although to a differential scale. Quest for the ecological mechanism lying behind the success of invasive species over native species of forest has drawn the attention of researches worldwide particularly in the context of diversity-stability relationship. Transport, colonization, establishment, and landscape spread may be different steps in success of invasive plants in forest, and each and every step is checked through several ecological attributes. Further, several ecological attribute and hypothesis (enemy release, novel weapon, empty niche, evolution of increased competitive ability, etc.) were proposed pertaining to success of invasive plant species in forest ecosystems. However, a single theory will not be able to account for invasion success among all environments as it may vary spatially and temporally. Therefore, in order to formulate a sustainable management plan for invasive plants of forest, it is necessary to develop a synoptic view of the dynamic processes involved in the invasion process. Moreover, invasive species of forest can act synergistically with other elements of global change, including land-use change, climate change, increased concentrations of atmospheric carbon dioxide, and nitrogen deposition. Henceforth, a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions.

  6. Emergent Minimally Invasive Esophagogastrectomy

    Directory of Open Access Journals (Sweden)

    Thomas Fabian

    2017-01-01

    Full Text Available Introduction. Esophageal perforation in the setting of a malignancy carries a high morbidity and mortality. We describe our management of such a patient using minimally invasive approach. Methods. An 83-year-old female presented with an iatrogenic esophageal perforation during the workup of dysphagia. She was referred for surgical evaluation immediately after the event which occurred in the endoscopy suite. Minimally invasive esophagectomy was chosen to provide definitive treatment for both her malignancy and esophageal perforation. Results. Following an uncomplicated operative course, she was eventually discharged to extended care for rehabilitation and remains alive four years after her resection. Conclusion. Although traditional open techniques are the accepted gold standard of treatment for esophageal perforation, minimally invasive esophagectomy plays an important role in experienced hands and may be offered to such patients.

  7. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  8. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  9. Mechanisms Regulating Glioma Invasion

    Science.gov (United States)

    Paw, Ivy; Carpenter, Richard C.; Watabe, Kounosuke; Debinski, Waldemar; Lo, Hui-Wen

    2015-01-01

    Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness. PMID:25796440

  10. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  11. Management of invasive species

    DEFF Research Database (Denmark)

    Schou, Jesper Sølver; Jensen, Frank

    In this paper, we conduct a number of cost-benefit analyses to clarify whether the establishment of invasive species should be prevented or the damage of such species should be mitigated after introduction. We use the potential establishment of ragweed in Denmark as an empirical case. The main...... of information externalities, altruistic preferences, possible catastrophic events and ethical considerations....

  12. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    ), was established and compared with other clinically applied systems. RESULTS:: Size, vascular invasion, necrosis, and peripheral tumor growth pattern provided independent prognostic information with hazard ratios of 2.2-2.6 for development of metastases in multivariate analysis. When these factors were combined......BACKGROUND:: In soft tissue sarcoma, better distinction of high-risk and low-risk patients is needed to individualize treatment and improve survival. Prognostic systems used in clinical practice identify high-risk patients based on various factors, including age, tumor size and depth, histological...

  13. Ecological Effects of the Invasive Giant Madagascar Day Gecko on Endemic Mauritian Geckos: Applications of Binomial-Mixture and Species Distribution Models

    OpenAIRE

    Buckland, S.; Cole, N.C.; Aguirre-Gutiérrez, J.; Gallagher, L.E.; Henshaw, S.M.; Besnard, A.; Tucker, R.M.; Bachraz, V.; Ruhomaun, K.; Harris, S.

    2014-01-01

    The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P. grandis and the endemic geckos at a landscape level; and (ii) to investigate the effects of P. grandis on the abundance and risks of extinction of the endemic geckos at a local scale. An ensemble forecasting approach was used to...

  14. Invasive Plants -- A Horticultural Perspective

    OpenAIRE

    Niemiera, Alexander Xavier, 1951-; Von Holle, Betsy

    2009-01-01

    This publication explains how nonnative invasive plants are harmful and why you should care, how to predict the invasive potential of a plant, and how gardeners and landscape professionals can make informed choices when choosing plants.

  15. Economic savings from invasive plant prevention

    Science.gov (United States)

    Prevention programs are often assumed to be the most cost-effective method for managing invasive plants. However, there is very little information about economic and biological factors that determine the forage benefits resulting from prevention programs. We developed a simple economic model to asse...

  16. Combined Zoledronic Acid and Meloxicam Reduced Bone Loss and Tumor Growth in an Orthotopic Mouse Model of Bone-Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Martin, C.K.; Dirksen, W.P.; Carlton, M.M.; Lanigan, L.G.; Pillai, S.P.; Werbeck, J.L.; Simmons, J.K.; Hildreth, B.E.; London, C.A.; Toribio, R.E.; Rosol, T.J.

    2013-01-01

    Oral squamous cell carcinoma is common in cats and humans and invades oral bone. We hypothesized that the cyclooxygenase-2 inhibitor, meloxicam, with the bisphosphonate, zoledronic acid (ZOL), would inhibit tumor growth, osteolysis and invasion in feline oral squamous cell carcinoma (OSCC) xenografts in mice. Human and feline OSCC cell lines expressed cyclooxygenase (COX)-1 and 2 and the SCCF2 cells had increased COX-2 mRNA expression with bone conditioned medium. Luciferase-expressing feline SCCF2Luc cells were injected beneath the perimaxillary gingiva and mice were treated with 0.1 mg/kg ZOL twice weekly, 0.3 mg/kg meloxicam daily, combined ZOL and meloxicam, or vehicle. ZOL inhibited osteoclastic bone resorption at the tumor-bone interface. Meloxicam was more effective than ZOL at reducing xenograft growth but did not affect osteoclastic bone resorption. Although a synergistic effect of combined ZOL and meloxicam was not observed, combination therapy was well tolerated and may be useful in the clinical management of bone-invasive feline OSCC. PMID:23651067

  17. Minimally Invasive Abdominal Surgery

    OpenAIRE

    Richardson, William S.; Carter, Kristine M.; Fuhrman, George M.; Bolton, John S.; Bowen, John C.

    2000-01-01

    In the last decade, laparoscopy has been the most innovative surgical movement in general surgery. Minimally invasive surgery performed through a few small incisions, laparoscopy is the standard of care for the treatment of gallbladder disease and the gold standard for the treatment of reflux disease. The indications for a laparoscopic approach to abdominal disease continue to increase, and many diseases may be treated with laparoscopic techniques. At Ochsner, laparoscopic techniques have dem...

  18. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  19. Proton Resonance Frequency Chemical Shift Thermometry: Experimental Design and Validation Towards High-Resolution Non-Invasive Temperature Monitoring, and in vivo Experience in a Non-human Primate Model of Acute Ischemic Stroke

    Science.gov (United States)

    Dehkharghani, Seena; Mao, Hui; Howell, Leonard; Zhang, Xiaodong; Pate, K S; Magrath, P R; Tong, Frank; Wei, L; Qiu, D; Fleischer, C; Oshinski, J N

    2016-01-01

    BACKGROUND AND PURPOSE Applications for non-invasive biological temperature monitoring are widespread in biomedicine, and of particular interest in the context of brain temperature regulation, where traditionally costly and invasive monitoring schemes limit their applicability in many settings. Brain thermal regulation therefore remains controversial, motivating the development of non-invasive approaches such as temperature-sensitive NMR phenomena. The purpose of this work was to compare the utility of competing approaches to MR thermometry (MRT) employing proton resonance frequency chemical shift. Three methodologies were tested, hypothesizing the feasibility of a fast and accurate approach to chemical shift thermometry, in a phantom study at 3.0 Tesla. MATERIALS AND METHODS A conventional, paired approach (DIFF-1), an accelerated single-scan approach (DIFF-2), and a new, further accelerated strategy (DIFF-3) were tested. Phantom temperatures were modulated during real-time fiber optic temperature monitoring, with MRT derived simultaneously from temperature-sensitive changes in the water proton chemical shift (~0.01 ppm/°C). MRT was subsequently performed in a series of in vivo non-human primate experiments under physiologic and ischemic conditions testing its reproducibility and overall performance. RESULTS Chemical shift thermometry demonstrated excellent agreement with phantom temperatures for all three approaches (DIFF-1 linear regression R2=0.994, p<0.001, acquisition time 4 min 40 s; DIFF-2 R2=0.996, p<0.001, acquisition time 4 min; DIFF-3 R2=0.998, p<0.001, acquisition time 40 s). CONCLUSION These findings confirm the comparability in performance of three competing approaches MRT, and present in vivo applications under physiologic and ischemic conditions in a primate stroke model. PMID:25655874

  20. Acidity generated by the tumor microenvironment drives local invasion.

    Science.gov (United States)

    Estrella, Veronica; Chen, Tingan; Lloyd, Mark; Wojtkowiak, Jonathan; Cornnell, Heather H; Ibrahim-Hashim, Arig; Bailey, Kate; Balagurunathan, Yoganand; Rothberg, Jennifer M; Sloane, Bonnie F; Johnson, Joseph; Gatenby, Robert A; Gillies, Robert J

    2013-03-01

    The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR. ©2012 AACR.

  1. Validation of Minimally-Invasive, Image-guided Cochlear Implantation Using Advanced Bionics, Cochlear, and Medel Electrodes in a Cadaver Model

    Science.gov (United States)

    McRackan, Theodore R; Balachandran, Ramya; Blachon, Grégoire S; Mitchell, Jason E; Noble, Jack H; Wright, Charles G; Fitzpatrick, J. Michael; Dawant, Benoit M; Labadie, Robert F

    2015-01-01

    Purpose Validation of a novel minimally-invasive, image-guided approach to implant electrodes from three FDA-approved manufacturers—Medel, Cochlear, and Advanced Bionics—in the cochlea via a linear tunnel from the lateral cranium through the facial recess to the cochlea. Methods Custom microstereotactic frames that mount on bone-implanted fiducial markers and constrain the drill along the desired path were utilized on seven cadaver specimens. A linear tunnel was drilled from the lateral skull to the cochlea followed by a marginal, round-window cochleostomy and insertion of the electrode array into the cochlea through the drilled tunnel. Post-insertion CT scan and histological analysis were used to analyze the results. Results All specimens (N=7) were successfully implanted without visible injury to the facial nerve. The Medel electrodes (N=3) had minimal intracochlear trauma with 8, 8, and 10 (out of 12) electrodes intracochlear. The Cochlear lateral wall electrodes (straight research arrays) (N=2) had minimal trauma with 20 and 21 of 22 electrodes intracochlear. The Advanced Bionics electrodes (N=2) were inserted using their insertion tool; one had minimal insertion trauma and 14 of 16 electrodes intracochlear while the other had violation of the basilar membrane just deep to the cochleostomy following which it remained in scala vestibuli with 13 of 16 electrodes intracochlear. Conclusions Minimally invasive, image-guided cochlear implantation is possible using electrodes from the three FDA-approved manufacturers. Lateral wall electrodes were associated with less intracochlear trauma suggesting that they may be better suited for this surgical technique. PMID:23633113

  2. Degenerate wave and capacitive coupling increase human MSC invasion and proliferation while reducing cytotoxicity in an in vitro wound healing model.

    Directory of Open Access Journals (Sweden)

    Michelle Griffin

    Full Text Available Non-unions pose complications in fracture management that can be treated using electrical stimulation (ES. Bone marrow mesenchymal stem cells (BMMSCs are essential in fracture healing; however, the effect of different clinical ES waveforms on BMMSCs cellular activities remains unknown. We compared the effects of direct current (DC, capacitive coupling (CC, pulsed electromagnetic field (PEMF and degenerate wave (DW on cellular activities including cytotoxicity, proliferation, cell-kinetics and apoptosis by stimulating human-BMMSCs 3 hours a day, up to 5 days. In addition, migration and invasion were assessed using fluorescence microscopy and by quantifying gene and protein expression. We found that DW had the greatest proliferative and least apoptotic and cytotoxic effects compared to other waveforms. DC, DW and CC stimulations resulted in a higher number of cells in S phase and G(2/M phase as shown by cell cycle analysis. CC and DW caused more cells to invade collagen and showed increased MMP-2 and MT1-MMP expression. DC increased cellular migration in a scratch-wound assay and all ES waveforms enhanced expression of migratory genes with DC having the greatest effect. All ES treated cells showed similar progenitor potential as determined by MSC differentiation assay. All above findings were shown to be statistically significant (p<0.05. We conclude that ES can influence BMMSCs activities, especially DW and CC, which show greater invasion and higher cell proliferation compared to other types of ES. Application of DW or CC to the fracture site may help in the recruitment of BMMSCs to the wound that may enhance rate of bone healing at the fracture site.

  3. Revealing historic invasion patterns and potential invasion sites for two non-native plant species.

    Directory of Open Access Journals (Sweden)

    Jacob N Barney

    Full Text Available The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum, introduced intentionally across the US; and mugwort (Artemisia vulgaris, introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90(th meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90(th meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed and 30% (mugwort of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (>/=80% remain un-invaded (5 for Japanese knotweed and 6 for mugwort, suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci.

  4. Ensemble habitat mapping of invasive plant species

    Science.gov (United States)

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  5. Stably Integrated luxCDABE for Assessment of Salmonella Invasion Kinetics

    Directory of Open Access Journals (Sweden)

    Kelly N. Flentie

    2008-09-01

    Full Text Available Salmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC. The aim of this work was to characterize the invC dependence of invasion kinetics into disparate eukaryotic cells traditionally used as models of gut epithelium or neoplasms. Thus, a nondestructive real-time assay was developed to report eukaryotic cell invasion kinetics using lux+ Salmonella that contain chromosomally integrated luxCDABE genes. Bioluminescence-based invasion assays using lux+ Salmonella exhibited inoculum dose-response correlation, distinguished invasion-competent from invasion-incompetent Salmonella, and discriminated relative Salmonella invasiveness in accordance with environmental conditions that induce invasion gene expression. In standard gentamicin protection assays, bioluminescence from lux+ Salmonella correlated with recovery of colony-forming units of internalized bacteria and could be visualized by bioluminescence microscopy. Furthermore, this assay distinguished invasion-competent from invasion-incompetent bacteria independent of gentamicin treatment in real time. Bioluminescence reported Salmonella invasion of disparate eukaryotic cell lines, including neoplastic melanoma, colon adenocarcinoma, and glioma cell lines used in animal models of malignancy. In each case, Salmonella invasion of eukaryotic cells was invC dependent.

  6. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  7. Invasive plant species in the West Indies: geographical, ecological, and floristic insights.

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Tremblay, Raymond L; Acevedo-Rodríguez, Pedro; Díaz-Soltero, Hilda

    2017-07-01

    The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.

  8. Impact of echinocandin on prognosis of proven invasive candidiasis in ICU: A post-hoc causal inference model using the AmarCAND2 study.

    Science.gov (United States)

    Bailly, Sébastien; Leroy, Olivier; Azoulay, Elie; Montravers, Philippe; Constantin, Jean-Michel; Dupont, Hervé; Guillemot, Didier; Lortholary, Olivier; Mira, Jean-Paul; Perrigault, Pierre-François; Gangneux, Jean-Pierre; Timsit, Jean-François

    2017-04-01

    guidelines recommend first-line systemic antifungal therapy (SAT) with echinocandins in invasive candidiasis (IC), especially in critically ill patients. This study aimed at assessing the impact of echinocandins compared to azoles as initial SAT on the 28-day prognosis in adult ICU patients. From the prospective multicenter AmarCAND2 cohort (835 patients), we selected those with documented IC and treated with echinocandins (ECH) or azoles (AZO). The average causal effect of echinocandins on 28-day mortality was assessed using an inverse probability of treatment weight (IPTW) estimator. 397 patients were selected, treated with echinocandins (242 patients, 61%) or azoles (155 patients, 39%); septic shock: 179 patients (45%). The median SAPSII was higher in the ECH group (48 [35; 62] vs. 43 [31; 58], p = 0.01). Crude mortality was 34% (ECH group) vs. 25% (AZO group). After adjustment on baseline confounders, no significant association emerged between initial SAT with echinocandins and 28-day mortality (HR: 0.95; 95% CI: [0.60; 1.49]; p = 0.82). However, echinocandin tended to benefit patients with septic shock (HR: 0.46 [0.19; 1.07]; p = 0.07). Patients who received echinocandins were more severely ill. Echinocandin use was associated with a non-significant 7% decrease of 28-day mortality and a trend to a beneficial effect for patient with septic shock. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs

    Science.gov (United States)

    Nitsche, Michael A; Müller-Dahlhaus, Florian; Paulus, Walter; Ziemann, Ulf

    2012-01-01

    The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment. PMID:22869014

  10. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs.

    Science.gov (United States)

    Nitsche, Michael A; Müller-Dahlhaus, Florian; Paulus, Walter; Ziemann, Ulf

    2012-10-01

    The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment.

  11. Validation of a novel minimally invasive intervertebral disc pressure sensor utilizing in-fiber Bragg gratings in a porcine model: an ex vivo study.

    Science.gov (United States)

    Dennison, Christopher R; Wild, Peter M; Dvorak, Marcel F; Wilson, David R; Cripton, Peter A

    2008-08-01

    Nucleus pressure was measured within porcine intervertebral discs (IVDs) with a novel in-fiber Bragg grating (FBG) sensor (0.4 mm diameter) and a strain gauge (SG) sensor (2.45 mm). To validate the accuracy of a new FBG pressure sensor designed for minimally invasive measurements of nucleus pressure. Although its clinical utility is controversial, it is possible that the predictive accuracy of discography can be improved with IVD pressure measurements. These measurements are typically obtained using needle-mounted SG sensors inserted into the nucleus. However, by virtue of their size, SG sensors alter disc mechanics, injure anulus fibers, and can potentially initiate or accelerate degenerative changes thereby limiting their utility particularly clinically. Six functional spinal units were loaded in compression from 0 N to 500 N and back to 0 N; nucleus pressure was measured using the FBG and SG sensors at various locations along anterior and anterolateral axes. On average maximum IVD pressures measured using the FBG and SG sensors were within 9.39% of each other. However, differences between maximum measured pressures from the FBG and SG sensors were larger (22.2%) when the SG sensor interfered with vertebral endplates (P pressure sensor and gave results consistent with previous disc pressure studies and the SG sensor. There is significant potential to use this sensor during discography while avoiding the controversy associated with disc injury as a result of sensor insertion.

  12. Cell invasion through basement membrane

    OpenAIRE

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recent...

  13. Placing invasive species management in a spatiotemporal context.

    Science.gov (United States)

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  14. Plant Invasions in China – Challenges and Chances

    Science.gov (United States)

    Axmacher, Jan C.; Sang, Weiguo

    2013-01-01

    Invasive species cause serious environmental and economic harm and threaten global biodiversity. We set out to investigate how quickly invasive plant species are currently spreading in China and how their resulting distribution patterns are linked to socio-economic and environmental conditions. A comparison of the invasive plant species density (log species/log area) reported in 2008 with current data shows that invasive species were originally highly concentrated in the wealthy, southeastern coastal provinces of China, but they are currently rapidly spreading inland. Linear regression models based on the species density and turnover of invasive plants as dependent parameters and principal components representing key socio-economic and environmental parameters as predictors indicate strong positive links between invasive plant density and the overall phytodiversity and associated climatic parameters. Principal components representing socio-economic factors and endemic plant density also show significant positive links with invasive plant density. Urgent control and eradication measures are needed in China's coastal provinces to counteract the rapid inland spread of invasive plants. Strict controls of imports through seaports need to be accompanied by similarly strict controls of the developing horticultural trade and underpinned by awareness campaigns for China's increasingly affluent population to limit the arrival of new invaders. Furthermore, China needs to fully utilize its substantial native phytodiversity, rather than relying on exotics, in current large-scale afforestation projects and in the creation of urban green spaces. PMID:23691164

  15. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  16. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  17. A comparison of non-invasive versus invasive methods of ...

    African Journals Online (AJOL)

    Puneet Khanna

    for Hb estimation from the laboratory [total haemoglobin mass (tHb)] and arterial blood gas (ABG) machine (aHb), using ... A comparison of non-invasive versus invasive methods of haemoglobin estimation in patients undergoing intracranial surgery. 161 .... making decisions for blood transfusions based on these results.

  18. Invasive v. non-invasive blood pressure measurements the ...

    African Journals Online (AJOL)

    A reasonable correlation exists between invasive and noninvasive methods of measuring systemic blood pressure. However, there are frequent individual differences between these methods and these variations have often caused the validity of the non-invasive measurement to be questioned. The hypothesis that certain ...

  19. Sustained reduction in vaccine-type invasive pneumococcal disease despite waning effects of a catch-up campaign in Kilifi, Kenya: A mathematical model based on pre-vaccination data.

    Science.gov (United States)

    Ojal, John; Flasche, Stefan; Hammitt, Laura L; Akech, Donald; Kiti, Moses C; Kamau, Tatu; Adetifa, Ifedayo; Nurhonen, Markku; Scott, J Anthony G; Auranen, Kari

    2017-08-16

    In 2011, Kenya introduced the 10-valent pneumococcal conjugate vaccine together with a catch-up campaign for children aged vaccination surveillance study based in Kilifi, there was a substantial decline in invasive pneumococcal disease (IPD). However, given the continued circulation of the vaccine serotypes it is possible that vaccine-serotype disease may re-emerge once the effects of the catch-up campaign wear off. We developed a compartmental, age-structured dynamic model of pneumococcal carriage and invasive disease for three serotype groups: the 10-valent vaccine serotypes and two groups of non-vaccine serotypes based on their susceptibility to mutual competition. The model was calibrated to age- and serotype-specific data on carriage and IPD in the pre-vaccination era and used to predict carriage prevalence and IPD up to ten years post-vaccination in Kilifi. The model was validated against the observed carriage prevalence after vaccine introduction. The model predicts a sustained reduction in vaccine-type pneumococcal carriage prevalence from 33% to 8% in infants and from 30% to 8% in 1-5year olds over the 10-year period following vaccine introduction. The incidence of IPD is predicted to decline across all age groups resulting in an overall reduction of 56% in the population, corresponding to 10.4 cases per 100,000 per year. The vaccine-type IPD incidence is estimated to decline by 83% while non-vaccine-type IPD incidence is predicted to increase by 52%. The model's predictions of carriage prevalence agrees well with the observed data in the first five years post-vaccination. We predict a sustained and substantial decline in IPD through PCV vaccination and that the current regimen is insufficient to fully eliminate vaccine-serotype circulation in the model. We show that the observed impact is likely to be sustained despite waning effects of the catch-up campaign. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Dietary Flexibility Aids Asian Earthworm Invasion in North American Forests

    Science.gov (United States)

    On a local scale, invasiveness of introduced species and invasibility of habitats together determine invasion success. A key issue in invasion ecology has been how to quantify the contribution of species invasiveness and habitat invasibility separately. Conventional approaches, s...

  1. Klebsiella pneumoniae Invasive Syndrome

    Directory of Open Access Journals (Sweden)

    Vasco Evangelista

    2018-01-01

    Full Text Available Klebsiella pneumoniae invasive syndrome (KPIS is a rare clinical condition characterized by primary liver abscess associated with metastatic infection. Most case reports are from Southeast Asia, with only one case described in Portugal. The Authors present the case of a 44-year-old man with a history of fever, dry cough and cervicalgia. A thoracic computed tomography (CT scan showed multiple pulmonary and hepatic nodules, suggestive of metastatic malignancy. Both blood cultures and bronchoalveolar lavage were positive for Klebsiella pneumoniae. Imaging studies were repeated during his hospital stay, showing a reduction in both number and volume of identified lesions, thus revealing their infectious nature. This case illustrates how much this entity can mimic other illnesses.

  2. Niche conservatism and the invasive potential of the wild boar.

    Science.gov (United States)

    Sales, Lilian Patrícia; Ribeiro, Bruno R; Hayward, Matt Warrington; Paglia, Adriano; Passamani, Marcelo; Loyola, Rafael

    2017-09-01

    Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and

  3. Microbial ecology of biological invasions

    NARCIS (Netherlands)

    Putten, van der W.H.; Klironomos, J.N.; Wardle, D.A.

    2007-01-01

    Invasive microbes, plants and animals are a major threat to the composition and functioning of ecosystems; however, the mechanistic basis of why exotic species can be so abundant and disruptive is not well understood. Most studies have focused on invasive plants and animals, although few have

  4. Prioritizing invasive plant management strategies

    Science.gov (United States)

    Invasive plants are seriously impacting rangelands by displacing desirable species. Management of these species is expensive and careful allocation of scarce dollars is necessary. Ecologically-based invasive plant management (EBIPM) has the potential to provide an improved decision-making process ...

  5. Cell invasion through basement membrane

    Science.gov (United States)

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recently discovered that invadopodia breach basement membrane during anchor cell invasion in C. elegans, a genetically and visually tractable in vivo invasion event. Further, we found that the netrin receptor DCC localizes to the initial site of basement membrane breach and directs invasion through a single gap in the matrix. In this commentary, we examine how the dynamics and structure of AC-invadopodia compare with in vitro invadopodia and how the netrin receptor guides invasion through a single basement membrane breach. We end with a discussion of our surprising result that the anchor cell pushes the basement membrane aside, instead of completely dissolving it through proteolysis, and provide some ideas for how proteases and physical displacement may work together to ensure efficient and robust invasion. PMID:24778942

  6. Interstitial guidance of cancer invasion.

    NARCIS (Netherlands)

    Gritsenko, P.G.; Ilina, O.; Friedl, P.H.

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In

  7. Earthworm invasions in the tropics

    Science.gov (United States)

    Grizelle Gonzalez; Ching Yu Huang; Xiaoming Zou; Carlos Rodriguez

    2006-01-01

    The effects and implications of invasive species in belowground terrestrial ecosystems are not well known in comparison with aboveground terrestrial and marine environments. The study of earthworm invasions in the tropics is limited by a lack of taxonomic knowledge and the potential for loss of species in native habitats due to anthropogenic land use change. Alteration...

  8. Propagule pressure-invasibility relationships: testing the influence of soil fertility and disturbance with Lespedeza cuneata.

    Science.gov (United States)

    Houseman, Gregory R; Foster, Bryan L; Brassil, Chad E

    2014-02-01

    Although invasion risk is expected to increase with propagule pressure (PP), it is unclear whether PP-invasibility relationships follow an asymptotic or some other non-linear form and whether such relationships vary with underlying environmental conditions. Using manipulations of PP, soil fertility and disturbance, we tested how each influence PP-invasibility relationships for Lespedeza cuneata in a Kansas grassland and use recruitment curve models to determine how safe sites may contribute to plant invasions. After three growing seasons, we found that the PP-invasibility relationships best fit an asymptotic model of invasion reflecting a combination of density-independent and density-dependent processes and that seeds were aggregated within the plant community despite efforts to uniformly sow seeds. Consistent with some models, community invasibility decreased with enhanced soil fertility or reduced levels of disturbance in response to changes in the fraction of safe sites. Our results illustrate that disturbance and soil fertility can be a useful organizing principle for predicting community invasibility, asymptotic models are a reasonable starting point for modeling invasion, and new modeling techniques—coupled with classic experimental approaches—can enhance our understanding of the invasion process.

  9. Economic evaluation of targeted treatments of invasive aspergillosis in adult haematopoietic stem cell transplant recipients in the Netherlands: a modelling approach.

    NARCIS (Netherlands)

    Ament, A.J.; Hubben, M.W.; Verweij, P.E.; Groot, R. de; Warris, A.; Donnelly, J.P.; Wout, J. van 't; Severens, J.L.

    2007-01-01

    OBJECTIVES: The aim of this study was to assess the cost-effectiveness of a targeted treatment model of antifungal treatment strategies for adult haematopoietic stem cell transplant (HSCT) recipients in the Netherlands from a hospital perspective, using a decision analytic modelling approach.

  10. A Caenorhabditis elegans Host Model Correlates with Invasive Disease Caused by Staphylococcus aureus Recovered during an Outbreak