Cheng, Hai-Yang; Chua, Chun-Khiang; Liu, Keh-Fei
2015-11-01
It is commonly believed that the lowest-lying scalar glueball lies somewhere in the isosinglet scalar mesons f0(1370 ) , f0(1500 ) and f0(1710 ) denoted generically by f0. In this work we consider lattice calculations and experimental data to infer the glue and q q ¯ components of f0. These include the calculations of the scalar glueball masses in quenched and unquenched lattice QCD, measurements of the radiative decays J /ψ →γ f0 , the ratio of f0 decays to π π , K K ¯ and η η , the ratio of J /ψ decays to f0(1710 )ω and f0(1710 )ϕ , the f0 contributions to Bs→J /ψ π+π- , and the near mass degeneracy of a0(1450 ) and K0*(1430 ) . All analyses suggest the prominent glueball nature of f0(1710 ) and the flavor octet structure of f0(1500 ).
Mesons, PANDA and the scalar glueball
Parganlija, Denis
2014-04-01
The non-perturbative nature of Quantum Chromodynamics (QCD) at low energies has prompted the expectation that the gauge-bosons of QCD - gluons - might give rise to compound objects denoted as glueballs. Experimental signals for glueballs have represented a matter of research for various collaborations in the last decades; future research in this direction is a main endeavour planned by the PANDA Collaboration at FAIR. Hence in this article I review some of the outstanding issues in the glueball search, particularly with regard to the ground state - the scalar glueball, and discuss the relevance for PANDA at FAIR.
Mesons, PANDA and the scalar glueball
International Nuclear Information System (INIS)
Parganlija, Denis
2014-01-01
The non-perturbative nature of Quantum Chromodynamics (QCD) at low energies has prompted the expectation that the gauge-bosons of QCD – gluons – might give rise to compound objects denoted as glueballs. Experimental signals for glueballs have represented a matter of research for various collaborations in the last decades; future research in this direction is a main endeavour planned by the PANDA Collaboration at FAIR. Hence in this article I review some of the outstanding issues in the glueball search, particularly with regard to the ground state – the scalar glueball, and discuss the relevance for PANDA at FAIR.
Chiral suppression of scalar-glueball decay.
Chanowitz, Michael S
2005-10-21
Since glueballs are SU(3)Flavor singlets, they should couple equally to u, d, and s quarks, so that equal coupling strengths to pi+ pi- and K+ K- are expected. However, we show that chiral symmetry implies the scalar-glueball amplitude for G0 --> qq is proportional to the quark mass, so that mixing with ss mesons is enhanced and decays to K+ K- are favored over pi+ pi-. Together with evidence from lattice calculations and experiment, this supports the hypothesis that f0(1710) is the ground state scalar glueball.
AdS gravity and the scalar glueball spectrum
Energy Technology Data Exchange (ETDEWEB)
Vento, Vicente [Departament de Fisica Teorica, Universitat de Valencia y Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Cientificas, Burjassot (Valencia) (Spain)
2017-09-15
The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence. (orig.)
Factorization for radiative heavy quarkonium decays into scalar Glueball
Energy Technology Data Exchange (ETDEWEB)
Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)
2015-09-24
We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).
Scalar mesons and the search for the 0{sup ++} Glueball
Energy Technology Data Exchange (ETDEWEB)
Ulrike Thoma
2002-10-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.
Scalar mesons and the search for the 0{sup ++} glueball
Energy Technology Data Exchange (ETDEWEB)
Thoma, U. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2003-11-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)
Scalar mesons and the search for the 0++ Glueball
International Nuclear Information System (INIS)
Ulrike Thoma
2002-01-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain
Scalar mesons and the search for the 0++ glueball
International Nuclear Information System (INIS)
Thoma, U.
2003-01-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)
Scalar glueballs: Constraints from the decays into η or η '
Frère, Jean-Marie; Heeck, Julian
2015-12-01
We study the mixing of the scalar glueball into the isosinglet mesons f0(1370 ), f0(1500 ), and f0(1710 ) to describe the two-body decays to pseudoscalars. We use an effective Hamiltonian and employ the two-angle mixing scheme for η and η'. In this framework, we analyze existing data and look forward to new data into η and η' channels. For now, the f0(1710 ) has the largest glueball component and a sizable branching ratio into η η', testable at BESIII.
Is f0(1500) a scalar glueball?
Amsler, C
1996-01-01
Following the discovery of two new scalar mesons f0(1370) and f0(1500) at the Low Energy Antiproton Ring at CERN, we argue that the observed properties of this pair are incompatible with them both being QQ-bar mesons. We show instead that f0(1500) is compatible with the ground state glueball expected around 1500 MeV mixed with the nearby states of the 0++QQ-bar nonet. Tests of this hypothesis include the prediction of a further scalar state f'0(1500–1800) which couples strongly to KK-bar, eta eta , and eta eta '. Signatures for a possible tensor glueball at ~2 GeV are also considered.
Nonchiral Enhancement of Scalar Glueball Decay in the Witten-Sakai-Sugimoto Model
Brünner, Frederic; Rebhan, Anton
2015-09-01
We estimate the consequences of finite masses of pseudoscalar mesons on the decay rates of scalar glueballs in the Witten-Sakai-Sugimoto model, a top-down holographic model of low-energy QCD, by extrapolating from the calculable vertex of glueball fields and the η' meson that follows from the Witten-Veneziano mechanism for giving mass to the latter. Evaluating the effect on the recently calculated decay rates of glueballs in the Witten-Sakai-Sugimoto model, we find a strong enhancement of the decay of scalar glueballs into kaons and η mesons, in fairly close agreement with experimental data on the glueball candidate f0(1710 ).
Nonchiral Enhancement of Scalar Glueball Decay in the Witten-Sakai-Sugimoto Model.
Brünner, Frederic; Rebhan, Anton
2015-09-25
We estimate the consequences of finite masses of pseudoscalar mesons on the decay rates of scalar glueballs in the Witten-Sakai-Sugimoto model, a top-down holographic model of low-energy QCD, by extrapolating from the calculable vertex of glueball fields and the η^{'} meson that follows from the Witten-Veneziano mechanism for giving mass to the latter. Evaluating the effect on the recently calculated decay rates of glueballs in the Witten-Sakai-Sugimoto model, we find a strong enhancement of the decay of scalar glueballs into kaons and η mesons, in fairly close agreement with experimental data on the glueball candidate f_{0}(1710).
Large N scalars: From glueballs to dynamical Higgs models
Sannino, Francesco
2016-05-01
We construct effective Lagrangians, and corresponding counting schemes, valid to describe the dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled theories. The large N counting rules can now be employed when computing quantum corrections via an effective Lagrangian description. The framework allows for systematic investigations of composite dynamics of a non-Goldstone nature. Relevant examples are the lightest glueball states emerging in any Yang-Mills theory. We further apply the effective approach and associated counting scheme to composite models at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs emerges as the lightest glueball of a new composite theory; the large N scalar meson in models of dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-conformal dynamics. For each of these realizations we determine the leading N corrections to the electroweak precision parameters. The results nicely elucidate the underlying large N dynamics and can be used to confront first principle lattice results featuring composite scalars with a systematic effective approach.
Ultralight glueballs in Quark-Gluon Plasma
Kochelev, Nikolai
2016-03-01
We consider the dynamics of the scalar and pseudoscalar glueballs in the Quark-Gluon Plasma (QGP). By using the instanton model for the QCD vacuum we give the arguments that the nonperturbative gluon-gluon interaction is qualitatively different in the confinement and deconfinement phases. Based on this observation it is shown that above T c the values of the scalar and pseudoscalar glueball masses might be very small. The estimation of the temperature of scale invariance restoration, at which the scalar glueball becomes massless, is given. We also discuss the Bose—Einstein condensation of the glueballs and the superfluidity of the glueball matter in QGP.
Thermal spectrum of pseudo-scalar glueballs and Debye screening mass from holography
Braga, Nelson R. F.; Ferreira, Luiz F.
2017-10-01
The finite temperature spectrum of pseudo-scalar glueballs in a plasma is studied using a holographic model. The 0^{-+} glueball is represented by a pseudo-scalar (axion) field living in a five dimensional geometry that comes from a solution of Einstein equations for gravity coupled with a dilaton scalar field. The spectral function obtained from the model shows a clear peak corresponding to the quasi-particle ground state. Analyzing the variation of the position of the peak with temperature, we describe the thermal behavior of the Debye screening mass of the plasma. As a check of consistency, the zero temperature limit of the model is also investigated. The glueball masses obtained are consistent with previous lattice results.
Thermal spectrum of pseudo-scalar glueballs and Debye screening mass from holography
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F.; Ferreira, Luiz F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)
2017-10-15
The finite temperature spectrum of pseudo-scalar glueballs in a plasma is studied using a holographic model. The 0{sup -+} glueball is represented by a pseudo-scalar (axion) field living in a five dimensional geometry that comes from a solution of Einstein equations for gravity coupled with a dilaton scalar field. The spectral function obtained from the model shows a clear peak corresponding to the quasi-particle ground state. Analyzing the variation of the position of the peak with temperature, we describe the thermal behavior of the Debye screening mass of the plasma. As a check of consistency, the zero temperature limit of the model is also investigated. The glueball masses obtained are consistent with previous lattice results. (orig.)
Close, Francis Edwin
1998-01-01
Gluons, the particles which bind quarks into protons may be able to stick to each other. Physicists have called these entities 'glueballs' and are convinced they are showing up in experiments (6 pages).
Open boundary condition, Wilson flow and the scalar glueball mass
International Nuclear Information System (INIS)
Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy
2014-01-01
A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.
Constraints on the η η' decay rate of a scalar glueball from gauge/gravity duality
Brünner, Frederic; Rebhan, Anton
2015-12-01
Predictions of glueball decay rates in the holographic Witten-Sakai-Sugimoto model for low-energy QCD can be uniquely extended to include finite quark masses up to an as-yet-undetermined parameter in the coupling of glueballs to the nonanomalous part of the pseudoscalar mass terms. The assumption of a universal coupling of glueballs to mass terms of the full nonet of pseudoscalar mesons leads to flavor asymmetries in the decay rates of scalar glueballs that agree well with experimental data for the glueball candidate f0(1710 ) and implies a vanishing decay rate into η η' pairs, for which only upper bounds for the f0(1710 ) meson are known at present from experiment. Relaxing this assumption, the holographic model gives a tight correlation between the decay rates into pairs of pseudo-Goldstone bosons of the same type and η η' pairs. If Γ (G →K K )/Γ (G →π π ) is kept within the range reported currently by the Particle Data Group for the f0(1710 ) meson, the rate Γ (G →η η')/Γ (G →π π ) is predicted to be ≲0.04 . The corresponding situation for f0(1500 ) is also discussed; however, this is found to be much less compatible with the interpretation of a largely unmixed glueball.
Giacosa, Francesco
2016-11-01
Glueballs are predicted in various theoretical approaches of QCD (most notably lattice QCD), but their experimental verification is still missing. In the low-energy sector some promising candidates for the scalar glueball exist, and some (less clear) candidates for the tensor and pseudoscalar glueballs were also proposed. Yet, for heavier gluonic states there is much work to be done both from the experimental and theoretical points of view. In these proceedings, we briefly review the current status of research of glueballs and discuss future developments.
Directory of Open Access Journals (Sweden)
Giacosa Francesco
2016-01-01
Full Text Available Glueballs are predicted in various theoretical approaches of QCD (most notably lattice QCD, but their experimental verification is still missing. In the low-energy sector some promising candidates for the scalar glueball exist, and some (less clear candidates for the tensor and pseudoscalar glueballs were also proposed. Yet, for heavier gluonic states there is much work to be done both from the experimental and theoretical points of view. In these proceedings, we briefly review the current status of research of glueballs and discuss future developments.
Gauge-invariant scalar and field strength correlators in 3d
Laine, Mikko
1998-01-01
Gauge-invariant non-local scalar and field strength operators have been argued to have significance, e.g., as a way to determine the behaviour of the screened static potential at large distances, as order parameters for confinement, as input parameters in models of confinement, and as gauge-invariant definitions of light constituent masses in bound state systems. We measure such "correlators" in the 3d pure SU(2) and SU(2)+Higgs models on the lattice. We extract the corresponding mass parameters and discuss their scaling and physical interpretation. We find that the finite part of the MS-bar scheme mass measured from the field strength correlator is large, more than half the glueball mass. We also determine the non-perturbative contribution to the Debye mass in the 4d finite T SU(2) gauge theory with a method due to Arnold and Yaffe, finding $\\delta m_D\\approx 1.06(4)g^2T$.
Hadronic production of glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1983-01-01
Local Gauge Invariance of SU(3)/sub c/ and color confinement would require that the only hadrons in the world be glueballs. However, when we add the quarks and obtain QCD it is experimentally clear that quark built states mask the expected glueballs. Thus discovery of glueballs is essential for the viability of QCD. Papers presented at the 1983 International Europhysics Conference on High Energy Physics on the hadronic production of glueballs and searches for glueballs are reviewed
The scalar glueball operator, the a-theorem, and the onset of conformality
Nunes da Silva, T.; Pallante, E.; Robroek, L.
2018-03-01
We show that the anomalous dimension γG of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between γG and γm, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.
Elander, Daniel; Piai, Maurizio
2017-06-01
Within gauge/gravity duality, we compute the scalar and tensor mass spectrum in the boundary theory defined by the five-dimensional sigma-model coupled to gravity obtained by constraining to eight scalars the truncation on T 1,1 that corresponds to the Papadopoulos-Tseytlin (PT) ansatz. We study fluctuations around the 1-parameter family of backgrounds that lift to the baryonic branch of the Klebanov-Strassler (KS) system, and interpolates between the KS background and the Maldacena-Nunez one (CVMN). We adopt a gauge invariant formalism in the treatment of the fluctuations that we interpret as states of the dual theory. The tensor spectrum interpolates between the discrete spectrum of the KS background and the continuum spectrum of the CVMN background, in particular showing the emergence of a finite energy range containing a dense set of states, as expected from dimensional deconstruction. The scalar spectrum shows analogous features, and in addition it contains one state that becomes parametrically light far from the origin along the baryonic branch.
Gauge field improvement, form-scalar duality and conformal invariance
Deser, Stanley
1994-01-01
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and conformal invariance require- ments. "Improved" traceless stress tensors are then constructed;each violates one of the above criteria.However,when d=N+2,there is a duality equivalence between N-form models and massless scalars.Here we show that conformal invariance is not lost,by constructing a quasilocal gauge invariant improved stress tensor.The correlators of the scalar theory are then reproduced including the latter's trace anomaly.
Kinematic Analysis Towards Glueballs
Giani, Simone; Trentadue, Luca
2013-01-01
In the present work a consistent kinematic-based framework for glueball states is proposed. It relates the glueball, the Pomeron, QCD lattice calculations, the $0^{++}$ scalar states $f_0(1710)$ and $\\chi_{c0}(1P)$, the $2^{++}$ states $f_J(2220)$ and $\\chi_{c2}(2P)$, the baryonic charmed state $\\Xi_c^+(2645)$ and color transparency.
Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2018-05-01
In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.
Bianchi type-I model with conformally invariant scalar and electromagnetic field
International Nuclear Information System (INIS)
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-01-01
A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1983-12-01
One of the most exciting developments in the physics of the 20th Century is the proposal that locally gauge invariant groups describe the strong, electromagnetic and weak interactions. SU(2)/sub L/ x U(1) the electroweak group has had enormous successes including the recent discovery of the W/sup +-/ and Z 0 . In the case of strong interactions, Quantum Chromodynamics is built upon the local gauge invariance of SU(3)/sub color/ which gives rise to the eight massless spin 1 gauge bosons which carry color called gluons. The colored quarks are then added to yield Quantum Chromodynamics (QCD). Although there have been many dynamical and static successes of QCD, there has been one important missing link in QCD which casts a dark shadow over it and SU(3)/sub color/. Let us assume the strong interactions are described by locally gauge invariant SU(3)/sub color/ in a pure Yang Mills theory. Then if we consider the effects of confinement one is inescapably led to the existence of glueballs (multigluon resonant states). Experimentally we found vast numbers of q anti q states and qqq states but until recently no convincing evidence for glueballs. Fortunately recent work has led to the discovery of glueballs provided one assumes the following two simple input axioms: (1) QCD is correct and (2) the OZI (or Zweig) Rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is caused by creation or annihilation of new flavors of quarks. There are other glueball candidates found in the radiative J/psi decays and some relatively weaker candidates from direct pattern recognition in hadronic spectroscopy, nonet + glueball → decuplet with characteristic mixing splitting. The evidence for glueballs is discussed and speculation on what lies beyond for the physics of the 21st Century is given. 36 references
Glueball dynamics in the hot plasma
Kochelev, Nikolai
2016-07-01
We discuss the glueball contribution to the equation of state (EoS) of hot gluon matter below and above Tc . We show that the strong variation of the masses of the scalar and pseudoscalar glueballs near Tc is determining the thermodynamics of the SU(3) gauge theory. We provide arguments to justify that these glueballs become massless at TG≈ 1.1 Tc, a phenomenon which is crucial to understand the mysterious behavior of the trace anomaly found in lattice calculations.
International Nuclear Information System (INIS)
Accioly, A.J.
1985-01-01
Exact solutions of the Einstein-Conformally Invariant Scalar Field Equations are obtained for Kantowski-Sachs and Bianchi types I and III cosmologies. The presence of the conformally invariant scalar field is responsible for some interesting features of the solutions. In particular it is found that the Bianchi I model is consistent with the big-bang theory of cosmology. (Author) [pt
Glueball production via gluonic penguin decays
He, Xiao-Gang; Yuan, Tzu-Chiang
2015-03-01
We study glueball production in gluonic penguin decay , using the next-to-leading order gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiral Lagrangians to incorporate the interaction between a glueball and pseudoscalar mesons. Mixing effects between the pure glueball with other mesons are considered. Identifying the as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for of order , where the effective coupling strength is estimated to be GeV using experimental data for the branching ratio of based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs.
Kalmykov, M. Yu.; Pronin, P. I.; Stepanyantz, K. V.
1994-01-01
We investigate the influence of the projective invariance on the renormalization properties of the theory. One-loop counterterms are calculated in the most general case of interaction of gravity with scalar field.
Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus
2017-06-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.
Anyonic glueballs from an effective string model
Boulanger, Nicolas; Buisseret, Fabien
2016-01-01
Relying on an effective-string approach in which glueballs—bound states of pure Yang-Mills theory—are modeled by closed strings, we give arguments suggesting that anyonic glueballs, i.e. glueballs with arbitrary spin, may exist in (2 +1 )-dimensional Yang-Mills theory. We then focus on the large-Nc limit of S U (Nc) Yang-Mills theory and show that our model leads to a mass spectrum in good agreement with lattice data in the scalar sector, while it predicts the masses and spins of anyonic glueball states.
International Nuclear Information System (INIS)
Anabitarte, M.; Bellini, M.; Madriz Aguilar, Jose Edgar
2010-01-01
We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values. (orig.)
Invariant manifolds and the stability of traveling waves in scalar viscous conservation laws
Beck, Margaret; Wayne, C. Eugene
The stability of traveling wave solutions of scalar viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coefficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be applied to study the evolution of these components, allowing for the construction of invariant manifolds and the determination of their temporal decay rate. The large time evolution of the near-field component is shown to be governed by that of the far-field components, thus giving it the same temporal decay rate. We also give a discussion of the relationship between this geometric approach and previous results, which demonstrate that the decay rate of perturbations can be increased by requiring that initial data lie in appropriate algebraically weighted spaces.
Invariant Manifolds and the Stability of Traveling Waves in Scalar Viscous Conservation Laws
Beck, M
2006-01-01
The stability of traveling wave solutions of scalar, viscous conservation laws is investigated by decomposing perturbations into three components: two far-field components and one near-field component. The linear operators associated to the far-field components are the constant coeficient operators determined by the asymptotic spatial limits of the original operator. Scaling variables can be applied to study the evolution of these components, allowing for the construction of invariant manifolds and the determination of their temporal decay rate. The large time evolution of the near-field component is shown to be governed by that of the far-field components, thus giving it the same temporal decay rate. We also give a discussion of the relationship between this geometric approach and previous results, which demonstrate that the decay rate of perturbations can be increased by requiring that initial data lie in appropriate algebraically weighted spaces.
Top-down holographic glueball decay rates
Brünner, F.; Parganlija, D.; Rebhan, A.
2016-01-01
We present new results on the decay patterns of scalar and tensor glueballs in the top-down holographic Witten-Sakai-Sugimoto model. This model, which has only one free dimensionless parameter, gives semi-quantitative predictions for the vector meson spectrum, their decay widths, and also a gluon condensate in agreement with SVZ sum rules. The holographic predictions for scalar glueball decay rates are compared with experimental data for the widely discussed gluon candidates f0(1500) and f0(1710).
Self quartic interaction for a scalar field in a non-commutative space with Lorentz invariance
Energy Technology Data Exchange (ETDEWEB)
Neves, M.J.; Abreu, Everton M.C. [UFRRJ, Seropedica, RJ (Brazil)
2013-07-01
Full text: The framework Doplicher-Fredenhagen-Roberts (DFR) of a noncommutative (NC) space-time is considered as alternative approach to study the NC space-time of the early Universe. In this formalism, the parameter of noncommutative θ{sup μν} is promoted to a coordinate of the space-time. The consequence of this statement is that we are describing a NC field theory with Lorentz invariance in a space-time with extra-dimension. The addition of a canonical momentum associated to θ-coordinate is a extension of the NC DFR, in which the effects of a new physics can emerge in the propagation of the fields along the extra-dimension. This extension is called Doplicher-Fredenhagen-Roberts-Amorim (DFRA) NC space-time. The main concept that we would like to emphasize from the outset is that the formalism demonstrated here will not be constructed introducing a NC parameter in the system, as usual. It will be generated naturally from an already NC space. We study a scalar field with self-quartic interaction ϕ{sup 4} ∗ in the approach of non-commutative space with Lorentz invariance. We compare the two frameworks, DFR and DFRA NC space-time. We obtain the Feynman rules in the Fourier space for the scalar propagator and vertex. The divergences are analyzed at the one loop approximation, in which the non-commutativity scale can improve the ultraviolet behavior for the mass correction in the propagator. (author)
Kirk, A
2001-01-01
For the first time a complete data set of the two-body decays of the f /sub 0/(1370), f/sub 0/(1500) and f/sub 0/(1710) into all pseudoscalar mesons is available. The implications of these data for the flavour content for these three f/sub 0/ states is studied. We find that they are in accord with the hypothesis that the scalar glueball of lattice QCD mixes with the qq nonet that also exists in its immediate vicinity. We show that this solution also is compatible with the relative production strengths of the f/sub 0/(1370), f/sub 0/(1500) and f/sub 0/(1710) in pp central production, pp annihilations and J/ psi radiative decays.
Two-gluon and trigluon glueballs from dynamical holography QCD
Chen, Yi-dian; Huang, Mei
2016-12-01
We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS
Two-loop scale-invariant scalar potential and quantum effective operators
Ghilencea, D.M.
2016-11-29
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $\\phi$ in theories in which scale symmetry is broken only spontaneously by the dilaton ($\\sigma$). Its vev $\\langle\\sigma\\rangle$ generates the DR subtraction scale ($\\mu\\sim\\langle\\sigma\\rangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $\\mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($\\mu$=fixed scale). These operators have the form: $\\phi^6/\\sigma^2$, $\\phi^8/\\sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $\\langle\\sigma\\rangle\\gg \\langle\\phi\\rangle$, where such hierarchy is arranged by {\\it one} initial, classical tuning. These operators emerge at the quantum...
Wave functions of S U (3 ) pure gauge glueballs on the lattice
Liang, Jian; Chen, Ying; Chiu, Wei-Feng; Gui, Long-Cheng; Gong, Ming; Liu, Zhaofeng
2015-03-01
The Bethe-Salpeter wave functions of S U (3 ) pure gauge glueballs are revisited in this study. The ground and the first excited states of the scalar and tensor glueballs are identified unambiguously through the variational method. We calculate the wave functions in the Coulomb gauge and use two lattice spacings to check the discretization artifacts. For the ground states, the radial wave functions are approximately Gaussian, and the size of the tensor glueball is roughly twice as large as that of the scalar glueball. For the first excited states, the radial nodes are clearly observed for both the scalar and the tensor glueballs, such that they can be interpreted as the first radial excitations. These observations may shed light on the theoretical understanding of the inner structure of glueballs.
Invariants of a family of scalar second-order ordinary differential equations
International Nuclear Information System (INIS)
Bagderina, Yulia Yu
2013-01-01
The family of second-order equations with cubic nonlinearity in the first-order derivative is closed with respect to an arbitrary point change of variables. Algebraic and differential invariants for these equations which depend on the first-order derivatives are considered. We solve completely the equivalence problem for this family of equations in the generic case and also for degenerate types of these equations. Fifty equations having the Painlevé property, which have been classified by Painlevé and Gambier, belong to this remarkable family. Algebraic invariants of all these equations are calculated and constant invariants are listed in the paper. Invariant characterization of the fourth Painlevé equation is given. (paper)
Exotic glueball 0±- states in QCD sum rules
Pimikov, Alexandr; Lee, Hee-Jung; Kochelev, Nikolai; Zhang, Pengming; Khandramai, Viachaslau
2017-12-01
The lowest dimension three-gluon currents that couple to the exotic 0±- glueballs have been constructed using the helicity formalism. Based on the constructed currents, we obtain new QCD sum rules that have been used to extract the masses and the decay constants of the scalar exotic 0±- glueballs. We estimate the masses for the scalar state and for the pseudoscalar state to be m+=9.8-1.4+1.3 GeV and m-=6.8-1.2+1.1 GeV .
Glueball decay rates in the Witten-Sakai-Sugimoto model
Brünner, Frederic; Parganlija, Denis; Rebhan, Anton
2015-05-01
We revisit and extend previous calculations of glueball decay rates in the Sakai-Sugimoto model, a holographic top-down approach for QCD with chiral quarks based on D 8 -D 8 ¯ probe branes in Witten's holographic model of nonsupersymmetric Yang-Mills theory. The rates for decays into two pions, two vector mesons, four pions, and the strongly suppressed decay into four π0 are worked out quantitatively, using a range of the 't Hooft coupling which closely reproduces the decay rate of ρ and ω mesons and also leads to a gluon condensate consistent with QCD sum rule calculations. The lowest holographic glueball, which arises from a rather exotic polarization of gravitons in the supergravity background, turns out to have a significantly lower mass and larger width than the two widely discussed glueball candidates f0(1500 ) and f0(1710 ) . The lowest nonexotic and predominantly dilatonic scalar mode, which has a mass of 1487 MeV in the Witten-Sakai-Sugimoto model, instead provides a narrow glueball state, and we conjecture that only this nonexotic mode should be identified with a scalar glueball component of f0(1500 ) or f0(1710 ). Moreover the decay pattern of the tensor glueball is determined, which is found to have a comparatively broad total width when its mass is adjusted to around or above 2 GeV.
Glueball Spectrum and Matrix Elements on Anisotropic Lattices
Energy Technology Data Exchange (ETDEWEB)
Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang
2006-01-01
The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.
International Nuclear Information System (INIS)
Toki, W.
1997-01-01
In these Summer School lectures, the author reviews the results of recent glueball searches. He begins with a brief review of glueball phenomenology and meson spectroscopy, including a discussion of resonance behavior. The results on the f o (1500) and f J (1700) resonances from proton-antiproton experiments and radiative J/Ψ decays are discussed. Finally, ππ and ηπ studies from D s decays and exotic meson searches are reviewed. 46 refs., 40 figs
Holographic QCD predictions for production and decay of pseudoscalar glueballs
Brünner, Frederic; Rebhan, Anton
2017-07-01
The top-down holographic Witten-Sakai-Sugimoto model for low-energy QCD, augmented by finite quark masses, has recently been found to be able to reproduce the decay pattern of the scalar glueball candidate f0 (1710) on a quantitative level. In this Letter we show that this model predicts a narrow pseudoscalar glueball heavier than the scalar glueball and with a very restricted decay pattern involving η or η‧ mesons. Production should be either in pairs or in association with η (‧) mesons. We discuss the prospect of discovery in high-energy hadron collider experiments through central exclusive production by comparing with η‧ pair production.
Holographic QCD predictions for production and decay of pseudoscalar glueballs
Directory of Open Access Journals (Sweden)
Frederic Brünner
2017-07-01
Full Text Available The top–down holographic Witten–Sakai–Sugimoto model for low-energy QCD, augmented by finite quark masses, has recently been found to be able to reproduce the decay pattern of the scalar glueball candidate f0(1710 on a quantitative level. In this Letter we show that this model predicts a narrow pseudoscalar glueball heavier than the scalar glueball and with a very restricted decay pattern involving η or η′ mesons. Production should be either in pairs or in association with η(′ mesons. We discuss the prospect of discovery in high-energy hadron collider experiments through central exclusive production by comparing with η′ pair production.
Casimir scaling and Yang-Mills glueballs
Hong, Deog Ki; Lee, Jong-Wan; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2017-12-01
We conjecture that in Yang-Mills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a Bethe-Salpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications.
Glueballs from the Bethe-Salpeter equation
Sanchis-Alepuz, Helios; Fischer, Christian S.; Kellermann, Christian; von Smekal, Lorenz
2015-08-01
We formulate a framework to determine the mass of glueball states of the Landau gauge Yang-Mills theory in the continuum. To this end we derive a Bethe-Salpeter equation for two gluon bound states including the effects of Faddeev-Popov ghosts. We construct a suitable approximation scheme such that the interactions in the bound state equation match a corresponding successful approximation of the Dyson-Schwinger equations for the Landau gauge ghost and gluon propagators. Based upon a recently obtained solution for the propagators in the complex momentum plane we obtain results for the mass of the 0++ and 0-+ glueballs. In the scalar channel we find a mass value in agreement with lattice gauge theory.
Photon-Photon Interaction in Glueball Production
da Silva, Daniel T.; da Silva, Mario L. L.; Hadjimichef, Dimiter
In the last years many exotic states have been identified in several colliders around the world. One of the exotic states provided in QCD is the glueball. Using a non-relativistic gluon bound-state model, we compute Γ(G → γγ), where G is a pseudoscalar, tensor, or scalar digluon. For the starting from the amplitudes we considers the process γγ → g∗g∗ at threshold, where the amplitudes are obtained in perturbative QCD at lowest order by deriving them from QED calculation and the g∗s are massive constituent gluons. In this calculation the unknown parameters of the model, such as the digluon wave function, are obtained using measured values of Γ(J/Ψ → Gγ). Our theorical results are compared with the present experimental limits for the various glueballs candidates.
Einstein and Jordan reconciled. A frame-invariant approach to scalar-tensor cosmology
Energy Technology Data Exchange (ETDEWEB)
Catena, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pietroni, M. [INFN, Sezione di Padova (Italy); Scarabello, L. [INFN, Sezione di Padova (Italy)]|[Padua Univ. (Italy). Dipt. di Fisica
2006-04-15
Scalar-Tensor theories of gravity can be formulated in different frames, most notably, the Einstein and the Jordan one. While some debate still persists in the literature on the physical status of the different frames, a frame transformation amounts to a change of units, and then should not affect physical results. We analyze the issue in a cosmological context. In particular, we define all the relevant observables (redshift, distances, cross-sections,..) in terms of frame-independent quantities. Then, we give a frame-independent formulation of the Boltzmann equation, and outline its use in relevant examples such as particle freeze-out and the evolution of the CMB photon distribution function. Finally, we derive the gravitational equations for the frame-independent quantities at first order in perturbation theory. From a practical point of view, the present approach allows the simultaneous implementation of the good aspects of the two frames in a clear and straightforward way. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1983-08-03
If you assume as input axioms: (1) QCD is correct; and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is due to the creation or annihilation of new flavor(s) of quark(s), then the BNL/CCNY g/sub T/(2010), g/sub T/'(2220) and g/sub T/(2360) observed in ..pi../sup -/p ..-->.. phi phi n are produced by 1-3 primary glueballs. One or two broad primary glueballs could in principle break down the OZI suppression and mix with one or two quark states which accidentally have the same quantum numbers and nearly the same mass. However the simplest explanation of the rather unusual characteristics of our data is that we have found a triplet of J/sup PC/ = 2/sup + +/ glueball states. Since our input axioms are in good agreement with experiments and merely represent modern QCD practice, we have very probably discovered 1-3 J/sup PC/ = 2/sup + +/ glueballs. The iota(1440) and the theta(1700) observed in J/psi radiative decay are glueball candidates. The pros and cons of which are discussed briefly here. 41 references.
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1983-01-01
If you assume as input axioms: (1) QCD is correct; and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is due to the creation or annihilation of new flavor(s) of quark(s), then the BNL/CCNY g/sub T/(2010), g/sub T/'(2220) and g/sub T/(2360) observed in π - p → phi phi n are produced by 1-3 primary glueballs. One or two broad primary glueballs could in principle break down the OZI suppression and mix with one or two quark states which accidentally have the same quantum numbers and nearly the same mass. However the simplest explanation of the rather unusual characteristics of our data is that we have found a triplet of J/sup PC/ = 2 ++ glueball states. Since our input axioms are in good agreement with experiments and merely represent modern QCD practice, we have very probably discovered 1-3 J/sup PC/ = 2 ++ glueballs. The iota(1440) and the theta(1700) observed in J/psi radiative decay are glueball candidates. The pros and cons of which are discussed briefly here. 41 references
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1982-01-01
This paper describes the observation and partial wave analysis of 1203 (22 GeV) π - p → phi phi n events. This is an OZI suppressed channel in which the OZI suppression is found to be absent. Assuming QCD and the OZI rule as Ansatzen, it is concluded that the breakdown of the OZI suppression is due to glueballs. The g/sub T/(2160) and the g/sub T/(2320) with I/sup G/J/sup PC/ = 0 + 2 ++ are two resonances determined from the partial wave analysis. It is concluded that one or two primary glueballs with the above quantum numbers are responsible for the observed two states. A brief discussion of other glueball candidates and some relevant phenomenology is also included
Energy Technology Data Exchange (ETDEWEB)
Toki, W. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Physics
1997-06-01
In these Summer School lectures, the author reviews the results of recent glueball searches. He begins with a brief review of glueball phenomenology and meson spectroscopy, including a discussion of resonance behavior. The results on the f{sub o}(1500) and f{sub J}(1700) resonances from proton-antiproton experiments and radiative J/{Psi} decays are discussed. Finally, {pi}{pi} and {eta}{pi} studies from D{sub s} decays and exotic meson searches are reviewed. 46 refs., 40 figs.
International Nuclear Information System (INIS)
Toki, W.H.
1988-01-01
The glueball session of the BNL workshop on glueballs, hybrids and exotic hadrons is reviewed. This include studies of K/bar K/π, /eta/ππ, γ/rho//degree/, ππ, K/bar K/, /eta//eta/, /phi//phi/, /rho//rho/, ωω, and K*/bar K/* resonances produced in γγ, J//psi/, K/sup minus/p and π/sup minus/p reactions. 44 refs., 5 figs., 4 tabs
Glueballs, Hybrids and Exotics
International Nuclear Information System (INIS)
Reyes, M. A.; Moreno, G.
2006-01-01
We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates
Indian Academy of Sciences (India)
removed two cells of the same color. Whenever you are putting a 2 × 1 rectangle you are covering one black and one white cell. So the total number of white cells you have covered minus the total number of black cells you have covered after putting some 2 × 1 rectangles is always zero. So this difference is an invariant! You.
Casimir scaling and YangâMills glueballs
Directory of Open Access Journals (Sweden)
Deog Ki Hong
2017-12-01
Full Text Available We conjecture that in YangâMills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a BetheâSalpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications. Keywords: Glueballs, YangâMills theories, Confinement, Casimir scaling
Cho, Y. M.; Pham, X. Y.; Zhang, Pengming; Xie, Ju-Jun; Zou, Li-Ping
2015-06-01
The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons and the colored valence gluons shows that QCD can be viewed as the restricted QCD (RCD) made of the binding gluons which has the valence gluons as colored source, and simplifies the QCD dynamics greatly. In particular, it tells that the gauge covariant valence gluons can be treated as the constituents of hadrons, and generalizes the quark model to the quark and valence gluon model. So it provides a comprehensive picture of glueballs and their mixing with quarkoniums, and predicts new hybrid hadrons made of quarks and valence gluons. We discuss how these predictions could be confirmed experimentally. In particular we present a systematic search for the ground state glueballs and their mixing with quarkoniums below 2 GeV in 0++ , 2++, and 0-+ channels within the framework of QCD, and predict the relative branching ratios of the radiative decay of ψ to the physical states.
Glueball masses from the refined Gribov propagator
Energy Technology Data Exchange (ETDEWEB)
Capri, M.A.L. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Dudal, D.; Vandersickel, N. [Ghent University (Belgium); Gomez, A.J.; Guimaraes, M.S.; Lemes, V.E.R.; Sorella, S.P.; Tedesco, D.G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2011-07-01
Full text: The quantum description of the non-abelian Yang-Mills theory at low energy scales is a long standing unsolved problem. This is a confining theory, meaning that the physical degrees of freedom are not described by the fundamental fields appearing in its defining action functional. The physical states are thus created by composite fields operators. In the pure Yang-Mills theory the fundamental, non-physical, excitations are the gluons and the physical states are named as glueballs and are created by gauge invariant operators. Recent results coming from lattice simulations of the Yang-Mills theory points to a gluon propagator which violates positivity and tends to a constant non-zero value at zero-momentum. The best fitting for this behavior is provided by a propagator whose analytic form describes the propagation of complex mass excitations, the so-called i-particles. These are supposed to be the low energy, confined, non-physical gluons. This propagator coincides with the one derived from the Refined Gribov-Zwanziger (RGZ) theory, which takes into account nonperturbative physics related to gauge copies and dimension two condensates. In this work we construct local, gauge invariant, composite operators with the quantum numbers of the lightest glueball states J{sup PC} = 0{sup ++}; 0{sup -+}; 2{sup ++}. The correlation functions of these operators are evaluated by employing a lattice input for the mass scales of the low energy RGZ gluon propagator. We obtain for the glueball masses, in the lowest order approximation, the values m{sub 0++} {approx} 1.96 GeV, m{sub 0-+} {approx} 2.19 GeV, m{sub 2++} {approx} 2.04 GeV, in the SU(3) case, all within a 20% range of the corresponding lattice values. We also recover the mass hierarchy m{sub 0++} < m{sub 2++} < m{sub 0-+}.(author)
Observation and phenomenology of glueballs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T/sup 1//, and g/sub T/sup 11//. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction ..pi../sup -/p ..-->.. phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs. (LEW)
Observation and phenomenology of glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T 1 /, and g/sub T 11 /. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction π - p → phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs
Classical glueballs in non-Abelian Born-Infeld theory.
Gal'tsov, D; Kerner, R
2000-06-26
It is shown that the Born-Infeld-type modification of the quadratic Yang-Mills action gives rise to classical particlelike solutions prohibited in the standard Yang-Mills theory. This becomes possible due to breaking of the scale invariance by the Born-Infeld nonlinearity. New classical glueballs, which are of a sphaleronic nature, exhibit a striking similarity to the Bartnik-McKinnon solutions to the Yang-Mills theory coupled to gravity.
Glueball masses from an infrared moment problem.
Dudal, D; Guimaraes, M S; Sorella, S P
2011-02-11
We set up an infrared-based moment problem to obtain estimates of the masses of the scalar, pseudoscalar, and tensor glueballs in Euclidean Yang-Mills theories using the refined Gribov-Zwanziger (RGZ) version of the Landau gauge, which takes into account nonperturbative physics related to gauge copies. Employing lattice input for the mass scales of the RGZ gluon propagator, the lowest order moment problem approximation gives the values m(0++) ≈ 1.96 GeV, m(2++) ≈ 2.04 GeV, and m(0-+) ≈ 2.19 GeV in the SU(3) case, all within a 20% range of the corresponding lattice values. We also recover the mass hierarchy m(0++) < m(2++) < m(0-+).
Effective holographic models for QCD: Glueball spectrum and trace anomaly
Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.
2018-02-01
We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.
Singlet Glueballs In Klebanov-Strassler Theory
Gordeli, Ivan
In this thesis we complete the singlet glueball sector analysis of the N = 1 super-symmetric Klebanov-Strassler gauge theory. Employing the string theory holographic approach we come up with a prediction of the spectrum of lightest glueballs in SU(N) N = 1 supersymmetric Yang-Mills theory at large N. Interestingly the spectrum of some of the glueballs is consistent with the lattice results for QCD glueballs.
A.G.J. van de Schoot (Rens); A. Kluytmans (Anouck); L.G. Tummers (Lars); P. Lugtig (Peter); J. Hox (Joop); B. Muthén (Bengt)
2013-01-01
textabstractMeasurement invariance (MI) is a pre-requisite for comparing latent variable scores across groups. The current paper introduces the concept of approximate MI building on the work of Muthén and Asparouhov and their application of Bayesian Structural Equation Modeling (BSEM) in the
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1984-01-01
There are two methods discussed by which glueballs might be found. In the first, an OZI suppressed channel with variable mass is used, such as the reaction π - p → phi phi n. The breakdown of the OZI suppression is the glueball signal. The OZI suppression is a filter letting glueballs pass while strongly rejecting conventional hadronic states. The other method is to look in a channel enriched in gluons such as the radiative decay of the J/psi and search for new phenomena, such as the iota(1440), the theta(1640), and the zeta(2220). It is anticipated that the next step in nested gauge-gauge groups might be some new strong color interaction conceptually similar to hypercolor, technicolor, or extended technicolor. 43 refs., 13 figs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1984-01-01
There are two methods discussed by which glueballs might be found. In the first, an OZI suppressed channel with variable mass is used, such as the reaction ..pi../sup -/p ..-->.. phi phi n. The breakdown of the OZI suppression is the glueball signal. The OZI suppression is a filter letting glueballs pass while strongly rejecting conventional hadronic states. The other method is to look in a channel enriched in gluons such as the radiative decay of the J/psi and search for new phenomena, such as the iota(1440), the theta(1640), and the zeta(2220). It is anticipated that the next step in nested gauge-gauge groups might be some new strong color interaction conceptually similar to hypercolor, technicolor, or extended technicolor. 43 refs., 13 figs. (LEW)
Glueballs--some selected theoretical topics
International Nuclear Information System (INIS)
Carlson, C.E.
1983-01-01
Elementary considerations of how glueballs may be found--by oddballs (abnormal -c /SUB n/ states), by overpopulation, and by decay democracy--are given. Two glueball candidates iota 1440 and theta 1640 are considered. It is stated that iota 1440 can be accommodated as a radically excited pseudoscalar, not as a glueball. Theta 1640 has decay properties uncharacteristic of glueballs, but of a state made from quarks. Finally, the worry that glueballs may mix with quark states with the same quantum number (gluonium-quarkonium mixing) is examined
QCD and the search for glueballs
International Nuclear Information System (INIS)
Close, F.E.
1982-05-01
In reviewing the search for glueballs within the QCD theory the problem of identifying glueballs in psi → γ X reactions is considered, the extent to which the two meson states (the i(1440) and the theta (1640)) seen in psi radiative decay can be shown to be candidates for glueballs is examined, and the current theory of and data on glueballs are discussed. Where to search for glueballs and recent ideas on the properties of the hermophrodite states are considered. (U.K.)
International Nuclear Information System (INIS)
Bowes, J.P.; Foot, R.; Volkas, R.R.
1997-01-01
In gauge theories like the standard model, the electric charges of the fermions can be heavily constrained from the classical structure of the theory and from the cancellation of anomalies. There is however mounting evidence suggesting that these anomaly constraints are not as well motivated as the classical constraints. In light of this, possible modifications of the minimal standard model are discussed which will give a complete electric charge quantisation from classical constraints alone. Because these modifications to the Standard Model involve the consideration of baryon number violating scalar interactions, a complete catalogue of the simplest ways to modify the Standard Model is presented so as to introduce explicit baryon number violation. 9 refs., 7 figs
Glueballs and vector mesons at NICA
Parganlija, Denis
2016-08-01
Two interconnected fields of interest are suggested for NICA. Firstly, existence of glueballs is predicted by the theory of strong interaction but --even after decades of research-- glueball identification in the physical spectrum is still unclear. NICA can help to ascertain experimental glueball candidates via J/Ψ decays whose yield is expected to be large. Importance of glueballs is not limited to vacuum: since they couple to other meson states, glueballs can also be expected to influence signatures of chiral-symmetry restoration in the high-energy phase of strong dynamics. Mass shifting or in-medium broadening of vector and axial-vector mesons may occur there but the extent of such phenomena is still uncertain. Additionally, glueball properties could also be modified in medium. Exploration of these issues is the second suggested field of interest that can be pursued at NICA.
Constructing local composite operators for glueball states from a confining Gribov propagator
Energy Technology Data Exchange (ETDEWEB)
Capri, M.A.L. [UFRRJ - Universidade Federal Rural do Rio de Janeiro, Departamento de Fisica - Grupo de Fisica Teorica e Matematica Fisica, BR 465-07, Seropedica, RJ (Brazil); Gomez, A.J.; Guimaraes, M.S.; Lemes, V.E.R.; Sorella, S.P.; Tedesco, D.G. [UERJ - Universidade do Estado do Rio de Janeiro, Instituto de Fisica - Departamento de Fisica Teorica, Maracana, Rio de Janeiro, RJ (Brazil)
2011-01-15
The construction of BRST invariant local operators with the quantum numbers of the lightest glueball states, J {sup PC}=0{sup ++},2{sup ++},0{sup -+}, is worked out by making use of an Euclidean confining renormalizable gauge theory. The correlation functions of these operators are evaluated by employing a confining gluon propagator of the Gribov type and shown to display a spectral representation with positive spectral densities. An attempt to provide a first qualitative analysis of the ratios of the masses of the lightest glueballs is also discussed. (orig.)
DEFF Research Database (Denmark)
Sannino, Francesco
2016-01-01
We construct effective Lagrangians, and corresponding counting schemes, valid to describe the dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled theories. The large N counting rules can now be employed when computing quantum corrections via an effective...... at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs emerges as: the lightest glueball of a new composite theory; the large N scalar meson in models of dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-conformal dynamics....... For each of these realisations we determine the leading N corrections to the electroweak precision parameters. The results nicely elucidate the underlying large N dynamics and can be used to confront first principle lattice results featuring composite scalars with a systematic effective approach....
Constituent gluon interpretation of glueballs and gluelumps
International Nuclear Information System (INIS)
Boulanger, N.; Buisseret, F.; Mathieu, V.; Semay, C.
2008-01-01
Arguments are given that support the interpretation of the lattice QCD glueball and gluelump spectra in terms of bound states of massless constituent gluons with helicity 1. In this scheme, we show that the mass hierarchy of the currently known gluelumps and glueballs is mainly due to the number of constituent gluons and can be understood within a simple flux tube model. It is also argued that the lattice QCD 0 +- glueball should be seen as a four-gluon bound state. We finally predict the mass of the 0 - state, not yet computed in lattice QCD. (orig.)
Tensor glueball-meson mixing phenomenology
International Nuclear Information System (INIS)
Burakovsky, L.; Page, P.R.
2000-01-01
The overpopulated isoscalar tensor states are sifted using Schwinger-type mass relations. Two solutions are found: one where the glueball is the f J (2220), and one where the glueball is more distributed, with f 2 (1820) having the largest component. The f 2 (1565) and f J (1710) cannot be accommodated as glueball-(hybrid) meson mixtures in the absence of significant coupling to decay channels. f 2 '(1525)→ππ is in agreement with experiment. The f J (2220) decays neither flavour democratically nor is narrow. (orig.)
Hybrids and glueballs: new forms of matter
International Nuclear Information System (INIS)
Close, F.
1983-01-01
Theories of the forces that bind together the atomic nucleus predict the existence of exotic forms of matter, dubbed ''glueballs'' and ''hybrids''. The underlying story illustrates progress in science through the agencies of analogy and paradox. (author)
Casimir scaling, glueballs, and hybrid gluelumps
International Nuclear Information System (INIS)
Mathieu, V.; Semay, C.; Brau, F.
2006-01-01
Assuming that the Casimir scaling hypothesis is well verified in QCD, masses of glueballs and hybrid gluelumps (gluon attached to a point-like c anti c pair) are computed within the framework of the rotating string formalism. In our model, two gluons are attached by an adjoint string in a glueball, while the gluon and the colour octet c anti c pair are attached by two fundamental strings in a hybrid gluelump. Masses for such exotic hadrons are computed with very few free parameters. These predictions can serve as a guide for experimental searches. In particular, the ground-state glueballs lie on a Regge trajectory and the lightest 2 ++ state has a mass compatible with some experimental candidates. (orig.)
J-- glueballs and a low odderon intercept.
Llanes-Estrada, Felipe J; Bicudo, Pedro; Cotanch, Stephen R
2006-03-03
We report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model for the odd signature J(PC) (P = C = -1) glueball states. The trajectory intercept is clearly smaller than the Pomeron and even the omega trajectory's intercept which provides an explanation for the nonobservation of the odderon in high energy scattering data. To further support this result we compare to glueball lattice data and also perform calculations with an alternative model based upon an exact Hamiltonian diagonalization for three constituent gluons.
String theory and the dark glueball problem
Halverson, James; Nelson, Brent D.; Ruehle, Fabian
2017-02-01
We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and Δ Neff bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.
International Nuclear Information System (INIS)
Caruso Neto, F.
1983-01-01
The present status of glueballs, including theoretical and experimental aspects is critically reviewed. A set of favored processes where it may be possible to search for these objects is presented. Some of the existent problems related to the unambiguous prediction of their properties are stressed. A model which is able to explain the experimental data for the reaction π - p→ phi phi n, allowing us to estimate the coupling constants g sub(Gphi phi) e g sub(Gππ) of a glueball 2 ++ state to phi phi and ππ, respectively is proposed. (Author) [pt
On one estimate of glueball mass
International Nuclear Information System (INIS)
Boos, E.E.
1986-01-01
The Bethe-Salpeter equation for the wave function of the bound state of two gluons is considered. The mass of the glueball 0 ++ , (M gl ∼ 1.3 GeV), is estimated using some expansions in the equation kernel in the spirit of those made in the QCD sum rules method. In the leading approximation, the masses of the glueballs 0 ++ and 2 ++ appear to be degenerate. A possibility to improve the accuracy of estimating the mass by using the expansion in 1/N c is discussed
Glueballs as rotating folded closed strings
Sonnenschein, Jacob; Weissman, Dorin
2015-12-01
In previous papers [1, 2] we argued that mesons and baryons can be described as rotating open strings in holographic backgrounds. Now we turn to closed strings, which should be the duals of glueballs. We look at the rotating folded closed string in both flat and curved backgrounds.
Mixing among light scalar mesons and L=1 qq-bar scalar mesons
Energy Technology Data Exchange (ETDEWEB)
Teshima, T. [Department of Applied Physics, Chubu University, Kasugai (Japan)]. E-mail: teshima@isc.chubu.ac.jp; Kitamura, I.; Morisita, N. [Department of Applied Physics, Chubu University, Kasugai (Japan)
2002-06-01
Following the re-establishment of the {sigma}(500) and the {kappa}(900), the light scalar mesons a{sub 0}(980) and f{sub 0}(980) together with the {sigma}(500) and the {kappa}(900) are considered as the chiral scalar partner of pseudoscalar nonet in SU(3) chiral symmetry, and the high mass scalar mesons a{sub 0}(1450), K*{sub 0}(1430), f{sub 0}(1370) and f{sub 0}(1710) turned out to be considered as the L=1 qq-bar scalar mesons. We assume that the high mass of the L=1 qq-bar scalar mesons is caused by the mixing with the light scalar mesons. For the structure of the light scalar mesons, we adopted the qqq-barq-bar model in order to explain the 'scalar meson puzzle'. The inter-mixing between the light scalar nonet and the high mass L=1 qq-bar nonet and the intra-mixing among each nonet are analysed by including the glueball into the high mass scalar nonet. (author)
Directory of Open Access Journals (Sweden)
Rens eVan De Schoot
2013-10-01
Full Text Available Measurement invariance (MI is a prerequisite for comparing latent variable scores across groups. The current paper introduces the concept of approximate measurement invariance building on the work of Muthén and Asparouhov and their application of Bayesian Structural Equation Modeling (BSEM in the software Mplus. They showed that with BSEM exact zeros constraints can be replaced with approximate zeros to allow for minimal steps away from strict MI, still yielding a well-fitting model. This new opportunity enables researchers to make explicit trade-offs between the degree of MI on the one hand, and the degree of model fit on the other. Throughout the paper we discuss the topic of approximate MI, followed by an empirical illustration where the test for MI fails, but where allowing for approximate MI results in a well-fitting model. Using simulated data, we investigate in which situations approximate MI can be applied and when it leads to unbiased results. Both our empirical illustration and the simulation study show approximate MI outperforms full or partial MI In detecting/recovering the true latent mean difference when there are (many small differences in the intercepts and factor loadings across groups. In the discussion we provide a step-by-step guide in which situation what type of MI is preferred. Our paper provides a first step in the new research area of (partial approximate MI and shows that it can be a good alternative when strict MI leads to a badly fitting model and when partial MI cannot be applied.
QCD, OZI, and evidence for glueballs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1981-01-01
The characteristics expected from low Q-QCD for the behavior of glueballs and the OZI rule is discussed. The reaction ..pi../sup -/p ..-->.. phi phi n represents on OZI forbidden (hairpin) diagram. It has been observed at the Brookhaven National Laboratory multiparticle spectrometer by the Brookhaven National Laboratory/City College of New York group. The author has shown that the expected OZI suppression is essentially entirely absent and in fact the Isobar Model which does not contain OZI suppression quantitatively explains the observed results. A general evaluation of the special characteristics of the data compared to other related reactions plus the foregoing facts leads the author to conclude that the intervention of glueball resonances is the likely explanation in the context of QCD. Other explanations are shown to be improbable. In particular the hypothesis that decay of a radial excitation of the eta' is responsible for lack of OZI suppression is ruled out. Planned experiments with the purpose of explicity discovering glueballs will be discussed. The OZI rule peculiarities such as violation of crossing symmetry and unitarity are attributed to color confinement.
Radiative Decays of Scalar Mesons in Light-Front Quark Model
Dewitt, Martin; Choi, Ho-Meoyng; Ji, Chueng-Ryong
2003-04-01
It is currently thought that the difficulty in experimentally identifying the light scalar glueball results from the fact that it tends to mix with nearby conventional scalar mesons. Therefore, the glueball's presence can only be inferred from the behavior of the experimentally observed (mixed) scalar states. Here, we present relativistic light-front quark model calculations of absolute widths for the radiative decay processes Scalar[0^++] → γγ, Scalar[0^++]→γ Vector[1^-], and Vector[1^-]→γ Scalar[0^++] which incorporate the effects of glueball-q barq mixing. The mixed physical states are assumed to be the f_0(1370), the f_0(1500), and the f_0(1710). The n barn, s bars, and gg content of each of the physical states is taken from the mass mixing matrix calculations of other works. These flavor/glue wavefunctions are then used in conjunction with light-front spin-space wavefunctions to compute transition form factors for the decay processes mentioned above. In the q^2→ 0 limit the form factors are used to determine the corresponding decay widths. Our results are compared with available experimental data as well as the results of a recent non-relativistic model calculation of the process Scalar[0^++]→γ Vector[1^-].
Scalar mesons above and below 1 GeV
Energy Technology Data Exchange (ETDEWEB)
Close, Frank E. [Department of Theoretical Physics, University of Oxford, Oxford (United Kingdom)]. E-mail: F.Close@physics.ox.ac.uk; Toernqvist, Nils A. [Department of Physical Sciences, University of Helsinki, Helsinki (Finland)]. E-mail: nils.tornqvist@helsinki.fi
2002-10-01
We show that two nonets and a glueball provide a consistent description of data on scalar mesons below 1.7 GeV. Above 1 GeV the states form a conventional qq-bar nonet mixed with the glueball of lattice QCD. Below 1 GeV the states also form a nonet, as implied by the attractive forces of QCD, but of a more complicated nature. Near the centre they are (qq)3-bar(q-barq-bar){sub 3} in S-wave, with some qq-bar in P-wave, but further out they rearrange as (qq-bar){sub 1}(qq-bar){sub 1} and finally as meson-meson states. A simple effective chiral model for such a system with two scalar nonets can be made involving two coupled linear sigma models. One of these could be looked upon as the Higgs sector of nonpertubative QCD. (author)
Cartan invariants and event horizon detection
Brooks, D.; Chavy-Waddy, P. C.; Coley, A. A.; Forget, A.; Gregoris, D.; MacCallum, M. A. H.; McNutt, D. D.
2018-04-01
We show that it is possible to locate the event horizon of a black hole (in arbitrary dimensions) by the zeros of certain Cartan invariants. This approach accounts for the recent results on the detection of stationary horizons using scalar polynomial curvature invariants, and improves upon them since the proposed method is computationally less expensive. As an application, we produce Cartan invariants that locate the event horizons for various exact four-dimensional and five-dimensional stationary, asymptotically flat (or (anti) de Sitter), black hole solutions and compare the Cartan invariants with the corresponding scalar curvature invariants that detect the event horizon.
Glueball Masses from ADS6 Gravity Theory
Cai, Bengeng; Wen, Congkao; Yang, Huanxiong
In view of the general holographic principle between gauge theories and gravity, We calculate the mass spectra of several typical QCD4 glueballs in term of AdS6 AdS-Schwarzschild black hole metric of Einstein gravity theory. The obtained mass spectra are numerically in consistent with those from the AdS7 × S4 black hole metric of the 11-dimensional supergravity. Besides, by separating the thermal circle from the extra dimensions, we find a novel exact Dp-brane solution of Type IIB supergravity, which might provide a scenario for studying the non-perturbative dynamics of QCD4 from the perspective of Type IIB supergravity.
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
International Nuclear Information System (INIS)
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-01-01
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory
Finite-temperature behavior of glueballs in lattice gauge theories.
Caselle, M; Pellegrini, R
2013-09-27
We propose a new method to compute glueball masses in finite temperature lattice gauge theory which at low temperature is fully compatible with the known zero temperature results and as the temperature increases leads to a glueball spectrum which vanishes at the deconfinement transition. We show that this definition is consistent with the Isgur-Paton model and with the expected contribution of the glueball spectrum to various thermodynamic quantities at finite temperature. We test our proposal with a set of high precision numerical simulations in the 3D gauge Ising model and find a good agreement with our predictions.
Averaging in cosmological models using scalars
International Nuclear Information System (INIS)
Coley, A A
2010-01-01
The averaging problem in cosmology is of considerable importance for the correct interpretation of cosmological data. A rigorous mathematical definition of averaging in a cosmological model is necessary. In general, a spacetime is completely characterized by its scalar curvature invariants, and this suggests a particular spacetime averaging scheme based entirely on scalars. We clearly identify the problems of averaging in a cosmological model. We then present a precise definition of a cosmological model, and based upon this definition, we propose an averaging scheme in terms of scalar curvature invariants. This scheme is illustrated in a simple static spherically symmetric perfect fluid cosmological spacetime, where the averaging scales are clearly identified.
Glueballs, hermaphrodites and QCD problems for baryon spectroscopy
International Nuclear Information System (INIS)
Close, F.E.
1981-08-01
Spin-orbit splittings in baryon spectroscopy are examined with relevance to QCD: successes and failures are discussed. Claims to have seen glueballs are evaluated and the possibility of hermaphrodites-states containing quarks and glue - is mentioned. (author)
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Electromagnetic fields with vanishing scalar invariants
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010
Electromagnetic fields with vanishing scalar invariants
Czech Academy of Sciences Publication Activity Database
Ortaggio, Marcello; Pravda, Vojtěch
2016-01-01
Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein -Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010
Two loop scalar bilinears for inflationary SQED
Energy Technology Data Exchange (ETDEWEB)
Prokopec, T [Institute for Theoretical Physics and Spinoza Institute, Utrecht University Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Tsamis, N C [Department of Physics, University of Crete GR-710 03 Heraklion, Hellas (Greece); Woodard, R P [Department of Physics, University of Florida Gainesville, FL 32611 (United States)
2007-01-07
We evaluate the one- and two-loop contributions to the expectation values of two coincident and gauge invariant scalar bilinears in the theory of massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. One of these bilinears is the product of two covariantly differentiated scalars, the other is the product of two undifferentiated scalars. The computations are done using dimensional regularization and the Schwinger-Keldysh formalism. Our results are in perfect agreement with the stochastic predictions at this order.
Dobbs, S.; Tomaradze, A.; Xiao, T.; Seth, Kamal K.
2015-03-01
Using 53 pb-1 of e+e- annihilation data taken at √{s }=3.686 GeV , a comprehensive study has been made of the radiative decays of samples of 5.1 million J /ψ and 24.5 million ψ (2 S ) into pairs of pseudoscalar mesons, π+π-, π0π0, K+K-, KS0KS0, and η η . Product branching fractions for the radiative decays of J /ψ and ψ (2 S ) to scalar resonances f0 (1370, 1500, 1710, 2100, and 2200), and tensor resonances f2 (1270, 1525, and 2230) have been determined, and are discussed in relation to predicted glueballs. For ψ (2 S ) radiative decays the search for glueballs has been extended to masses between 2.5 GeV and 3.3 GeV.
Dobbs, Sean; Tomaradze, A.; Xiao, T.; Seth, Kamal K.
2016-05-01
Using 53 pb-1 of e+e- annihilation data taken at the ψ(2S) resonance, a comprehensive study has been made of the radiative decays of samples of 5.1 million J/ψ and 24.5 million ψ(25) into pairs of pseudoscalar mesons, π+π-, π0π0, K+ K-, KS0KS0 and ηη. Product branching fractions for the radiative decays of J/ψ and ψ(2S) to scalar and tensor resonances have been determined, and are discussed in relation to predicted glueballs. For ψ(25) radiative decays, the search for glueballs has been extended to masses between 2.5 GeV and 3.3 GeV.
International Nuclear Information System (INIS)
Milton, K.A.; Palmer, W.F.; Pinsky, S.S.
1982-01-01
The G(1440) qualitatively satisfies all criteria for a glueball: It is an isosinglet preferentially produced in hard gluon channels which mediate OZI inhibited processes in an SU(3) symmetric way. A simple pole model is used to predict G → deltaπ, rhoγ, omega γ, phiγ, γγ, rhoππ, and etaππ. The small G → eta ππ rate is explained by a cancellation between G → deltaπ → etaππ and G → etaepsilon → etaππ amplitudes which has also been observed in the corresponding s(1275) amplitude. While the G does not fit naturally into a pure radial excitation nonet - one cannot account for the mass spectrum - standard octet-singlet mixing with angle THETA/sub R/ = -18 0 yields rates for psi → γG and psi → γs(1275) production that are not now inconsistent with the limit on G production in π - p → Gn. 41 references
The decomposition of global conformal invariants
Alexakis, Spyros
2012-01-01
This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese
Scale invariant Volkov–Akulov supergravity
Directory of Open Access Journals (Sweden)
S. Ferrara
2015-10-01
Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
Gravitational waves from SU(N glueball dark matter
Directory of Open Access Journals (Sweden)
Amarjit Soni
2017-08-01
Full Text Available A hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N star mass and radius as functions of the only two fundamental parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.
Glueballs in 2++ /phi//phi/ final states
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1988-01-01
In this paper we discuss the striking evidence obtained by BNL/CCNY for the g/sub T/(2010), g/sub T'/(2300) and g/sub T''/(2340) I/sup G/J/sup PC/ = 0 + 2 ++ resonances which comprise virtually all of the π/sup /minus//p → /phi//phi/n. The complete breakdown of the expected OZI suppression, and the striking differences of these states from conventional states and background in other channels has so far only been successfully explained by assuming they are produced by 1-3 2 ++ glueballs. The comparison with J//phi/ radiative decay results is made. A discussion of other glueball candidates in the light of a coupled channel analysis of the 2 ++ and 0 ++ channels is also made. The forthcoming search for an exotic J/sup PC/ glueball is discussed. 12 refs., 10 figs., 2 tabs
Bounds on scalar leptoquarks from Z physics
Mizukoshi, J K; González-Garciá, M Concepción; Mizukoshi, J K; Eboli, O J P; Gonzalez-Garcia, M C
1995-01-01
We analyse the constraints on scalar leptoquarks coming from radiative corrections to Z physics. We perform a global fitting to the LEP data including the contributions of the most general effective Lagrangian for scalar leptoquarks, which exhibits the SU(2)_L \\times U(1)_Y gauge invariance. We show that the bounds on leptoquarks that couple to the top quark are much stronger than the ones obtained from low energy experiments.
Glueballs in the Π-p→ΦΦn reaction
International Nuclear Information System (INIS)
Caruso Neto, F.
1983-01-01
The present status of glueballs, including theoretical and experimental aspects are critically reviewed. A set of favored processes where it may be possible to search for these objects is presented. Some of the existent problems related to the unambiguous prediction of their properties are stressed. A model which is able to explain the experimental data for the reaction Π - p→ΦΦn, allowing us to estimate the coupling constants G ΦΦ and G ΠΠ of a glueball 2 ++ state to ΦΦ and ΠΠ, respectively is proposed. (Author) [pt
Radjavi, Heydar
2003-01-01
This broad survey spans a wealth of studies on invariant subspaces, focusing on operators on separable Hilbert space. Largely self-contained, it requires only a working knowledge of measure theory, complex analysis, and elementary functional analysis. Subjects include normal operators, analytic functions of operators, shift operators, examples of invariant subspace lattices, compact operators, and the existence of invariant and hyperinvariant subspaces. Additional chapters cover certain results on von Neumann algebras, transitive operator algebras, algebras associated with invariant subspaces,
Scalar cosmological perturbations from inflationary black holes
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav; Reska, Paul, E-mail: t.prokopec@uu.nl, E-mail: p.m.reska@uu.nl [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2011-03-01
We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum of scalar cosmological perturbations from the Keldysh propagator of a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested — and possibly even ruled out — by observations.
Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons
Vega, Alfredo; Ibañez, Adolfo
2017-11-01
We consider an analysis of potentials related to Schrödinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks.
Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons
Energy Technology Data Exchange (ETDEWEB)
Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)
2017-11-15
We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)
Scalar-graviton interaction in the noncommutative space
International Nuclear Information System (INIS)
Brandt, F. T.; Elias-Filho, M. R.
2006-01-01
We obtain the leading order interaction between the graviton and the neutral scalar boson in the context of noncommutative field theory. Our approach makes use of the Ward identity associated with the invariance under a subgroup of symplectic diffeomorphisms
Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling
Silva, Hector O.; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P.; Berti, Emanuele
2018-03-01
We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.
Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.
Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele
2018-03-30
We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.
Energy Technology Data Exchange (ETDEWEB)
Alonso, Rodrigo [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); Jenkins, Elizabeth E.; Manohar, Aneesh V. [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); CERN TH Division,CH-1211 Geneva 23 (Switzerland)
2016-08-17
The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only if M has a SU(2){sub L}×U(1){sub Y} invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ{sup 2}, where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G→H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.
Glueball dark matter in non-standard cosmologies
Acharya, Bobby S.; Fairbairn, Malcolm; Hardy, Edward
2017-07-01
Hidden sector glueball dark matter is well motivated by string theory, compactifications of which often have extra gauge groups uncoupled to the visible sector. We study the dynamics of glueballs in theories with a period of late time primordial matter domination followed by a low final reheating temperature due to a gravitationally coupled modulus. Compared to scenarios with a high reheating temperature, the required relic abundance is possible with higher hidden sector confinement scales, and less extreme differences in the entropy densities of the hidden and visible sectors. Both of these can occur in string derived models, and relatively light moduli are helpful for obtaining viable phenomenology. We also study the effects of hidden sector gluinos. In some parts of parameter space these can be the dominant dark matter component, while in others their abundance is much smaller than that of glueballs. Finally, we show that heavy glueballs produced from energy in the hidden sector prior to matter domination can have the correct relic abundance if they are sufficiently long lived.
Glueball instability and thermalization driven by dark radiation
Ghoroku, Kazuo; Ishihara, Masafumi; Nakamura, Akihiro; Toyoda, Fumihiko
2014-12-01
We study glueballs in the holographic gauge theories living in a curved space-time. The dual bulk is obtained as a solution of the type IIB superstring theory with two parameters, which correspond to the four-dimensional cosmological constant λ and the dark radiation C , respectively. The theory is in the confining phase for λ glueball states in this theory. However, the stability of the glueball states is lost when the density of the dark radiation (C ) increases and exceeds a critical point. Above this point, the dark radiation works as the heat bath of the Yang-Mills theory since the event horizon appears. Thus the system is thermalized, and the theory is in a finite temperature deconfinement phase, namely in the QGP phase. We observe this transition process through the glueball spectra which varies dramatically with C . We also examined the entanglement entropy of the system to find a clue of this phase transition and the role of the dark radiation C in the entanglement entropy.
Dynamical pions and kaons in the glueball condensate vacuum
Energy Technology Data Exchange (ETDEWEB)
Hansson, T.H.; Klabuar, D.; Zahed, I.
1987-07-01
The model for pions as collective modes in the glueball condensate vacuum is extended to incorporate time-independent fields and massive quarks. The quark mass dependence of
Quantum computation of scattering amplitudes in scalar quantum electrodynamics
Yeter-Aydeniz, Kübra; Siopsis, George
2018-02-01
We present a quantum algorithm for the calculation of scattering amplitudes of massive charged scalar particles in scalar quantum electrodynamics. Our algorithm is based on continuous-variable quantum computing architecture resulting in exponential speedup over classical methods. We derive a simple form of the Hamiltonian including interactions and a straightforward implementation of the constraint due to gauge invariance.
Galileons as the Scalar Analogue of General Relativity
Klein, Remko; Ozkan, Mehmet; Roest, Diederik
2016-01-01
We establish a correspondence between general relativity with diffeomorphism invariance and scalar field theories with Galilean invariance: notions such as the Levi-Civita connection and the Riemann tensor have a Galilean counterpart. This suggests Galilean theories as the unique nontrivial
Trace Invariance for Quaternion Matrices
Directory of Open Access Journals (Sweden)
Ralph John de la Cruz
2015-12-01
Full Text Available Let F be a f ield. It is a classical result in linear algebra that for each A, P ϵ Mn (F such that P is nonsingular, tr A = tr (PAP-1. We show in this paper that the preceding property does not hold true if F is the division ring of real quaternions. We show that the only quaternion matrices that have their trace invariant under unitary similarity are Hermitian matrices, and that the only matrices that have their trace invariant under similarity are real scalar matrices.
Non-Abelian dark forces and the relic densities of dark glueballs
Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris
2017-01-01
Our understanding of the Universe is known to be incomplete, and new gauge forces beyond those of the Standard Model might be crucial to describing its observed properties. A minimal and well-motivated possibility is a pure Yang-Mills non-Abelian dark gauge force with no direct connection to the Standard Model. We determine here the relic abundances of the glueball bound states that arise in such theories and investigate their cosmological effects. Glueballs are first formed in a confining phase transition, and their relic densities are set by a network of annihilation and transfer reactions. The lightest glueball has no lighter states to annihilate into, and its yield is set mainly by 3 →2 number-changing processes which persistently release energy into the glueball gas during freeze-out. The abundances of the heavier glueballs are dominated by 2 →2 transfer reactions and tend to be much smaller than the lightest state. We also investigate potential connectors between the dark force and the Standard Model that allow some or all of the dark glueballs to decay. If the connection is weak, the lightest glueball can be very long-lived or stable and is a viable dark matter candidate. For stronger connections, the lightest glueball will decay quickly, but other heavier glueball states can remain stable and contribute to the dark matter density.
Scalar mesons and radiative vector meson decays
International Nuclear Information System (INIS)
Gokalp, A.; Ylmaz, O
2002-01-01
The light scalar mesons with vacuum quantum numbers J p =0 ++ have fundamental importance in understanding low energy QCD phenomenology and the symmetry breaking mechanisms in QCD. The nature and quark substructure of the best known scalar mesons, isoscalar σ(500), f0(980) and isovector a0(980) have been a subject of continuous controversy. The radioactive decay of neutral vector mesons ρ, w and φ into a single photon and a pair of neutral pseudoscalar mesons have been studied in order to obtain information on the nature of these scalar mesons. For such studies, it is essential that a reliable understanding of the mechanisms for these decays should be at hand. In this work, we investigate the particularly interesting mechanism of the exchange of scalar mesons for the radiative vector meson decays by analysing the experimental results such as measured decay rates and invariant mass spectra and compare them with the theoretical prediction of different reaction mechanisms
Andersson, Mattias
2011-01-01
A star graph consists of a vertex to which a set of edges are connected. Such an object can be used to, among other things, model the electromagnetic properties of quantum wires. A scalar field theory is constructed on the star graph and its properties are investigated. It turns out that there exist Kirchoff's rules for the conserved charges in the system leading to restrictions of the possible type of boundary conditions at the vertex. Scale invariant boundary conditions are investigated in...
New nonperturbative scales and glueballs in confining supersymmetric gauge theories
Anber, Mohamed M.; Poppitz, Erich
2018-03-01
We show that new nonperturbative scales exist in four-dimensional N = 1 super-Yang-Mills theory compactified on a circle, with an iterated-exponential dependence on the inverse gauge coupling. The lightest states with the quantum numbers of four-dimensional glueballs are nonrelativistic bound states of dual Cartan gluons and superpartners, with binding energy equal to {e}^{-{e}^{1/{g}^2}} in units of the confining mass gap. Focusing on SU(2) gauge group, we construct the nonrelativistic effective theory, show that the lightest glueball/glueballino states fill a chiral supermultiplet, and determine their "doubly-nonperturbative" binding energy. The iterated-exponential dependence on the gauge coupling is due to nonperturbative couplings in the long distance theory, λ ˜ {e}^{-1/g^2} , which are responsible for attractive interactions, in turn producing exponentially small, ˜ {e}^{-1/λ } , effects.
Matrix model of QCD: Edge localized glueballs and phase transitions
Acharyya, Nirmalendu; Balachandran, A. P.
2017-10-01
In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.
CERN Summer Student Project: Central Exclusive Diffraction and Glueball Searches
van Beest, Marieke
2016-01-01
CERN Summer Student work project report on work conducted in the Diffraction group at the ALICE experiment as well as the obtained results. These include a kinematical calculation with respect to a generic central exclusive process, the selection rules for a centrally produced system with respect to a specific central exclusive diffraction process, and finally a case study of one of the first contributions to the search for glueballs at CERN.
Status of glueball mass calculations in lattice gauge theory
International Nuclear Information System (INIS)
Kronfeld, A.S.
1989-11-01
The status of glueball spectrum calculations in lattice gauge theory is briefly reviewed, with focus on the comparison between Monte Carlo simulations and small-volume analytical calculations in SU(3). The agreement gives confidence that the large-volume Monte Carlo results are accurate, at least in the context of the pure gauge theory. An overview of some of the technical questions, which is aimed at non-experts, serves as an introduction. 19 refs., 1 fig
Note on Weyl versus conformal invariance in field theory
Energy Technology Data Exchange (ETDEWEB)
Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)
2017-12-15
It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)
Hunting for glueballs in electron-positron annihilation.
Brodsky, Stanley J; Goldhaber, Alfred Scharff; Lee, Jungil
2003-09-12
We calculate the cross section for the exclusive production of J(PC)=0(++) glueballs G0 in association with the J/psi in e(+)e(-) annihilation using the perturbative QCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative Upsilon decay. The cross section for e(+)e(-)-->J/psi+G0 at sqrt[s]=10.6 GeV is similar to exclusive charmonium-pair production e(+)e(-)-->J/psi+h for h=eta(c) and chi(c0), and is larger by a factor of 2 than that for h=eta(c)(2S). As the subprocesses gamma(*)-->(cc)(cc) and gamma(*)-->(cc)(gg) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e(+)e(-)-->J/psiX may actually be due to the production of charmonium-glueball J/psiG(J) pairs.
Yang-Mills glueballs as closed bosonic strings
Dubovsky, Sergei; Hernández-Chifflet, Guzmán
2017-02-01
We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D = 3 and D = 4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P-and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 12 + 22 + 32 + 52 = 39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.
Cosmic selection rule for the glueball dark matter relic density
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
2017-10-01
We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.
Yang-Mills glueballs as closed bosonic strings
Energy Technology Data Exchange (ETDEWEB)
Dubovsky, Sergei [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Hernández-Chifflet, Guzmán [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Instituto de Física, Facultad de Ingeniería, Universidad de la República,Montevideo, 11300 (Uruguay)
2017-02-06
We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D=3 and D=4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P- and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 1{sup 2}+2{sup 2}+3{sup 2}+5{sup 2}=39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.
Black hole hair in generalized scalar-tensor gravity.
Sotiriou, Thomas P; Zhou, Shuang-Yong
2014-06-27
The most general action for a scalar field coupled to gravity that leads to second-order field equations for both the metric and the scalar--Horndeski's theory--is considered, with the extra assumption that the scalar satisfies shift symmetry. We show that in such theories, the scalar field is forced to have a nontrivial configuration in black hole spacetimes, unless one carefully tunes away a linear coupling with the Gauss-Bonnet invariant. Hence, black holes for generic theories in this class will have hair. This contradicts a recent no-hair theorem which seems to have overlooked the presence of this coupling.
A brief review of glueball masses from gauge/gravity duality
International Nuclear Information System (INIS)
Caceres, Elena
2005-01-01
This is a brief review of the status of glueball mass calculations from Supergravity. After reviewing the basic concepts, we summarize results of glueball spectrum for different models and compare their assets as well as their shortcomings. We focus on AdS black-hole, Klebanov-Strassler and Maldacena-Nunnez backgrounds
International Nuclear Information System (INIS)
Koller, K.; Krasemann, H.
1979-08-01
We investigate the Dalitz plot population and thrust angular distribution for the Orthoquarkonium decay Q anti Q → 3 scalar gluons. The Dalitz plot for scalar gluons is populated in corners where events are 2 jet like and this disagrees with existing Upsilon data. The scalar gluon thrust angular distribution is also in striking disagreement with the UPSILON data and so scalar gluons are completely ruled out. (orig.)
International Nuclear Information System (INIS)
Lee, W.; Weingarten, D.
1996-01-01
We evaluate the valence approximation to the mass of scalar quarkonium for a range of different parameters. Our results strongly suggest that the infinite volume continuum limit of the mass of ss scalar quarkonium lies well below the mass of f J (1710). The resonance f 0 (1500) appears to the best candidate for ss scalar quarkonium. (orig.)
Mass spectra of 0+-, 1-+, and 2+- exotic glueballs
Tang, Liang; Qiao, Cong-Feng
2016-03-01
With appropriate interpolating currents the mass spectra of 0+-, 1-+, and 2+- oddballs are studied in the framework of QCD sum rules (QCDSR). We find there exits one stable 0+- oddball with mass of 4.57 ± 0.13GeV, and one stable 2+- oddball with mass of 6.06 ± 0.13GeV, whereas, no stable 1-+ oddball shows up. The possible production and decay modes of these glueballs with unconventional quantum numbers are analyzed, which are hopefully measurable in either BELLEII, PANDA, Super-B or LHCb experiments.
Projective invariants in a conformal finsler space - I
International Nuclear Information System (INIS)
Mishra, C.K.; Singh, M.P.
1989-12-01
The projective invariants in a conformal Finsler space have been studied in regard to certain tensor and scalar which are invariant under projective transformation in a Finsler space. They have been the subject of further investigation by the present authors. (author). 8 refs
On Action Invariance under Linear Spinor-Vector Supersymmetry
Directory of Open Access Journals (Sweden)
Kazunari Shima
2006-01-01
Full Text Available We show explicitly that a free Lagrangian expressed in terms of scalar, spinor, vector and Rarita-Schwinger (RS fields is invariant under linear supersymmetry transformations generated by a global spinor-vector parameter. A (generalized gauge invariance of the Lagrangian for the RS field is also discussed.
Phase transition and hyperscaling violation for scalar black branes
Cadoni, Mariano; Mignemi, Salvatore
2012-06-01
We investigate the thermodynamical behavior and the scaling symmetries of the scalar dressed black brane (BB) solutions of a recently proposed, exactly integrable Einstein-scalar gravity model [1], which also arises as compactification of ( p-1)-branes with a smeared charge. The extremal, zero temperature, solution is a scalar soliton interpolating between a conformal invariant AdS vacuum in the near-horizon region and a scale covariant metric (generating hyperscaling violation on the boundary field theory) asymptotically. We show explicitly that for the boundary field theory this implies the emergence of an UV length scale (related to the size of the brane), which decouples in the IR, where conformal invariance is restored. We also show that at high temperatures the system undergoes a phase transition. Whereas at small temperature the Schwarzschild-AdS BB is stable, above a critical temperature the scale covariant, scalar-dressed BB solution, becomes energetically preferred. We calculate the critical exponent z and the hyperscaling violation parameter θ of the scalar-dressed phase. In particular we show that θ is always negative. We also show that the above features are not a peculiarity of the exact integrable model of ref. [1], but are a quite generic feature of Einstein-scalar and Einstein-Maxwell-scalar gravity models for which the squared-mass of the scalar field ϕ is positive and the potential vanishes exponentially as ϕ → -∞.
Glueball searches in $\\gamma\\gamma$ collisions at LEP
Della Volpe, D
2001-01-01
We report about the work, still preliminary, done by the LEP experiments on glueball searches in Ir collisions. The ALEPH experiment has studied the production of the glue ball candidate f0f0(1500) via its decay to π+π−π+π−. No signal is observed and an upper limit to the γγγγ width of the f0f0(1500) has been calculated. The process γγ→K0sK0sγγ→Ks0Ks0 has been studied with the L3 detector. In the spectrum a clear enhancement is observed around 1750 GeV; it can be due to the formation of a radial recurrence of the f′2f2′ (1525) or to the ss¯ss¯ member of the 0++0++ meson nonet. An upper limits for the two-photon width of the glueball candidate ξξ(2230) has been calculated
Hadronic physics of q anti q light quark mesons, quark molecules and glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1980-10-01
A brief introduction reviews the development of QCD and defines quark molecules and glueballs. This review is concerned primarily with u, d, and s quarks, which provide practically all of the cross section connected with hadronic interactions. The following topics form the bulk of the paper: status of quark model classification for conventional u, d, s quark meson states; status of multiquark or quark molecule state predictions and experiments; glueballs and how to find them; and the OZI rule in decay and production and how glueballs might affect it. 17 figures, 1 table
Light scalar from deformations of the Klebanov-Strassler background
Elander, Daniel
2015-06-01
We study deformations of the Klebanov-Strassler background parametrized by the size of a dim-6 VEV. In the UV, these solutions describe the usual duality cascade of Klebanov-Strassler; however, below the scale ρ* set by the dim-6 VEV they exhibit hyperscaling violation over a range of the radial coordinate. Focusing on the spectrum of scalar glueballs, we find a parametrically light state, the mass of which is suppressed by ρ*, becoming massless in the limit of ρ*→∞. Along the way, we clarify the choice of IR and UV boundary conditions for the fluctuations in the bulk, and find agreement with previous calculations for the spectrum of Klebanov-Strassler.
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Trace anomaly for 4D higher derivative scalar-dilaton theory
Energy Technology Data Exchange (ETDEWEB)
Aceves de la Cruz, F.; Tkach, V.I. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, 37150 Leon, Guanajuato (Mexico)
2002-07-01
Trace anomaly for conformally invariant higher derivative 4D scalar-dilaton theory is obtained by means of calculating divergent part of one-loop effective action for such system. Its applications are briefly mentioned. (Author)
Two-particle Bound States: Mesons and Glueballs
Directory of Open Access Journals (Sweden)
Ganbold G.
2010-04-01
Full Text Available A relativistic quantum-ﬁeld model based on analytic conﬁnement is considered to study the twoquark and two-gluon bound states. For the spectra of two-particle bound states we solve the ladder Bethe-Salpeter equation. We provide a new, independent and analytic estimate of the lowest glueball mass and found it at 1660 MeV. The conventional mesons and the weak decay constants are described to extend the consideration. By using a few parameters (the quark masses, the coupling constant and the conﬁnement scale we obtain numerical results which are in reasonable agreement with experimental evidence in the wide range of energy scale from 140MeV up to 9 GeV. The model can serve a reasonable framework to describe simultaneously diﬀerent sectors in low-energy particle physics.
Pions as collective modes in the glueball condensate vacuum
Energy Technology Data Exchange (ETDEWEB)
Hansson, T.H.; Zahed, I.
1987-07-01
The glueball condensate vacuum model is extended to incorporate the effects of light quarks. The resulting model exhibits spontaneous breaking of chiral SU(2)/sub f/ symmetry, and has a new kind of collective excitations, pions, which are distinct from the usual bag-model-type states. The dynamics of the pions are described by a sigma model, and the parameters
Primordial fluctuations without scalar fields
Magueijo, João; Noller, Johannes
2010-02-01
We revisit the question of whether fluctuations in hydrodynamical, adiabatical matter could explain the observed structures in our Universe. We consider matter with variable equation of state w=p0/ɛ0 and a concomitant (under the adiabatic assumption) density dependent speed of sound, cs. We find a limited range of possibilities for a setup when modes start inside the Hubble radius, then leaving it and freezing out. For expanding universes, power-law w(ɛ0) models are ruled out (except when cs2∝w≪1, requiring post-stretching the seeded fluctuations); but sharper profiles in cs do solve the horizon problem. Among these, a phase transition in cs is notable for leading to scale-invariant fluctuations if the initial conditions are thermal. For contracting universes all power-law w(ɛ0) solve the horizon problem, but only one leads to scale-invariance: w∝ɛ02 and cs∝ɛ0. This model bypasses a number of problems with single scalar field cyclic models (for which w is large but constant).
Finsler metrics with constant (or scalar) flag curvature
Indian Academy of Sciences (India)
The very special relativity is an interesting theory of investigating the violation of Lorentz invariance which is developed by Cohen and Glashow [5]. In [9], the authors showed that the Killing navi- gation representation has the flag curvature preserving property. In particular, it preserves scalar (or constant) flag curvature.
Scalar metric fluctuations in space-time matter inflation
International Nuclear Information System (INIS)
Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: G-bar AB =0, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space-time matter inflation
Supersymmetric models with broken Lorentz invariance.
Directory of Open Access Journals (Sweden)
Marakulin Arthur
2017-01-01
Full Text Available Several supersymmetric theories with broken Lorentz invariance are considered. We study at the component level Lorentz violating representations of the supersymmetry algebra and construct Lagrangians for the scalar and vector supermultiplets with broken Lorentz invariance. Lorentz violating model for the gravitational supermultiplet is constructed using the superfield formalism as supersymmetric extension of the linearized Einstein-aether theory. The most general Lagrangian of the linearized Einstein-aether supergravity is constructed. We show that the Lagrangian for this model is unique and obtain its bosonic part in components. The constraints imposed by supersymmetry on the parameters of the theory are obtained. The phenomenological consequences of the model are discussed.
Renormalization group summation of Laplace QCD sum rules for scalar gluon currents
Directory of Open Access Journals (Sweden)
Farrukh Chishtie
2016-03-01
Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.
Alonso, Rodrigo; Manohar, Aneesh V
2016-01-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold $\\mathcal M$. We show how the curvature can be measured experimentally via Higgs cross-sections, $W_L$ scattering, and the $S$ parameter. The one-loop action of HEFT is given in terms of geometric invariants of $\\mathcal M$. The distinction between the Standard Model (SM) and HEFT is whether $\\mathcal M$ is flat or curved, not whether the scalars transform linearly or non-linearly under the electroweak group.
Scalar geons in Born-Infeld gravity
Afonso, V. I.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2017-08-01
The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r≈ 2M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
Scalar geons in Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Afonso, V.I. [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: viafonso@df.ufcg.edu.br, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)
2017-08-01
The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r ≈ 2 M , while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
Phenomenology of pseudotensor mesons and the pseudotensor glueball
Koenigstein, Adrian; Giacosa, Francesco
2016-12-01
We study the decays of the pseudotensor mesons (π2(1670), K2(1770), η2(1645), η2(1870)) interpreted as the ground-state nonet of 11D2 bar{q}q states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of π2(1670) and K2(1770) can be well described, the decays of the isoscalar states η2(1645) and η2(1870) can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about -42°, similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the bar{q}q assignment of pseudotensor states predicts that the ratio [η2(1870) → a2(1320) π]/[η2(1870) → f2(1270) η] is about 23.5. This value is in agreement with Barberis et al., (20.4 ± 6.6), but disagrees with the recent reanalysis of Anisovich et al., (1.7 ± 0.4). Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional bar{q}q states: a sizable decay into K^{ast}2(1430) K and a2(1230) π together with a vanishing decay into pseudoscalar-vector pairs (such as ρ(770) π and K^{ast}(892) K) are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments.
Phenomenology of pseudotensor mesons and the pseudotensor glueball
Energy Technology Data Exchange (ETDEWEB)
Koenigstein, Adrian [Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)
2016-12-15
We study the decays of the pseudotensor mesons (π{sub 2}(1670), K{sub 2}(1770), η{sub 2}(1645), η{sub 2}(1870)) interpreted as the ground-state nonet of 1{sup 1}D{sub 2} anti qq states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of π{sub 2}(1670) and K{sub 2}(1770) can be well described, the decays of the isoscalar states η{sub 2}(1645) and η{sub 2}(1870) can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about -42 {sup circle}, similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the anti qq assignment of pseudotensor states predicts that the ratio [η{sub 2}(1870) → a{sub 2}(1320) π]/[η{sub 2}(1870) → f{sub 2}(1270) η] is about 23.5. This value is in agreement with Barberis et al., (20.4 ± 6.6), but disagrees with the recent reanalysis of Anisovich et al., (1.7 ± 0.4). Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional anti qq states: a sizable decay into K{sub 2}{sup *}(1430) K and a{sub 2}(1230) π together with a vanishing decay into pseudoscalar-vector pairs (such as ρ(770) π and K*(892) K) are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments. (orig.)
SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement
Lau, Richard; Teper, Michael
2017-10-01
We calculate the spectrum of light glueballs and the string tension in a number of SO( N) lattice gauge theories in 2+1 dimensions, with N in the range 3 ≤ N ≤ 16. After extrapolating to the continuum limit and then to N = ∞ we compare to the spectrum and string tension of the SU( N → ∞) gauge theory and find that the most reliably and precisely calculated physical quantities are consistent in that limit. We also compare the glueball spectra of those pairs of SO( N) and SU( N') theories that possess the same Lie algebra, i.e. SO(3) and SU(2), SO(4) and SU(2)×SU(2), SO(6) and SU(4), and find that for the very lightest glueballs the spectra are consistent within each such pair, as are the string tensions and the couplings. Where there are apparent discrepancies they are typically for heavier glueballs, where the systematic errors are much harder to control. We calculate the SO( N) string tensions with a particular focus on the confining properties of SO(2 N + 1) theories which, unlike SO(2 N) theories, possess a trivial centre. We find that for both the light glueballs and for the string tension SO(2 N) and SO(2 N + 1) gauge theories appear to form a single smooth sequence.
k-Essence Non-Minimally Coupled with Gauss–Bonnet Invariant for Inflation
Directory of Open Access Journals (Sweden)
Ratbay Myrzakulov
2016-06-01
Full Text Available In this paper, we investigated inflationary solutions for a subclass of Horndeski models where a scalar field is non-minimally coupled with the Gauss–Bonnet invariant. Examples of canonical scalar field and k-essence to support the early-time acceleration are considered. The formalism to calculate the perturbations in a Friedmann–Robertson–Walker (FRW universe and to derive the spectral index and the tensor-to-scalar ratio is furnished.
Inclusive glueball production in high-energy p+p(p) collisions
Peng Hong An; He Zhen Min
2001-01-01
Using the factorizable character of amplitudes for the double diffractive process in the Landshoff-Nachtmann model (1987), we have discussed the inclusive glueball production in high-energy pp collisions via the fusion process of two non-perturbative gluons, and have compared it with the double diffractive alike process. We found that, as the c.m. energy E/sub CMS/ increases from 20 to 20 000 GeV, the cross sections of the latter process are about one to two orders larger than the former. Such an outcome could be explained from the hypothesis of duality between glueballs and pomeron. (7 refs).
Gauge-invariant formulation of the d=3 Yang-Mills theory
Diakonov, Dmitri; Petrov, Victor
2000-01-01
We write down the Yang-Mills partition function and the average Wilson loop in terms of local gauge-invariant variables being the six components of the metric tensor of dual space. The Wilson loop becomes the trace of the parallel transporter in curved space, else called the gravitational holonomy. We show that the external coordinates mapping the 3d curved space into a flat 6d space play the role of glueball fields, and there is a natural mechanism for the mass gap generation.
Chirality invariance and 'chiral' fields
International Nuclear Information System (INIS)
Ziino, G.
1978-01-01
The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)
Contractive relaxation systems and interacting particles for scalar conservation laws
International Nuclear Information System (INIS)
Katsoulakis, M.A.; Tzavaras, A.E.
1996-01-01
We consider a class of semi linear hyperbolic systems with relaxation that are contractive in the L 1 -norm and admit invariant regions. We show that, as the relaxation parameter ξ goes to zero, their solutions converge to a weak solution of the scalar multidimensional conversation law that satisfies the Kruzhkov conditions. In the case of one space dimension, we propose certain interacting particle systems, whose mesoscopic limit is the systems with relaxation and their macroscopic dynamics is described by entropy solutions of a scalar conservation law. (author)
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur, E-mail: artur.alho@gmail.co [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal)
2010-05-01
We study covariant and gauge-invariant linear scalar perturbations of a scalar-field with positive exponential potential in a flat Robertson-Walker background. By applying a dynamical systems approach we investigate how the phase of the perturbations evolves, finding bounds on the wave-number in terms of the slope parameter, for which the perturbations decays when approaching the inflationary solution.
Excited glueball states in four-dimensional SU(3) lattice gauge theory
Berg, B
1982-01-01
For SU(N)(N>or=2) lattice gauge theories in four dimensions the authors construct all irreducible representations of the full cubic group on spacelike Wilson loop operators up to length 6. Relying on this set of operators preliminary Monte Carlo results for SU(3) excited glueball states are reported.
Conformal conservation laws for second-order scalar fields
International Nuclear Information System (INIS)
Blakeskee, J.S.; Logan, J.D.
1976-01-01
It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group
Scale-invariant gravity: geometrodynamics
International Nuclear Information System (INIS)
Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O
2003-01-01
We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different
Scalar-tensor teleparallel wormholes by Noether symmetries
Bahamonde, Sebastian; Camci, Ugur; Capozziello, Salvatore; Jamil, Mubasher
2016-10-01
A gravitational theory of a scalar field nonminimally coupled with torsion and a boundary term is considered with the aim to construct Lorentzian wormholes. Geometrical parameters including shape and redshift functions are obtained for these solutions. We adopt the formalism of the Noether gauge symmetry approach in order to find symmetries, Lie brackets and invariants (conserved quantities). Furthermore by imposing specific forms of potential function, we are able to calculate metric coefficients and discuss their geometrical behavior.
Local transformations of units in scalar-tensor cosmology
International Nuclear Information System (INIS)
Catena, R.; Pietroni, M.; Scarabello, L.; Padua Univ.
2006-10-01
The physical equivalence of Einstein and Jordan frame in Scalar Tensor theories has been explained by Dicke in 1962: they are related by a local transformation of units. We discuss this point in a cosmological framework. Our main result is the construction of a formalism in which all the physical observables are frame-invariant. The application of this approach to CMB codes is at present under analysis. (orig.)
Local transformations of units in scalar-tensor cosmology
Energy Technology Data Exchange (ETDEWEB)
Catena, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pietroni, M. [INFN, Sezione di Padova (Italy); Scarabello, L. [INFN, Sezione di Padova (Italy)]|[Padua Univ. (Italy). Dipt. di Fisica
2006-10-15
The physical equivalence of Einstein and Jordan frame in Scalar Tensor theories has been explained by Dicke in 1962: they are related by a local transformation of units. We discuss this point in a cosmological framework. Our main result is the construction of a formalism in which all the physical observables are frame-invariant. The application of this approach to CMB codes is at present under analysis. (orig.)
Conformal scalar field wormholes
Halliwell, Jonathan J.; Laflamme, Raymond
1989-01-01
The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.
International Nuclear Information System (INIS)
Egorov, A I; Kashargin, P E; Sushkov, Sergey V
2016-01-01
In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats. (paper)
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
Hawking radiation of five-dimensional charged black holes with scalar fields
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-09-01
Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.
Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)
2016-04-15
Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)
D-particle Recoil Space Times and "Glueball" Masses
Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth
2001-01-01
We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...
Light scalar mesons in central production at COMPASS
Austregesilo, Alexander
2016-05-01
COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a 190 GeV/c positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.
Test of scalar meson structure in {phi} radiative decays
Energy Technology Data Exchange (ETDEWEB)
Kumano, S. [Mainz Univ. (Germany). Inst. fuer Kernphysik
1992-12-01
We show that {phi} radiative decays into scalar mesons [f{sub 0}(975), a{sub 0}(980) {identical_to} S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10{sup -4}-10{sup -6} depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future {phi} factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood {sigma} meson. We also find that the decay {phi}{yields}S{sub {gamma}}{yields}K{sup 0}K-bar{sup 0}{sub {gamma}} is not strong enough to pose a significant background problem for studying CP violation via {phi}{yields}K{sup 0}K-bar{sup 0} at the {phi} factories. (author).
Light Scalar Mesons in Central Production at COMPASS
Austregesilo, A.
2016-01-01
COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, WL scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, and the curvature is a signal of the scale of new physics.
Directory of Open Access Journals (Sweden)
Rodrigo Alonso
2016-03-01
Full Text Available A geometric formulation of Higgs Effective Field Theory (HEFT is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, WL scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM and HEFT is whether M is flat or curved, and the curvature is a signal of the scale of new physics.
Rodríguez, Yeinzon; Navarro, Andrés A.
2017-03-01
An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Hamiltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes.
Late time solution for interacting scalar in accelerating spaces
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav, E-mail: t.prokopec@uu.nl [Institute for Theoretical Physics, Spinoza Institute and EMME$\\Phi$, Utrecht University, Postbus 80.195, Utrecht, 3508 TD The Netherlands (Netherlands)
2015-11-01
We consider stochastic inflation in an interacting scalar field in spatially homogeneous accelerating space-times with a constant principal slow roll parameter ε. We show that, if the scalar potential is scale invariant (which is the case when scalar contains quartic self-interaction and couples non-minimally to gravity), the late-time solution on accelerating FLRW spaces can be described by a probability distribution function (PDF) ρ which is a function of φ/H only, where φ=φ( x-vector ) is the scalar field and H=H(t) denotes the Hubble parameter. We give explicit late-time solutions for ρarrow ρ{sub ∞}(φ/H), and thereby find the order ε corrections to the Starobinsky-Yokoyama result. This PDF can then be used to calculate e.g. various n-point functions of the (self-interacting) scalar field, which are valid at late times in arbitrary accelerating space-times with ε= constant.
Identification of θ(f2(1720)) as a tensor glueball
International Nuclear Information System (INIS)
Liu, K.F.
1988-01-01
The energy-momentum tensor matrix element for the tensor glueball is obtained from the tensor dominance model. Branching ratio of θ(f 2 (1720)) in J/ψ radiative decay is thus calculated which is in accord with the observed experimental branching ratio. The decay modes of θ(f 2 (1720)) and results from J/ψ→ γK bar K,ωK bar K, and φK bar K are taken as good indicators for flavor independence of the tensor meson Θ. Suppression of θ(f 2 (1720)) in γγ reaction and K - p → ΛK o s K o s are considered as evidence for the fact that there are no quarks in θ. From the combined theoretical and experimental studies, the authors conclude that θ is by far the best tensor glueball candidate
Viable tensor-to-scalar ratio in a symmetric matter bounce
Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.
2018-01-01
Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.
Bern-Kosower rule for scalar QED
International Nuclear Information System (INIS)
Daikouji, K.; Shino, M.; Sumino, Y.
1996-01-01
We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a set of rules for calculating S-matrix elements for any processes at any order of the coupling constant. A gauge-invariant set of diagrams in general is first written in the world line path-integral expression. Then we integrate over x(τ), and the resulting expression is given in terms of a correlation function on the world line left-angle x(τ)x(τ ' )right-angle. Simple rules to decompose the correlation function into basic elements are obtained. A gauge transformation known as the integration by parts technique can be used to reduce the number of independent terms before integration over proper-time variables. The surface terms can be omitted provided the external scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled us to avoid any ambiguity coming from the infinite dimensionality of the path-integral approach. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Greiner, M.; Soff, G.
1992-12-01
The electromagnetic creation of various exotic particles in ultrarelativistic heavy-ion collisions is discussed. The production of intermediate mass Higgs bosons of the minimal supersymmetric extension of the Standard Model is enhanced over the Standard Model Higgs boson formation for certain model parameter choices and as a consequence might be detectable at LCH and SSC. We also investigate the electromagnetic generation of supersymmetric fermions and bosons as well as glueballs, mesons and fermions. (orig.)
Lorentz invariance with an invariant energy scale.
Magueijo, João; Smolin, Lee
2002-05-13
We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.
Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.
2018-01-23
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
Manifestly scale-invariant regularization and quantum effective operators
Ghilencea, D.M.
2016-01-01
Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...
Natural inflation with hidden scale invariance
Directory of Open Access Journals (Sweden)
Neil D. Barrie
2016-05-01
Full Text Available We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns−1≈−0.025(N⋆60−1 and r≈0.0667(N⋆60−1, where N⋆≈30–65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.
Measurement invariance versus selection invariance : Is fair selection possible?
Borsboom, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. t' [Institute for Theoretical Physics, Utrecht University, and Spinoza Institute, Postbus 8000, 3508 TA Utrecht (Netherlands); Isidori, G. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Laboratori Nazionali di Frascati, Via E.Fermi 40, 00044 Frascati (Italy); Maiani, L. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy); Polosa, A.D. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)], E-mail: antonio.polosa@cern.ch; Riquer, V. [INFN, Sezione di Roma ' La Sapienza' , P.le A. Moro 2, 00185 Roma (Italy)
2008-05-08
We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges.
Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V
1999-01-01
This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical
The trace anomaly and massless scalar degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Gianotti, Maurizio [Los Alamos National Laboratory; Mottola, Emil [Los Alamos National Laboratory
2008-01-01
The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.
Frame-Covariant Formulation of Inflation in Scalar-Curvature Theories
Burns, Daniel; Pilaftsis, Apostolos
2016-01-01
We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new generalized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a concise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological observables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our formalism to specific scenarios, such as the induced gravity inflation, H...
Rigid invariance as derived from BRS invariance. The abelian Higgs model
International Nuclear Information System (INIS)
Kraus, E.
1995-02-01
Consequences of a symmetry, e.g. relations amongst Green functions, are renormalization scheme independently expressed in terms of a rigid Ward identity. The corresponding local version yields information on the respective current. In the case of spontaneous breakdown one has to define the theory via the BRS invariance and thus to construct rigid and current Ward identity non-trivially in accordance with it. We performed this construction to all orders of perturbation theory in the abelian Higgs model as a prelude to the standard model. A technical tool of interest in itself is the use of a doublet of external scalar ''background'' fields. The Callan-Symanzik equation has an interesting form and follows easily once the rigid invariance is established. (orig.)
Duffley, Patrick; Larrivée, Pierre
2010-01-01
This paper examines the status of scalarity in the analysis of the meaning of the English determiner any. The latter’s position as a prime exemplar of the category of polarity-sensitive items has led it to be generally assumed to have scalar meaning. Scalar effects are absent however from a number of common uses of this word. This suggests that any does not involve scales as part of its core meaning, but produces them as a derived interpretative property. The role of three factors in the deri...
Algorithms in invariant theory
Sturmfels, Bernd
2008-01-01
J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.
Accelerating Universe and the Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Yasunori Fujii
2012-10-01
Full Text Available To understand the accelerating universe discovered observationally in 1998, we develop the scalar-tensor theory of gravitation originally due to Jordan, extended only minimally. The unique role of the conformal transformation and frames is discussed particularly from a physical point of view. We show the theory to provide us with a simple and natural way of understanding the core of the measurements, Λobs ∼ t0−2 for the observed values of the cosmological constant and today’s age of the universe both expressed in the Planckian units. According to this scenario of a decaying cosmological constant, Λobs is this small only because we are old, not because we fine-tune the parameters. It also follows that the scalar field is simply the pseudo Nambu–Goldstone boson of broken global scale invariance, based on the way astronomers and astrophysicists measure the expansion of the universe in reference to the microscopic length units. A rather phenomenological trapping mechanism is assumed for the scalar field around the epoch of mini-inflation as observed, still maintaining the unmistakable behavior of the scenario stated above. Experimental searches for the scalar field, as light as ∼ 10−9 eV, as part of the dark energy, are also discussed.
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
Inflation and the Higgs Scalar
Energy Technology Data Exchange (ETDEWEB)
Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2014-12-05
This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.
International Nuclear Information System (INIS)
Fré, P.; Sorin, A.S.; Trigiante, M.
2014-01-01
The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration
Large transverse momenta in inclusive hadronic reactions and asymptotic scale invariance
International Nuclear Information System (INIS)
Miralles, F.; Sala, C.
1976-01-01
The inclusive reaction among scalar particles in considered, assuming that in the large-transverse momentum limit, scale invariance becomes important. Predictions are made of the asymptotic scale invariance for large four transverse momentum in hadron-hadron interactions, and they are compared with previous predictions. Photoproduction is also studied and the predictions that follow from different assumptions about the compositeness of hadrons are compared
Bianchi type I expanding universe in Weyl-invariant gravity with a quartic interaction term
Energy Technology Data Exchange (ETDEWEB)
Kao, W.F.; Lin, Ing-Chen [National Chiao Tung University, Institute of Physics, Hsinchu (China)
2017-11-15
We will focus on the effect of a Weyl-invariant model with a quadratic interaction term and a free scalar field ψ. A set of analytic solutions will be obtained for this model. This model provides a dynamical alternative to the standard ΛCDM model. In particular, we will show that the quartic Weyl-invariant model prediction is consistent with the Hubble diagram observations. (orig.)
Mass spectra of 0+−, 1−+, and 2+− exotic glueballs
Directory of Open Access Journals (Sweden)
Liang Tang
2016-03-01
Full Text Available With appropriate interpolating currents the mass spectra of 0+−, 1−+, and 2+− oddballs are studied in the framework of QCD sum rules (QCDSR. We find there exits one stable 0+− oddball with mass of 4.57±0.13GeV, and one stable 2+− oddball with mass of 6.06±0.13GeV, whereas, no stable 1−+ oddball shows up. The possible production and decay modes of these glueballs with unconventional quantum numbers are analyzed, which are hopefully measurable in either BELLEII, PANDA, Super-B or LHCb experiments.
Search for a vector glueball by a scan of the J/ψ resonance
International Nuclear Information System (INIS)
Bai, J.Z.; Bardon, O.; Blum, I.; Breakstone, A.; Burnett, T.; Chen, G.P.; Chen, H.F.; Chen, J.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cowan, R.F.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Dunwoodie, W.; Fan, X.L.; Fang, J.; Fero, M.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gratton, P.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; Harris, F.A.; Hatanaka, M.; He, J.; He, M.; Hitlin, D.G.; Hu, G.Y.; Hu, T.; Hu, X.Q.; Huang, D.Q.; Huang, Y.Z.; Izen, J.M.; Jia, Q.P.; Jiang, C.H.; Jin, S.; Jin, Y.; Jones, L.; Kang, S.H.; Ke, Z.J.; Kelsey, M.H.; Kim, B.K.; Kong, D.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Lankford, A.; Li, F.; Li, J.; Li, P.Q.; Li, Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.H.; Li, X.N.; Lin, S.Z.; Liu, H.M.; Liu, J.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lou, X.C.; Lowery, B.; Lu, J.G.; Luo, S.Q.; Luo, Y.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Malchow, R.; Mandelkern, M.; Meng, X.C.; Ni, H.L.; Nie, J.; Olsen, S.L.; Oyang, J.; Paluselli, D.; Pan, L.J.; Panetta, J.; Porter, F.; Prabhakar, E.; Qi, N.D.; Que, Y.K.; Quigley, J.; Rong, G.; Schernau, M.; Schmid, B.; Schultz, J.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Shi, X.R.; Smith, A.; Soderstrom, E.; Song, X.F.; Standifird, J.; Stoker, D.; Sun, F.; Sun, H.S.; Sun, S.J.; Synodinos, J.; Tan, Y.P.; Tang, S.Q.; Toki, W.; Tong, G.L.; Torrence, E.; Wang, F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, Y.Y.; Wei, C.L.; Whittaker, S.; Wilson, R.; Wisniewski, W.J.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xiong, W.J.; Xu, D.Z.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yamamoto, R.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, J.; Yang, W.; Ye, M.H.; Ye, S.W.; Ye, S.Z.; Young, K.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, H.W.; Zhao, J.W.
1996-01-01
The cross section for e + e - →ρπ has been measured by the BES detector at BEPC at center-of-mass energies covering a 40 MeV interval spanning the J/ψ resonance. The data are used to search for the vector gluonium state hypothesized by Brodsky, Lepage, and Tuan as an explanation of the ρπ puzzle in charmonium physics. The shape of the ρπ cross section is compatible with that of the total hadronic cross section. No distortions indicating the presence of a vector glueball are seen. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Tian Chou.
1991-05-01
It is important but difficult to find the invariant groups for the differential equations. We found a new invariant group for the MKdV equation. In this paper, we present a new invariance for the CDF equation. By using this invariance, we obtain some new solutions of CDF equation. (author). 5 refs
Lorentz invariance in shape dynamics
International Nuclear Information System (INIS)
Carlip, S; Gomes, Henrique
2015-01-01
Shape dynamics is a reframing of canonical general relativity in which time reparametrization invariance is ‘traded’ for a local conformal invariance. We explore the emergence of Lorentz invariance in this model in three contexts: as a maximal symmetry, an asymptotic symmetry and a local invariance. (paper)
A space-time lattice version of scalar electrodynamics
International Nuclear Information System (INIS)
Kijowski, J.; Thielmann, A.
1993-10-01
A Minkowski-lattice version of quantum scalar electrodynamics is constructed. Quantum field is consequently described in a gauge-independent way, i.e. the algebra of quantum observables of the theory is generated by gauge-invariant operators assigned to zero-, one-, and two-dimensional elements of the lattice. The operators satisfy canonical commutation relations. Field dynamics is formulated in terms of difference equations imposed on the field operators. The dynamics is obtained from a discrete version of the path-integral. (author). 19 refs
Radiative production of scalar neutrinos in e+e- annihilation
International Nuclear Information System (INIS)
Aliev, T.M.; Mustafaev, Kh.A.; Khalil-Zade, F.T.
1987-01-01
Radiative production of scalar neutrino pairs in e + e - annihilation is studied in detail in the framework of the R-invariant N=1 supergravity. The doubly differential (with respect to energy and photon emission angle) cross section is calculated. The energy-angular distribution, the photon energy spectra and the total cross section were studied in detail to fit the available experimental conditions. Possibilities of experimental identification of the process under consideration are presented. Restraints vino mass are imposed comparing comparing the obtained results with the data
Pre-inflationary homogenization of scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur, E-mail: aalho@math.uminho.pt [Centro de Matematica, Universidade do Minho, Gualtar, 4710-057 Braga (Portugal); Mena, Filipe C., E-mail: fmena@math.uminho.pt [Centro de Matematica, Universidade do Minho, Gualtar, 4710-057 Braga (Portugal); Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States)
2011-09-26
We consider the evolution of covariant and gauge invariant linear density perturbations of scalar field cosmologies using a dynamical systems' approach. We find conditions for which the perturbations decay in time, so that the spacetime approaches a homogeneous solution which inflates, for quadratic and exponential potentials. This pre-inflationary homogenization is found to be stable in the potentials' parameter spaces. Furthermore, in each case, we determine the minimum size of the resultant homogeneous patch and show that, for quadratic potentials, the resulting inflationary solutions include those with the necessary number of e-folds.
Scalar-flat Kaehler metrics with conformal Bianchi V symmetry
Energy Technology Data Exchange (ETDEWEB)
Dunajski, Maciej [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Plansangkate, Prim, E-mail: M.Dunajski@damtp.cam.ac.uk, E-mail: plansang@CRM.UMontreal.ca [Centre de Recherches Mathematiques (CRM), Universite de Montreal, CP 6128, Montreal (Quebec) H3C 3J7 (Canada)
2011-06-21
We provide an affirmative answer to a question posed by Tod (1995, Twistor Theory (New York: Dekker)), and construct all four-dimensional Kaehler metrics with vanishing scalar curvature which are invariant under the conformal action of the Bianchi V group. The construction is based on the combination of twistor theory and the isomonodromic problem with two double poles. The resulting metrics are non-diagonal in the left-invariant basis and are explicitly given in terms of Bessel functions and their integrals. We also make a connection with the LeBrun ansatz, and characterize the associated solutions of the SU({infinity}) Toda equation by the existence a non-abelian two-dimensional group of point symmetries.
Gross, Thomas J; Fleming, Charles B; Mason, W Alex; Haggerty, Kevin P
2017-07-01
The Alabama Parenting Questionnaire nine-item short form (APQ-9) is an often used assessment of parenting in research and applied settings. It uses parent and youth ratings for three scales: Positive Parenting, Inconsistent Discipline, and Poor Supervision. The purpose of this study is to examine the longitudinal invariance of the APQ-9 for both parents and youth, and the multigroup invariance between parents and youth during the transition from middle school to high school. Parent and youth longitudinal configural, metric, and scalar invariance for the APQ-9 were supported when tested separately. However, the multigroup invariance tests indicated that scalar invariance was not achieved between parent and youth ratings. Essentially, parent and youth mean scores for Positive Parenting, Inconsistent Discipline, and Poor Supervision can be independently compared across the transition from middle school to high school. However, comparing parent and youth scores across the APQ-9 scales may not be meaningful.
Robust Affine Invariant Descriptors
Directory of Open Access Journals (Sweden)
Jianwei Yang
2011-01-01
Full Text Available An approach is developed for the extraction of affine invariant descriptors by cutting object into slices. Gray values associated with every pixel in each slice are summed up to construct affine invariant descriptors. As a result, these descriptors are very robust to additive noise. In order to establish slices of correspondence between an object and its affine transformed version, general contour (GC of the object is constructed by performing projection along lines with different polar angles. Consequently, affine in-variant division curves are derived. A slice is formed by points fall in the region enclosed by two adjacent division curves. To test and evaluate the proposed method, several experiments have been conducted. Experimental results show that the proposed method is very robust to noise.
Direct production research of Q0 and glueballs in the hadronic collision π-N at 300 GeV/c
International Nuclear Information System (INIS)
Neaume, C.
1987-01-01
The objective of this experience was double: put in clearness the production of ρ 0 in the interaction π - N at 300 GeV/c by a direct production mechanism and research the glueballs producted by this same mechanism. The results indicate that the direct production of ρ 0 is in agreement with the model of Benayoun and all but we cannot observe signals of θ(1640) and ι(1440) with the intensity predicted by this model. This can be explicate if these two particles are not glueballs or, if they are glueballs, their structure constants are very different of these of qantiq ordinary mesons [fr
Dynamics of Glueball and $q\\overline{q}$ production in the central region of p p collisions
Close, Francis Edwin; Schuler, G A
2000-01-01
We explain the phi and t dependences of mesons with JPC = 0pm +,1^++,2pm +$ produced in the central region of pp collisions. For the 0++ and 2++ sector this reveals a systematic behaviour in the data that appears to distinguish between qqbar and non-qqbar or glueball candidates.
A remark on the large difference between the glueball mass and T sub c in quenched QCD
Ishii, N
2003-01-01
The lattice QCD studies indicate that the critical temperature T sub c approx =260-280 MeV of the deconfinement phase transition in quenched QCD is considerably smaller than the lowest-lying glueball mass m sub G approx =1500-1700 MeV, i.e., T sub c <
Laplace-Type Semi-Invariants for a System of Two Linear Hyperbolic Equations by Complex Methods
Directory of Open Access Journals (Sweden)
F. M. Mahomed
2011-01-01
Full Text Available In 1773 Laplace obtained two fundamental semi-invariants, called Laplace invariants, for scalar linear hyperbolic partial differential equations (PDEs in two independent variables. He utilized this in his integration theory for such equations. Recently, Tsaousi and Sophocleous studied semi-invariants for systems of two linear hyperbolic PDEs in two independent variables. Separately, by splitting a complex scalar ordinary differential equation (ODE into its real and imaginary parts PDEs for two functions of two variables were obtained and their symmetry structure studied. In this work we revisit semi-invariants under equivalence transformations of the dependent variables for systems of two linear hyperbolic PDEs in two independent variables when such systems correspond to scalar complex linear hyperbolic equations in two independent variables, using the above-mentioned splitting procedure. The semi-invariants under linear changes of the dependent variables deduced for this class of hyperbolic linear systems correspond to the complex semi-invariants of the complex scalar linear (1+1 hyperbolic equation. We show that the adjoint factorization corresponds precisely to the complex splitting. We also study the reductions and the inverse problem when such systems of two linear hyperbolic PDEs arise from a linear complex hyperbolic PDE. Examples are given to show the application of this approach.
Self-consistent Dark Matter simplified models with an s-channel scalar mediator
International Nuclear Information System (INIS)
Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.
2017-01-01
We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.
Modular invariant gaugino condensation
Energy Technology Data Exchange (ETDEWEB)
Gaillard, M.K.
1991-05-09
The construction of effective supergravity lagrangians for gaugino condensation is reviewed and recent results are presented that are consistent with modular invariance and yield a positive definite potential of the noscale type. Possible implications for phenomenology are briefly discussed. 29 refs.
Invariant differential operators
Dobrev, Vladimir K
2016-01-01
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.
Perspective Projection Invariants,
1986-02-01
AD-AI67 793 PERSPECTIVE PROJECTION INVARIANTS(U) MASSACHUSETTS INST 1/1~ OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB VERRI ET AL , FEB 86 AI-M-832...some stability properties. On the contrary, zeros of curvature of arbitrary 3D curves do not present any simple kindi of stability. Thus zeros of
International Nuclear Information System (INIS)
Bramson, B.D.
1978-01-01
An isolated system in general relativity makes a transition between stationary states. It is shown that the spin vectors of the system, long before and long after the emission of radiation, are supertranslation invariant and, hence, independent of the choice of Minkowski observation space. (author)
Photoproduction of scalar mesons using CLAS at JLab
Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration
2014-09-01
The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0 Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0> Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0 Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. NSF.
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)
2017-09-15
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Implications of conformal invariance in momentum space
Bzowski, Adam; McFadden, Paul; Skenderis, Kostas
2014-03-01
We present a comprehensive analysis of the implications of conformal invariance for 3-point functions of the stress-energy tensor, conserved currents and scalar operators in general dimension and in momentum space. Our starting point is a novel and very effective decomposition of tensor correlators which reduces their computation to that of a number of scalar form factors. For example, the most general 3-point function of a conserved and traceless stress-energy tensor is determined by only five form factors. Dilatations and special conformal Ward identities then impose additional conditions on these form factors. The special conformal Ward identities become a set of first and second order differential equations, whose general solution is given in terms of integrals involving a product of three Bessel functions (`triple- K integrals'). All in all, the correlators are completely determined up to a number of constants, in agreement with well-known position space results. In odd dimensions 3-point functions are finite without renormalisation while in even dimensions non-trivial renormalisation in required. In this paper we restrict ourselves to odd dimensions. A comprehensive analysis of renormalisation will be discussed elsewhere. This paper contains two parts that can be read independently of each other. In the first part, we explain the method that leads to the solution for the correlators in terms of triple- K integrals while the second part contains a self-contained presentation of all results. Readers interested only in results may directly consult the second part of the paper.
Searches for high mass BSM scalars
Nam, Kyungwook
2017-01-01
Searches for BSM particles using the 126 GeV Higgs boson have been carried out with the CMS detector at LHC, based on pp collision data collected at centre-of-mass energies of 7, 8, and 13 TeV. The talk presents the latest results and gives a brief review of earlier results. A search for heavy resonances decaying to Zgamma is presented. This search is based on the data collected with the CMS detector at 13 TeV. The search strategy is to look for an excess above the non-resonant Standard Model background in the Zgamma invariant mass spectrum. The background is extracted directly from data and compared with the signal expected to be produced by hypothetical scalar resonances. While the HH production within the Standard Model is very small and essentially out of the experimental reach within the LHC Run II, several theories foresee an enhancement that can be already probed with the available data. The latest searches for resonant and non-resonant Higgs pair production, made using 13 TeV pp collisions data recor...
Flavor-changing scalar interactions
International Nuclear Information System (INIS)
Hall, L.; Weinberg, S.
1993-01-01
The smallness of fermion masses and mixing angles has recently been attributed to approximate global U(1) symmetries, one for each fermion type. The parameters associated with these symmetry breakings are estimated here directly from observed masses and mixing angles. It turns out that although flavor-changing reaction rates may be acceptably small in electroweak theories with several scalar doublets without imposing any special symmetries on the scalars themselves, such theories generically yield to much CP violation in the neutral kaon mass matrix. Hence in these theories CP must also be a good approximate symmetry. Such models provide an alternative mechanism for CP violation and have various interesting phenomenological features
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Scalar potentials and the Dirac equation
International Nuclear Information System (INIS)
Bergerhoff, B.; Soff, G.
1994-01-01
The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)
Asymptotic safety of quantum gravity beyond Ricci scalars
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Analytic invariants of boundary links
Garoufalidis, Stavros; Levine, Jerome
2001-01-01
Using basic topology and linear algebra, we define a plethora of invariants of boundary links whose values are power series with noncommuting variables. These turn out to be useful and elementary reformulations of an invariant originally defined by M. Farber.
Continuous Integrated Invariant Inference Project
National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...
Status of time reversal invariance
International Nuclear Information System (INIS)
Henley, E.M.
1989-01-01
Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed
Ahmed, Chaara El Mouez
Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.
Alonso, Rodrigo; Manohar, Aneesh V.
2016-01-01
The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
2013-03-01
Mar 1, 2013 ... Abstract. It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for (ρ + 3p) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons ...
Scalar Calibration of Vector Magnetometers
DEFF Research Database (Denmark)
Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz
2000-01-01
The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...
Scalar magnetometers for space applications
DEFF Research Database (Denmark)
Primdahl, Fritz
magnetometer, offer stability and resolution well suited for the calibration purposes. Recent developments are discussed. The metastable Helium magnetometer also offers quasi-absolute scalar measurements, and the use of semiconductor tuned lasers replacing an RF-excited Helium lamp holds great promise...
Scalar top study: Detector optimization
Indian Academy of Sciences (India)
November 2007 physics pp. 921–926. Scalar top study: Detector optimization. C MILSTÉNE1 and A SOPCZAK2,∗. 1Fermi National Laboratory, Batavia, Il-60510, USA ... A vertex detector concept of the linear collider flavour identification (LCFI) collaboration .... A minimal transverse momentum cut, pt > 5 GeV, is applied.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
2013-03-01
Mar 1, 2013 ... nonlinearity of Einstien equations could lead to critical phenomena close to the threshold of black hole ... we refer the reader to [4]). Furthermore, the scalar field collapse could also lead to .... Anyway, the physical motivation is that in this case the collapsing model will eventually become an FRW one.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of ...
Multi-Centered Invariants, Plethysm and Grassmannians
Cacciatori, Sergio L.; van Geemen, Bert
2013-01-01
Motivated by multi-centered black hole solutions of Maxwell-Einstein theories of (super)gravity in D=4 space-time dimensions, we develop some general methods, that can be used to determine all homogeneous invariant polynomials on the irreducible (SL_h(p,R) x G4)-representation (p,R), where p denotes the number of centers, and SL_h(p,R) is the "horizontal" symmetry of the system, acting upon the indices labelling the centers. The black hole electric and magnetic charges sit in the symplectic representation R of the generalized electric-magnetic (U-)duality group G4. We start with an algebraic approach based on classical invariant theory, using Schur polynomials and the Cauchy formula. Then, we perform a geometric analysis, involving Grassmannians, Pluecker coordinates, and exploiting Bott's Theorem. We focus on non-degenerate groups G4 "of type E7" relevant for (super)gravities whose (vector multiplets') scalar manifold is a symmetric space. In the triality-symmetric stu model of N=2 supergravity, we explicitl...
Conformal invariance of curvature perturbation
Gong, Jinn-Ouk; Park, Wan Il; Sasaki, Misao; Song, Yong-Seon
2011-01-01
We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the delta N formalism, and show its conformal invariance.
Color-invariant shape moments for object recognition
Zhou, Qiang; Celenk, Mehmet
2001-05-01
Geometric moments have been widely used in many shape recognition and object classification tasks. These monomials are usually computed from binary or gray-level images for the object shape recognition invariant to rotation, translation, and scaling. In this paper, we attempt to calculate the shape related moments from color images, and study their noise immunity and color invariance property for the application areas of face recognition and content based image retrieval. To this end, we describe a computationally efficient method of converting a vector-valued color image into a gray scale for robust moment computation. Geometric moments are calculated from the resultant scalar representation of a color image data, and proven to be robust shape descriptors for the face and flower images. The generated shape invariants appear to have better noise immunity than the Hu moments and exhibit characteristics invariant to hue changes in the object colors. As compared to the Zernike polynomials, the proposed feature set has higher discriminatory power although the Zernike polynomials present superior noise rejection capability. Robust performance, computational efficiency, high noise immunity, and hue invariance property of the new approach are particularly useful for fast image retrieval tasks requiring high query accuracy.
Invariant scattering convolution networks.
Bruna, Joan; Mallat, Stéphane
2013-08-01
A wavelet scattering network computes a translation invariant image representation which is stable to deformations and preserves high-frequency information for classification. It cascades wavelet transform convolutions with nonlinear modulus and averaging operators. The first network layer outputs SIFT-type descriptors, whereas the next layers provide complementary invariant information that improves classification. The mathematical analysis of wavelet scattering networks explains important properties of deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments and can thus discriminate textures having the same Fourier power spectrum. State-of-the-art classification results are obtained for handwritten digits and texture discrimination, with a Gaussian kernel SVM and a generative PCA classifier.
Simultaneous Invariants of Strain and Rotation Rate Tensors and Their Admitted Region
Directory of Open Access Journals (Sweden)
Igor Vigdorovich
2015-01-01
Full Text Available The purpose of this paper is to establish the admitted region for five simultaneous, functionally independent invariants of the strain rate tensor S and rotation rate tensor Ω and calculate some simultaneous invariants of these tensors which are encountered in the theory of constitutive relations for turbulent flows. Such a problem, as far as we know, has not yet been considered, though it is obviously an integral part of any problem in which scalar functions of the tensors S and Ω are studied. The theory provided inside this paper is the building block for a derivation of new algebraic constitutive relations for three-dimensional turbulent flows in the form of expansions of the Reynolds-stress tensor in a tensorial basis formed by the tensors S and Ω, in which the scalar coefficients depend on simultaneous invariants of these tensors.
Conformal invariance in supergravity
International Nuclear Information System (INIS)
Bergshoeff, E.A.
1983-01-01
In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)
2010-12-02
evaluating the function ΘP (A) for any fixed A,P is equivalent to solving the so-called Quadratic Assignment Problem ( QAP ), and thus we can employ various...tractable linear programming, spectral, and SDP relaxations of QAP [40, 11, 33]. In particular we discuss recent work [14] on exploiting group...symmetry in SDP relaxations of QAP , which is useful for approximately computing elementary convex graph invariants in many interesting cases. Finally in
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Kautský, J.; Šroubek, Filip
2010-01-01
Roč. 86, č. 1 (2010), s. 72-86 ISSN 0920-5691 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Implicit invariants * Orthogonal polynomials * Polynomial image deformation Subject RIV: BD - Theory of Information Impact factor: 4.930, year: 2010 http://library.utia.cas.cz/separaty/2009/ZOI/flusser-0329394.pdf
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2004-01-01
Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf
The evolving Planck mass in classically scale-invariant theories
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
The evolving Planck mass in classically scale-invariant theories
Energy Technology Data Exchange (ETDEWEB)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)
2017-04-05
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Passive Scalar Evolution in Peripheral Region
Lebedev, V. V.; Turitsyn, K. S.
2003-01-01
We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...
Scalar symmetry of the massless Dirac equation
International Nuclear Information System (INIS)
Clerk, G.J.; McKellar, B.H.J.
1992-01-01
The existence of a symmetry of the Dirac equation for a massless particle in a scalar field is demonstrated, and its effect on the band structure of certain arrays of scalar δ-function potentials is investigated. The implications of the symmetry for more general scalar potentials are also discussed. 10 refs
Search for the tensor glueball candidate $\\xi$ (2230) in an antiproton-proton formation experiment
Röthel, W
2000-01-01
Results of a search for the tensor (2/sup ++/) glueball candidate xi (2230) are presented. A scan of the formation of xi (2230) in the mass region square root s=2222.7-2239.7 MeV/c/sup 2/ was made using the Crystal Barrel Detector at LEAR (CERN). pi /sup 0/ pi /sup 0/ and eta eta final states were investigated and no indication for the formation of xi was found. Breit-Wigner fits, assuming a resonance width of 10-20 MeV/c/sup 2/ yield the 95% confidence level upper limits B(pp to xi ) B( xi to pi /sup 0/ pi /sup 0/)<6.10/sup -5/ and B(pp to xi ) B( xi to eta eta )<4.10/sup -5/. (7 refs).
Search for Scalar Leptons and Scalar Quarks at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2004-01-01
Scalar partners of quarks and leptons, predicted in supersymmetric models, are searched for in e^+e^- collisions at centre-of-mass energies between 192GeV and 209GeV at LEP. No evidence for any such particle is found in a data sample of 450 pb^-1. Upper limits on their production cross sections are set and lower limits on their masses are derived in the framework of the Minimal Supersymmetric Standard Model.
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Natural electroweak symmetry breaking from scale invariant Higgs mechanism
International Nuclear Information System (INIS)
Farzinnia, Arsham; He, Hong-Jian; Ren, Jing
2013-01-01
We construct a minimal viable extension of the standard model (SM) with classical scale symmetry. Its scalar sector contains a complex singlet in addition to the SM Higgs doublet. The scale-invariant and CP-symmetric Higgs potential generates radiative electroweak symmetry breaking à la Coleman–Weinberg, and gives a natural solution to the hierarchy problem, free from fine-tuning. Besides the 125 GeV SM-like Higgs particle, it predicts a new CP-even Higgs (serving as the pseudo-Nambu–Goldstone boson of scale symmetry breaking) and a CP-odd scalar singlet (providing the dark matter candidate) at weak scale. We systematically analyze experimental constraints from direct LHC Higgs searches and electroweak precision tests, as well as theoretical bounds from unitarity, triviality and vacuum stability. We demonstrate the viable parameter space, and discuss implications for new Higgs searches at the upcoming LHC runs and the on-going direct detections of dark matter
Scalar field cosmology in three-dimensions
International Nuclear Information System (INIS)
Oliveira Neto, G.
2001-01-01
We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)
CP violating scalar Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)
2016-12-05
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED
International Nuclear Information System (INIS)
Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.
1995-08-01
We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs
Random scalar fields and hyperuniformity
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
International Nuclear Information System (INIS)
Foda, O.; Wheeler, M.; Zuparic, M.
2009-01-01
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP τ function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Energy Technology Data Exchange (ETDEWEB)
Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au
2009-10-21
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Equilibrium Statistical Thermodynamics of a Many-Particle System Coupled to an External Scalar Field
Salvino, R. E.
1990-01-01
The equilibrium thermodynamics of a many-particle assembly in the presence of an external scalar field is examined. Two types of scalar coupling are considered: an external field coupled to the particle density and an external scalar field coupled to the energy density. It is shown that the broken translational and rotational invariance of the system due to the external field is reflected in the macroscopic physics by loss of the usual extensivity property of the system and by means of anisotropy in the response of the system to changes in the system lengths or to the system shape. In addition, the assumptions used in local equilibrium analyses are shown to be incorrect in principle. Nonlocal effects due to the external field must be included in the determination of the equation of state. Simple model calculations for a system in an external gravitational field and an externally imposed temperature field are presented as illustrations.
Scattering of Ricci scalar perturbations from Schwarzschild black holes in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Sibandze, Dan B.; Goswami, Rituparno; Maharaj, Sunil D.; Nzioki, Anne Marie [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics Statistics and Computer Science, Private Bag X54001, Durban (South Africa); Dunsby, Peter K.S. [University of Cape Town, Department of Mathematics and Applied Mathematics and ACGC, Cape Town (South Africa)
2017-06-15
It has already been shown that the gravitational waves emitted from a Schwarzschild black hole in f(R) gravity have no signatures of the modification of gravity from General Relativity, as the Regge-Wheeler equation remains invariant. In this paper we consider the perturbations of Ricci scalar in a vacuum Schwarzschild spacetime, which is unique to higher order theories of gravity and is absent in General Relativity. We show that the equation that governs these perturbations can be reduced to a Volterra integral equation. We explicitly calculate the reflection coefficients for the Ricci scalar perturbations, when they are scattered by the black hole potential barrier. Our analysis shows that a larger fraction of these Ricci scalar waves are reflected compared to the gravitational waves. This may provide a novel observational signature for fourth order gravity. (orig.)
Reconstruction of inflation from scalar field non-minimally coupled with the Gauss-Bonnet term
Sebastiani, Lorenzo; Myrzakul, Shynaray; Myrzakulov, Ratbay
2017-12-01
In this paper, we analyze the early time inflation in a scalar-tensor theory of gravity where the scalar field is minimally coupled with the Gauss-Bonnet four-dimensional topological invariant. The theory belongs to a class of Horndeski models where the field equations are at the second order, like in General Relativity. A viable inflationary scenario must correctly reproduce the last Plank satellite data. By starting from some simple assumptions on the field and on the coupling function between the field and the Gauss-Bonnet term, we derive the spectral index and the tensor-to-scalar ratio of the model. Once the model is viable, it is finally possible to fully reconstruct its Lagrangian.
Comment on the Exterior Solutions and Their Geometry in Scalar-Tensor Theories of Gravity
Tsuchida, T.; Watanabe, K.
1999-01-01
We study series of stationary solutions with asymptotic flatness properties in the Einstein-Maxwell-free scalar system because they are locally equivalent to the exterior solutions in some class of scalar-tensor theories of gravity. First, we classify spherical exterior solutions into two types of solutions, an apparently black hole type solution and an apparently worm hole type solution. The solutions contain three parameters, and we clarify their physical significance. Second, we reduce the field equations for the axisymmetric exterior solutions. We find that the reduced equations are partially the same as the Ernst equations. As simple examples, we derive new series of static, axisymmetric exterior solutions, which correspond to Voorhees's solutions. We then establish a non-trivial relation between the spherical exterior solutions and our new solutions. Finally, since null geodesics have conformally invariant properties, we study the local geometry of the exterior solutions by using the optical scalar equations and find some anomalous behavior of the null geodesics.
Energy Technology Data Exchange (ETDEWEB)
Sandbrink, Dirk
2015-01-26
One of the most promising candidates to describe the physics beyond the standard model is the so-called supersymmetry. This work was created in the context of the DESY-Muenster-Collaboration, which studies in particular the N=1 supersymmetric Yang-Mills theory (SYM). SYM is a comparatively simple theory, which is therefore well-suited to study the expected properties of a supersymmetric theory with the help of Monte Carlo simulations on the lattice. This thesis is focused on the numerical determination of the quarkpotential, the glueball masses and the phase structur of the N=1 supersymmetric Yang-Mills theory. The quarkpotential is used to calculate the Sommer scale, which in turn is needed to convert the dimensionless lattice spacing into physical units. Glueballs are hypothetical particles built out of gluons, their masses are relatively hard to determine in lattice simulations due to their pure gluonic nature. For this reason, various methods are studied to reduce the uncertainties of the mass determination. The focus lies on smearing methods and their use in variational smearing as well as on the use of different glueball operators. Lastly, a first look is taken at the phase diagram of the model at finite temperature. Various simulations have been performed at finite temperature in parallel to those performed at temperature zero to analyse the behaviour of the Polyakov loop and the gluino condensate in greater detail.
On conformal invariance in gauge theories. Quantum electrodynamics
International Nuclear Information System (INIS)
Zaikov, R.P.
1983-01-01
In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite
A smooth bouncing cosmology with scale invariant spectrum
International Nuclear Information System (INIS)
Creminelli, P.; Senatore, L.
2007-01-01
We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)
Spontaneous Symmetry Breaking in 5D Conformally Invariant Gravity
Directory of Open Access Journals (Sweden)
Taeyoon Moon
2016-01-01
Full Text Available We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implements the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.
Application of Geometric Polarization to Invariance Properties in Bistatic Scattering
Directory of Open Access Journals (Sweden)
D. H. O. Bebbington
2005-01-01
Full Text Available Bistatic polarimetric radars provide target properties which just one monostatic system can not reveal. Moreover, augmentation of monostatic systems through the provision of bistatic receive-only stations can be a cheap way to increase the amount of remote sensing data. However, bistatic scattering needs to be investigated in order to properly define target properties such as symmetries and invariance, especially regarding choices of polarization basis. In this paper we discuss how the geometric theory of polarization, in which the geometry of the Poincaré sphere is directly related to 3-D geometry of space rather than the 2-D geometry of the wavefront plane, can be used to reduce the ambiguities in the interpretation of data. We also show how in the coherent case a complex scalar invariant can be determined irrespective of the basis combinations.
Permutationally invariant state reconstruction
DEFF Research Database (Denmark)
Moroder, Tobias; Hyllus, Philipp; Tóth, Géza
2012-01-01
Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale opti......Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large......-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...... likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex...
Viability, invariance and applications
Carja, Ovidiu; Vrabie, Ioan I
2007-01-01
The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo's Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In th...
Invariants in probabilistic reasoning.
Costello, Fintan; Watts, Paul
2018-02-01
Recent research has identified three invariants or identities that appear to hold in people's probabilistic reasoning: the QQ identity, the addition law identity, and the Bayes rule identity (Costello and Watts, 2014, 2016a, Fisher and Wolfe, 2014, Wang and Busemeyer, 2013, Wang et al., 2014). Each of these identities represent specific agreement with the requirements of normative probability theory; strikingly, these identities seem to hold in people's judgements despite the presence of strong and systematic biases against the requirements of normative probability theory in those very same judgements. These results suggest that the systematic biases seen in people's probabilistic reasoning follow mathematical rules: for these particular identities, these rules cause an overall cancellation of biases and so produce agreement with normative requirements. We assess two competing mathematical models of probabilistic reasoning (the 'probability theory plus noise' model and the 'quantum probability' model) in terms of their ability to account for this pattern of systematic biases and invariant identities. Copyright © 2017 Elsevier Inc. All rights reserved.
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
Stable pair invariants of surfaces and Seiberg-Witten invariants
Kool, M.
2016-01-01
The moduli space of stable pairs on a local surface X = KS is in general non-compact. The action of C ∗ on the fibres of X induces an action on the moduli space and the stable pair invariants of X are defined by the virtual localization formula. We study the contribution to these invariants of
Wulan, Hasi
2017-01-01
This monograph summarizes the recent major achievements in Möbius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmüller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.
Semiclassical thermodynamics of scalar fields
Bessa, A; Fraga, E S; Gelis, François
2007-01-01
We present a systematic semiclassical procedure to compute the partition function for scalar field theories at finite temperature. The central objects in our scheme are the solutions of the classical equations of motion in imaginary time, with spatially independent boundary conditions. Field fluctuations -- both field deviations around these classical solutions, and fluctuations of the boundary value of the fields -- are resummed in a Gaussian approximation. In our final expression for the partition function, this resummation is reduced to solving certain ordinary differential equations. Moreover, we show that it is renormalizable with the usual 1-loop counterterms.
Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
International Nuclear Information System (INIS)
Alagic, Gorjan; Reichardt, Ben W.; Jordan, Stephen P.; Koenig, Robert
2010-01-01
The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-dimensional topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem for quantum computation. This establishes a relation between the task of distinguishing nonhomeomorphic 3-manifolds and the power of a general quantum computer.
The measurement invariance of job diagnostic survey (JDS) across three university student groups
Energy Technology Data Exchange (ETDEWEB)
Martinez-Gomez, M.; Marin-Garcia, J.A.; Girado Omeara, M.
2016-07-01
The main purpose of this study is to apply a multigroup confirmatory analysis to examine the measurement invariance (MI) of the adapted version of the Job Diagnosis Survey (JDS) as a measurement tool that analyses the relationship between the features of teaching methodologies with university students’ motivation and satisfaction across data collected on different degrees and academic years. Design/methodology/approach: Confirmatory factor analysis was carried out using a multigroup structural equation model, using the program EQS 6.1 to test the invariance of the adapted version of JDS in a sample constituted by 535 student of a Spanish public university. The assessment of invariance included the levels of configural, metric, scalar, covariance and latent variables invariance. Several goodness-of-fit measures were assessed... (Author)
International Nuclear Information System (INIS)
Habegger, N.; Thompson, G.
1999-11-01
Let Z LMO be the 3-manifold invariant of [LMO]. It is shown that Z LMO (M) = 1, if the first Betti number of M, b 1 (M), is greater than 3. If b 1 (M) = 3, then Z LMO (M) is completely determined by the cohomology ring of M. A relation of Z LMO with the Rozansky-Witten invariants Z X RW [M] is established at a physical level of rigour. We show that Z X RW [M] satisfies appropriate connected sum properties suggesting that the generalized Casson invariant ought to be computable from the LMO invariant. (author)
Quark-gluon mixing in scalar mesons
International Nuclear Information System (INIS)
Eremyan, Sh.S.; Nazaryan, A.E.
1986-01-01
Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained
Scalar-tetrad theories of gravity
International Nuclear Information System (INIS)
Hayward, J.
1981-01-01
A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)
Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity
Veraguth, Olivier J.; Wang, Charles H.-T.
2017-10-01
Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.
CSW rules for a massive scalar
DEFF Research Database (Denmark)
Boels, Rutger Herman; Schwinn, Christian
2008-01-01
We derive the analog of the Cachazo-Svrcek-Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang-Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non-supersymm......We derive the analog of the Cachazo-Svrcek-Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang-Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non...
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Low energy constraints and scalar leptoquarks⋆
Directory of Open Access Journals (Sweden)
Fajfer Svjetlana
2014-01-01
Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.
Scalar resonances as two-quark states
International Nuclear Information System (INIS)
Shabalin, E.P.
1984-01-01
On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)
On the generalized Casson invariant
International Nuclear Information System (INIS)
Thompson, G.
1998-11-01
The path integral generalization of the Casson invariant as developed by Rozansky and Witten is investigated. The path integral for various three manifolds is explicitly evaluated. A new class of topological observables are introduced that may allow for more effective invariants. Finally it is shown how the dimensional reduction of these theories correspond to a generalization of the topological B sigma model. (author)
Burns, G. Leonard; Walsh, James A.; Gomez, Rapson; Hafetz, Nina
2006-01-01
The purpose of this study was to examine the measurement (configural, metric, scalar, and residual) and structural (factor variance, factor covariance, and factor means) invariance of parent ratings of the attention-deficit/hyperactivity disorder-inattention (ADHD-IN), ADHD-hyperactivity/impulsivity (ADHD-HI), and oppositional defiant disorder…
On scalar condensate baryogenesis model
International Nuclear Information System (INIS)
Kiriloval, D.P.; Valchanov, T.V.
2004-09-01
We discuss the scalar field condensate baryogenesis model, which is among the baryogenesis scenarios preferred today, compatible with inflation. According to that model a complex scalar field φ, carrying baryon charge B≠0 is generated at inflation. The baryon excess in the Universe results from the φ decay at later stages of Universe evolution (T 15 GeV). We updated the model's parameters range according to the current observational cosmological constraints and analyzed numerically φ evolution after the inflationary stage till its decay φ → qq-barlγ. During that period oscillated with a decreasing amplitude due to Universe expansion and particle production processes due to the coupling of the field to fermions gφf 1 f 2 . It was shown that particle creation processes play an essential role for evolution and its final value. It may lead to a considerable decrease of the field's amplitude for large g and/or large H values, which reflects finally into strong damping of the baryon charge carried by the condensate. The analysis suggests that for a natural range of the model's parameters the observed value of the baryon asymmetry can be obtained and the model can serve as a successful baryogenesis model, compatible with inflation. (author)
Hidden scale invariance of metals
DEFF Research Database (Denmark)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.
2015-01-01
Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were...... available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...
Axially symmetric static scalar solitons and black holes with scalar hair
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro
2013-10-01
We construct static, asymptotically flat black hole solutions with scalar hair. They evade the no-hair theorems by having a scalar potential which is not strictly positive. By including an azimuthal winding number in the scalar field ansatz, we find hairy black hole solutions which are static but axially symmetric only. These solutions possess a globally regular limit, describing scalar solitons. A branch of axially symmetric black holes is found to possess a positive specific heat.
Scalar Contribution to the Graviton Self-Energy During Inflation
Energy Technology Data Exchange (ETDEWEB)
Park, Sohyun [Univ. of Florida, Gainesville, FL (United States)
2012-01-01
We use dimensional regularization to evaluate the one loop contribution to the graviton self-energy from a massless, minimally coupled scalar on a locally de Sitter background. For noncoincident points our result agrees with the stress tensor correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the ultraviolet divergences using the R^{2} and C^{2} counterterms first derived by ’t Hooft and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized result is expressed as the sum of two transverse, 4th order differential operators acting on nonlocal, de Sitter invariant structure functions. In this form it can be used to quantum-correct the linearized Einstein equations so that one can study how the inflationary production of infrared scalars affects the propagation of dynamical gravitons and the force of gravity. We have seen that they have no effect on the propagation of dynamical gravitons. Our computation motivates a conjecture for the first correction to the vacuum state wave functional of gravitons. We comment as well on performing the same analysis for the more interesting contribution from inflationary gravitons, and on inferring one loop corrections to the force of gravity.
Directory of Open Access Journals (Sweden)
Dzhunushaliev Vladimir
2017-01-01
Full Text Available The nonperturbative quantization technique à la Heisenberg is applied for the SU(3 gauge theory. The operator Yang-Mills equation and corresponding infinite set of equations for all Green’s functions are considered. Gauge degrees of freedom are splitted into two groups: (1 Aμa ∈ SU (2 × U(1 ⊂ SU(3; (2 coset degrees of freedom SU(3/SU(2 × U(1. Using some assumptions about 2- and 4-point Green’s functions, the infinite set of equations is truncated to two equations. The first equation is the SU(2 × U(1 Yang-Mills equation, and the second equation describes a gluon condensate formed by coset fields. A flux tube solution describing longitudinal color electric fields stretched between quark and antiquark located at the ± infinities is obtained. It is shown that the dual Meissner effect appears in this solution: the electric field is pushed out from the gluon condensate.
Physical Invariants of Intelligence
Zak, Michail
2010-01-01
A program of research is dedicated to development of a mathematical formalism that could provide, among other things, means by which living systems could be distinguished from non-living ones. A major issue that arises in this research is the following question: What invariants of mathematical models of the physics of systems are (1) characteristic of the behaviors of intelligent living systems and (2) do not depend on specific features of material compositions heretofore considered to be characteristic of life? This research at earlier stages has been reported, albeit from different perspectives, in numerous previous NASA Tech Briefs articles. To recapitulate: One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Mathematical models of motor dynamics are used to simulate the observable physical behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. At the time of reporting the information for this article, the focus of this research was upon the following aspects of the formalism: Intelligence is considered to be a means by which a living system preserves itself and improves its ability to survive and is further considered to manifest itself in feedback from the mental dynamics to the motor dynamics. Because of the feedback from the mental dynamics, the motor dynamics attains quantum-like properties: The trajectory of the physical aspect of the system in the space of dynamical variables splits into a family of different trajectories, and each of those trajectories can be chosen with a probability prescribed by the mental dynamics. From a slightly different perspective
Can ι(1440) be a pseudoscalar glueball which appreciably mixes with η'(958) ?
International Nuclear Information System (INIS)
Teshima, Tadayuki; Oneda, Sadao.
1987-01-01
We have studied the η-η'-ι mixing by using the Gell-Mann-Oakes-Renner type approach to the chiral U(3) x U(3) and also U(4) x U(4) algebras involving anomaly and found that η'-ι mixing could be appreciable. The model also predicted (by using PCAC and also sometimes a simple quark counting argument) that while the rate of ι → γγ is relatively small, Γι → ργ) will be rather large ≅ 1 MeV. The η-η'-ι mixing has also been studied by us using the method of ''asymptotic flavor SU(3) symmetry plus the constraint algebras involving the generators of underlying symmetry groups of QCD''. Essentially the same conclusion as derived in the first approach has been obtained for the structures of η-η'-ι mixing. In this paper, we study the ι → γγ and ι → ργ decays in the second approach without using quark counting argument. We find a result which is compatible (at least in flavor SU(3) symmetry studied) with that of the first approach. We conclude that a part of the present experimental situation can be understood with the presence of pseudoscalar glueball ι(1440) which mixes rather appreciably with the η'. Critical experiments for the model are also discussed. (author)
Fong, Ted C T; Ho, Rainbow T H
2014-06-01
Measurement invariance is an important attribute for the Hospital Anxiety and Depression Scale (HADS). Most of the confirmatory factor analysis studies on the HADS adopt the classical maximum likelihood approach. The restrictive assumptions of exact-zero cross-loadings and residual correlations in the classical approach can lead to inadequate model fit and biased parameter estimates. The present study adopted both the classical approach and the alternative Bayesian approach to examine the measurement and structural invariance of the HADS across gender. A Chinese sample of 326 males and 427 females was used to examine the two-factor model of the HADS across gender. Configural and scalar invariance of the HADS were evaluated using the classical approach with the robust-weighted least-square estimator and the Bayesian approach with zero-mean, small-variance informative priors to cross-loadings and residual correlations. Acceptable and excellent model fits were found for the two-factor model under the classical and Bayesian approaches, respectively. The two-factor model displayed scalar invariance across gender using both approaches. In terms of structural invariance, females showed a significantly higher mean in the anxiety factor than males under both approaches. The HADS demonstrated measurement invariance across gender and appears to be a well-developed instrument for assessment of anxiety and depression. The Bayesian approach is an alternative and flexible tool that could be used in future invariance studies.
Gucciardi, Daniel F; Zhang, Chun-Qing; Ponnusamy, Vellapandian; Si, Gangyan; Stenling, Andreas
2016-04-01
The aims of this study were to assess the cross-cultural invariance of athletes' self-reports of mental toughness and to introduce and illustrate the application of approximate measurement invariance using Bayesian estimation for sport and exercise psychology scholars. Athletes from Australia (n = 353, Mage = 19.13, SD = 3.27, men = 161), China (n = 254, Mage = 17.82, SD = 2.28, men = 138), and Malaysia (n = 341, Mage = 19.13, SD = 3.27, men = 200) provided a cross-sectional snapshot of their mental toughness. The cross-cultural invariance of the mental toughness inventory in terms of (a) the factor structure (configural invariance), (b) factor loadings (metric invariance), and (c) item intercepts (scalar invariance) was tested using an approximate measurement framework with Bayesian estimation. Results indicated that approximate metric and scalar invariance was established. From a methodological standpoint, this study demonstrated the usefulness and flexibility of Bayesian estimation for single-sample and multigroup analyses of measurement instruments. Substantively, the current findings suggest that the measurement of mental toughness requires cultural adjustments to better capture the contextually salient (emic) aspects of this concept.
On the gauge invariance of the decay rate of false vacuum
Directory of Open Access Journals (Sweden)
Motoi Endo
2017-08-01
Full Text Available We study the gauge invariance of the decay rate of the false vacuum for the model in which the scalar field responsible for the false vacuum decay has gauge quantum number. In order to calculate the decay rate, one should integrate out the field fluctuations around the classical path connecting the false and true vacua (i.e., so-called bounce. Concentrating on the case where the gauge symmetry is broken in the false vacuum, we show a systematic way to perform such an integration and present a manifestly gauge-invariant formula of the decay rate of the false vacuum.
Classical scale invariance in the inert doublet model
Energy Technology Data Exchange (ETDEWEB)
Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics,Durham University, Durham DH1 3LE (United Kingdom)
2015-09-04
The inert doublet model (IDM) is a minimal extension of the Standard Model (SM) that can account for the dark matter in the universe. Naturalness arguments motivate us to study whether the model can be embedded into a theory with dynamically generated scales. In this work we study a classically scale invariant version of the IDM with a minimal hidden sector, which has a U(1){sub CW} gauge symmetry and a complex scalar Φ. The mass scale is generated in the hidden sector via the Coleman-Weinberg (CW) mechanism and communicated to the two Higgs doublets via portal couplings. Since the CW scalar remains light, acquires a vacuum expectation value and mixes with the SM Higgs boson, the phenomenology of this construction can be modified with respect to the traditional IDM. We analyze the impact of adding this CW scalar and the Z{sup ′} gauge boson on the calculation of the dark matter relic density and on the spin-independent nucleon cross section for direct detection experiments. Finally, by studying the RG equations we find regions in parameter space which remain valid all the way up to the Planck scale.
Translation-invariant global charges in a local scattering theory of massless particles
International Nuclear Information System (INIS)
Strube, D.
1989-01-01
The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de
Cross Sections From Scalar Field Theory
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Psycholinguistic and Neurolinguistic Investigations of Scalar Implicature
Politzer-Ahles, Stephen
2013-01-01
The present study examines the representation and composition of meaning in scalar implicatures. Scalar implicature is the phenomenon whereby the use of a less informative term (e.g., "some") is inferred to mean the negation of a more informative term (e.g., to mean "not all"). The experiments reported here investigate how the…
Scalar resonances as two-quark systems
Energy Technology Data Exchange (ETDEWEB)
Shabalin, E.P.
1985-07-01
On the basis of a theory with an effective U(3)xU(3)-symmetric chiral Lagrangian it is possible to determine the properties of two-quark scalar mesons and to show that the scalar resonances delta(980) and k(1240) can be treated as P-wave states of the q-barq system.
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
2017-01-03
Jan 3, 2017 ... potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which ... The observational results lead to the search of some kinds of exotic matter which ... Therefore, in this paper, our motivation is to find exact cosmological ...
Scalar formalism for quantum electrodynamics
International Nuclear Information System (INIS)
Hostler, L.C.
1985-01-01
A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics
Stoecker, Horst; Zhou, Kai; Schramm, Stefan; Senzel, Florian; Greiner, Carsten; Beitel, Maxim; Gallmeister, Kai; Gorenstein, Mark; Mishustin, Igor; Vasak, David; Steinheimer, Jan; Struckmeier, Juergen; Vovchenko, Volodymyr; Satarov, Leonid; Xu, Zhe; Zhuang, Pengfei; Csernai, Laszlo P.; Sinha, Bikash; Raha, Sibaji; Sándor Biró, Tamás; Panero, Marco
2016-08-01
The early stage of a high multiplicity pp, pA and AA collisions is represented by a nearly quarkless, hot, deconfined pure gluon plasma. According to pure Yang-Mills lattice gauge theory, this hot pure glue matter undergoes, at a high temperature, {T}c=270 {{MeV}}, a first-order phase transition into a confined Hagedorn glueball fluid. This new scenario should be characterized by a suppression of high p T photons and dileptons, baryon suppression and enhanced strange meson production. We propose to observe this newly predicted class of events at the Large Hadron Collider and the Relativistic Heavy-Ion Collider.
Invariant and semi-invariant probabilistic normed spaces
Energy Technology Data Exchange (ETDEWEB)
Ghaemi, M.B. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: mghaemi@iust.ac.ir; Lafuerza-Guillen, B. [Departamento de Estadistica y Matematica Aplicada, Universidad de Almeria, Almeria E-04120 (Spain)], E-mail: blafuerz@ual.es; Saiedinezhad, S. [School of Mathematics Iran, University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)], E-mail: ssaiedinezhad@yahoo.com
2009-10-15
Probabilistic metric spaces were introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger . We introduce the concept of semi-invariance among the PN spaces. In this paper we will find a sufficient condition for some PN spaces to be semi-invariant. We will show that PN spaces are normal spaces. Urysohn's lemma, and Tietze extension theorem for them are proved.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons.
Buhusi, Catalin V; Oprisan, Sorinel A
2013-05-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. Copyright © 2013 Elsevier B.V. All rights reserved.
Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling
Sil, Karunava; Yadav, Vikas; Misra, Aalok
2017-06-01
The top-down type IIB holographic dual of large- N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling (g_s ˜ \\limits ^{Glueballs spectra in the finite-gauge-coupling limit (and not just large 't Hooft coupling limit) - a limit expected to be directly relevant to strongly coupled systems at finite temperature such as QGP (Natsuume in String theory and quark-gluon plasma, 2007) - has thus far been missing in the literature. In this paper, we fill this gap by calculating the masses of the 0^{++}, 0^{-+},0^{{-}{-}}, 1^{++}, 2^{++} (`glueball') states (which correspond to fluctuations in the dilaton or complexified two-forms or appropriate metric components) in the aforementioned backgrounds of G-structure in the `MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013). We use WKB quantization conditions on one hand and impose Neumann/Dirichlet boundary conditions at an IR cut-off (`r_0')/horizon radius (`r_h') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r_h=0 limits of all calculations. In this context we also calculate the 0^{++}, 0^{{-}{-}},1^{++}, 2^{++} glueball masses up to Next to Leading Order (NLO) in N and find a g_sM^2/N(g_sN_f)-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016).
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
On gauge invariant cosmological perturbations in UV-modified Hořava gravity
Shin, Sunyoung; Park, Mu-In
2017-12-01
We consider gauge invariant cosmological perturbations in UV-modified, z = 3 (non-projectable) Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. In order to exhibit its dynamical degrees of freedom, we consider the Hamiltonian reduction method and find that, by solving all the constraint equations, the degrees of freedom are the same as those of Einstein gravity: one scalar and two tensor (graviton) modes when a scalar matter field presents. However, we confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology. Moreover, we find that tensor and scalar fluctuations travel differently in UV, generally. We present also some clarifying remarks about confusing points in the literatures.
Modern Tests of Lorentz Invariance
Directory of Open Access Journals (Sweden)
Mattingly David
2005-09-01
Full Text Available Motivated by ideas about quantum gravity, a tremendous amount of effort over the past decade has gone into testing Lorentz invariance in various regimes. This review summarizes both the theoretical frameworks for tests of Lorentz invariance and experimental advances that have made new high precision tests possible. The current constraints on Lorentz violating effects from both terrestrial experiments and astrophysical observations are presented.
CPT invariance in classical electrodynamics
Kaplan, Aaron D.; Tsankov, Tsvetelin D.
2017-11-01
The transformation properties of classical electrodynamic variables under charge conjugation C, parity reversal P, and time inversion T are considered both for standard and atypical assumptions for the nature of charge. We have shown that four distinct behaviours of charge under space and time inversion are consistent with the invariance of Maxwell’s equations under CPT and P. No prior knowledge of CPT invariance is assumed and the material is accessible to undergraduate students.
Invariant measures for Chebyshev maps
Directory of Open Access Journals (Sweden)
Abraham Boyarsky
2001-01-01
Full Text Available Let Tλ(x=cos(λarccosx, −1≤x≤1, where λ>1 is not an integer. For a certain set of λ's which are irrational, the density of the unique absolutely continuous measure invariant under Tλ is determined exactly. This is accomplished by showing that Tλ is differentially conjugate to a piecewise linear Markov map whose unique invariant density can be computed as the unique left eigenvector of a matrix.
Invariant Bayesian estimation on manifolds
Jermyn, Ian H.
2005-01-01
A frequent and well-founded criticism of the maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimates of a continuous parameter \\gamma taking values in a differentiable manifold \\Gamma is that they are not invariant to arbitrary ``reparameterizations'' of \\Gamma. This paper clarifies the issues surrounding this problem, by pointing out the difference between coordinate invariance, which is a sine qua non for a mathematically well-defined problem, and diffeomorphism invarianc...
Object recognition by implicit invariants
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Kautsky, J.; Šroubek, Filip
2007-01-01
Roč. 2007, č. 4673 (2007), s. 856-863 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Invariants * implicit invariants * moments * orthogonal polynomials * nonlinear object deformation Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http://staff.utia.cas.cz/sroubekf/papers/CAIP_07.pdf
Classification of simple current invariants
Gato-Rivera, Beatriz
1992-01-01
We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)
Electrophobic Scalar Boson and Muonic Puzzles.
Liu, Yu-Sheng; McKeen, David; Miller, Gerald A
2016-09-02
A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed.
Barbosa-Leiker, Celestina; Wright, Bruce R; Burns, G Leonard; Parks, Craig D; Strand, Paul S
2011-02-01
Without verification of longitudinal measurement invariance, researchers cannot be certain whether observed change in the metabolic syndrome reflects true change or changes in assessment or structure of the construct over time. This research tested longitudinal measurement invariance of a 1-factor model of the metabolic syndrome during the course of 6 years. Tests of longitudinal measurement invariance (configural, metric, and scalar) were conducted on 604 men and women who participated in the Spokane Heart Study from 1996 to 2006. Metabolic syndrome indicators included body mass index, triglycerides, high-density lipoprotein, diastolic blood pressure, and fasting glucose. Sequential configural and metric invariance models demonstrated adequate model fit, but the scalar invariance model led to a decrement in fit. Therefore, the theoretical framework of the syndrome and the relationships between the syndrome construct and the indicators appear to be equivalent over time. However, observed values of the metabolic syndrome indicators may differ across time when there is a constant level of the syndrome. Because longitudinal invariance was not fully demonstrated, interpretation of change in the metabolic syndrome over time may be misleading because change may be partly attributable to measurement properties of the indicators. However, a cross-sectional 1-factor model of the metabolic syndrome is supported. Copyright © 2011 Elsevier Inc. All rights reserved.
Invariant Matsumoto metrics on homogeneous spaces
Salimi Moghaddam, H.R.
2014-01-01
In this paper we consider invariant Matsumoto metrics which are induced by invariant Riemannian metrics and invariant vector fields on homogeneous spaces, and then we give the flag curvature formula of them. Also we study the special cases of naturally reductive spaces and bi-invariant metrics. We end the article by giving some examples of geodesically complete Matsumoto spaces.
Della Morte, Michele
2011-01-01
We make use of the global symmetries of the Yang-Mills theory on the lattice to design a new computational strategy for extracting glueball masses and matrix elements which achieves an exponential reduction of the statistical error with respect to standard techniques. By generalizing our previous work on the parity symmetry, the partition function of the theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations Z_N^3. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang--Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum ...
Age Invariance of the Cannabis Abuse Screening Test in a Probabilistic Sample of Cannabis Users.
Legleye, Stéphane; Rouquette, Alexandra
2018-03-01
The Cannabis abuse screening test (CAST) is a short test used for screening those with problematic cannabis use. Recently, its invariance toward age was tested in an Israeli sample of cannabis users, but this study had some sample and methodological limitations: it was conducted in a volunteer sample aged 18-40 and considered the CAST items as continuous variables, although they are based on 5-point Likert scales. We thus tested the CAST invariance toward age (15-24, 25-34, and 35-64 years old) using a French probabilistic sample of 1,351 past-year cannabis users aged 15-64 and using appropriate methods for categorical items and survey weights. Factors retained (non-recreational use and problems) were the same as those mentioned in previous studies. Scalar invariance held for the "problems" factor but only partial scalar invariance was supported for the "non-recreational use" factor. Caution is thus needed when the CAST score is compared across age groups. © 2018 S. Karger AG, Basel.
Indirect Constraints on the Scalar Di-Photon Resonance at the LHC
Goertz, Florian; Katz, Andrey; Nardecchia, Marco
2016-05-31
Motivated by the tantalizing excesses recently reported in the di-photon invariant mass spectrum at the LHC, we scrutinize some implications of scalar di-photon resonances in high energy proton-proton collisions. In particular, indications of a large width impose several challenges for model building. We show how calculability and unitarity considerations severely limit possible perturbative realizations of such a signal and propose a simple criterion that can be adapted to any renormalizable model. Furthermore, we discuss correlations between a di-photon excess and precision observables, including the anomalous magnetic and electric dipole moments of quarks and leptons, neutral meson oscillations and radiative flavor changing neutral current mediated decays of heavy leptons and hadrons. We find that existing searches and measurements significantly constrain the possibilities for a scalar resonance decaying into final states involving Standard Model fermions. We propose future search strategies which could el...
Prescribing the mixed scalar curvature of a foliated Riemann-Cartan manifold
Rovenski, Vladimir Y.; Zelenko, Leonid
2018-03-01
The mixed scalar curvature is the simplest curvature invariant of a foliated Riemannian manifold. We explore the problem of prescribing the leafwise constant mixed scalar curvature of a foliated Riemann-Cartan manifold by conformal change of the structure in tangent and normal to the leaves directions. Under certain geometrical assumptions and in two special cases: along a compact leaf and for a closed fibered manifold, we reduce the problem to solution of a nonlinear leafwise elliptic equation for the conformal factor. We are looking for its solutions that are stable stationary solutions of the associated parabolic equation. Our main tool is using of majorizing and minorizing nonlinear heat equations with constant coefficients and application of comparison theorems for solutions of Cauchy's problem for parabolic equations.
Self-interacting scalar field cosmologies: unified exact solutions and symmetries
Energy Technology Data Exchange (ETDEWEB)
Charters, T. [Departamento de Engenharia Mecânica/Área Científica de Matemática, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, P-1949-014 Lisbon (Portugal); Mimoso, J.P., E-mail: tca@cii.fc.ul.pt, E-mail: jpmimoso@cii.fc.ul.pt [Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisbon (Portugal)
2010-08-01
We investigate a mechanism that generates exact solutions of scalar field cosmologies in a unified way. The procedure investigated here permits to recover almost all known solutions, and allows one to derive new solutions as well. In particular, we derive and discuss one novel solution defined in terms of the Lambert function. The solutions are organised in a classification which depends on the choice of a generating function which we have denoted by x(φ) that reflects the underlying thermodynamics of the model. We also analyse and discuss the existence of form-invariance dualities between solutions. A general way of defining the latter in an appropriate fashion for scalar fields is put forward.
Exotic Material as Interactions Between Scalar Fields
Directory of Open Access Journals (Sweden)
Robertson G. A.
2006-04-01
Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.
Scalar field fluctuations in the early universe
International Nuclear Information System (INIS)
Enqvist, K.; Ng, K.W.; Olive, K.A.
1988-01-01
We compute the quantum fluctuations of a non-self-interacting but unstable scalar field of arbitrary mass during the period of inflation. Instead of treating the scalar field in a static De Sitter space, we begin with a scalar field in the Friedmann universe just before the start of inflation, and work out the dynamics of the growing quantum fluctuation of the field after it has entered into the inflationary epoch. We use the physically sensible method of Vilenkin to regularize the theory. We find that in all but two special cases the fluctuations produced are different from those in a static De Sitter space, and the effect of the finite width of the scalar field limits the growth of fluctuations. (orig.)
Oscillating scalar fields in extended quintessence
Li, Dan; Pi, Shi; Scherrer, Robert J.
2018-01-01
We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.
Exotic Material as Interactions Between Scalar Fields
Directory of Open Access Journals (Sweden)
Robertson G. A.
2015-10-01
Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.
Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity
Energy Technology Data Exchange (ETDEWEB)
Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk
2017-01-10
We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.
Measurement of job motivation in TEDS-M: testing for invariance across countries and cultures
Directory of Open Access Journals (Sweden)
Christin Laschke
2016-09-01
Full Text Available Abstract The paper presents the challenges of cross-country and cross-cultural research on the motivation to become a mathematics teacher based on data from the “Teacher Education and Development Study in Mathematics (TEDS-M”. Referring to studies from cross-cultural psychology, measurement invariance (MI of constructs representing different motivations to become a teacher was examined in confirmatory factor analysis (CFA across the countries that participated in TEDS-M. The data supported metric invariance which means that comparing relationships between motivation and other constructs across countries is permitted, with the exception of extrinsic motivation in Taiwan. Scalar invariance was not supported by the data across countries but across cultures: Scale means can be compared between Germany, Switzerland and (with regard to intrinsic motivation Norway and Poland as well as between Singapore and Taiwan (with regard to the intrinsic motivation and Malaysia, Philippines and Thailand (again regarding intrinsic motivation.
Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar
Energy Technology Data Exchange (ETDEWEB)
Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)
2017-10-15
We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)
Liu, Jing-Dong; Chung, Pak-Kwong
2017-08-01
The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.
A cross-national analysis of measurement invariance of the Satisfaction With Life Scale.
Whisman, Mark A; Judd, Charles M
2016-02-01
Measurement invariance of the Satisfaction With Life Scale (SWLS) was examined in probability samples of adults 50-79 years of age living in the United States, England, and Japan. Confirmatory factor analysis modeling was used to test for multigroup measurement invariance of a single-factor structure of the SWLS. Results support a single-factor structure of the SWLS across the 3 countries, with tests of measurement invariance of the SWLS supporting its configural invariance and metric invariance. These results suggest that the SWLS may be used as a single-factor measure of life satisfaction in the United States, England, and Japan, and that it is appropriate to compare correlates of the SWLS in middle-aged and older adults across these 3 countries. However, results provided evidence for only partial scalar invariance, with the intercept for SWLS Item 4 varying across countries. Cross-national comparisons of means revealed a lower mean at the latent variable level for the Japanese sample than for the other 2 samples. In addition, over and above the latent mean difference, the Japanese sample also manifested a significantly lower intercept on Item 4. Implications of the findings for research on cross-national comparisons of life satisfaction in European American and East Asian countries are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kim, Jihye; Smith, Tenbroeck
2017-01-01
The Profile of Mood States-Short Form (POMS-SF) is a well-validated tool commonly used in medical/clinical research. Less attention has been paid to the measurement invariance of the POMS-the degree to which the structure and items behave similarly for different groups (e.g., women and men). This study investigated the measurement invariance of the POMS Depression subscale across gender groups in a sample of cancer survivors. The POMS Depression subscale has 8 items (Unhappy, Sad, Blue, Hopeless, Discouraged, Miserable, Helpless, and Worthless). Invariance was measured using multigroup confirmatory factor analysis. This study used data from American Cancer Society Studies of Cancer Survivors-II, a population-based survey of adult cancer survivors (n = 9170). We found factor structures and factor loadings were invariant for gender groups, but moderate differential item functioning (DIF) in the question containing the word blue. With regard to cancer survivors' gender, we found the Depression subscale of the POMS-SF had configural invariance, and partial metric and scalar invariance. This suggests that results should be interpreted with caution, especially when gender is considered important. More broadly, our finding suggests that questions with the word blue may introduce DIF into other measures of depressive mood. More research is needed to replicate these findings in other samples and with other instruments.
Manifestly scale-invariant regularization and quantum effective operators
Ghilencea, D. M.
2016-05-01
Scale-invariant theories are often used to address the hierarchy problem. However the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which breaks this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale-invariant regularization in (classical) scale-invariant theories. We use a dilaton-dependent subtraction function μ (σ ) which, after spontaneous breaking of the scale symmetry, generates the usual dimensional regularization subtraction scale μ (⟨σ ⟩) . One consequence is that "evanescent" interactions generated by scale invariance of the action in d =4 -2 ɛ (but vanishing in d =4 ) give rise to new, finite quantum corrections. We find a (finite) correction Δ U (ϕ ,σ ) to the one-loop scalar potential for ϕ and σ , beyond the Coleman-Weinberg term. Δ U is due to an evanescent correction (∝ɛ ) to the field-dependent masses (of the states in the loop) which multiplies the pole (∝1 /ɛ ) of the momentum integral to give a finite quantum result. Δ U contains a nonpolynomial operator ˜ϕ6/σ2 of known coefficient and is independent of the subtraction dimensionless parameter. A more general μ (ϕ ,σ ) is ruled out since, in their classical decoupling limit, the visible sector (of the Higgs ϕ ) and hidden sector (dilaton σ ) still interact at the quantum level; thus, the subtraction function must depend on the dilaton only, μ ˜σ . The method is useful in models where preserving scale symmetry at quantum level is important.
International Nuclear Information System (INIS)
Finelli, Fabio; Brandenberger, Robert
2002-01-01
In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past
Scalar production in models with 1 and 2 Higgs doublets
International Nuclear Information System (INIS)
Campos Carvalho, F.L. de.
1991-03-01
A standard electroweak interaction model is studied based on the introduction of an additional scalar doublet which rises two neutral scalars, one pseudoscalar and two charged scalars. The doublet introduction gives the possibility to implement constraints issued by the supersymmetry, restricting therefore those scalar masses. (L.C.J.A.)
Energy Invariance in Capillary Systems
Ruiz-Gutiérrez, Élfego; Guan, Jian H.; Xu, Ben; McHale, Glen; Wells, Gary G.; Ledesma-Aguilar, Rodrigo
2017-05-01
We demonstrate the continuous translational invariance of the energy of a capillary surface in contact with reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications of dynamic frictional forces upon a reconfiguration of the boundaries. Experimentally, we realize our ideas by manipulating the position of a droplet in a wedge geometry using lubricant-impregnated solid surfaces, which eliminate the contact-angle hysteresis and provide a test bed for quantifying dissipative losses out of equilibrium. Our experiments show that dissipative energy losses for an otherwise energy-invariant reconfiguration are relatively small, provided that the actuation time scale is longer than the typical relaxation time scale of the capillary surface. We discuss the wider applicability of our ideas as a pathway for liquid manipulation at no potential energy cost in low-pinning, low-friction situations.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory
International Nuclear Information System (INIS)
Liu Luxin
2009-01-01
The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.
Non-commutative gauge gravity: second-order correction and scalar particle creation
Energy Technology Data Exchange (ETDEWEB)
Zaim, Slimane [Departement de Physique, Faculte des Sciences, Universite de Batna (Algeria); Khodja, Lamine, E-mail: zaimslimane@yahoo.f [Departement de Physique, Faculte des Sciences Exactes, Universite Mentouri, Constantine (Algeria)
2010-05-01
We construct a non-commutative gauge theory for a charged scalar field and verify its invariance under local Poincare and general coordinate transformations. We derive a general Klein-Gordon equation up to the second order of the non-commutativity parameter using the general modified field equation. As an application, we choose the Bianchi I universe and use the Seiberg-Witten maps to obtain the deformed non-commutative metric and study a particle production process. We show that non-commutativity plays the same role as an electric field, gravity and chemical potential.
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
Numeric invariants from multidimensional persistence
Energy Technology Data Exchange (ETDEWEB)
Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)
2017-05-19
In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.
Scalar-flat Kähler metrics with conformal Bianchi V symmetry
Dunajski, Maciej; Plansangkate, Prim
2011-06-01
We provide an affirmative answer to a question posed by Tod (1995, Twistor Theory (New York: Dekker)), and construct all four-dimensional Kähler metrics with vanishing scalar curvature which are invariant under the conformal action of the Bianchi V group. The construction is based on the combination of twistor theory and the isomonodromic problem with two double poles. The resulting metrics are non-diagonal in the left-invariant basis and are explicitly given in terms of Bessel functions and their integrals. We also make a connection with the LeBrun ansatz, and characterize the associated solutions of the SU(∞) Toda equation by the existence a non-abelian two-dimensional group of point symmetries. Dedicated to Maciej Przanowski on the occasion of his 65th birthday.
Gauge invariance and Nielsen identities
International Nuclear Information System (INIS)
Lima, A.F. de; Bazaia, D.
1989-01-01
The one-loop contribution to the effective potential and mass are computed within the context of scalar electrodynamics for the class of general R gauges in the MS scheme. These calculations are performed in order to construct a non-trivial verification of the corresponding Nielsen identities within the context of the Higgs model. Some brief comments on the Coleman-Weinberg model are also included. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Żemojtel-Piotrowska, Magdalena; Piotrowski, Jarosław; Rogoza, Radosław; Baran, Tomasz; Hitokoto, Hidefumi; Maltby, John
2018-04-15
The current study explores the problem with the lack of measurement invariance for the Narcissistic Personality Inventory (NPI) by addressing two issues: conceptual heterogeneity of narcissism and methodological issues related to the binary character of data. We examine the measurement invariance of the 13-item version of the NPI in three populations in Japan, Poland and the UK. Analyses revealed that leadership/authority and grandiose exhibitionism dimensions of the NPI were cross-culturally invariant, while entitlement/exploitativeness was culturally specific. Therefore, we proposed NPI-9 as indicating scalar invariance, and we examined the pattern of correlations between NPI-9 and other variables across three countries. The results suggest that NPI-9 is valid brief scale measuring general levels of narcissism in cross-cultural studies, while the NPI-13 remains suitable for research within specific countries. © 2018 International Union of Psychological Science.
Supersymmetric gauge invariant interaction revisited
International Nuclear Information System (INIS)
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro; Barcelos Neto, J.
1983-01-01
A supersymmetric Lagrangian invariant under local U(1) gauge transformations is written in terms of a non-chiral superfield which substitute the usual vector supermultiplet together with chiral and anti-chiral superfields. The Euler equations allow us to obtain the off-shell version of the usual Lagrangian for supersymmetric quantum-electrodynamics (SQED). (Author) [pt
On renormalization-invariant masses
International Nuclear Information System (INIS)
Fleming, H.; Furuya, K.
1978-02-01
It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory
Moment Invariants in Image Analysis
Czech Academy of Sciences Publication Activity Database
Flusser, Jan
2006-01-01
Roč. 11, č. 2 (2006), s. 196-201 ISSN 1305-5313 R&D Projects: GA MŠk 1M0572; GA ČR GA102/04/0155 Institutional research plan: CEZ:AV0Z10750506 Keywords : moment invariants * pattern recognition Subject RIV: JD - Computer Applications, Robotics
A Many Particle Adiabatic Invariant
DEFF Research Database (Denmark)
Hjorth, Poul G.
1999-01-01
For a system of N charged particles moving in a homogeneous, sufficiently strong magnetic field, a many-particle adiabatic invariant constrains the collisional exchange of energy between the degrees of freedom perpendicular to and parallel to the magnetic field. A description of the phenomenon...
Implications of Gauge Invariance on a Heavy Diphoton Resonance
Energy Technology Data Exchange (ETDEWEB)
Low, Ian [Northwestern U.; Lykken, Joseph [Fermilab
2015-12-30
Assuming a heavy electroweak singlet scalar, which couples to the Standard Model gauge bosons only through loop-induced couplings, SU(2)_L x U(1)_Y gauge invariance imposes interesting patterns on its decays into electroweak gauge bosons, which are dictated by only two free parameters. Therefore experimental measurements on any two of the four possible electroweak channels would determine the remaining two decay channels completely. Furthermore, searches in the WW/ZZ channels probe a complimentary region of parameter space from searches in the gamma-gamma/Z-gamma channels. We derive a model-independent upper bound on the branching fraction in each decay channel, which for the diphoton channel turns out to be about 61%. Including the coupling to gluons, the upper bound on the diphoton branching fraction implies an upper bound on the mass scale of additional colored particles mediating the gluon-fusion production. Using an event rate of about 5 fb for the reported 750 GeV diphoton excess, we find the new colored particle must be lighter than O(1.7 TeV) and O(2.6 TeV) for a pure CP-even and a pure CP-odd singlet scalar, respectively.
One-loop renormalization of Lorentz and C P T -violating scalar field theory in curved spacetime
Netto, Tibério de Paula
2018-03-01
The one-loop divergences for the scalar field theory with Lorentz and/or C P T breaking terms are obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a nonperturbative form in the C P T -even parameter through a redefinition of a space-time metric. In the most complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the vacuum counterterms indicate the most important structures of Lorentz and C P T violations in the pure gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow the violating fields to transform, the classical conformal invariance of massless scalar fields can be maintained in the ξ =1 /6 case. At a quantum level, the conformal symmetry is violated by a trace anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the presence of extra Lorentz- and/or C P T -violating parameters. Such gravitational effective action is important for cosmological applications and can be used for searching of Lorentz violation in the primordial Universe in the cosmological perturbations, especially gravitational waves.
Fundamental and composite scalars from extra dimensions
International Nuclear Information System (INIS)
Aranda, Alfredo; Diaz-Cruz, J.L.; Hernandez-Sanchez, J.; Noriega-Papaqui, R.
2007-01-01
We discuss a scenario consisting of an effective 4D theory containing fundamental and composite fields. The strong dynamics sector responsible for the compositeness is assumed to be of extra dimensional origin. In the 4D effective theory the SM fermion and gauge fields are taken as fundamental fields. The scalar sector of the theory resembles a bosonic topcolor in the sense there are two scalar Higgs fields, a composite scalar field and a fundamental gauge-Higgs unification scalar. A detailed analysis of the scalar spectrum is presented in order to explore the parameter space consistent with experiment. It is found that, under the model assumptions, the acceptable parameter space is quite constrained. As a part of our phenomenological study of the model, we evaluate the branching ratio of the lightest Higgs boson and find that our model predicts a large FCNC mode h→tc, which can be as large as O(10 -3 ). Similarly, a large BR for the top FCNC decay is obtained, namely BR(t→c+H)≅10 -4
Fundamental and composite scalars from extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Aranda, Alfredo [Dual C-P Institute of High Energy Physics, Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico)], E-mail: fefo@ucol.mx; Diaz-Cruz, J.L. [Dual C-P Institute of High Energy Physics, Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico); Dual C-P Institute of High Energy Physics, Facultad de Ciencias Fisico-Matematicas, BUAP, Apdo. Postal 1364, C.P. 72000 Puebla, Pue (Mexico)], E-mail: lorenzo.diaz@fcfm.buap.mx; Hernandez-Sanchez, J. [Dual C-P Institute of High Energy Physics, Centro de Investigacion en Matematicas, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, C.P. 42184, Pachuca, Hidalgo (Mexico)], E-mail: jaimeh@uaeh.edu.mx; Noriega-Papaqui, R. [Dual C-P Institute of High Energy Physics, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico D.F. (Mexico)], E-mail: rnoriega@fisica.unam.mx
2007-12-13
We discuss a scenario consisting of an effective 4D theory containing fundamental and composite fields. The strong dynamics sector responsible for the compositeness is assumed to be of extra dimensional origin. In the 4D effective theory the SM fermion and gauge fields are taken as fundamental fields. The scalar sector of the theory resembles a bosonic topcolor in the sense there are two scalar Higgs fields, a composite scalar field and a fundamental gauge-Higgs unification scalar. A detailed analysis of the scalar spectrum is presented in order to explore the parameter space consistent with experiment. It is found that, under the model assumptions, the acceptable parameter space is quite constrained. As a part of our phenomenological study of the model, we evaluate the branching ratio of the lightest Higgs boson and find that our model predicts a large FCNC mode h{yields}tc, which can be as large as O(10{sup -3}). Similarly, a large BR for the top FCNC decay is obtained, namely BR(t{yields}c+H){approx_equal}10{sup -4}.
Can dark matter be a scalar field?
Energy Technology Data Exchange (ETDEWEB)
Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.
Scalar Implicatures: The Psychological Reality of Scales.
de Carvalho, Alex; Reboul, Anne C; Van der Henst, Jean-Baptiste; Cheylus, Anne; Nazir, Tatjana
2016-01-01
Scalar implicatures, the phenomena where a sentence like "The pianist played some Mozart sonatas" is interpreted, as "The pianist did not play all Mozart sonatas" have been given two different analyses. Neo-Griceans (NG) claim that this interpretation is based on lexical scales (e.g., ), where the stronger term (e.g., all ) implies the weaker term (e.g., some ), but the weaker term (e.g., some ) implicates the negation of the stronger term (i.e., some = not all ). Post-Griceans (PG) deny that this is the case and offer a context-based inferential account for scalar implicatures. While scalar implicatures have been extensively investigated, with results apparently in favor of PG accounts, the psychological reality of lexical scales has not been put to the test. This is what we have done in the present experiment, with a lexical decision task using lexical scales in a masked priming paradigm. While PG accounts do not attribute any role for lexical scales in the computation of scalar implicatures, NG accounts suggest that lexical scales are the core mechanism behind the computation of scalar implicatures, and predict that weaker terms in a scale should prime stronger terms more than the reverse because stronger words are necessary to the interpretation of weaker words, while stronger words can be interpreted independently of weaker words. Our results provided evidence in favor of the psychological existence of scales, leading to the first clear experimental support for the NG account.
International Nuclear Information System (INIS)
Niv, A.; Biener, G.; Kleiner, V.; Hasman, E.
2004-01-01
Full Text:Propagation-invariant scalar fields have been extensively studied both theoretically and experimentally, since they were proposed by Durnin et al. These fields were employed in applications such as optical tweezers and for transport and guiding of microspheres. Although there has recently been considerable theoretical interest in propagation-invariant vectorial beams, experimental studies of such beams have remained somewhat limited. One of the most interesting types of propagation-invariant vectorial beam is the linearly polarized axially symmetric beam (LPASB) [l]. Recently, we introduced and experimentally demonstrated propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized Pancharatnam-Berry phase optical elements (QPBOEs) [21 and an axicon. QP-BOEs utilize the geometric phase that accompanies space-variant polarization manipulations to achieve a desired phase modification [31. To test our approach we formed QPBOEs with different polarization orders as computer-generated space-variant sub wavelength gratings upon GaAs wafers for use with 10.6 micron laser radiation. The resultant beams were also transmitted through a polarizer that produced a unique propagation-invariant scalar beam. This beam has a propeller-shaped intensity pattern that can be rotated by simple rotation of the polarizer. We therefore have demonstrated the formation of a vectorial Bessel beam by using simple, lightweight thin elements and exploited that beam to perform a controlled rotation of a propeller-shaped intensity pattern that can be suitable for optical tweezers
Luk, Jeremy W; King, Kevin M; McCarty, Carolyn A; Stoep, Ann Vander; McCauley, Elizabeth
2016-06-01
While the interpretation and effects of parenting on developmental outcomes may be different across European and Asian/Pacific Islander (API) American youth, measurement invariance of parenting constructs has rarely been examined. Utilizing multiple-group confirmatory factor analysis, we examined whether the latent structure of parenting measures are equivalent or different across European and API American youth. Perceived parental warmth, psychological control, and knowledge were reported by a community sample of 325 adolescents (242 Europeans and 83 APIs). Results indicated that one item did not load on mother psychological control for API American youth. After removing this item, we found metric invariance for all parenting dimensions, providing support for cross-cultural consistency in the interpretation of parenting items. Scalar invariance was found for father parenting, whereas three mother parenting items were non-invariant across groups at the scalar level. After taking into account several minor forms of measurement non-invariance, non-invariant factor means suggested that API Americans perceived lower parental warmth and knowledge but higher parental psychological control than European Americans. Overall, the degree of measurement non-invariance was not extensive and was primarily driven by a few parenting items. All but one parenting item included in this study may be used for future studies across European and API American youth.
Glueballs in the reaction π-p → phi phi n at 22 GeV/C
International Nuclear Information System (INIS)
Longacre, R.S.
1983-01-01
The BNL/CCNY group has observed and performed a partial wave analysis on approx. 4000 (22 GeV) π - p → phi phi n events. The OZI suppression has been found to be almost completely broken down. The phi phi spectrum is found to be composed almost entirely of I/sup G/J/sup PC/ = 0 + 2 ++ partially waves which occur in S and D-waves with spin zero and spin two. Assuming (1) QCD is correct, and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams due to the creation or annihilation of new types of quarks; it is concluded that one to three primary glueballs with the above quantum numbers are responsible for the observed data. 23 references
Electrophobic scalar boson and muonic puzzles
Miller, Gerald A.
2017-09-01
A new scalar boson which couples to the muon and proton can simultaneously solve the proton radius puzzle and the muon anomalous magnetic moment discrepancy. Using a variety of measurements, we constrain the mass of this scalar and its couplings to the electron, muon, neutron, and proton. Making no assumptions about the underlying model, these constraints and the requirement that it solve both problems limit the mass of the scalar to between about 100 keV and 100 MeV. We identify two unexplored regions in the coupling constant-mass plane. Potential future experiments and their implications for theories with mass-weighted lepton couplings are discussed. This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER-41014.
Scalar one-loop integrals for QCD
International Nuclear Information System (INIS)
Ellis, R. Keith; Zanderighi, Giulia
2008-01-01
We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4-2ε dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/ε 2 ,1/ε 1 and 1/ε 0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral
Continuous Integrated Invariant Inference, Phase I
National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...
Passive scalar intermittency in random flows
Lin, Zhi
2007-06-01
This thesis concentrates on reconstructing the complete probability density function (PDF) for a passive scalar governed by a random advection-diffusion equation using a variety of mathematical tools, primarily from partial differential equations, perturbation theory, numerical analysis and statistics. First we present a one-dimensional model which is essentially a random translation of pure heat equation. For some deterministic initial data, the ensuing scalar PDF and its statistical moments can be explicitly calculated. We use this model as a testbed for validating a numerical reconstruction procedure for the PDF via orthogonal polynomial expansion. In this model, the Peclet number is shown to be decisive in establishing the transition in the singularity structure of the PDF which affects the effectiveness of the series expansion, from only one algebraic singularity at unit scalar values (small Peclet), to two algebraic singularities at both unit and zero scalar values (large Peclet). Next, we study the more complicated, two-dimensional model in which the underlying flow is a random linear shear in one dimension. For planar, Gaussian random initial data, we identify the scalar PDF as an integral representing a conditional mixing of Gaussian probability measures averaged over all realizations of a single random variable, namely, the renormalized L2-norm of standard Wiener process. Rigorous asymptotic analyses and solid numerical simulation are performed to the integral formulation to study the evolution and the parametric dependence of the scalar PDF. During these analyses, we discover a transient, nonmonotonic "breathing" phenomena that is related to the multiple spatial scales in the initial random field. Lastly, some preliminary analytical and numerical results are presented to explore the potential of applying the reconstruction methodology to more general, physically relevant models, such as a rotating, viscous, wind-driven shallow water equation.
Consistency relation for the Lorentz invariant single-field inflation
International Nuclear Information System (INIS)
Huang, Qing-Guo
2010-01-01
In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral shape bispectrum, namely f NL orth. ≤ −0.054f NL equil. . In particular, for the single-field Dirac-Born-Infeld (DBI) inflation, the consistency relation becomes f NL orth. = 0.070f NL equil. ≤ 0. These consistency relations are also valid in the mixed scenario where the quantum fluctuations of some other light scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τ NL loc. > ((6/5)f NL loc. ) 2 . Comparing these consistency relations to WMAP 7yr data, there is still a big room for the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL
Gauge-invariant formalism of cosmological weak lensing
Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre
2018-04-01
We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.
Scalar dark matter: real vs complex
Energy Technology Data Exchange (ETDEWEB)
Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)
2017-03-27
We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.
Anisotropic scalar field with cosmological time
International Nuclear Information System (INIS)
Kleber, A.; Teixeira, A.F.F.
1978-04-01
A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite
Local unitary invariants for multipartite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Vrana, Peter, E-mail: vranap@math.bme.hu [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest (Hungary)
2011-03-18
A method is presented to obtain local unitary invariants for multipartite quantum systems consisting of fermions or distinguishable particles. The invariants are organized into infinite families, in particular, the generalization to higher dimensional single-particle Hilbert spaces is straightforward. Many well-known invariants and their generalizations are also included.
Evolution of the Probability Measure for the Majda Model: New Invariant Measures and Breathing PDFs
Camassa, Roberto; Lin, Zhi; McLaughlin, Richard M.
2008-01-01
In 1993, Majda proposed a simple, random shear model from which scalar intermittency was rigorously predicted for the invariant probability measure of passive tracers. In this work, we present an integral formulation for the tracer measure, which leads to a new, comprehensive study on its temporal evolution based on Monte Carlo simulation and direct numerical integration. An interesting, non-monotonic "breathing" phenomenon is discovered from these results and carefully defined, with a solid example for special initial data to predict such phenomenon. The signature of this phenomenon may persist at long time, characterized by the approach of the PDF core to its infinite time, invariant value. We find that this approach may be strongly dependent on the non-dimensional Péclet number, of which the invariant measure itself is independent. Further, the "breathing" PDF is recovered as a new invariant measure in a distinguished time scale in the diffusionless limit. Rigorous asymptotic analysis is also performed to identify the Gaussian core of the invariant measures, and the critical rate at which the heavy, stretched exponential regime propagates towards the tail as a function of time is calculated.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Invariance for Single Curved Manifold
Castro, Pedro Machado Manhaes de
2012-08-01
Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.
Holographic multiverse and conformal invariance
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Molecular invariants: atomic group valence
International Nuclear Information System (INIS)
Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.
1988-01-01
Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt
Homotopy invariants of Gauss words
Gibson, Andrew
2009-01-01
By defining combinatorial moves, we can define an equivalence relation on Gauss words called homotopy. In this paper we define a homotopy invariant of Gauss words. We use this to show that there exist Gauss words that are not homotopically equivalent to the empty Gauss word, disproving a conjecture by Turaev. In fact, we show that there are an infinite number of equivalence classes of Gauss words under homotopy.
Generating scale-invariant tensor perturbations in the non-inflationary universe
Directory of Open Access Journals (Sweden)
Mingzhe Li
2014-09-01
Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.
Random SU(2) invariant tensors
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Doneva, Daniela D.; Yazadjiev, Stoytcho S.
2018-04-01
In the present paper we study models of neutron stars in a class of extended scalar-tensor Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is exited only in the strong curvature regime. We show that in the framework of the ESTGB theories under consideration there exist new neutron star solutions which are formed via spontaneous scalarization of the general relativistic neutron stars. In contrast to the spontaneous scalarization in the standard scalar-tensor theories which is induced by the presence of matter, in our case the scalarization is induced by the spacetime curvature.
Indian Academy of Sciences (India)
Example 5 (Chameleons): In a certain island there are 13 grey, 15 brown and 17 crimson chameleons. If two chameleons of different colors meet, both of them change to the third color. No other color changes are ... permutation)?' is the question. Well, the set of per- mutations are divided into two classes, odd and even.
Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2016-01-01
Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.
Blur invariants constructed from arbitrary moments.
Kautsky, Jaroslav; Flusser, Jan
2011-12-01
This paper deals with moment invariants with respect to image blurring. It is mainly a reaction to the works of Zhang and Chen , recently published in these Transactions. We present a general method on how to construct blur invariants from arbitrary moments and show that it is no longer necessary to separately derive the invariants for each polynomial basis. We show how to discard dependent terms in blur invariants definition and discuss a proper implementation of the invariants in orthogonal bases using recurrent relations. An example for Legendre moments is given. © 2011 IEEE
Relativistic ls coupling in scalar potential
International Nuclear Information System (INIS)
Martem'yanov, B.V.; Shchepkin, M.G.
1987-01-01
On fermion example ls-splitting of the levels in scalar potential in the general case including relativistic range is considered. The derived formulas are compared with the classical ones for the energy concerned with the Thomas spin precession. It is shown that in the relativistic range ls-coupling causes change of rotational excitation spectrum
Positive scalar curvature and the Euler class
Yu, Jianqing; Zhang, Weiping
2018-03-01
We prove the following generalization of the classical Lichnerowicz vanishing theorem: if F is an oriented flat vector bundle over a closed spin manifold M such that TM carries a metric of positive scalar curvature, then 〈 A ̂ (TM) e(F) , [ M ] 〉 = 0, where e(F) is the Euler class of F.
Dark energy in scalar-tensor theories
International Nuclear Information System (INIS)
Moeller, J.
2007-12-01
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Dark energy in scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
Scalar Condensation of Holographic Superconductors using ...
Indian Academy of Sciences (India)
2016-01-27
Landau action with the -quartic term |Ψ|4. Our results show that -term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of . But the other increases ...
Kundt spacetimes minimally coupled to scalar field
Energy Technology Data Exchange (ETDEWEB)
Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)
2017-06-15
We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)
Reconstructing bidimensional scalar field theory models
International Nuclear Information System (INIS)
Flores, Gabriel H.; Svaiter, N.F.
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)
Quasar polarization with ultralight (pseudo-)scalars
Indian Academy of Sciences (India)
Ej. 1. Introduction. The existence of the light scalars and pseudoscalars beyond the Standard Model is generic. One prominent example is, the very light axion, which was introduced to solve the strong. CP problem. The axion itself, being closely ...
Vast Antimatter Regions and Scalar Condensate Baryogenesis
Kirilova, D P; Panayotova, M P; Valchanov, T
2002-01-01
The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.
Scalar Condensation of Holographic Superconductors using ...
Indian Academy of Sciences (India)
Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...
Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance
International Nuclear Information System (INIS)
Durrer, Ruth; Vernizzi, Filippo
2002-01-01
At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era
Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes
Energy Technology Data Exchange (ETDEWEB)
Cadoni, Mariano [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); Franzin, Edgardo [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Serra, Matteo [Dipartimento di Matematica, Sapienza Università di Roma,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-01-20
We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d+2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.
Scalar Implicatures: The psychological reality of scales
Directory of Open Access Journals (Sweden)
Alex de Carvalho
2016-10-01
Full Text Available Scalar implicatures, the phenomena where a sentence like The pianist played some Mozart sonatas is interpreted as The pianist did not play all Mozart sonatas have been given two different analyses. Neo-Griceans claim that this interpretation is based on lexical scales (e.g. , where the stronger term (e.g. all implies the weaker term (e.g. some, but the weaker term (e.g., some implicates the negation of the stronger term (i.e., some = not all. Post-Griceans deny that this is the case and offer a context-based inferential account for scalar implicatures. While scalar implicatures have been extensively investigated, with results apparently in favor of post-Gricean accounts, the psychological reality of lexical scales has not been put to the test. This is what we have done in the present experiment, with a lexical decision task using lexical scales in a masked priming paradigm. While Post-Gricean accounts do not attribute any role for lexical scales in the computation of scalar implicatures, Neo-Gricean accounts suggest that lexical scales are the core mechanism behind the computation of scalar implicatures, and predict that weaker terms in a scale should prime stronger terms more than the reverse because stronger words are necessary to the interpretation of weaker words, while stronger words can be interpreted independently of weaker words. Our results provided evidence in favor of the psychological existence of scales, leading to the first clear experimental support for the Neo-Gricean account.
Evolution of passive scalar statistics in a spatially developing turbulence
Paul, I.; Papadakis, G.; Vassilicos, J. C.
2018-02-01
We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
Invariant Classification of Gait Types
DEFF Research Database (Denmark)
Fihl, Preben; Moeslund, Thomas B.
2008-01-01
This paper presents a method of classifying human gait in an invariant manner based on silhouette comparison. A database of artificially generated silhouettes is created representing the three main types of gait, i.e. walking, jogging, and running. Silhouettes generated from different camera angles....... Input silhouettes are matched to the database using the Hungarian method. A classifier is defined based on the dissimilarity between the input silhouettes and the gait actions of the database. The overall recognition rate is 88.2% on a large and diverse test set. The recognition rate is better than...
Quantum Weyl invariance and cosmology
Energy Technology Data Exchange (ETDEWEB)
Dabholkar, Atish, E-mail: atish@ictp.it [International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, Trieste 34151 (Italy); Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7589, LPTHE, F-75005, Paris (France)
2016-09-10
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Invariant metrics for Hamiltonian systems
International Nuclear Information System (INIS)
Rangarajan, G.; Dragt, A.J.; Neri, F.
1991-05-01
In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs
Energy Technology Data Exchange (ETDEWEB)
Madriz Aguilar, Jose Edgar; Reyes, Luz M.; Moreno, Claudia [Universidad de Guadalajara (UdG), Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Guadalajara, Jalisco (Mexico); Bellini, Mauricio [Universidad Nacional de Mar del Plata (UNMdP), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)
2013-10-15
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion. (orig.)
International Nuclear Information System (INIS)
Madriz Aguilar, Jose Edgar; Reyes, Luz M.; Moreno, Claudia; Bellini, Mauricio
2013-01-01
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion. (orig.)
Towards a constructive approach of a gauge invariant, massive P(PHI)2 theory
International Nuclear Information System (INIS)
Schrader, R.
1978-01-01
As part of a possible constructive approach to a gauge invariant P(PHI) 2 theory, we consider massive, scalar, polynomially selfcoupled fields PHI in a fixed external Yang-Mills potential A in two dimensional euclidean space. For a large class of A's we show that the corresponding euclidean Green's functions for fields PHI have a lower mass gap for weak coupling which is uniform in A. The result is obtained by adapting the Glimm-Jaffe-Spencer cluster expansion to the present situation through Kato's inequality, which reflects the diamagnetic effect of the Yang-Mills potential. A dicussion of the corresponding gauge covariance is included. (orig.) [de
Tensor network methods for invariant theory
Biamonte, Jacob; Bergholm, Ville; Lanzagorta, Marco
2013-11-01
Invariant theory is concerned with functions that do not change under the action of a given group. Here we communicate an approach based on tensor networks to represent polynomial local unitary invariants of quantum states. This graphical approach provides an alternative to the polynomial equations that describe invariants, which often contain a large number of terms with coefficients raised to high powers. This approach also enables one to use known methods from tensor network theory (such as the matrix product state (MPS) factorization) when studying polynomial invariants. As our main example, we consider invariants of MPSs. We generate a family of tensor contractions resulting in a complete set of local unitary invariants that can be used to express the Rényi entropies. We find that the graphical approach to representing invariants can provide structural insight into the invariants being contracted, as well as an alternative, and sometimes much simpler, means to study polynomial invariants of quantum states. In addition, many tensor network methods, such as MPSs, contain excellent tools that can be applied in the study of invariants.
Ramis, Yago; Viladrich, Carme; Sousa, Catarina; Jannes, Caroline
2015-01-01
This study evaluates the metric and scalar invariance of the Sport Anxiety Scale-2 (SAS-2), which is considered one of the best sport performance anxiety assessment tools for child and adolescent athletes, across four sampling variables: language, gender, age and type of sport. The participants were 842 athletes (Mage = 11.73, SD = 2.20) from Spain, Belgium and Portugal, each of whom completed the language-adapted version of the SAS-2. Confirmatory factor analysis was used to test the invariance of the measurement model, and the relative importance of the sampling variables was assessed using a multiple indicator multiple causes model (MIMIC). The results revealed metric and scalar invariance across all sampling variables and null to modest effects of gender, age and type of sport as covariates for the factors of the SAS-2. However, there was a marked effect (ß = -.56) of language on worry, which reflected lower scores on this factor for the Flemish sample. The results of this study provide evidence of the invariance of the SAS-2 across samples, thereby endorsing the reliability of its factorial structure for future multi-group research.
SU(5)-invariant decomposition of ten-dimensional Yang-Mills supersymmetry
Baulieu, Laurent
2011-01-01
The N=1,d=10 superYang-Mills action is constructed in a twisted form, using SU(5)-invariant decomposition of spinors in 10 dimensions. The action and its off-shell closed twisted scalar supersymmetry operator Q derive from a Chern-Simons term. The action can be decomposed as the sum of a term in the cohomology of Q and of a term that is Q-exact. The first term is a fermionic Chern-Simons term for a twisted component of the Majorana-Weyl gluino and it is related to the second one by a twisted vector supersymmetry with 5 parameters. The cohomology of Q and some topological observables are defined from descent equations. In this SU(5)
Factorial invariance of the Satisfaction with Life Scale in adolescents from Spain and Portugal.
Atienza González, Francisco L; Balaguer Solá, Isabel; Corte-Real, Nuno; Fonseca, António M
2016-08-01
The Satisfaction with Life Scale is one of the most widely used scales to measure the global cognitive judgment of satisfaction with one’s life. This study assesses the equivalence of the SWLS across Spanish and Portuguese adolescents, using multi-sample Confirmatory Factor Analysis. Participants were Spanish (N = 2183) and Portuguese (N = 4082) junior high school. The results provide high support for the internal consistency of both the Spanish and Portuguese versions of this scale. The results also showed that factor structure, factor loadings, could be considered invariant across groups. However, the full scalar invariance between Spanish and Portuguese samples was not found, with the intercept for SWLS item 5 varying across countries. Similar findings have also been found in other cross-national studies with this scale. Implications of the findings are discussed and we conclude that the Spanish and Portuguese versions of the SWLS can be used for cross-national comparisons with Spanish and Portuguese adolescents.
Spectral and scattering theory for translation invariant models in quantum field theory
DEFF Research Database (Denmark)
Rasmussen, Morten Grud
This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... field e.g. describing mesons or phonons. The models are given by three inputs: - the dispersion relation for the matter particle, - the dispersion relation for the field particle, and - the (UV cut-off) coupling function. The assumptions imposed on , and are rather weak and are satisfied...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...
A new dynamics of electroweak symmetry breaking with classically scale invariance
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Ishida, Hiroyuki, E-mail: ishida@riko.shimane-u.ac.jp [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Kitazawa, Noriaki [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2016-04-10
We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.
A new dynamics of electroweak symmetry breaking with classically scale invariance
Directory of Open Access Journals (Sweden)
Naoyuki Haba
2016-04-01
Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.
Exact scale-invariant background of gravitational waves from cosmic defects.
Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon
2013-03-08
We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.
Conformal invariant powers of the Laplacian, Fefferman-Graham ambient metric and Ricci gauging
International Nuclear Information System (INIS)
Manvelyan, Ruben; Mkrtchyan, Karapet; Mkrtchyan, Ruben
2007-01-01
The hierarchy of conformally invariant kth powers of the Laplacian acting on a scalar field with scaling dimensions Δ (k) =k-d/2, k=1,2,3, as obtained in the recent work [R. Manvelyan, D.H. Tchrakian, Phys. Lett. B 644 (2007) 370, (hep-th/0611077)] is rederived using the Fefferman-Graham (d+2)-dimensional ambient space approach. The corresponding mysterious 'holographic' structure of these operators is clarified. We explore also the (d+2)-dimensional ambient space origin of the Ricci gauging procedure proposed by A. Iorio, L. O'Raifeartaigh, I. Sachs and C. Wiesendanger as another method of constructing the Weyl invariant Lagrangians. The corresponding gauged ambient metric, Fefferman-Graham expansion and extended Penrose-Brown-Henneaux transformations are proposed and analyzed
Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)
Chandavar, Shloka K.
The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.
Limit Cycles and Conformal Invariance
Fortin, Jean-Francois; Stergiou, Andreas
2013-01-01
There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cycl...
Remark on shape invariant potential
International Nuclear Information System (INIS)
Drigo Filho, Elso; Ricotta, Regina Maria
1997-01-01
For more than a decade, Supersymmetry has provided new information about ordinary quantum mechanical problems, and Supersymmetric Quantum Mechanics has become a field research by itself. If has been shown that the symmetry between two different systems that share energy spectra can be interpreted in terms of supersymmetry. From the knowledge of the ground state of a given potential it is possible to find another potential with the same energy spectrum, except for the ground state. In fact, from the use of supersymmetric partner Hamiltonians and their degeneracy spectra it has become possible to determine a ladder of Hamiltonians and their spectra, only through the ground states of the ladder. Concerning the partner Hamiltonians with potentials V + and V - that are similar in shape but Differ in the parameters. Gedenshtein introduced in 1983 the concept of shape invariance. Here we propose an extension of this concept. It is formulated in terms of the functional form of the whole super-family and not only between any two members of the ladder. We give two examples where all the members of the super-family can be written in a general functional form and conclude that Gedenshtein's conditions of shape invariance is sufficient but not necessary in order to obtain the super-family. (author)
Second quantized scalar QED in homogeneous time-dependent electromagnetic fields
Kim, Sang Pyo
2014-12-01
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
Charged black holes with scalar hair
Energy Technology Data Exchange (ETDEWEB)
Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)
2015-09-10
We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.
The scalar field kernel in cosmological spaces
Energy Technology Data Exchange (ETDEWEB)
Koksma, Jurjen F; Prokopec, Tomislav [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Rigopoulos, Gerasimos I [Helsinki Institute of Physics, University of Helsinki, PO Box 64, FIN-00014 (Finland)], E-mail: J.F.Koksma@phys.uu.nl, E-mail: T.Prokopec@phys.uu.nl, E-mail: gerasimos.rigopoulos@helsinki.fi
2008-06-21
We construct the quantum-mechanical evolution operator in the functional Schroedinger picture-the kernel-for a scalar field in spatially homogeneous FLRW spacetimes when the field is (a) free and (b) coupled to a spacetime-dependent source term. The essential element in the construction is the causal propagator, linked to the commutator of two Heisenberg picture scalar fields. We show that the kernels can be expressed solely in terms of the causal propagator and derivatives of the causal propagator. Furthermore, we show that our kernel reveals the standard light cone structure in FLRW spacetimes. We finally apply the result to Minkowski spacetime, to de Sitter spacetime and calculate the forward time evolution of the vacuum in a general FLRW spacetime.
On Climbing Scalars in String Theory
Dudas, E; Sagnotti, A
2010-01-01
In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.
Scalar field cosmologies with inverted potentials
International Nuclear Information System (INIS)
Boisseau, B.; Giacomini, H.; Polarski, D.
2015-01-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF
Scalar field cosmologies with inverted potentials
Energy Technology Data Exchange (ETDEWEB)
Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)
2015-10-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.
Search for scalar electrons at PEP
International Nuclear Information System (INIS)
Wilson, R.J.
1983-08-01
Experimental results from e + e - reactions at the Positron Electron Project (PEP) using the High Resolution Spectrometer (HRS) are presented. Events with two electrons, and no other charged particles, in the final state are studied. Limits are given for the production of scalar-electrons predicted by models based on supersymmetry. In particular the pair production of such particles through s-channel single photon annihilation and t-channel inelastic scattering is considered. The data are well described by quantum electrodynamics (QED) but we observe one event which is also consistent with a supersymmetric model. Using this single event we find that the mass, M/sub se/, of these scalar-electrons es excluded, to 95% CL, in the range 1.8 less than or equal to M/sub se/ less than or equal to 14.2 GeV/c 2 . A description of the HRS detector is given with particular emphasis on the electronic trigger system
Scalar fields in black hole spacetimes
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
A DNS study of turbulent mixing of two passive scalars
International Nuclear Information System (INIS)
Juneja, A.; Pope, S.B.
1996-01-01
We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a open-quote open-quote triple-delta function close-quote close-quote jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation. copyright 1996 American Institute of Physics
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
Scalar contribution to the BFKL kernel
International Nuclear Information System (INIS)
Gerasimov, R. E.; Fadin, V. S.
2010-01-01
The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.
Scalar tetraquark candidates on the lattice
International Nuclear Information System (INIS)
Berlin, Joshua
2017-01-01
The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a 0 (980), an isovector in the nonet of light scalars (J P =0 + ). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a 0 (980) and f 0 (980) feature a surprising mass degeneracy. For this reasons the a 0 (980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.
Haba, Naoyuki; Yamada, Toshifumi
2017-06-01
We investigate the scenario where the standard model is extended with classical scale invariance, which is broken by chiral symmetry breaking and confinement in a new strongly coupled gauge theory that resembles QCD. The standard model Higgs field emerges as a result of the mixing of a scalar meson in the new strong dynamics and a massless elementary scalar field. The mass and scalar decay constant of that scalar meson, which are generated dynamically in the new gauge theory, give rise to the Higgs field mass term, automatically possessing the correct negative sign by the bosonic seesaw mechanism. Using analogy with QCD, we evaluate the dynamical scale of the new gauge theory and further make quantitative predictions for light pseudo-Nambu-Goldstone bosons associated with the spontaneous breaking of axial symmetry along chiral symmetry breaking in the new gauge theory. A prominent consequence of the scenario is that there should be a standard model gauge singlet pseudo-Nambu-Goldstone boson with mass below 220 GeV, which couples to two electroweak gauge bosons through the Wess-Zumino-Witten term, whose strength is thus determined by the dynamical scale of the new gauge theory. Other pseudo-Nambu-Goldstone bosons, charged under the electroweak gauge groups, also appear. Concerning the theoretical aspects, it is shown that the scalar quartic coupling can vanish at the Planck scale with the top quark pole mass as large as 172.5 GeV, realizing the flatland scenario without being in tension with the current experimental data.
Wilson loop invariants from WN conformal blocks
Directory of Open Access Journals (Sweden)
Oleg Alekseev
2015-12-01
Full Text Available Knot and link polynomials are topological invariants calculated from the expectation value of loop operators in topological field theories. In 3D Chern–Simons theory, these invariants can be found from crossing and braiding matrices of four-point conformal blocks of the boundary 2D CFT. We calculate crossing and braiding matrices for WN conformal blocks with one component in the fundamental representation and another component in a rectangular representation of SU(N, which can be used to obtain HOMFLY knot and link invariants for these cases. We also discuss how our approach can be generalized to invariants in higher-representations of WN algebra.
Scalar-tensor gravity with scalar-matter direct coupling and its cosmological probe
Kim, Jik-Su; Kim, Chol-Jun
2017-08-01
Making use of the SNIa data set, Nesseris and Perivolaropoulos [Phys. Rev. D 73, 103511 (2006), 10.1103/PhysRevD.73.103511] have found the gravitation constant to evolve in accordance with scalar-tensor gravity. On the other hand, Majerotto et al. [arXiv:astro-ph/0410543] and Guo et al. [Phys. Rev. D 76, 023508 (2007), 10.1103/PhysRevD.76.023508] have found a definite signature of dark energy-dark matter coupling in Einstein tensor gravity background. However, the results of the above works are quite contradictory, so we cannot be sure which of these results should be accepted because both models use different background gravitation. We construct a more inclusive model with scalar-background space-time and scalar-matter couplings. Making use of SNIa(Union) and baryon acoustic oscillation data sets, we made likelihood analyses; the results show that the background gravitation has the tensor characteristics within a confidence level of 68% and the scalar-matter coupling has a rather large positive value δ =±1.01 . As Guo et al. showed, however, inclusion of the cosmic microwave background (CMB) data set in the likelihood analysis significantly reduces the allowed region of the coupling compared to the case without CMB data. Therefore, the value of scalar-matter coupling in this paper could have been estimated too large and the inclusion of CMB data in the next work is expected to yield a more realistic result.
Searches for scalar top and scalar bottom quarks at LEP2
Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G
1997-01-01
Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb^-1 taken at sqrt{s} = 161, 170, and 172~GeV and 5.7 pb^-1 taken at sqrt{s} = 130 and 136~GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels stop --> c chi, stop --> b l snu, and sbottom --> b chi. For the channel stop --> c chi a limit of 67 GeV/c^2 has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the stop and the chi of at least 10 GeV/c^2. For the channel stop --> b l snu the mixing-angle independent scalar top limit is 70 GeV/c^2, assuming a mass difference between the stop and the snu of at least 10 GeV/c^2. For the channel sbottom --> b chi, a limit of 73 GeV/c^2 has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. T...
Searches for scalar top and scalar bottom quarks at LEP2
ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.
1997-11-01
Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb-1 taken at sqrt(s) = 161, 170, and 172 GeV and 5.7 pb-1 taken at sqrt(s) = 130 and 136 GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels t~-->cχ, t~-->blν~, and b~-->bχ. For the channel t~-->cχ a limit of 67 GeV/c2has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the t~ and the χ of at least 10 GeV/c2. For the channel t~-->blν~ the mixing-angle independent scalar top limit is 70 GeV/c2, assuming a mass difference between the t~ and the ν~ of at least 10 GeV/c2. For the channel b~-->bχ, a limit of 73 GeV/c2has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the b~ and the χ is at least 10 GeV/c2.
Analyzing vortex breakdown flow structures by assignment of colors to tensor invariants.
Rütten, Markus; Chong, Min S
2006-01-01
Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.
Scale invariance in road networks.
Kalapala, Vamsi; Sanwalani, Vishal; Clauset, Aaron; Moore, Cristopher
2006-02-01
We study the topological and geographic structure of the national road networks of the United States, England, and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2< or = alpha < or =2.4, and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent and the fractal dimensions governing the placement of roads and intersections.
Invariants of DNA genomic signals
Cristea, Paul Dan A.
2005-02-01
For large scale analysis purposes, the conversion of genomic sequences into digital signals opens the possibility to use powerful signal processing methods for handling genomic information. The study of complex genomic signals reveals large scale features, maintained over the scale of whole chromosomes, that would be difficult to find by using only the symbolic representation. Based on genomic signal methods and on statistical techniques, the paper defines parameters of DNA sequences which are invariant to transformations induced by SNPs, splicing or crossover. Re-orienting concatenated coding regions in the same direction, regularities shared by the genomic material in all exons are revealed, pointing towards the hypothesis of a regular ancestral structure from which the current chromosome structures have evolved. This property is not found in non-nuclear genomic material, e.g., plasmids.
Local invariance via comparison functions
Directory of Open Access Journals (Sweden)
Ovidiu Carja
2004-04-01
Full Text Available We consider the ordinary differential equation $u'(t=f(t,u(t$, where $f:[a,b]imes Do mathbb{R}^n$ is a given function, while $D$ is an open subset in $mathbb{R}^n$. We prove that, if $Ksubset D$ is locally closed and there exists a comparison function $omega:[a,b]imesmathbb{R}_+o mathbb{R}$ such that $$ liminf_{hdownarrow 0}frac{1}{h}ig[d(xi+hf(t,xi;K-d(xi;Kig] leqomega(t,d(xi;K $$ for each $(t,xiin [a,b]imes D$, then $K$ is locally invariant with respect to $f$. We show further that, under some natural extra condition, the converse statement is also true.
Asymptotic invariants of homotopy groups
Manin, Fedor
We study the homotopy groups of a finite CW complex X via constraints on the geometry of representatives of their elements. For example, one can measure the "size" of alpha ∈ pi n (X) by the optimal Lipschitz constant or volume of a representative. By comparing the geometrical structure thus obtained with the algebraic structure of the group, one can define functions such as growth and distortion in pin(X), analogously to the way that such functions are studied in asymptotic geometric group theory. We provide a number of examples and techniques for studying these invariants, with a special focus on spaces with few rational homotopy groups. Our main theorem characterizes those X in which all non-torsion homotopy classes are undistorted, that is, their volume distortion functions, and hence also their Lipschitz distortion functions, are linear.
Scale-invariant extended inflation
International Nuclear Information System (INIS)
Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.
1991-01-01
We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential
Negation switching invariant signed graphs
Directory of Open Access Journals (Sweden)
Deepa Sinha
2014-04-01
Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.
The scalar-photon 3-point vertex in massless quenched scalar QED
International Nuclear Information System (INIS)
Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A
2016-01-01
Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)
Spontaneously broken abelian gauge invariant supersymmetric model
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)
Invariant subsets under compact quantum group actions
Huang, Huichi
2012-01-01
We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.
Superfield approach to symmetry invariance in quantum ...
Indian Academy of Sciences (India)
invariance for the Abelian and non-Abelian 1-form gauge theories where there is an explicit coupling between the 1-form gauge fields and the Dirac fields. It has been established, in the above works [26–28], that the (anti-)BRST invariance of the 4D Lagrangian densities is encoded in the Grassmannian independence of ...
Real object recognition using moment invariants
Indian Academy of Sciences (India)
contour-based shape descriptors and region-based shape descriptors (Kim & Sung 2000). Regular moment invariants are one of the most popular and widely used contour-based shape descriptors is a set of derived by Hu (1962). These geometrical moment invariants have been then extended to larger sets by Wong & Siu ...
Gromov–Witten invariants and quantum cohomology
Indian Academy of Sciences (India)
no local invariant in symplectic geometry, like, for example, the curvature in Riemannian geometry. The only possible invariants have to be global. The Darboux ..... that earlier Donaldson [D] used similar arguments for the orientation of Yang–Mills moduli spaces. Part (b) uses an infinite dimensional version of Sard–Smale ...
A test for ordinal measurement invariance
Ligtvoet, R.; Millsap, R.E.; Bolt, D.M.; van der Ark, L.A.; Wang, W.-C.
2015-01-01
One problem with the analysis of measurement invariance is the reliance of the analysis on having a parametric model that accurately describes the data. In this paper an ordinal version of the property of measurement invariance is proposed, which relies only on nonparametric restrictions. This
International Nuclear Information System (INIS)
Cai Yifu; Qiu Taotao; Brandenberger, Robert; Zhang Xinmin
2009-01-01
We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correct form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.
Constructing Invariant Fairness Measures for Surfaces
DEFF Research Database (Denmark)
Gravesen, Jens; Ungstrup, Michael
1998-01-01
This paper presents a general method which from an invariant curve fairness measure constructs an invariant surface fairness measure. Besides the curve fairness measure one only needs a class of curves on the surface for which one wants to apply the curve measure. The surface measure at a point...... variation.The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family of curves. Such a family is generated by the flow of a vector field, orthogonal to the curves. The first, respectively the second order derivative along the curve...... of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...
The usage of color invariance in SURF
Meng, Gang; Jiang, Zhiguo; Zhao, Danpei
2009-10-01
SURF (Scale Invariant Feature Transform) is a robust local invariant feature descriptor. However, SURF is mainly designed for gray images. In order to make use of the information provided by color (mainly RGB channels), this paper presents a novel colored local invariant feature descriptor, CISURF (Color Invariance based SURF). The proposed approach builds the descriptors in a color invariant space, which stems from Kubelka-Munk model and provides more valuable information than the gray space. Compared with the conventional SURF and SIFT descriptors, the experimental results show that descriptors created by CISURF is more robust to the circumstance changes such as the illumination direction, illumination intensity, and the viewpoints, and are more suitable for the deep space background objects.
Scale invariant transfer matrices and Hamiltionians
Jones, Vaughan F. R.
2018-03-01
Given a direct system of Hilbert spaces s\\mapsto {\\mathcal H}s (with isometric inclusion maps \\iota_s^t:{\\mathcal H}_s→ {\\mathcal H}t for s≤slant t ) corresponding to quantum systems on scales s, we define notions of scale invariant and weakly scale invariant operators. In some cases of quantum spin chains we find conditions for transfer matrices and nearest neighbour Hamiltonians to be scale invariant or weakly so. Scale invariance forces spatial inhomogeneity of the spectral parameter. But weakly scale invariant transfer matrices may be spatially homogeneous in which case the change of spectral parameter from one scale to another is governed by a classical dynamical system exhibiting fractal behaviour.
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Constraints on Scalar Leptoquark from Kaon Sector
Kumar, Girish
2016-01-01
Recently, several anomalies in flavor physics have been observed, and it was noticed that leptoquarks might account for the deviations from the Standard Model. In this work, we examine the effects of new physics originating from a scalar leptoquark model on the kaon sector. The leptoquark we consider is a TeV-scale particle and within the reach of the LHC. We use the existing experimental data on the several kaon processes including $K^{0}-\\bar{K}^{0}$ mixing, rare decays $K^{+} \\rightarrow \\...
Higgs scalar in vector meson decays
International Nuclear Information System (INIS)
Frampton, P.H.; Wada, W.W.
1978-01-01
For the (anti tt) bound-state which is designated T, expected to be discovered shortly, the leptonic and hadronic decay widths, and the production cross section in e + e - annihilation are studied. For both Y(9.5,anti bb) and T, the decay into Higgs scalar plus photon is calculated, employing a triangle diagram estimate for the dependence of this decay matrix element on the Higgs mass. Provided that the Higgs mass is less than the masses of the vector mesons, the decay should be observable
Twinlike models in scalar field theories
International Nuclear Information System (INIS)
Bazeia, D.; Losano, L.; Dantas, J. D.; Gomes, A. R.; Menezes, R.
2011-01-01
This work deals with the presence of defect structures in models described by a real scalar field in a diversity of scenarios. The defect structures that we consider are static solutions of the equations of motion that depend on a single spatial dimension. We search for different models, which support the same defect solution, with the very same energy density. We work in flat spacetime, where we introduce and investigate a new class of models. We also work in curved spacetime, within the braneworld context, with a single extra dimension of infinite extent, and there we show how the brane is formed from the static field configuration.
Global integrability of cosmological scalar fields
Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek
2008-11-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.
Global integrability of cosmological scalar fields
International Nuclear Information System (INIS)
Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek
2008-01-01
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain
Global integrability of cosmological scalar fields
Energy Technology Data Exchange (ETDEWEB)
Maciejewski, Andrzej J [Institute of Astronomy, University of Zielona Gora, Podgorna 50, 65-246 Zielona Gora (Poland); Przybylska, Maria [Torun Centre for Astronomy, Nicholaus Copernicus University, Gagarina 11, 87-100 Torun (Poland); Stachowiak, Tomasz; Szydlowski, Marek [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakow (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl, E-mail: mprzyb@astri.uni.torun.pl, E-mail: toms@oa.uj.edu.pl, E-mail: uoszydlo@cyf-kr.edu.pl
2008-11-21
We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Constraining scalar resonances with top-quark pair production at the LHC
Franzosi, Diogo Buarque; Fabbri, Federica; Schumann, Steffen
2018-03-01
Constraints on models which predict resonant top-quark pair production at the LHC are provided via a reinterpretation of the Standard Model (SM) particle level measurement of the top-anti-top invariant mass distribution, m(t\\overline{t}) . We make use of state-of-the-art Monte Carlo event simulation to perform a direct comparison with measurements of m(t\\overline{t}) in the semi-leptonic channels, considering both the boosted and the resolved regime of the hadronic top decays. A simplified model to describe various scalar resonances decaying into top-quarks is considered, including CP-even and CP-odd, color-singlet and color-octet states, and the excluded regions in the respective parameter spaces are provided.
Soft photon theorem for high energy amplitudes in Yukawa and scalar theories
Gervais, Hualong
2017-06-01
We study the emission of soft photons coupling to high energy fixed angle scattering processes at first order in the electromagnetic coupling but to all loop orders in a class of theories without soft divergences, including massive and massless Yukawa and scalar theories. We adapt a method introduced by del Duca for quantum electrodynamics to show that subleading corrections to the soft photon theorem are sensitive to the structure of nonleading external jets of collinear lines. Our techniques are based on a power counting analysis of loop integrals and an application of jet Ward identities. We also apply Grammer and Yennie's decomposition to isolate separately gauge invariant contributions to the soft photon expansion. These are interpreted as infrared sensitive matrix elements coupling to a field strength tensor.
International Nuclear Information System (INIS)
Ratra, B.
1991-01-01
Estimates for the baryon-dominated epoch form of the large-scale adiabatic energy-density irregularities generated during an early scalar-field-dominated inflation epoch, in simple inflation-modified hot-big-bang models, are compared to the widely used approximate general expression, which is proportional to the large-scale, gauge-invariant part of H 2 left-angle φφ * right-angle/(Φ b ) 2 evaluated at the first Hubble radius crossing (here Φ b and φ are the spatially homogeneous and inhomogeneous parts of the scalar field, H is the Hubble parameter, and an overdot represents a derivative with respect to time). In the de Sitter inflation limit, if the inflation-epoch background scalar-field solution is an ''attractor,'' or if there is sufficient inflation before the scale of interest leaves the Hubble radius, the approximate general expression identically reproduces what we have found. It is also less than an order of magnitude away from our expression in a large fraction of the parameter space of the inflation model we study and is within 2 orders of magnitude of our result in almost all of parameter space. We also show that the more accurate general expression (which the above formula is an approximation of) identically reproduces our results in the simple models studied, provided the inflation-epoch background scalar-field solution is an ''attractor'' or if there is sufficient inflation. The approximate general formula is used to restudy energy-density inhomogeneities in the quartic-potential scalar-field de Sitter inflation model; the difference between the standard result in this model and our result in related models is traced to a difference in the form of the part of the potential used to model ''reheating'' and the end of inflation
B meson decays into charmless pseudoscalar scalar mesons
International Nuclear Information System (INIS)
Delepine, D.; Lucio M, J. L.; Ramirez, Carlos A.; Mendoza S, J. A.
2007-01-01
The nonleptonic weak decays of meson B into a scalar and pseudoscalar meson are studied. The scalar mesons under consideration are σ (or f0(600)), f0(980), a0(980) and K 0 * (1430). We calculate the Branching ratios in the Naive Factorization approximation. Scalars are assumed to be qq-bar bounded sates, but an estimation can be obtained in the case they are four bounded states
Estimates and nonexistence of solutions of the scalar curvature ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Introduction. Let M be an n-dimensional complete Riemannian manifold with metric g0 and scalar curvature k(x). The problem of the conformal deformation of scalar curvature is to find conditions on the function K(x) so that K(x) is the scalar curvature of a conformally related metric g = ρ(x)g0, here ρ(x) is some positive ...
One loop corrected conformally coupled scalar mode equations during inflation
Boran, Sibel; Kahya, Emre Onur; Park, Sohyun
2017-11-01
We employ a fully renormalized computation of the one loop contribution to the self-mass-squared of the conformally coupled (CC) scalar interacting with gravitons during inflation to study how inflationary produced gravitons affect the CC scalar evolution equation. The quantum corrected scalar mode functions turn out to get a secular growth effect, proportional to a logarithm of the scale factor at late times.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kennedy, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-07-16
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at $\\sqrt{s}$ =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV ar...
Rotational Invariant Dimensionality Reduction Algorithms.
Lai, Zhihui; Xu, Yong; Yang, Jian; Shen, Linlin; Zhang, David
2017-11-01
A common intrinsic limitation of the traditional subspace learning methods is the sensitivity to the outliers and the image variations of the object since they use the norm as the metric. In this paper, a series of methods based on the -norm are proposed for linear dimensionality reduction. Since the -norm based objective function is robust to the image variations, the proposed algorithms can perform robust image feature extraction for classification. We use different ideas to design different algorithms and obtain a unified rotational invariant (RI) dimensionality reduction framework, which extends the well-known graph embedding algorithm framework to a more generalized form. We provide the comprehensive analyses to show the essential properties of the proposed algorithm framework. This paper indicates that the optimization problems have global optimal solutions when all the orthogonal projections of the data space are computed and used. Experimental results on popular image datasets indicate that the proposed RI dimensionality reduction algorithms can obtain competitive performance compared with the previous norm based subspace learning algorithms.
Stereo Correspondence Using Moment Invariants
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
Constraining the break of spatial diffeomorphism invariance with Planck data
Graef, L. L.; Benetti, M.; Alcaniz, J. S.
2017-07-01
The current most accepted paradigm for the early universe cosmology, the inflationary scenario, shows a good agreement with the recent Cosmic Microwave Background (CMB) and polarization data. However, when the inflation consistency relation is relaxed, these observational data exclude a larger range of red tensor tilt values, prevailing the blue ones which are not predicted by the minimal inflationary models. Recently, it has been shown that the assumption of spatial diffeomorphism invariance breaking (SDB) in the context of an effective field theory of inflation leads to interesting observational consequences. Among them, the possibility of generating a blue tensor spectrum, which can recover the specific consistency relation of the String Gas Cosmology, for a certain choice of parameters. We use the most recent CMB data to constrain the SDB model and test its observational viability through a Bayesian analysis assuming as reference an extended ΛCDM+tensor perturbation model, which considers a power-law tensor spectrum parametrized in terms of the tensor-to-scalar ratio, r, and the tensor spectral index, nt. If the inflation consistency relation is imposed, r=-8 nt, we obtain a strong evidence in favor of the reference model whereas if such relation is relaxed, a weak evidence in favor of the model with diffeomorphism breaking is found. We also use the same CMB data set to make an observational comparison between the SDB model, standard inflation and String Gas Cosmology.
Light Higgs from Scalar See-Saw in Technicolor
DEFF Research Database (Denmark)
Foadi, Roshan; Frandsen, Mads Toudal
2012-01-01
We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models......We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models...
Decoding the hologram: Scalar fields interacting with gravity
Kabat, Daniel; Lifschytz, Gilad
2014-03-01
We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.
Stability of a Noncanonical Scalar Field Model during Cosmological Date
International Nuclear Information System (INIS)
Golanbari, T.; Sheikhahmadi, H.; Saaidi, Kh.; Ossoulian, Z.
2016-01-01
Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.
Scalar self-interactions loosen constraints from fifth force searches
International Nuclear Information System (INIS)
Gubser, Steven S.; Khoury, Justin
2004-01-01
The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups
Spontaneous breakdown and the scalar nonet
Energy Technology Data Exchange (ETDEWEB)
Scadron, M.D.
1982-07-01
In the context of the QCD quark model and on the basis of dynamical Bethe-Salpeter ladder graphs, we suggest that (i) the existence of the scalar q-barq hadron multiplet, like the pseudoscalar q-barq multiplet, is a direct consequence of dynamical spontaneous breakdown of chiral symmetry with a chiral-limiting nonstrange mass scale of m/sub sigmaNS//sup CL/ = 2m/sub dyn/ roughly-equal630 MeV, (ii) the lifting of the nonstrange sigma-delta degeneracy is expected from the s-wave quark-gluon annihilation diagram, and (iii) the observed sigma-S* mixing follows from the existence of the p-wave scalar quark-annihilation diagram. The resulting predicted 0q-barq nonet is then sigma(750 MeV), kappa(800), S*(980), and delta(985), in agreement with data for the resonant masses, the mixing angle, and also decay widths except for the kappa(800).
Boundaries immersed in a scalar quantum field
International Nuclear Information System (INIS)
Actor, A.A.; Bender, I.
1996-01-01
We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)
Toward a Strongly Interacting Scalar Higgs Particle
International Nuclear Information System (INIS)
Shalaby, Abouzeid M.; El-Houssieny, M.
2008-01-01
We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism
A scale invariance criterion for LES parametrizations
Directory of Open Access Journals (Sweden)
Urs Schaefer-Rolffs
2015-01-01
Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.
Feedback-Driven Dynamic Invariant Discovery
Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz
2014-01-01
Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.
Probing scalar effective field theories with the soft limits of scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Padilla, Antonio [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom); Stefanyszyn, David [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, Groningen, 9747 AG The (Netherlands); Wilson, Toby [School of Physics and Astronomy, University of Nottingham,University Park, Nottingham, NG7 2RD United Kingdom (United Kingdom)
2017-04-04
We investigate the soft behaviour of scalar effective field theories (EFTs) when there is a number of distinct derivative power counting parameters, ρ{sub 1}<ρ{sub 2}<…<ρ{sub Q}. We clarify the notion of an enhanced soft limit and use these to extend the scope of on-shell recursion techniques for scalar EFTs. As an example, we perform a detailed study of theories with two power counting parameters, ρ{sub 1}=1 and ρ{sub 2}=2, that include the shift symmetric generalised galileons. We demonstrate that the minimally enhanced soft limit uniquely picks out the Dirac-Born-Infeld (DBI) symmetry, including DBI galileons. For the exceptional soft limit we uniquely pick out the special galileon within the class of theories under investigation. We study the DBI galileon amplitudes more closely, verifying the validity of the recursion techniques in generating the six point amplitude, and explicitly demonstrating the invariance of all amplitudes under DBI galileon duality.
Analytic result for the one-loop scalar pentagon integral with massless propagators
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Tarasov, Oleg V.
2010-01-01
The method of dimensional recurrences proposed by one of the authors (O. V.Tarasov, 1996) is applied to the evaluation of the pentagon-type scalar integral with on-shell external legs and massless internal lines. For the first time, an analytic result valid for arbitrary space-time dimension d and five arbitrary kinematic variables is presented. An explicit expression in terms of the Appell hypergeometric function F 3 and the Gauss hypergeometric function 2 F 1 , both admitting one-fold integral representations, is given. In the case when one kinematic variable vanishes, the integral reduces to a combination of Gauss hypergeometric functions 2 F 1 . For the case when one scalar invariant is large compared to the others, the asymptotic values of the integral in terms of Gauss hypergeometric functions 2 F 1 are presented in d=2-2ε, 4-2ε, and 6-2ε dimensions. For multi-Regge kinematics, the asymptotic value of the integral in d=4-2ε dimensions is given in terms of the Appell function F 3 and the Gauss hypergeometric function 2 F 1 . (orig.)
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
International Nuclear Information System (INIS)
Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2010-09-01
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica
2010-09-15
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)