WorldWideScience

Sample records for intrinsic protein disorder

  1. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  2. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  3. Differential scanning microcalorimetry of intrinsically disordered proteins.

    Science.gov (United States)

    Permyakov, Sergei E

    2012-01-01

    Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.

  4. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  5. Functions of intrinsic disorder in transmembrane proteins

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Kragelund, Birthe B.

    2017-01-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane...... receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like...... mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding...

  6. Intrinsically disordered proteins as molecular shields†

    Science.gov (United States)

    Chakrabortee, Sohini; Tripathi, Rashmi; Watson, Matthew; Kaminski Schierle, Gabriele S.; Kurniawan, Davy P.; Kaminski, Clemens F.; Wise, Michael J.; Tunnacliffe, Alan

    2017-01-01

    The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 – while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins – HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by Förster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability

  7. Intrinsically disordered proteins as molecular shields.

    Science.gov (United States)

    Chakrabortee, Sohini; Tripathi, Rashmi; Watson, Matthew; Schierle, Gabriele S Kaminski; Kurniawan, Davy P; Kaminski, Clemens F; Wise, Michael J; Tunnacliffe, Alan

    2012-01-01

    The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 - while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins - HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by Förster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability

  8. What's in a name? : Why these proteins are intrinsically disordered: Why these proteins are intrinsically disordered

    NARCIS (Netherlands)

    Dunker, A Keith; Babu, M Madan; Barbar, Elisar; Blackledge, Martin; Bondos, Sarah E; Dosztányi, Zsuzsanna; Dyson, H Jane; Forman-Kay, Julie; Fuxreiter, Monika; Gsponer, Jörg; Han, Kyou-Hoon; Jones, David T; Longhi, Sonia; Metallo, Steven J; Nishikawa, Ken; Nussinov, Ruth; Obradovic, Zoran; Pappu, Rohit V; Rost, Burkhard; Selenko, Philipp; Subramaniam, Vinod; Sussman, Joel L; Tompa, Peter; Uversky, Vladimir N

    2013-01-01

    "What's in a name? That which we call a rose By any other name would smell as sweet." From "Romeo and Juliet", William Shakespeare (1594) This article opens a series of publications on disambiguation of the basic terms used in the field of intrinsically disordered proteins. We start from the

  9. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  10. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    Science.gov (United States)

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  11. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen; Wang, Dongdong; Liu, Jin; Feng, Yitao; Weng, Jingwei; Li, Yu; Gao, Xin; Liu, Jianwei; Wang, Wenning

    2017-01-01

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a

  12. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  13. DSS1/Sem1, a multifunctional and intrinsically disordered protein

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Schenstrøm, Signe Marie; Rebula, Caio A.

    2016-01-01

    DSS1/Sem1 is a versatile intrinsically disordered protein. Besides being a bona fide subunit of the 26S proteasome, DSS1 associates with other protein complexes, including BRCA2-RPA, involved in homologous recombination; the Csn12-Thp3 complex, involved in RNA splicing; the integrator, involved...

  14. Describing intrinsically disordered proteins at atomic resolution by NMR

    International Nuclear Information System (INIS)

    Ringkjobing Jensen, Malene; Blackledge, Martin; Ruigrok, Rob WH

    2013-01-01

    There is growing interest in the development of physical methods to study the conformational behaviour and biological activity of intrinsically disordered proteins (IDPs). In this review recent advances in the elucidation of quantitative descriptions of disordered proteins from nuclear magnetic resonance spectroscopy are presented. Ensemble approaches are particularly well adapted to map the conformational energy landscape sampled by the protein at atomic resolution. Significant advances in development of calibrated approaches to the statistical representation of the conformational behaviour of IDPs are presented, as well as applications to some biologically important systems where disorder plays a crucial role. (authors)

  15. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen

    2017-05-11

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a structured protein, while the Interaction between two IDPs is poorly understood. In this study, we combined NMR, smFRET, and molecular dynamics (MD) simulation to characterize the interaction between two IDPs, the C-terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by MD and mutagenesis studies. Our study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.

  16. High GC content causes orphan proteins to be intrinsically disordered.

    Directory of Open Access Journals (Sweden)

    Walter Basile

    2017-03-01

    Full Text Available De novo creation of protein coding genes involves the formation of short ORFs from noncoding regions; some of these ORFs might then become fixed in the population. These orphan proteins need to, at the bare minimum, not cause serious harm to the organism, meaning that they should for instance not aggregate. Therefore, although the creation of short ORFs could be truly random, the fixation should be subjected to some selective pressure. The selective forces acting on orphan proteins have been elusive, and contradictory results have been reported. In Drosophila young proteins are more disordered than ancient ones, while the opposite trend is present in yeast. To the best of our knowledge no valid explanation for this difference has been proposed. To solve this riddle we studied structural properties and age of proteins in 187 eukaryotic organisms. We find that, with the exception of length, there are only small differences in the properties between proteins of different ages. However, when we take the GC content into account we noted that it could explain the opposite trends observed for orphans in yeast (low GC and Drosophila (high GC. GC content is correlated with codons coding for disorder promoting amino acids. This leads us to propose that intrinsic disorder is not a strong determining factor for fixation of orphan proteins. Instead these proteins largely resemble random proteins given a particular GC level. During evolution the properties of a protein change faster than the GC level causing the relationship between disorder and GC to gradually weaken.

  17. Folding propensity of intrinsically disordered proteins by osmotic stress

    International Nuclear Information System (INIS)

    Mansouri, Amanda L.; Grese, Laura N.; Rowe, Erica L.

    2016-01-01

    Proteins imparted with intrinsic disorder conduct a range of essential cellular functions. To better understand the folding and hydration properties of intrinsically disordered proteins (IDPs), we used osmotic stress to induce conformational changes in nuclear co-activator binding domain (NCBD) and activator for thyroid hormone and retinoid receptor (ACTR). Osmotic stress was applied by the addition of small and polymeric osmolytes, where we discovered that water contributions to NCBD folding always exceeded those for ACTR. Both NCBD and ACTR were found to gain a-helical structure with increasing osmotic stress, consistent with their folding upon NCBD/ACTR complex formation. Using small-angle neutron scattering (SANS), we further characterized NCBD structural changes with the osmolyte ethylene glycol. Here a large reduction in overall size initially occurred before substantial secondary structural change. In conclusion, by focusing on folding propensity, and linked hydration changes, we uncover new insights that may be important for how IDP folding contributes to binding.

  18. Comprehensive large-scale assessment of intrinsic protein disorder.

    Science.gov (United States)

    Walsh, Ian; Giollo, Manuel; Di Domenico, Tomás; Ferrari, Carlo; Zimmermann, Olav; Tosatto, Silvio C E

    2015-01-15

    Intrinsically disordered regions are key for the function of numerous proteins. Due to the difficulties in experimental disorder characterization, many computational predictors have been developed with various disorder flavors. Their performance is generally measured on small sets mainly from experimentally solved structures, e.g. Protein Data Bank (PDB) chains. MobiDB has only recently started to collect disorder annotations from multiple experimental structures. MobiDB annotates disorder for UniProt sequences, allowing us to conduct the first large-scale assessment of fast disorder predictors on 25 833 different sequences with X-ray crystallographic structures. In addition to a comprehensive ranking of predictors, this analysis produced the following interesting observations. (i) The predictors cluster according to their disorder definition, with a consensus giving more confidence. (ii) Previous assessments appear over-reliant on data annotated at the PDB chain level and performance is lower on entire UniProt sequences. (iii) Long disordered regions are harder to predict. (iv) Depending on the structural and functional types of the proteins, differences in prediction performance of up to 10% are observed. The datasets are available from Web site at URL: http://mobidb.bio.unipd.it/lsd. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Daniela Marasco

    2015-04-01

    Full Text Available Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.

  20. Intrinsically Disordered Proteins in a Physics-Based World

    Directory of Open Access Journals (Sweden)

    Jianhan Chen

    2010-12-01

    Full Text Available Intrinsically disordered proteins (IDPs are a newly recognized class of functional proteins that rely on a lack of stable structure for function. They are highly prevalent in biology, play fundamental roles, and are extensively involved in human diseases. For signaling and regulation, IDPs often fold into stable structures upon binding to specific targets. The mechanisms of these coupled binding and folding processes are of significant importance because they underlie the organization of regulatory networks that dictate various aspects of cellular decision-making. This review first discusses the challenge in detailed experimental characterization of these heterogeneous and dynamics proteins and the unique and exciting opportunity for physics-based modeling to make crucial contributions, and then summarizes key lessons from recent de novo simulations of the structure and interactions of several regulatory IDPs.

  1. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Ambuj Srivastava

    2018-05-01

    Full Text Available Intrinsically disordered regions (IDRs and protein (IDPs are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT upon binding. We found that DOT regions are generally small in size (less than 3 residues for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

  2. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  3. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  4. Partner-Mediated Polymorphism of an Intrinsically Disordered Protein.

    Science.gov (United States)

    Bignon, Christophe; Troilo, Francesca; Gianni, Stefano; Longhi, Sonia

    2017-11-29

    Intrinsically disordered proteins (IDPs) recognize their partners through molecular recognition elements (MoREs). The MoRE of the C-terminal intrinsically disordered domain of the measles virus nucleoprotein (N TAIL ) is partly pre-configured as an α-helix in the free form and undergoes α-helical folding upon binding to the X domain (XD) of the viral phosphoprotein. Beyond XD, N TAIL also binds the major inducible heat shock protein 70 (hsp70). So far, no structural information is available for the N TAIL /hsp70 complex. Using mutational studies combined with a protein complementation assay based on green fluorescent protein reconstitution, we have investigated both N TAIL /XD and N TAIL /hsp70 interactions. Although the same N TAIL region binds the two partners, the binding mechanisms are different. Hsp70 binding is much more tolerant of MoRE substitutions than XD, and the majority of substitutions lead to an increased N TAIL /hsp70 interaction strength. Furthermore, while an increased and a decreased α-helicity of the MoRE lead to enhanced and reduced interaction strength with XD, respectively, the impact on hsp70 binding is negligible, suggesting that the MoRE does not adopt an α-helical conformation once bound to hsp70. Here, by showing that the α-helical conformation sampled by the free form of the MoRE does not systematically commit it to adopt an α-helical conformation in the bound form, we provide an example of partner-mediated polymorphism of an IDP and of the relative insensitiveness of the bound structure to the pre-recognition state. The present results therefore contribute to shed light on the molecular mechanisms by which IDPs recognize different partners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Russo

    2016-01-01

    Full Text Available Investigations on cellular protein interaction networks (PINs reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.

  6. Intrinsically Disordered Proteins and the Origins of Multicellular Organisms

    Science.gov (United States)

    Dunker, A. Keith

    In simple multicellular organisms all of the cells are in direct contact with the surrounding milieu, whereas in complex multicellular organisms some cells are completely surrounded by other cells. Current phylogenetic trees indicate that complex multicellular organisms evolved independently from unicellular ancestors about 10 times, and only among the eukaryotes, including once for animals, twice each for green, red, and brown algae, and thrice for fungi. Given these multiple independent evolutionary lineages, we asked two questions: 1. Which molecular functions underpinned the evolution of multicellular organisms?; and, 2. Which of these molecular functions depend on intrinsically disordered proteins (IDPs)? Compared to unicellularity, multicellularity requires the advent of molecules for cellular adhesion, for cell-cell communication and for developmental programs. In addition, the developmental programs need to be regulated over space and time. Finally, each multicellular organism has cell-specific biochemistry and physiology. Thus, the evolution of complex multicellular organisms from unicellular ancestors required five new classes of functions. To answer the second question we used Key-words in Swiss Protein ranked for associations with predictions of protein structure or disorder. With a Z-score of 18.8 compared to random-function proteins, à differentiation was the biological process most strongly associated with IDPs. As expected from this result, large numbers of individual proteins associated with differentiation exhibit substantial regions of predicted disorder. For the animals for which there is the most readily available data all five of the underpinning molecular functions for multicellularity were found to depend critically on IDP-based mechanisms and other evidence supports these ideas. While the data are more sparse, IDPs seem to similarly underlie the five new classes of functions for plants and fungi as well, suggesting that IDPs were indeed

  7. Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was

  8. Generating intrinsically disordered protein conformational ensembles from a Markov chain

    Science.gov (United States)

    Cukier, Robert I.

    2018-03-01

    Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.

  9. An Extended Guinier Analysis for Intrinsically Disordered Proteins.

    Science.gov (United States)

    Zheng, Wenwei; Best, Robert B

    2018-03-21

    Guinier analysis allows model-free determination of the radius of gyration (R g ) of a biomolecule from X-ray or neutron scattering data, in the limit of very small scattering angles. Its range of validity is well understood for globular proteins, but is known to be more restricted for unfolded or intrinsically disordered proteins (IDPs). We have used ensembles of disordered structures from molecular dynamics simulations to investigate which structural properties cause deviations from the Guinier approximation at small scattering angles. We find that the deviation from the Guinier approximation is correlated with the polymer scaling exponent ν describing the unfolded ensemble. We therefore introduce an empirical, ν-dependent, higher-order correction term, to augment the standard Guinier analysis. We test the new fitting scheme using all-atom simulation data for several IDPs and experimental data for both an IDP and a destabilized mutant of a folded protein. In all cases tested, we achieve an accuracy of the inferred R g within ∼3% of the true R g . The method is straightforward to implement and extends the range of validity to a maximum qR g of ∼2 versus ∼1.1 for Guinier analysis. Compared with the Guinier or Debye approaches, our method allows data from wider angles with lower noise to be used to analyze scattering data accurately. In addition to R g , our fitting scheme also yields estimates of the scaling exponent ν in excellent agreement with the reference ν determined from the underlying molecular ensemble. Published by Elsevier Ltd.

  10. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Uversky, Vladimir N

    2016-03-25

    Biologically active but floppy proteins represent a new reality of modern protein science. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered and intrinsically disordered protein regions (IDPRs) constitute a noticeable part of any given proteome. Functionally, they complement ordered proteins, and their conformational flexibility and structural plasticity allow them to perform impossible tricks and be engaged in biological activities that are inaccessible to well folded proteins with their unique structures. The major goals of this minireview are to show that, despite their simplified amino acid sequences, IDPs/IDPRs are complex entities often resembling chaotic systems, are structurally and functionally heterogeneous, and can be considered an important part of the structure-function continuum. Furthermore, IDPs/IDPRs are everywhere, and are ubiquitously engaged in various interactions characterized by a wide spectrum of binding scenarios and an even wider spectrum of structural and functional outputs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  12. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    Science.gov (United States)

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  13. Small-angle scattering studies of intrinsically disordered proteins and their complexes

    DEFF Research Database (Denmark)

    Cordeiro, Tiago N.; Herranz-Trillo, Fátima; Urbanek, Annika

    2017-01-01

    Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the applicatio...

  14. Conformational disorder in folded and intrinsically disordered proteins from nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Salmon, Loic

    2010-01-01

    Biological macromolecules are, by essence, dynamical systems. While the importance of this flexibility is nowadays well established, the accurate characterization of the conformational disorder of these systems remains an important challenge. Nuclear magnetic resonance spectroscopy is a unique tool to probe these motions at atomic level, through the analysis of spin relaxation or residual dipolar couplings. The latter allows all motions occurring at timescales faster than the millisecond to be investigated, including physiologically important timescales. The information presents in those couplings is interpreted here using mainly analytical approaches in order to quantify the amounts of dynamics present in folded protein, to determine the direction of those motions and to obtain structural information within this conformational disorder. These analytical approaches are complemented by numerical methods, that allowed the observation of phenomena from a different point of view or the investigation of other systems such as intrinsically disordered proteins. All of these studies demonstrate an important complementarity between structural order and conformational disorder. (author)

  15. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response

    NARCIS (Netherlands)

    Cino, E.A.; Wong-ekkabut, J.; Karttunen, M.E.J.; Choy, W.-Y.

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTa) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like

  16. Intramolecular three-colour single pair FRET of intrinsically disordered proteins with increased dynamic range.

    Science.gov (United States)

    Milles, Sigrid; Koehler, Christine; Gambin, Yann; Deniz, Ashok A; Lemke, Edward A

    2012-10-01

    Single molecule observation of fluorescence resonance energy transfer can be used to provide insight into the structure and dynamics of proteins. Using a straightforward triple-colour labelling strategy, we present a measurement and analysis scheme that can simultaneously study multiple regions within single intrinsically disordered proteins.

  17. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  18. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  19. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex

    NARCIS (Netherlands)

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-01-01

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize

  20. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex

    NARCIS (Netherlands)

    Ketterer, Philip; Ananth, A.N.; Laman Trip, J.D.S.; Mishra, Ankur; Bertosin, Eva; Ganji, M.; van der Torre, J.; Onck, Patrick; Dietz, Hendrik; Dekker, C.

    2018-01-01

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize

  1. Understanding diffusion of intrinsically disordered proteins in polymer solutions: A disorder plus collapse model

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-11-01

    Full Text Available Understanding diffusion of intrinsically disordered proteins (IDPs under crowded environments is of ubiquitous importance to modelling related dynamics in biological systems. In the present work, we proposed a theoretical framework to study the diffusion behavior of IDPs in polymer solutions. IDP is modeled as an ensemble of particles with a wide range of gyration radius subject to Flory-Fisk distribution, where the collapse effect which leads to the shrink of IDP due to polymer crowding is included. The diffusion coefficient of IDP is calculated as the average, denoted by 〈D〉, over the values of the particle samples. By properly incorporating the scaling relations for diffusion coefficient of nanoparticle (NP in polymer solutions, we are able to evaluate 〈D〉 straightforwardly and reveal the disorder and collapse effects on IDP’s diffusion in an explicit manner. Particular attentions are paid on comparison between the diffusion coefficient of an IDP and that of a NP. Results demonstrate that both disorder and collapse can enhance IDP diffusion rate. Our analysis shows that the crossover behavior reported by experiments can be actually a general phenomenon, namely, while a NP with smaller size than that of an IDP diffuses faster in simple solutions, the IDP may become the faster one under crowded conditions. We apply our theory to analyze the diffusion of several types of IDP in a few different polymer solutions. Good agreements between the theoretical results and the experimental data are obtained.

  2. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-02-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.

  3. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity.

    Science.gov (United States)

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-09-25

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.

  4. Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer

    Science.gov (United States)

    Landau, Kevin S; Na, Insung; Schenck, Ryan O; Uversky, Vladimir N

    2016-01-01

    Prostatic diseases such as prostate cancer and benign prostatic hyperplasia are highly prevalent among men. The number of studies focused on the abundance and roles of intrinsically disordered proteins in prostate cancer is rather limited. The goal of this study is to analyze the prevalence and degree of disorder in proteins that were previously associated with the prostate cancer pathogenesis and to compare these proteins to the entire human proteome. The analysis of these datasets provides means for drawing conclusions on the roles of disordered proteins in this common male disease. We also hope that the results of our analysis can potentially lead to future experimental studies of these proteins to find novel pathways associated with this disease. PMID:27453073

  5. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses

    Directory of Open Access Journals (Sweden)

    Van Dorsselaer Alain

    2009-02-01

    Full Text Available Abstract Background VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. Results In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus and Lettuce mosaic virus (LMV, genus Potyvirus. Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. Conclusion Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs.

  6. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    Science.gov (United States)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  7. Intrinsically Disordered Segments Affect Protein Half-Life in the Cell and during Evolution

    Directory of Open Access Journals (Sweden)

    Robin van der Lee

    2014-09-01

    Full Text Available Precise control of protein turnover is essential for cellular homeostasis. The ubiquitin-proteasome system is well established as a major regulator of protein degradation, but an understanding of how inherent structural features influence the lifetimes of proteins is lacking. We report that yeast, mouse, and human proteins with terminal or internal intrinsically disordered segments have significantly shorter half-lives than proteins without these features. The lengths of the disordered segments that affect protein half-life are compatible with the structure of the proteasome. Divergence in terminal and internal disordered segments in yeast proteins originating from gene duplication leads to significantly altered half-life. Many paralogs that are affected by such changes participate in signaling, where altered protein half-life will directly impact cellular processes and function. Thus, natural variation in the length and position of disordered segments may affect protein half-life and could serve as an underappreciated source of genetic variation with important phenotypic consequences.

  8. From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins

    Science.gov (United States)

    Forman-Kay, Julie D.; Mittag, Tanja

    2015-01-01

    Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708

  9. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  10. High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry (Poland); Sanderova, Hana; Krasny, Libor [Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria, Department of Bacteriology (Czech Republic)

    2012-04-15

    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using {delta} subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences.

  11. Intrinsically disordered proteins--relation to general model expressing the active role of the water environment.

    Science.gov (United States)

    Kalinowska, Barbara; Banach, Mateusz; Konieczny, Leszek; Marchewka, Damian; Roterman, Irena

    2014-01-01

    This work discusses the role of unstructured polypeptide chain fragments in shaping the protein's hydrophobic core. Based on the "fuzzy oil drop" model, which assumes an idealized distribution of hydrophobicity density described by the 3D Gaussian, we can determine which fragments make up the core and pinpoint residues whose location conflicts with theoretical predictions. We show that the structural influence of the water environment determines the positions of disordered fragments, leading to the formation of a hydrophobic core overlaid by a hydrophilic mantle. This phenomenon is further described by studying selected proteins which are known to be unstable and contain intrinsically disordered fragments. Their properties are established quantitatively, explaining the causative relation between the protein's structure and function and facilitating further comparative analyses of various structural models. © 2014 Elsevier Inc. All rights reserved.

  12. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prates, Erica T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guan, Xiaoyang [University of Colorado; Li, Yaohao [University of Colorado; Wang, Xinfeng [University of Colorado; Chaffey, Patrick K. [University of Colorado; Skaf, Munir S. [University of Campinas; Tan, Zhongping [University of Colorado

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, with a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.

  13. Genome-scale prediction of proteins with long intrinsically disordered regions.

    Science.gov (United States)

    Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz

    2014-01-01

    Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.

  14. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates.

    Directory of Open Access Journals (Sweden)

    Maggie P Wear

    Full Text Available Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12 cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID domains (≥ 100 amino acids and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.

  15. Protein intrinsic disorder in Arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Jensen, Mikael Kryger; Stender, Emil G.P.

    2015-01-01

    of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation......Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis...

  16. Triple resonance 15N NMR relaxation experiments for studies of intrinsically disordered proteins

    Czech Academy of Sciences Publication Activity Database

    Srb, Pavel; Nováček, J.; Kadeřávek, P.; Rabatinová, Alžběta; Krásný, Libor; Žídková, Jitka; Bobálová, Janette; Sklenář, V.; Žídek, L.

    2017-01-01

    Roč. 69, č. 3 (2017), s. 133-146 ISSN 0925-2738 R&D Projects: GA ČR GA13-16842S; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:61388971 ; RVO:68081715 Keywords : nuclear magnetic resonance * relaxation * non-uniform sampling * intrinsically disordered proteins Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M); CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Analytical chemistry; Microbiology (MBU-M); Analytical chemistry (UIACH-O) Impact factor: 2.410, year: 2016

  17. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.

    Science.gov (United States)

    Marín, Macarena; Uversky, Vladimir N; Ott, Thomas

    2013-09-01

    Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.

  18. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    Science.gov (United States)

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  19. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    Science.gov (United States)

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures. © 2016 The Protein Society.

  20. Engineering Aromatic-Aromatic Interactions To Nucleate Folding in Intrinsically Disordered Regions of Proteins.

    Science.gov (United States)

    Balakrishnan, Swati; Sarma, Siddhartha P

    2017-08-22

    Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.

  1. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    Science.gov (United States)

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  2. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

    Energy Technology Data Exchange (ETDEWEB)

    Launay, Hélène; Barré, Patrick [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France); Puppo, Carine [Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20 (France); Manneville, Stéphanie [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France); Gontero, Brigitte [Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20 (France); Receveur-Bréchot, Véronique, E-mail: veronique.brechot@inserm.fr [Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009 (France)

    2016-08-12

    The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. - Highlights: • CP12 is predicted to form two helices in its N-terminal sequence. • Reduced CP12 is disordered as a random coil according to SAXS. • Limited or no transient structures are observed in reduced CP12 by NMR.

  3. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

    International Nuclear Information System (INIS)

    Launay, Hélène; Barré, Patrick; Puppo, Carine; Manneville, Stéphanie; Gontero, Brigitte; Receveur-Bréchot, Véronique

    2016-01-01

    The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. - Highlights: • CP12 is predicted to form two helices in its N-terminal sequence. • Reduced CP12 is disordered as a random coil according to SAXS. • Limited or no transient structures are observed in reduced CP12 by NMR.

  4. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Elio A Cino

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2, with a common binding partner, Kelch-like ECH-associated protein 1(Keap1, are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.

  5. Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators

    Directory of Open Access Journals (Sweden)

    Vladimir N. Uversky

    2014-07-01

    Full Text Available Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs are typically related to regulation, signaling and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.

  6. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    Directory of Open Access Journals (Sweden)

    Wouter Boomsma

    2016-02-01

    Full Text Available The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work

  7. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function

    International Nuclear Information System (INIS)

    Takeda, Shuichi; Maéda, Yuichiro; Koike, Ryotaro; Ota, Motonori; Nitanai, Yasushi; Minakata, Shiho

    2011-01-01

    The actin capping protein (CP) tightly binds to the barbed end of actin filaments to block further elongation. The β-tentacle in CP is an important region that ensures stable interaction with actin filaments. CARMIL inhibits the interaction of CP with actin filaments via the C-terminal portion containing the CP-binding motif, located in an intrinsically disordered region. We have proposed an allosteric inhibition model in which CARMIL suppresses CP by the population shift mechanism. Here, we solved a crystal structure of CP in complex with a CARMIL-derived peptide, CA32. The new structure clearly represents the α-helical form of the β-tentacle that was invisible in other CP/CARMIL peptide complex structures. In addition, we exhaustively performed a normal mode analysis with the elastic network model on all available crystal structures of the CP/CARMIL peptide complexes, including the new structure. We concluded that the CP-binding motif is necessary and sufficient for altering the fluctuation of CP, which is essential for attenuating the barbed-end-capping activity along the population shift mechanism. The roles and functions of the β-tentacle and the CP-binding motif are discussed in terms of their intrinsically disordered nature

  8. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean

    2013-01-01

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1 H– 15 N HSQC, is used to measure the 15 N transverse relaxation rate (R 2 ), the measured R 2 rate is convoluted with the HX rate (k HX ) and has higher apparent R 2 values. Since the 15 N R 2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R 2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15 N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D 2 O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.

  9. How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein?

    Science.gov (United States)

    Bonetti, Daniela; Troilo, Francesca; Brunori, Maurizio; Longhi, Sonia; Gianni, Stefano

    2018-04-24

    The mechanism of interaction of an intrinsically disordered protein (IDP) with its physiological partner is characterized by a disorder-to-order transition in which a recognition and a binding step take place. Even if the mechanism is quite complex, IDPs tend to bind their partner in a cooperative manner such that it is generally possible to detect experimentally only the disordered unbound state and the structured complex. The interaction between the disordered C-terminal domain of the measles virus nucleoprotein (N TAIL ) and the X domain (XD) of the viral phosphoprotein allows us to detect and quantify the two distinct steps of the overall reaction. Here, we analyze the robustness of the folding of N TAIL upon binding to XD by measuring the effect on both the folding and binding steps of N TAIL when the structure of XD is modified. Because it has been shown that wild-type XD is structurally heterogeneous, populating an on-pathway intermediate under native conditions, we investigated the binding to 11 different site-directed variants of N TAIL of one particular variant of XD (I504A XD) that populates only the native state. Data reveal that the recognition and the folding steps are both affected by the structure of XD, indicating a highly malleable pathway. The experimental results are briefly discussed in the light of previous experiments on other IDPs. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2018-01-01

    Full Text Available Intrinsically disordered proteins (IDPs are an emerging phenomenon. They may have a high degree of flexibility in their polypeptide chains, which lack a stable 3D structure. Although several biological functions of IDPs have been proposed, their general function is not known. The only finding related to their function is the genetically conserved YSK2 motif present in plant dehydrins. These proteins were shown to be IDPs with the YSK2 motif serving as a core region for the dehydrins’ cryoprotective activity. Here we examined the cryoprotective activity of randomly selected IDPs toward the model enzyme lactate dehydrogenase (LDH. All five IDPs that were examined were in the range of 35–45 amino acid residues in length and were equally potent at a concentration of 50 μg/mL, whereas folded proteins, the PSD-95/Dlg/ZO-1 (PDZ domain, and lysozymes had no potency. We further examined their cryoprotective activity toward glutathione S-transferase as an example of the other enzyme, and toward enhanced green fluorescent protein as a non-enzyme protein example. We further examined the lyophilization protective activity of the peptides toward LDH, which revealed that some IDPs showed a higher activity than that of bovine serum albumin (BSA. Based on these observations, we propose that cryoprotection is a general feature of IDPs. Our findings may become a clue to various industrial applications of IDPs in the future.

  11. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV.

    Science.gov (United States)

    Tamarozzi, Elvira Regina; Giuliatti, Silvana

    2018-01-09

    Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.

  12. Mapping multivalency and differential affinities within large intrinsically disordered protein complexes with segmental motion analysis.

    Science.gov (United States)

    Milles, Sigrid; Lemke, Edward A

    2014-07-07

    Intrinsically disordered proteins (IDPs) can bind to multiple interaction partners. Numerous binding regions in the IDP that act in concert through complex cooperative effects facilitate such interactions, but complicate studying IDP complexes. To address this challenge we developed a combined fluorescence correlation and time-resolved polarization spectroscopy approach to study the binding properties of the IDP nucleoporin153 (Nup153) to nuclear transport receptors (NTRs). The detection of segmental backbone mobility of Nup153 within the unperturbed complex provided a readout of local, region-specific binding properties that are usually masked in measurements of the whole IDP. The binding affinities of functionally and structurally diverse NTRs to distinct regions of Nup153 can differ by orders of magnitudes-a result with implications for the diversity of transport routes in nucleocytoplasmic transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the importance of polar interactions for complexes containing intrinsically disordered proteins.

    Directory of Open Access Journals (Sweden)

    Eric T C Wong

    Full Text Available There is a growing recognition for the importance of proteins with large intrinsically disordered (ID segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.

  14. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  15. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    Science.gov (United States)

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  16. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-28

    We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high

  17. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-01

    We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at

  18. Fast hydrogen exchange affects {sup 15}N relaxation measurements in intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean, E-mail: jean.baum@rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology (United States)

    2013-03-15

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, {sup 1}H-{sup 15}N HSQC, is used to measure the {sup 15}N transverse relaxation rate (R{sub 2}), the measured R{sub 2} rate is convoluted with the HX rate (k{sub HX}) and has higher apparent R{sub 2} values. Since the {sup 15}N R{sub 2} measurement is important for analyzing protein backbone dynamics, the HX effect on the R{sub 2} measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing {sup 15}N R{sub 2}{sup CPMG} experiments on {alpha}-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R{sub 2}{sup CPMG} can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D{sub 2}O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R{sub 2}{sup CPMG} values be obtained by methods described herein.

  19. Binary classification of protein molecules into intrinsically disordered and ordered segments

    Directory of Open Access Journals (Sweden)

    Gojobori Takashi

    2011-06-01

    Full Text Available Abstract Background Although structural domains in proteins (SDs are important, half of the regions in the human proteome are currently left with no SD assignments. These unassigned regions consist not only of novel SDs, but also of intrinsically disordered (ID regions since proteins, especially those in eukaryotes, generally contain a significant fraction of ID regions. As ID regions can be inferred from amino acid sequences, a method that combines SD and ID region assignments can determine the fractions of SDs and ID regions in any proteome. Results In contrast to other available ID prediction programs that merely identify likely ID regions, the DICHOT system we previously developed classifies the entire protein sequence into SDs and ID regions. Application of DICHOT to the human proteome revealed that residue-wise ID regions constitute 35%, SDs with similarity to PDB structures comprise 52%, while SDs with no similarity to PDB structures account for the remaining 13%. The last group consists of novel structural domains, termed cryptic domains, which serve as good targets of structural genomics. The DICHOT method applied to the proteomes of other model organisms indicated that eukaryotes generally have high ID contents, while prokaryotes do not. In human proteins, ID contents differ among subcellular localizations: nuclear proteins had the highest residue-wise ID fraction (47%, while mitochondrial proteins exhibited the lowest (13%. Phosphorylation and O-linked glycosylation sites were found to be located preferentially in ID regions. As O-linked glycans are attached to residues in the extracellular regions of proteins, the modification is likely to protect the ID regions from proteolytic cleavage in the extracellular environment. Alternative splicing events tend to occur more frequently in ID regions. We interpret this as evidence that natural selection is operating at the protein level in alternative splicing. Conclusions We classified

  20. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.

    Directory of Open Access Journals (Sweden)

    Raúl Esteban Ithuralde

    Full Text Available Disordered regions and Intrinsically Disordered Proteins (IDPs are involved in critical cellular processes and may acquire a stable three-dimensional structure only upon binding to their partners. IDPs may follow a folding-after-binding process, known as induced folding, or a folding-before-binding process, known as conformational selection. The transcription factor p53 is involved in the regulation of cellular events that arise upon stress or DNA damage. The p53 domain structure is composed of an N-terminal transactivation domain (p53TAD, a DNA Binding Domain and a tetramerization domain. The activity of TAD is tightly regulated by interactions with cofactors, inhibitors and phosphorylation. To initiate transcription, p53TAD binds to the TAZ2 domain of CBP, a co-transcription factor, and undergoes a folding and binding process, as revealed by the recent NMR structure of the complex. The activity of p53 is regulated by phosphorylation at multiple sites on the TAD domain and recent studies have shown that modifications at three residues affect the binding towards TAZ2. However, we still do not know how these phosphorylations affect the structure of the bound state and, therefore, how they regulate the p53 function. In this work, we have used computational simulations to understand how phosphorylation affects the structure of the p53TAD:TAZ2 complex and regulates the recognition mechanism. Phosphorylation has been proposed to enhance binding by direct interaction with the folded protein or by changing the unbound conformation of IDPs, for example by pre-folding the protein favoring the recognition mechanism. Here, we show an interesting turn in the p53 case: phosphorylation mainly affects the bound structure of p53TAD, highlighting the complexity of IDP protein-protein interactions. Our results are in agreement with previous experimental studies, allowing a clear picture of how p53 is regulated by phosphorylation and giving new insights into how

  1. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins.

    Science.gov (United States)

    De Biasio, Alfredo; Ibáñez de Opakua, Alain; Cordeiro, Tiago N; Villate, Maider; Merino, Nekane; Sibille, Nathalie; Lelli, Moreno; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2014-02-18

    We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF). Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  3. Intrinsically disordered segments and the evolution of protein half-life

    Science.gov (United States)

    Babu, M.

    2013-03-01

    Precise turnover of proteins is essential for cellular homeostasis and is primarily mediated by the proteasome. Thus, a fundamental question is: What features make a protein an efficient substrate for degradation? Here I will present results that proteins with a long terminal disordered segment or internal disordered segments have a significantly shorter half-life in yeast. This relationship appears to be evolutionarily conserved in mouse and human. Furthermore, upon gene duplication, divergence in the length of terminal disorder or variation in the number of internal disordered segments results in significant alteration of the half-life of yeast paralogs. Many proteins that exhibit such changes participate in signaling, where altered protein half-life will likely influence their activity. We suggest that variation in the length and number of disordered segments could serve as a remarkably simple means to evolve protein half-life and may serve as an underappreciated source of genetic variation with important phenotypic consequences. MMB acknowledges the Medical Research Council for funding his research program.

  4. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Neelsen, Kai J; Teloni, Federico

    2015-01-01

    disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR...

  5. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    International Nuclear Information System (INIS)

    Knott, Michael; Best, Robert B.

    2014-01-01

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD

  6. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Michael [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Best, Robert B., E-mail: robertbe@helix.nih.gov [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-07

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.

  7. Fibrillation mechanism of a model intrinsically disordered protein revealed by 2D correlation deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Takor, Gaius A; Higashiya, Seiichiro; Welch, John T; Uversky, Vladimir N; Lednev, Igor K

    2012-05-14

    Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of β-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and β-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.

  8. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    Science.gov (United States)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  9. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    International Nuclear Information System (INIS)

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2016-01-01

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.

  10. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jung-Hyun [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760 (Korea, Republic of); Lee, Won-Kyu [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Kim, Yuyoung; Jeong, Cherlhyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Song, Seung Soo [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of); Cha, Sun-Shin [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760 (Korea, Republic of); Han, Kyou-Hoon [Division of Biosystems Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Yu, Yeon Gyu, E-mail: ygyu@kookmin.ac.kr [Department of Chemistry, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 02707 (Korea, Republic of)

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.

  11. Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2011-04-01

    Full Text Available Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change - protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases.

  12. Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Omar Awile

    Full Text Available The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the "surface-properties" of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.

  13. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  14. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate.

    Science.gov (United States)

    Lauck, Michael; Sibley, Samuel D; Lara, James; Purdy, Michael A; Khudyakov, Yury; Hyeroba, David; Tumukunde, Alex; Weny, Geoffrey; Switzer, William M; Chapman, Colin A; Hughes, Austin L; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L

    2013-08-01

    GB virus B (GBV-B; family Flaviviridae, genus Hepacivirus) has been studied in New World primates as a model for human hepatitis C virus infection, but the distribution of GBV-B and its relatives in nature has remained obscure. Here, we report the discovery of a novel and highly divergent GBV-B-like virus in an Old World monkey, the black-and-white colobus (Colobus guereza), in Uganda. The new virus, guereza hepacivirus (GHV), clusters phylogenetically with GBV-B and recently described hepaciviruses infecting African bats and North American rodents, and it shows evidence of ancient recombination with these other hepaciviruses. Direct sequencing of reverse-transcribed RNA from blood plasma from three of nine colobus monkeys yielded near-complete GHV genomes, comprising two distinct viral variants. The viruses contain an exceptionally long nonstructural 5A (NS5A) gene, approximately half of which codes for a protein with no discernible homology to known proteins. Computational structure-based analyses indicate that the amino terminus of the GHV NS5A protein may serve a zinc-binding function, similar to the NS5A of other viruses within the family Flaviviridae. However, the 521-amino-acid carboxy terminus is intrinsically disordered, reflecting an unusual degree of structural plasticity and polyfunctionality. These findings shed new light on the natural history and evolution of the hepaciviruses and on the extent of structural variation within the Flaviviridae.

  15. Intrinsically Disordered Segments Affect Protein Half-Life in the Cell and during Evolution

    NARCIS (Netherlands)

    Lee, R.T.J.G. van der; Lang, B.; Kruse, K.; Gsponer, J.; Groot, N.; Huynen, M.A.; Matouschek, A.; Fuxreiter, M.; Babu, M.M.

    2014-01-01

    Precise control of protein turnover is essential for cellular homeostasis. The ubiquitin-proteasome system is well established as a major regulator of protein degradation, but an understanding of how inherent structural features influence the lifetimes of proteins is lacking. We report that yeast,

  16. The intrinsically disordered structural platform of the plant defence hub protein RPM1-interacting protein 4 provides insights into its mode of action in the host-pathogen interface and evolution of the nitrate-induced domain protein family.

    Science.gov (United States)

    Sun, Xiaolin; Greenwood, David R; Templeton, Matthew D; Libich, David S; McGhie, Tony K; Xue, Bin; Yoon, Minsoo; Cui, Wei; Kirk, Christopher A; Jones, William T; Uversky, Vladimir N; Rikkerink, Erik H A

    2014-09-01

    Arabidopsis thaliana (At) RPM1-interacting protein 4 (RIN4), targeted by many defence-suppressing bacterial type III effectors and monitored by several resistance proteins, regulates plant immune responses to pathogen-associated molecular patterns and type III effectors. Little is known about the overall protein structure of AtRIN4, especially in its unbound form, and the relevance of structure to its diverse biological functions. AtRIN4 contains two nitrate-induced (NOI) domains and is a member of the NOI family. Using experimental and bioinformatic approaches, we demonstrate that the unbound AtRIN4 is intrinsically disordered under physiological conditions. The intrinsically disordered polypeptide chain of AtRIN4 is interspersed with molecular recognition features (MoRFs) and anchor-identified long-binding regions, potentially allowing it to undergo disorder-to-order transitions upon binding to partner(s). A poly-l-proline II structure, often responsible for protein recognition, is also identified in AtRIN4. By performing bioinformatics analyses on RIN4 homologues from different plant species and the NOI proteins from Arabidopsis, we infer the conservation of intrinsic disorder, MoRFs and long-binding regions of AtRIN4 in other plant species and the NOI family. Intrinsic disorder and MoRFs could provide RIN4 proteins with the binding promiscuity and plasticity required to act as hubs in a pivotal position within plant defence signalling cascades. © 2014 FEBS.

  17. On the potential of using peculiarities of the protein intrinsic disorder distribution in mitochondrial cytochrome b to identify the source of animal meats

    Science.gov (United States)

    Yacoub, Haitham A.; Sadek, Mahmoud A.; Uversky, Vladimir N.

    2017-01-01

    ABSTRACT This study was conducted to identify the source of animal meat based on the peculiarities of protein intrinsic disorder distribution in mitochondrial cytochrome b (mtCyt-b). The analysis revealed that animal and avian species can be discriminated based on the proportions of the two groups of residues, Leu+Ile, and Ser+Pro+Ala, in the amino acid sequences of their mtCyt-b. Although levels of the overall intrinsic disorder in mtCyt-b is not very high, the peculiarities of disorder distribution within the sequences of mtCyt-b from different species varies in a rather specific way. In fact, positions and intensities of disorder/flexibility “signals” in the corresponding disorder profiles are relatively unique for avian and animal species. Therefore, it is possible to devise a set of simple rules based on the peculiarities of disorder profiles of their mtCyt-b proteins to discriminate among species. This intrinsic disorder-based analysis represents a new technique that could be used to provide a promising solution for identification of the source of meats. PMID:28331777

  18. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP

    Energy Technology Data Exchange (ETDEWEB)

    Rozentur-Shkop, Eva; Goobes, Gil; Chill, Jordan H., E-mail: Jordan.Chill@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2016-12-15

    Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J({sup 15}N,{sup 13}Cα) couplings. This concept was realized using a unidirectional (H)NCO {sup 13}C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J({sup 15}N,{sup 13}Cα) couplings were acquired for WIP residues 2–65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16–23 and 45–60, and a helical tendency at residues 28–42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP{sup 2–65} conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein–protein interactions that stabilize the unfolded

  19. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    Science.gov (United States)

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  20. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    Science.gov (United States)

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  1. A phosphorylation-motif for tuneable helix stabilisation in intrinsically disordered proteins - Lessons from the sodium proton exchanger 1 (NHE1)

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Lambrughi, Matteo; Terkelsen, Thilde Bagger

    2017-01-01

    ). Using NMR spectroscopy, we found that two out of those six phosphorylation sites had a stabilizing effect on transient helices. One of these was further investigated by circular dichroism and NMR spectroscopy as well as by molecular dynamic simulations, which confirmed the stabilizing effect......-spread role in phosphorylation-mediated regulation of intrinsically disordered proteins. The identification of such motifs is important for understanding the molecular mechanism of cellular signalling, and is crucial for the development of predictors for the structural effect of phosphorylation; a tool......Intrinsically disordered proteins (IDPs) are involved in many pivotal cellular processes including phosphorylation and signalling. The structural and functional effects of phosphorylation of IDPs remain poorly understood and difficult to predict. Thus, a need exists to identify motifs that confer...

  2. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  3. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    Science.gov (United States)

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Quarterly intrinsic disorder digest (January-February-March, 2014)

    OpenAIRE

    DeForte, Shelly; Reddy, Krishna D.; Uversky, Vladimir N.

    2016-01-01

    This is the 5th issue of the Digested Disorder series that represents a reader's digest of the scientific literature on intrinsically disordered proteins. We continue to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the first quarter of 2014; i.e., during ...

  5. Digested disorder: Quarterly intrinsic disorder digest (January/February/March, 2013).

    Science.gov (United States)

    Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is blooming. A simple PubMed search for "intrinsically disordered protein OR natively unfolded protein" returns about 1,800 hits (as of June 17, 2013), with many papers published quite recently. To keep interested readers up to speed with this literature, we are starting a "Digested Disorder" project, which will encompass a series of reader's digest type of publications aiming at the objective representation of the research papers and reviews on intrinsically disordered proteins. The only two criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest covers papers published during the period of January, February and March of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  6. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins

    Science.gov (United States)

    Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.

    2018-04-01

    Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.

  7. Genetic recombination is associated with intrinsic disorder in plant proteomes.

    Science.gov (United States)

    Yruela, Inmaculada; Contreras-Moreira, Bruno

    2013-11-09

    Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.

  8. Intrinsic disorder here, there, and everywhere, and nowhere to escape from it.

    Science.gov (United States)

    Uversky, Vladimir N

    2017-09-01

    The concept of protein intrinsic disorder persistently penetrates into all areas of modern protein science. It cannot be ignored anymore, and cannot be shrugged off, as it represents a vital feature (or, more correctly, a broad spectrum of important features), which, when added to and mixed with features arising from the well established protein structure-function paradigm, complete the picture of a functioning protein. The field of protein intrinsic disorder is very dynamic and fast developing. This Multi-Author Review represents a snapshot of this field by introducing some recent advances. Articles assembled in this Multi-Author Review introduce some of the new aspects of intrinsic disorder, outline some fascinating ideas related to the intrinsically disordered proteins, their structure, and functionality, and show challenges related to the analysis of proteins carrying intrinsic disorder.

  9. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  10. Quarterly intrinsic disorder digest (January-February-March, 2014).

    Science.gov (United States)

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2016-01-01

    This is the 5 th issue of the Digested Disorder series that represents a reader's digest of the scientific literature on intrinsically disordered proteins. We continue to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the first quarter of 2014; i.e., during the period of January, February, and March of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.

  11. Digested disorder: Quarterly intrinsic disorder digest (July-August-September, 2013).

    Science.gov (United States)

    Reddy, Krishna D; DeForte, Shelly; Uversky, Vladimir N

    2014-01-01

    The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a new issue of reader's digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  12. Digested disorder: Quarterly intrinsic disorder digest (April-May-June, 2013).

    Science.gov (United States)

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a series of reader's digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  13. Yersinia pestis Caf1 Protein: Effect of Sequence Polymorphism on Intrinsic Disorder Propensity, Serological Cross-Reactivity and Cross-Protectivity of Isoforms.

    Directory of Open Access Journals (Sweden)

    Pavel Kh Kopylov

    Full Text Available Yersinia pestis Caf1 is a multifunctional protein responsible for antiphagocytic activity and is a key protective antigen. It is generally conserved between globally distributed Y. pestis strains, but Y. pestis subsp. microtus biovar caucasica strains circulating within populations of common voles in Georgia and Armenia were reported to carry a single substitution of alanine to serine. We investigated polymorphism of the Caf1 sequences among other Y. pestis subsp. microtus strains, which have a limited virulence in guinea pigs and in humans. Sequencing of caf1 genes from 119 Y. pestis strains belonging to different biovars within subsp. microtus showed that the Caf1 proteins exist in three isoforms, the global type Caf1NT1 (Ala48 Phe117, type Caf1NT2 (Ser48 Phe117 found in Transcaucasian-highland and Pre-Araks natural plague foci #4-7, and a novel Caf1NT3 type (Ala48 Val117 endemic in Dagestan-highland natural plague focus #39. Both minor types are the progenies of the global isoform. In this report, Caf1 polymorphism was analyzed by comparing predicted intrinsic disorder propensities and potential protein-protein interactivities of the three Caf1 isoforms. The analysis revealed that these properties of Caf1 protein are minimally affected by its polymorphism. All protein isoforms could be equally detected by an immunochromatography test for plague at the lowest protein concentration tested (1.0 ng/mL, which is the detection limit. When compared to the classic Caf1NT1 isoform, the endemic Caf1NT2 or Caf1NT3 had lower immunoreactivity in ELISA and lower indices of self- and cross-protection. Despite a visible reduction in cross-protection between all Caf1 isoforms, our data suggest that polymorphism in the caf1 gene may not allow the carriers of Caf1NT2 or Caf1NT3 variants escaping from the Caf1NT1-mediated immunity to plague in the case of a low-dose flea-borne infection.

  14. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    Science.gov (United States)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common

  15. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other...

  16. The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer

    DEFF Research Database (Denmark)

    Danielsson, Jens; Liljedahl, Leena; Ba´ra´ny-Wallje, Elsa

    2008-01-01

    . Sml1 belongs to the class of intrinsically disordered proteins with a high degree of dynamics and very little stable structure. Earlier suggestions for a dimeric structure of Sml1 were confirmed, and from translation diffusion NMR measurements, a dimerization dissociation constant of 0.1 mM at 4...... natively disordered proteins....

  17. A tonoplast intrinsic protein in Gardenia jasminoides

    Science.gov (United States)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Physiological and molecular studies proved that plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) subfamily of aquaporins play key functions in plant water homeostasis. Five specialized subgroups (TIP1-5) of TIPs have been found in higher plants, in which the TIP1 and TIP2 isoforms are the largest arbitrary groups. TIPs have high water-transport activity than PIPs, some TIPs can transport other small molecule such as urea, ammonia, hydrogen peroxide, and carbon dioxide. In this work, the structure of the putative tonoplast aquaporin from Gardenia jasminoides (GjTIP) was analyzed. Its transcript level has increased during fruit maturation. A phylogenetic analysis indicates that the protein belongs to TIP1 subfamily. A three-dimensional model structure of GjTIP was built based on crystal structure of an ammonia-permeable AtTIP2-1 from Arabidopsis thaliana. The model structure displayed as a homo-tetramer, each monomer has six trans-membrane and two half-membrane-spanning α helices. The data suggests that the GjTIP has tendency to be a mixed function aquaporin, might involve in water, urea and hydrogen peroxide transport, and the gating machanism founded in some AQPs involving pH and phosphorylation response have not been proved in GjTIP.

  18. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree.

    Science.gov (United States)

    DeForte, Shelly; Uversky, Vladimir N

    2016-03-01

    Missing regions in X-ray crystal structures in the Protein Data Bank (PDB) have played a foundational role in the study of intrinsically disordered protein regions (IDPRs), especially in the development of in silico predictors of intrinsic disorder. However, a missing region is only a weak indication of intrinsic disorder, and this uncertainty is compounded by the presence of ambiguous regions, where more than one structure of the same protein sequence "disagrees" in terms of the presence or absence of missing residues. The question is this: are these ambiguous regions intrinsically disordered, or are they the result of static disorder that arises from experimental conditions, ensembles of structures, or domain wobbling? A novel way of looking at ambiguous regions in terms of the pattern between multiple PDB structures has been demonstrated. It was found that the propensity for intrinsic disorder increases as the level of ambiguity decreases. However, it is also shown that ambiguity is more likely to occur as the protein region is placed within different environmental conditions, and even the most ambiguous regions as a set display compositional bias that suggests flexibility. The results suggested that ambiguity is a natural result for many IDPRs crystallized under different conditions and that static disorder and wobbling domains are relatively rare. Instead, it is more likely that ambiguity arises because many of these regions were conditionally or partially disordered. © 2016 The Protein Society.

  19. Digested disorder, Quarterly intrinsic disorder digest (October-November-December, 2013).

    Science.gov (United States)

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2015-01-01

    This is the 4th issue of the Digested Disorder series that represents reader's digest of the scientific literature on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the fourth quarter of 2013; i.e. during the period of October, November, and December of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.

  20. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein

    International Nuclear Information System (INIS)

    Żerko, Szymon; Byrski, Piotr; Włodarczyk-Pruszyński, Paweł; Górka, Michał; Ledolter, Karin; Masliah, Eliezer; Konrat, Robert; Koźmiński, Wiktor

    2016-01-01

    New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.

  1. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein

    Energy Technology Data Exchange (ETDEWEB)

    Żerko, Szymon; Byrski, Piotr; Włodarczyk-Pruszyński, Paweł; Górka, Michał [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland); Ledolter, Karin [University of Vienna, Department of Computational and Structural Biology, Max F. Perutz Laboratories (Austria); Masliah, Eliezer [University of California, San Diego, Departments of Neuroscience and Pathology (United States); Konrat, Robert [University of Vienna, Department of Computational and Structural Biology, Max F. Perutz Laboratories (Austria); Koźmiński, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland)

    2016-08-15

    New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.

  2. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    International Nuclear Information System (INIS)

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A.

    2015-01-01

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone 1 H N , 15 N H , and 13 C′ resonance assignments to be completed from a single pair of 3D experiments

  3. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions.

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2007-05-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.

  4. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    Science.gov (United States)

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  5. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction.

    Science.gov (United States)

    Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J

    2011-07-01

    The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.

  6. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    Science.gov (United States)

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Conformational Ensembles of an Intrinsically Disordered Protein pKID with and without a KIX Domain in Explicit Solvent Investigated by All-Atom Multicanonical Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Haruki Nakamura

    2012-02-01

    Full Text Available The phosphorylated kinase-inducible activation domain (pKID adopts a helix–loop–helix structure upon binding to its partner KIX, although it is unstructured in the unbound state. The N-terminal and C-terminal regions of pKID, which adopt helices in the complex, are called, respectively, αA and αB. We performed all-atom multicanonical molecular dynamics simulations of pKID with and without KIX in explicit solvents to generate conformational ensembles. Although the unbound pKID was disordered overall, αA and αB exhibited a nascent helix propensity; the propensity of αA was stronger than that of αB, which agrees with experimental results. In the bound state, the free-energy landscape of αB involved two low free-energy fractions: native-like and non-native fractions. This result suggests that αB folds according to the induced-fit mechanism. The αB-helix direction was well aligned as in the NMR complex structure, although the αA helix exhibited high flexibility. These results also agree quantitatively with experimental observations. We have detected that the αB helix can bind to another site of KIX, to which another protein MLL also binds with the adopting helix. Consequently, MLL can facilitate pKID binding to the pKID-binding site by blocking the MLL-binding site. This also supports experimentally obtained results.

  8. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...

  9. Intrinsic connectivity networks within cerebellum and beyond in eating disorders.

    Science.gov (United States)

    Amianto, F; D'Agata, F; Lavagnino, L; Caroppo, P; Abbate-Daga, G; Righi, D; Scarone, S; Bergui, M; Mortara, P; Fassino, S

    2013-10-01

    Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

  10. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  11. Insights into the Molecular Mechanisms of Alzheimer’s and Parkinson’s Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology

    Directory of Open Access Journals (Sweden)

    Orkid Coskuner-Weber

    2018-01-01

    Full Text Available Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs, which are at the center of Alzheimer’s and Parkinson’s disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer’s and Parkinson’s diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer’s and Parkinson’s diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer’s and Parkinson’s diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer’s and Parkinson’s diseases. This information represents an important foundation for the successful and

  12. Disorder in Protein Crystals.

    Science.gov (United States)

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  13. Bioinformatics analysis of disordered proteins in prokaryotes

    Directory of Open Access Journals (Sweden)

    Malkov Saša N

    2011-03-01

    Full Text Available Abstract Background A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs and groups of COGs-Cellular processes (Cp, Information storage and processing (Isp, Metabolism (Me and Poorly characterized (Pc. We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Results Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content

  14. Functional advantages of dynamic protein disorder.

    Science.gov (United States)

    Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E

    2015-09-14

    Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites.

    Science.gov (United States)

    Elam, W Austin; Schrank, Travis P; Campagnolo, Andrew J; Hilser, Vincent J

    2013-04-01

    Intrinsically disordered (ID) proteins function in the absence of a unique stable structure and appear to challenge the classic structure-function paradigm. The extent to which ID proteins take advantage of subtle conformational biases to perform functions, and whether signals for such mechanism can be identified in proteome-wide studies is not well understood. Of particular interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded proteins. We experimentally determine a complete calorimetric propensity scale for the PII conformation. Projection of the scale into representative eukaryotic proteomes reveals significant PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded and universally detectable regardless of the method of PII propensity determination. Gene ontology (GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular functions performed by high PII proteins across the proteome. Perhaps the most striking result of the GO analysis is conserved enrichment (P ontology reveals an enrichment of PII bias near disordered phosphorylation sites that is conserved throughout eukaryotes. Copyright © 2013 The Protein Society.

  16. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    ;1 in Arabidopsis. That led to the discovery that tip4;1 is gametophytic lethal- gene essential for normal seed set. ICP-MS analyses of the elemental composition of tip4;1 heterozygous T-DNA insert mutant plants and 35S::TIP4;1 over-expression plants indicate that AtTIP4;1 has a role in arsenic distribution...... inorganic forms of arsenic in the environment, can be taken up by plants and thus enter the food chain. Once inside the root cells, As(V) is reduced to As(III) which is then extruded to the soil solution or bound to phytochelatins (PCs) and transported to the vacuole in an effort to accomplish...... detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell...

  17. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system.

    Science.gov (United States)

    Gu, Shuang; Shevchik, Vladimir E; Shaw, Rosie; Pickersgill, Richard W; Garnett, James A

    2017-10-01

    Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments.

    Science.gov (United States)

    Granata, Daniele; Baftizadeh, Fahimeh; Habchi, Johnny; Galvagnion, Celine; De Simone, Alfonso; Camilloni, Carlo; Laio, Alessandro; Vendruscolo, Michele

    2015-10-26

    The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the Aβ40 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements.

  19. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  20. A multi-state coarse grained modeling approach for an intrinsically disordered peptide

    Science.gov (United States)

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-01

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα 14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα 14 is disordered in dilute solutions; however, it strictly adopts the α -helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α -helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  1. The Intracellular Distal Tail of the Na+/H+ Exchanger NHE1 Is Intrinsically Disordered

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Hendus-Altenburger, Ruth; Bjerre, Gabriel

    2011-01-01

    disrupted the putative binding feature. When this mutant NHE1 was expressed in full length NHE1 in AP1 cells, it exhibited impaired trafficking to the plasma membrane. This study demonstrated that the distal regulatory domain of NHE1 is intrinsically disordered yet contains conserved regions of transient...... structure. We suggest that normal NHE1 function depends on a protein recognition element within the ID region that may be linked to NHE1 trafficking via an acidic ER export motif....

  2. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg; Nikolajsen, Louise Fletcher; Olsen, Johan Gotthardt

    2015-01-01

    . This study presents the first comprehensive structural characterization of any cytokine receptor ICD and demonstrates that the human prolactin and growth hormone receptor ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids...

  3. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  4. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.

    Science.gov (United States)

    Mercadante, Davide; Milles, Sigrid; Fuertes, Gustavo; Svergun, Dmitri I; Lemke, Edward A; Gräter, Frauke

    2015-06-25

    Understanding the function of intrinsically disordered proteins is intimately related to our capacity to correctly sample their conformational dynamics. So far, a gap between experimentally and computationally derived ensembles exists, as simulations show overcompacted conformers. Increasing evidence suggests that the solvent plays a crucial role in shaping the ensembles of intrinsically disordered proteins and has led to several attempts to modify water parameters and thereby favor protein-water over protein-protein interactions. This study tackles the problem from a different perspective, which is the use of the Kirkwood-Buff theory of solutions to reproduce the correct conformational ensemble of intrinsically disordered proteins (IDPs). A protein force field recently developed on such a basis was found to be highly effective in reproducing ensembles for a fragment from the FG-rich nucleoporin 153, with dimensions matching experimental values obtained from small-angle X-ray scattering and single molecule FRET experiments. Kirkwood-Buff theory presents a complementary and fundamentally different approach to the recently developed four-site TIP4P-D water model, both of which can rescue the overcollapse observed in IDPs with canonical protein force fields. As such, our study provides a new route for tackling the deficiencies of current protein force fields in describing protein solvation.

  5. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  6. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  7. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  8. The fragmented self : imbalance between intrinsic and extrinsic self-networks in psychotic disorders

    NARCIS (Netherlands)

    Ebisch, Sjoerd J. H.; Aleman, Andre

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging

  9. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  10. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism

    Directory of Open Access Journals (Sweden)

    Sergei E. Permyakov

    2015-09-01

    Full Text Available We show here that chicken gizzard caldesmon (CaD and its C-terminal domain (residues 636–771, CaD136 are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A and a double tryptophan mutant (W674A/W707A suggested that although the interaction of CaD136 with calmodulin (CaM can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

  11. Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing.

    Directory of Open Access Journals (Sweden)

    Kinya Hotta

    2014-04-01

    Full Text Available Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD of p130Cas (or BCAR1 has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.

  12. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  13. Intrinsic fluorescence of protein in turbid media using empirical relation based on Monte Carlo lookup table

    Science.gov (United States)

    Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu

    2017-03-01

    Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.

  14. Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.

    Science.gov (United States)

    Milles, Sigrid; Lemke, Edward A

    2011-10-05

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  16. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    Science.gov (United States)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  17. Extreme disorder in an ultrahigh-affinity protein complex

    Science.gov (United States)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  18. Extreme disorder in an ultrahigh-affinity protein complex

    DEFF Research Database (Denmark)

    Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine

    2018-01-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...... or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...

  19. The fragmented self: imbalance between intrinsic and extrinsic self-networks in psychotic disorders.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Aleman, André

    2016-08-01

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging evidence for disrupted communication between neural networks subserving the so-called intrinsic self and extrinsic self. This disruption might be mainly caused by impaired integrity of key brain hubs. The intrinsic self has been associated with cortical midline structures involved in self-referential processing, autobiographical memory, and emotional evaluation. Additionally, we highlight central aspects of the extrinsic self in its interaction with the environment using sensorimotor networks, including self-experience in sensation and actions. A deficient relationship between these self-aspects because of disrupted between-network interactions offers a framework to explain core clinical features of psychotic disorders. In particular, we show how relative isolation and reduced modularity of networks subserving intrinsic and extrinsic self-processing might trigger the emergence of hallucinations and delusions, and why patients with psychosis typically have difficulties with self-other relationships and do not recognise mental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hemin and bile pigments are the secondary structure regulators of intrinsically disordered antimicrobial peptides.

    Science.gov (United States)

    Zsila, Ferenc; Juhász, Tünde; Bősze, Szilvia; Horváti, Kata; Beke-Somfai, Tamás

    2018-02-01

    The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two-state, concentration-dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin ditaurate) increase the parallel β-sheet content of the natively unfolded melittin, suggesting the oligomerization of the peptide chains. In contrast, α-helix promoting effect was observed with the also disordered but more cationic CM15. According to fluorescence quenching experiments, the sole Trp residue of melittin is the key player during the binding, in the vicinity of which the first pigment molecule is accommodated presumably making indole-porphyrin π-π stacking interaction. As circular dichroism titration data suggest, cooperative association of additional ligands subsequently occurs, resulting in multimeric complexes with an apparent dissociation constant ranged from 20 to 65 μM. Spectroscopic measurements conducted with the bilirubin catabolite urobilin and stercobilin refer to the requirement of intact dipyrrinone moieties for inducing secondary structure transformations. The binding topography of porphyrin rings on a model parallel β-sheet motif was evaluated by absorption spectroscopy and computational modeling showing a slipped-cofacial binding mode responsible for the red shift and hypochromism of the Soret band. Our results may aid to recognize porphyrin-responsive binding motifs of biologically relevant, intrinsically disordered peptides and proteins, where transient conformations play a vital role in their functions. © 2017 Wiley Periodicals, Inc.

  1. Transiently disordered tails accelerate folding of globular proteins.

    Science.gov (United States)

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip

    2017-07-01

    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  2. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules

    NARCIS (Netherlands)

    Martin, A.H.; Cohen Stuart, M.A.; Bos, M.A.; Vliet, T. van

    2005-01-01

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, σf,

  3. Protein disorder in plants: a view from the chloroplast

    Directory of Open Access Journals (Sweden)

    Yruela Inmaculada

    2012-09-01

    Full Text Available Abstract Background The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for basic cellular functions. In this field the available information from plants is limited but it has been reached a point where these proteins can be comprehensively classified on the basis of disorder, function and evolution. Results Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast. We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded proteins. Conclusions Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in both genomes, probably due to functional constraints.

  4. Restless 'rest': intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.

    Science.gov (United States)

    Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen

    2017-07-01

    Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control

  5. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2012-01-01

    Full Text Available Intrinsic functional brain networks (INs are regions showing temporal coherence with one another. These INs are present in the context of a task (as opposed to an undirected task such as rest, albeit modulated to a degree both spatially and temporally. Prominent networks include the default mode, attentional fronto-parietal, executive control, bilateral temporal lobe and motor networks. The characterization of INs has recently gained considerable momentum, however; most previous studies evaluate only a small subset of the intrinsic networks (e.g. default mode. In this paper we use independent component analysis to study INs decomposed from fMRI data collected in a large group of schizophrenia patients, healthy controls, and individuals with bipolar disorder, while performing an auditory oddball task. Schizophrenia and bipolar disorder share significant overlap in clinical symptoms, brain characteristics, and risk genes which motivates our goal of identifying whether functional imaging data can differentiate the two disorders. We tested for group differences in properties of all identified intrinsic networks including spatial maps, spectra, and functional network connectivity. A small set of default mode, temporal lobe, and frontal networks with default mode regions appearing to play a key role in all comparisons. Bipolar subjects showed more prominent changes in ventromedial and prefrontal default mode regions whereas schizophrenia patients showed changes in posterior default mode regions. Anti-correlations between left parietal areas and dorsolateral prefrontal cortical areas were different in bipolar and schizophrenia patients and amplitude was significantly different from healthy controls in both patient groups. Patients exhibited similar frequency behavior across multiple networks with decreased low frequency power. In summary, a comprehensive analysis of intrinsic networks reveals a key role for the default mode in both schizophrenia and

  6. Disorder and function: a review of the dehydrin protein family

    Directory of Open Access Journals (Sweden)

    Steffen P Graether

    2014-10-01

    Full Text Available Dehydration proteins (dehydrins are group 2 members of the late embryogenesis abundant (LEA protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y- and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggest multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins.

  7. The α-Helical Structure of Prodomains Promotes Translocation of Intrinsically Disordered Neuropeptide Hormones into the Endoplasmic Reticulum*

    Science.gov (United States)

    Dirndorfer, Daniela; Seidel, Ralf P.; Nimrod, Guy; Miesbauer, Margit; Ben-Tal, Nir; Engelhard, Martin; Zimmermann, Richard; Winklhofer, Konstanze F.; Tatzelt, Jörg

    2013-01-01

    Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation. PMID:23532840

  8. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease.

    Science.gov (United States)

    Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino

    2017-12-01

    Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  10. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    Science.gov (United States)

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  11. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  12. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E; Brammer, Michael; Fletcher, Paul C; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G M

    2013-08-06

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.

  13. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    International Nuclear Information System (INIS)

    Poznanski, Jaroslaw; Szczesny, Pawel; Ruszczyńska, Katarzyna; Zielenkiewicz, Piotr; Paczek, Leszek

    2013-01-01

    Highlights: ► We predicted buffering capacity of yeast proteome from protein abundance data. ► We measured total buffering capacity of yeast cytoplasm. ► We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell’s intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in the cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.

  14. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  15. Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh Gautam

    Full Text Available Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a origin and identification of an intrinsic degradation signal in the substrate, b identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably

  16. Inhibition of the intrinsic factor X activating complex by protein S: evidence for a specific binding of protein S to factor VIII

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic

  17. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    Science.gov (United States)

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  19. Biographical and intrinsic disorder in some ionic crystals according to EPR data

    International Nuclear Information System (INIS)

    Angelov, S.

    1989-01-01

    CO 0 2 -radicals stabilised in SrCO 3 are examined as an example of disorder in diamagnetic matrices containing isolated paramagnetic centers. The genesis, stabilisation and further recombination of CO - 2 is connected with a specific biographical disorder in SrCO 3 , depending on the rate of decomposition of the initial SrC 2 O 4 .H 2 O. Depending on the electronic configuration of the EPR-active ion and the structure of the matrix (interionic distances and angles between them), the biographical and intrinsic disorder may influence different parameters of the exchange-narrowed EPR singlet line. For example, Co 3 O 4 has a rigid structure, varying slightly with the preparation temperature. The disorder affects only the local zero-field splittings of the 4 A 2 state of the Co 2+ -ions, the exchange field being insensitive to it. In the more flexible structure of Fe 2 (MoO 4 ) 3 , the disorder due to small deviations from stoichiometry changes the exchange field between Fe(III) ions, while the second moment of the EPR line remains constant. (author)

  20. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation.

    Directory of Open Access Journals (Sweden)

    Matteo eLambrughi

    2012-11-01

    Full Text Available Cyclin-dependent kinase inhibitors (CKIs are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs, which lack a well-defined and organized three-dimensional structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs and collapsed conformations. These structural features can be relevant to protein function in vivo.The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models of the compact conformations of the Sic1 kinase-inhibitory domain (KID by all-atom molecular-dynamics simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of hub residues and electrostatic interactions which are likely to be involved in the stabilization of globular states.

  1. Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence.

    Science.gov (United States)

    Dentovskaya, Svetlana V; Platonov, Mikhail E; Svetoch, Tat'yana E; Kopylov, Pavel Kh; Kombarova, Tat'yana I; Ivanov, Sergey A; Shaikhutdinova, Rima Z; Kolombet, Lyubov' V; Chauhan, Sadhana; Ablamunits, Vitaly G; Motin, Vladimir L; Uversky, Vladimir N; Anisimov, Andrey P

    2016-01-01

    It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla-strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification

  2. Relation between Protein Intrinsic Normal Mode Weights and Pre-Existing Conformer Populations.

    Science.gov (United States)

    Ozgur, Beytullah; Ozdemir, E Sila; Gursoy, Attila; Keskin, Ozlem

    2017-04-20

    Intrinsic fluctuations of a protein enable it to sample a large repertoire of conformers including the open and closed forms. These distinct forms of the protein called conformational substates pre-exist together in equilibrium as an ensemble independent from its ligands. The role of ligand might be simply to alter the equilibrium toward the most appropriate form for binding. Normal mode analysis is proved to be useful in identifying the directions of conformational changes between substates. In this study, we demonstrate that the ratios of normalized weights of a few normal modes driving the protein between its substates can give insights about the ratios of kinetic conversion rates of the substates, although a direct relation between the eigenvalues and kinetic conversion rates or populations of each substate could not be observed. The correlation between the normalized mode weight ratios and the kinetic rate ratios is around 83% on a set of 11 non-enzyme proteins and around 59% on a set of 17 enzymes. The results are suggestive that mode motions carry intrinsic relations with thermodynamics and kinetics of the proteins.

  3. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants

    Directory of Open Access Journals (Sweden)

    Hanna Isa Anderberg

    2012-02-01

    Full Text Available Major intrinsic proteins (MIPs also called aquaporins form pores in membranes to facilitate the permeation of water and certain small polar solutes across membranes. MIPs are present in virtually every organism but are uniquely abundant in land plants. To elucidate the evolution and function of MIPs in terrestrial plants, the MIPs encoded in the genome of the spikemoss Selaginella moellendorffii were identified and analyzed. In total 19 MIPs were found in S. moellendorffii belonging to six of the seven MIP subfamilies previously identified in the moss Physcomitrella patens. Only three of the MIPs were classified as members of the conserved water specific plasma membrane intrinsic protein (PIP subfamily whereas almost half were found to belong to the diverse NOD26-like intrinsic protein (NIP subfamily permeating various solutes. The small number of PIPs in S. moellendorffii is striking compared to all other land plants and no other species has more NIPs than PIPs. Similar to moss, S. moellendorffii only has one type of tonoplast intrinsic protein (TIP. Based on ESTs from non-angiosperms we conclude that the specialized groups of TIPs present in higher plants are not found in primitive vascular plants but evolved later in a common ancestor of seed plants. We also note that the silicic acid permeable NIP2 group that has been reported from angiosperms appears at the same time. We suggest that the expansion of the number MIP isoforms in higher plants is primarily associated with an increase in the different types of specialized tissues rather than the emergence of vascular tissue per se and that the loss of subfamilies has been possible due to a functional overlap between some subfamilies.

  4. Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Protein Sorting.

    Science.gov (United States)

    Winkelman, Jonathan D; Suarez, Cristian; Hocky, Glen M; Harker, Alyssa J; Morganthaler, Alisha N; Christensen, Jenna R; Voth, Gregory A; Bartles, James R; Kovar, David R

    2016-10-24

    Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies.

    Science.gov (United States)

    Blocquel, David; Habchi, Johnny; Gruet, Antoine; Blangy, Stéphanie; Longhi, Sonia

    2012-01-01

    Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.

  6. Shifted intrinsic connectivity of central executive and salience network in borderline personality disorder

    Directory of Open Access Journals (Sweden)

    Anselm eDoll

    2013-10-01

    Full Text Available Borderline personality disorder (BPD is characterized by stable instability of emotions and behavior and their regulation. This emotional and behavioral instability corresponds with a neurocognitive triple network model of psychopathology, which suggests that aberrant emotional saliency and cognitive control is associated with aberrant interaction across three intrinsic connectivity networks (ICN (i.e. the salience, default mode, and central executive network, SN, DMN, CEN. The objective of the current study was to investigate whether and how such triple network intrinsic functional connectivity (iFC is changed in patients with BPD. We acquired resting-state functional magnetic resonance imaging (rs-fMRI data from fourteen patients with BPD and sixteen healthy controls (HC. High-model order independent component analysis (ICA was used to extract spatiotemporal patterns of ongoing, coherent blood-oxygen-level-dependent (BOLD signal fluctuations from rs-fMRI data. Main outcome measures were iFC within networks (intra-iFC and between networks (i.e. network time course correlation inter-iFC.Aberrant intra-iFC was found in patients’ DMN, SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the relationship of CEN-and SN-inter-iFC across networks was strongly shifted from CEN to SN connectivity in patients. Results provide first preliminary evidence for aberrant triple network intrinsic functional connectivity in BPD. Our data suggest a shift of inter-network iFC from networks involved in cognitive control to those of emotion-related activity in BPD, potentially reflecting the persistent instability of emotion regulation in patients.

  7. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  8. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  9. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul; Lim, Jackwee; Zhang, Qian; Wasik, Mariusz A; Yang, Daiwen; Swaminathan, Kunchithapadam

    2014-01-01

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  10. Structural studies of human Naked2: A biologically active intrinsically unstructured protein

    International Nuclear Information System (INIS)

    Hu Tianhui; Krezel, Andrzej M.; Li Cunxi; Coffey, Robert J.

    2006-01-01

    Naked1 and 2 are two mammalian orthologs of Naked Cuticle, a canonical Wnt signaling antagonist in Drosophila. Naked2, but not Naked1, interacts with transforming growth factor-α (TGFα) and escorts TGFα-containing vesicles to the basolateral membrane of polarized epithelial cells. Full-length Naked2 is poorly soluble. Since most functional domains, including the Dishevelled binding region, EF-hand, vesicle recognition, and membrane targeting motifs, reside in the N-terminal half of the protein, we expressed and purified the first 217 residues of human Naked2 and performed a functional analysis of this fragment. Its circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra showed no evidence of secondary and/or tertiary structure. The fragment did not bind calcium or zinc. These results indicate that the N-terminal half of Naked2 behaves as an intrinsically unstructured protein

  11. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  12. Metabolism in rats of selenium from intrinsically and extrinsically labeled isolated soy protein

    International Nuclear Information System (INIS)

    Mason, A.C.; Weaver, C.M.

    1986-01-01

    Absorption, retention and tissue accumulation by rats of 75 Se from intrinsically labeled isolated soy protein were compared with utilization of 75 Se from the extrinsic sources of [ 75 Se]selenite, [ 75 Se]selenate or [ 75 Se]selenomethionine. Extrinsic sources of selenium were given by gavage or mixed with isolated soy protein. There were no differences in absorption and retention of 75 Se from intrinsically labeled soy diet compared to the three extrinsically labeled soy diets. Of the three extrinsic sources tested, 75 Se from selenate was better absorbed than from selenite or selenomethionine when incorporated into a soy diet. Absorption of 75 Se was significantly lower when given to animals in gavage solution than when mixed with soy diets. After a 14-d test period, retention of 75 Se was the same for all four soy diet groups. In gavaged groups, 75 Se from selenomethionine was retained to a greater extent than 75 Se from selenite. The liver, testes and kidney accumulated more 75 Se from the test meal than did the blood and lungs. In the testes more 75 Se from selenite and selenate was accumulated than from selenomethionine-labeled diets. Selenium absorption from the soy isolate source was very high (86-96%), indicating that, although soy does not normally contain high levels of selenium, the selenium present is well absorbed from this plant source

  13. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro

    2018-02-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2015-07-01

    Full Text Available Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields, to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  15. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Gergely Tóth

    Full Text Available The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aβ peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228, that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions.

  16. Marked variability in the extent of protein disorder within and between viral families.

    Directory of Open Access Journals (Sweden)

    Ravindra Pushker

    Full Text Available Intrinsically disordered regions in eukaryotic proteomes contain key signaling and regulatory modules and mediate interactions with many proteins. Many viral proteomes encode disordered proteins and modulate host factors through the use of short linear motifs (SLiMs embedded within disordered regions. However, the degree of viral protein disorder across different viruses is not well understood, so we set out to establish the constraints acting on viruses, in terms of their use of disordered protein regions. We surveyed predicted disorder across 2,278 available viral genomes in 41 families, and correlated the extent of disorder with genome size and other factors. Protein disorder varies strikingly between viral families (from 2.9% to 23.1% of residues, and also within families. However, this substantial variation did not follow the established trend among their hosts, with increasing disorder seen across eubacterial, archaebacterial, protists, and multicellular eukaryotes. For example, among large mammalian viruses, poxviruses and herpesviruses showed markedly differing disorder (5.6% and 17.9%, respectively. Viral families with smaller genome sizes have more disorder within each of five main viral types (ssDNA, dsDNA, ssRNA+, dsRNA, retroviruses, except for negative single-stranded RNA viruses, where disorder increased with genome size. However, surveying over all viruses, which compares tiny and enormous viruses over a much bigger range of genome sizes, there is no strong association of genome size with protein disorder. We conclude that there is extensive variation in the disorder content of viral proteomes. While a proportion of this may relate to base composition, to extent of gene overlap, and to genome size within viral types, there remain important additional family and virus-specific effects. Differing disorder strategies are likely to impact on how different viruses modulate host factors, and on how rapidly viruses can evolve novel

  17. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness

    DEFF Research Database (Denmark)

    Olsen, Johan Gotthardt; Teilum, Kaare; Kragelund, Birthe Brandt

    2017-01-01

    in their malleability, which enables them to bind several different partners with high specificity. In addition, their interactions with other macromolecules can be regulated by a variable amount of chemically diverse post-translational modifications. Four kinetically and energetically different types of complexes...

  18. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  19. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    Science.gov (United States)

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  20. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.

    Science.gov (United States)

    Pommerrenig, Benjamin; Diehn, Till Arvid; Bienert, Gerd Patrick

    2015-09-01

    Metalloids are a group of physiologically important elements ranging from the essential to the highly toxic. Arsenic, antimony, germanium, and tellurium are highly toxic to plants themselves and to consumers of metalloid-contaminated plants. Boron, silicon, and selenium fulfill essential or beneficial functions in plants. However, when present at high concentrations, boron and selenium cause toxicity symptoms that are detrimental to plant fitness and yield. Consequently, all plants require efficient membrane transport systems to control the uptake and extrusion of metalloids into or out of the plant and their distribution within the plant body. Several Nodulin 26-like intrinsic proteins (NIPs) that belong to the aquaporin plant water channel protein family facilitate the diffusion of uncharged metalloid species. Genetic, physiological, and molecular evidence is that NIPs from primitive to higher plants not only transport all environmentally important metalloids, but that these proteins have a major role in the uptake, translocation, and extrusion of metalloids in plants. As most of the metalloid-permeable NIP aquaporins are impermeable or are poorly permeable to water, these NIP channel proteins should be considered as physiologically essential metalloido-porins. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water

    Energy Technology Data Exchange (ETDEWEB)

    Riback, Joshua A.; Bowman, Micayla A.; Zmyslowski, Adam M.; Knoverek, Catherine R.; Jumper, John M.; Hinshaw, James R.; Kaye, Emily B.; Freed, Karl F.; Clark, Patricia L.; Sosnick, Tobin R.

    2017-10-12

    A substantial fraction of the proteome is intrinsically disordered, and even well-folded proteins adopt non-native geometries during synthesis, folding, transport, and turnover. Characterization of intrinsically disordered proteins (IDPs) is challenging, in part because of a lack of accurate physical models and the difficulty of interpreting experimental results. We have developed a general method to extract the dimensions and solvent quality (self-interactions) of IDPs from a single small-angle x-ray scattering measurement. We applied this procedure to a variety of IDPs and found that even IDPs with low net charge and high hydrophobicity remain highly expanded in water, contrary to the general expectation that protein-like sequences collapse in water. Our results suggest that the unfolded state of most foldable sequences is expanded; we conjecture that this property was selected by evolution to minimize misfolding and aggregation.

  2. Modeling disordered regions in proteins using Rosetta.

    Directory of Open Access Journals (Sweden)

    Ray Yu-Ruei Wang

    Full Text Available Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are proteins with significant disordered regions which do not populate single low energy conformations even in the native state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a simple free energy function used previously to model protein folding landscapes and transition states. In this model, residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and comparative modeling.

  3. Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors

    DEFF Research Database (Denmark)

    Stender, Emil G.; O'Shea, Charlotte; Skriver, Karen

    2015-01-01

    disordered but contain short, functionally important regions with structure propensities known as molecular recognition features. Here, we analyze for NAC subgroup-specific ID patterns. Some subgroups, such as the VND subgroup implicated in secondary cell wall biosynthesis, and the NAP/SHYG subgroup have...... highly conserved ID profiles. For the stress-associated ATAF1 subgroup and the CUC/ORE1 subgroup involved in development, only sub clades have similar ID patterns. For similar ID profiles, conserved molecular recognition features and sequence motifs represent likely functional determinants of e.......g. transcriptional activation and interactions. Based on our analysis, we suggest that ID profiling of regulatory proteins in general can be used to guide identification of interaction partners of network proteins....

  4. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.

    Science.gov (United States)

    Martinez, Andre P; Qamar, Bareera; Fuerst, Thomas R; Muro, Silvia; Andrianov, Alexander K

    2017-06-12

    A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.

  5. Apoptotic intrinsic pathway proteins predict survival in canine cutaneous mast cell tumours.

    Science.gov (United States)

    Barra, C N; Macedo, B M; Cadrobbi, K G; Pulz, L H; Huete, G C; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Nishiya, A T; Fukumasu, H; Strefezzi, R F

    2018-03-01

    Mast cell tumours (MCTs) are the most frequent canine round cell neoplasms and show variable biological behaviours with high metastatic and recurrence rates. The disease is treated surgically and wide margins are recommended. Adjuvant chemotherapy and radiotherapy used in this disease cause DNA damage in neoplastic cells, which is aimed to induce apoptotic cell death. Resisting cell death is a hallmark of cancer, which contributes to the development and progression of tumours. The aim of this study was to investigate the expression of the proteins involved in the apoptotic intrinsic pathway and to evaluate their potential use as prognostic markers for canine cutaneous MCTs. Immunohistochemistry for BAX, BCL2, APAF1, Caspase-9, and Caspase-3 was performed in 50 canine cases of MCTs. High BAX expression was associated with higher mortality rate and shorter survival. BCL2 and APAF1 expressions offered additional prognostic information to the histopathological grading systems. The present results indicate that variations in the expression of apoptotic proteins are related to malignancy of cutaneous MCTs in dogs. © 2017 John Wiley & Sons Ltd.

  6. Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Javadi, Alisa; Nielsen, Henri Thyrrestrup

    2013-01-01

    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount...... of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range where Anderson localization is observed to numerical simulations, and the method offers sensitivity down to 1nm....

  7. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C

    2001-01-01

    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...

  8. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Science.gov (United States)

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  9. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults

    Directory of Open Access Journals (Sweden)

    Natalie J. Forde

    2017-04-01

    Full Text Available Magnetic resonance imaging (MRI studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD. Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd; 17.2 (3.4, 16.8 (3.2, and 17.7 (3.8, respectively]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity and local gyrification index were calculated for each point on the surface (vertex with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found

  10. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2016-02-23

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.

  11. Divergence in function and expression of the NOD26-like intrinsic proteins in plants

    Directory of Open Access Journals (Sweden)

    Feng Ying

    2009-07-01

    Full Text Available Abstract Background NOD26-like intrinsic proteins (NIPs that belong to the aquaporin superfamily are plant-specific and exhibit a similar three-dimensional structure. Experimental evidences however revealed that functional divergence should have extensively occurred among NIP genes. It is therefore intriguing to further investigate the evolutionary mechanisms being responsible for the functional diversification of the NIP genes. To better understand this process, a comprehensive analysis including the phylogenetic, positive selection, functional divergence, and transcriptional analysis was carried out. Results The origination of NIPs could be dated back to the primitive land plants, and their diversification would be no younger than the emergence time of the moss P. patens. The rapid proliferation of NIPs in plants may be primarily attributed to the segmental chromosome duplication produced by polyploidy and tandem duplications. The maximum likelihood analysis revealed that NIPs should have experienced strong selective pressure for adaptive evolution after gene duplication and/or speciation, prompting the formation of distinct NIP groups. Functional divergence analysis at the amino acid level has provided strong statistical evidence for shifted evolutionary rate and/or radical change of the physiochemical properties of amino acids after gene duplication, and DIVERGE2 has identified the critical amino acid sites that are thought to be responsible for the divergence for further investigation. The expression of plant NIPs displays a distinct tissue-, cell-type-, and developmental specific pattern, and their responses to various stress treatments are quite different also. The differences in organization of cis-acting regulatory elements in the promoter regions may partially explain their distinction in expression. Conclusion A number of analyses both at the DNA and amino acid sequence levels have provided strong evidences that plant NIPs have

  12. The Ising model for prediction of disordered residues from protein sequence alone

    International Nuclear Information System (INIS)

    Lobanov, Michail Yu; Galzitskaya, Oxana V

    2011-01-01

    Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database

  13. Genome-wide analysis of protein disorder in Arabidopsis thaliana: implications for plant environmental adaptation.

    Science.gov (United States)

    Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto; Pazos, Florencio

    2013-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed. For this reason, molecular interactions mediated by IDPs/IDRs are particularly abundant in certain types of protein interactions, such as those of signaling and cell cycle control. We present the first large-scale study of IDPs in Arabidopsis thaliana, the most widely used model organism in plant biology, in order to get insight into the biological roles of these proteins in plants. The work includes a comparative analysis with the human proteome to highlight the differential use of disorder in both species. Results show that while human proteins are in general more disordered, certain functional classes, mainly related to environmental response, are significantly more enriched in disorder in Arabidopsis. We propose that because plants cannot escape from environmental conditions as animals do, they use disorder as a simple and fast mechanism, independent of transcriptional control, for introducing versatility in the interaction networks underlying these biological processes so that they can quickly adapt and respond to challenging environmental conditions.

  14. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  15. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  16. Changes in predicted protein disorder tendency may contribute to disease risk

    Directory of Open Access Journals (Sweden)

    Hu Yang

    2011-12-01

    Full Text Available Abstract Background Recent studies suggest that many proteins or regions of proteins lack 3D structure. Defined as intrinsically disordered proteins, these proteins/peptides are functionally important. Recent advances in next generation sequencing technologies enable genome-wide identification of novel nucleotide variations in a specific population or cohort. Results Using the exonic single nucleotide variations (SNVs identified in the 1,000 Genomes Project and distributed by the Genetic Analysis Workshop 17, we systematically analysed the genetic and predicted disorder potential features of the non-synonymous variations. The result of experiments suggests that a significant change in the tendency of a protein region to be structured or disordered caused by SNVs may lead to malfunction of such a protein and contribute to disease risk. Conclusions After validation with functional SNVs on the traits distributed by GAW17, we conclude that it is valuable to consider structure/disorder tendencies while prioritizing and predicting mechanistic effects arising from novel genetic variations.

  17. Comparative Genomics and Disorder Prediction Identify Biologically Relevant SH3 Protein Interactions.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  18. Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2005-08-01

    Full Text Available Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that diverged very recently from Saccharomyces cerevisiae(S. mikatae, S. bayanus, and S. paradoxus, or a long time ago (Neurospora crassa and Schizosaccharomyces pombe, contain less information for accurate prediction of SH3 targets than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.

  19. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  20. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  1. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    Science.gov (United States)

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  2. The Role of Intrinsic Brain Functional Connectivity in Vulnerability and Resilience to Bipolar Disorder.

    Science.gov (United States)

    Doucet, Gaelle E; Bassett, Danielle S; Yao, Nailin; Glahn, David C; Frangou, Sophia

    2017-12-01

    Bipolar disorder is a heritable disorder characterized by mood dysregulation associated with brain functional dysconnectivity. Previous research has focused on the detection of risk- and disease-associated dysconnectivity in individuals with bipolar disorder and their first-degree relatives. The present study seeks to identify adaptive brain connectivity features associated with resilience, defined here as avoidance of illness or delayed illness onset in unaffected siblings of patients with bipolar disorder. Graph theoretical methods were used to examine global and regional brain network topology in head-motion-corrected resting-state functional MRI data acquired from 78 patients with bipolar disorder, 64 unaffected siblings, and 41 healthy volunteers. Global network properties were preserved in patients and their siblings while both groups showed reductions in the cohesiveness of the sensorimotor network. In the patient group, these sensorimotor network abnormalities were coupled with reduced integration of core default mode network regions in the ventromedial cortex and hippocampus. Conversely, integration of the default mode network was increased in the sibling group compared with both the patient group and the healthy volunteer group. The authors found that trait-related vulnerability to bipolar disorder was associated with reduced resting-state cohesiveness of the sensorimotor network in patients with bipolar disorder. However, integration of the default mode network emerged as a key feature differentiating disease expression and resilience between the patients and their siblings. This is indicative of the presence of neural mechanisms that may promote resilience, or at least delay illness onset.

  3. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    Science.gov (United States)

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  4. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, D.K F; Molema, Ingrid; Moolenaar, Frits; de Zeeuw, D; Swart, P.J

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain

  5. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    Science.gov (United States)

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. The Human Cytomegalovirus Major Immediate-Early Proteins as Antagonists of Intrinsic and Innate Antiviral Host Responses

    Directory of Open Access Journals (Sweden)

    Michael Nevels

    2009-11-01

    Full Text Available The major immediate-early (IE gene of human cytomegalovirus (CMV is believed to have a decisive role in acute infection and its activity is an important indicator of viral reactivation from latency. Although a variety of gene products are expressed from this region, the 72-kDa IE1 and the 86-kDa IE2 nuclear phosphoproteins are the most abundant and important. Both proteins have long been recognized as promiscuous transcriptional regulators. More recently, a critical role of the IE1 and IE2 proteins in counteracting nonadaptive host cell defense mechanisms has been revealed. In this review we will briefly summarize the available literature on IE1- and IE2-dependent mechanisms contributing to CMV evasion from intrinsic and innate immune responses.

  7. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  8. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  9. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-01-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs III ) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs III induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs III in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs III can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  10. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Numerous studies have demonstrated the higher-order functions of the cerebellum, including emotion regulation and cognitive processing, and have indicated that the cerebellum should therefore be included in the pathophysiological models of major depressive disorder. The aim of this study was to compare the resting-state functional connectivity of the cerebellum in adults with major depression and healthy controls. METHODS: Twenty adults with major depression and 20 gender-, age-, and education-matched controls were investigated using seed-based resting-state functional connectivity magnetic resonance imaging. RESULTS: Compared with the controls, depressed patients showed significantly increased functional connectivity between the cerebellum and the temporal poles. However, significantly reduced cerebellar functional connectivity was observed in the patient group in relation to both the default-mode network, mainly including the ventromedial prefrontal cortex and the posterior cingulate cortex/precuneus, and the executive control network, mainly including the superior frontal cortex and orbitofrontal cortex. Moreover, the Hamilton Depression Rating Scale score was negatively correlated with the functional connectivity between the bilateral Lobule VIIb and the right superior frontal gyrus in depressed patients. CONCLUSIONS: This study demonstrated increased cerebellar coupling with the temporal poles and reduced coupling with the regions in the default-mode and executive control networks in adults with major depression. These differences between patients and controls could be associated with the emotional disturbances and cognitive control function deficits that accompany major depression. Aberrant cerebellar connectivity during major depression may also imply a substantial role for the cerebellum in the pathophysiological models of depression.

  11. Intrinsic alterations in the partial molar volume on the protein denaturation: surficial Kirkwood-Buff approach.

    Science.gov (United States)

    Yu, Isseki; Takayanagi, Masayoshi; Nagaoka, Masataka

    2009-03-19

    The partial molar volume (PMV) of the protein chymotrypsin inhibitor 2 (CI2) was calculated by all-atom MD simulation. Denatured CI2 showed almost the same average PMV value as that of native CI2. This is consistent with the phenomenological question of the protein volume paradox. Furthermore, using the surficial Kirkwood-Buff approach, spatial distributions of PMV were analyzed as a function of the distance from the CI2 surface. The profiles of the new R-dependent PMV indicate that, in denatured CI2, the reduction in the solvent electrostatic interaction volume is canceled out mainly by an increment in thermal volume in the vicinity of its surface. In addition, the PMV of the denatured CI2 was found to increase in the region in which the number density of water atoms is minimum. These results provide a direct and detailed picture of the mechanism of the protein volume paradox suggested by Chalikian et al.

  12. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  13. Human Immunodeficiency Virus-Type 1 LTR DNA contains an intrinsic gene producing antisense RNA and protein products

    Directory of Open Access Journals (Sweden)

    Hsiao Chiu-Bin

    2006-11-01

    Full Text Available Abstract Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1 long terminal repeat (LTR. Results Inspection of published sequences revealed a potential transcription initiator element (INR situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The

  14. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement.

    Science.gov (United States)

    Fisher, Patrick D Ellis; Shen, Qi; Akpinar, Bernice; Davis, Luke K; Chung, Kenny Kwok Hin; Baddeley, David; Šarić, Anđela; Melia, Thomas J; Hoogenboom, Bart W; Lin, Chenxiang; Lusk, C Patrick

    2018-02-27

    Nuclear pore complexes (NPCs) form gateways that control molecular exchange between the nucleus and the cytoplasm. They impose a diffusion barrier to macromolecules and enable the selective transport of nuclear transport receptors with bound cargo. The underlying mechanisms that establish these permeability properties remain to be fully elucidated but require unstructured nuclear pore proteins rich in Phe-Gly (FG)-repeat domains of different types, such as FxFG and GLFG. While physical modeling and in vitro approaches have provided a framework for explaining how the FG network contributes to the barrier and transport properties of the NPC, it remains unknown whether the number and/or the spatial positioning of different FG-domains along a cylindrical, ∼40 nm diameter transport channel contributes to their collective properties and function. To begin to answer these questions, we have used DNA origami to build a cylinder that mimics the dimensions of the central transport channel and can house a specified number of FG-domains at specific positions with easily tunable design parameters, such as grafting density and topology. We find the overall morphology of the FG-domain assemblies to be dependent on their chemical composition, determined by the type and density of FG-repeat, and on their architectural confinement provided by the DNA cylinder, largely consistent with here presented molecular dynamics simulations based on a coarse-grained polymer model. In addition, high-speed atomic force microscopy reveals local and reversible FG-domain condensation that transiently occludes the lumen of the DNA central channel mimics, suggestive of how the NPC might establish its permeability properties.

  15. On the interaction between intrinsic proteins and phosphatidylglycerol in the membrane of Acholeplasma laidlawii

    NARCIS (Netherlands)

    Bevers, E.M.; Wang, H.H.; Kamp, J.A.F. op den; Deenen, L.L.M. van

    1979-01-01

    About 30% of the phosphatidylglycerol in oleic acid-enriched Acholeplasma laidlawii membranes are not hydrolyzed at temperatures below 10 °C by phospholipase A2 from porcine pancreas. Removal of 53% of the membrane proteins by proteolysis did not reduce the size of this inaccessible

  16. Predicting clinical symptoms of attention deficit hyperactivity disorder based on temporal patterns between and within intrinsic connectivity networks.

    Science.gov (United States)

    Wang, Xun-Heng; Jiao, Yun; Li, Lihua

    2017-10-24

    Attention deficit hyperactivity disorder (ADHD) is a common brain disorder with high prevalence in school-age children. Previously developed machine learning-based methods have discriminated patients with ADHD from normal controls by providing label information of the disease for individuals. Inattention and impulsivity are the two most significant clinical symptoms of ADHD. However, predicting clinical symptoms (i.e., inattention and impulsivity) is a challenging task based on neuroimaging data. The goal of this study is twofold: to build predictive models for clinical symptoms of ADHD based on resting-state fMRI and to mine brain networks for predictive patterns of inattention and impulsivity. To achieve this goal, a cohort of 74 boys with ADHD and a cohort of 69 age-matched normal controls were recruited from the ADHD-200 Consortium. Both structural and resting-state fMRI images were obtained for each participant. Temporal patterns between and within intrinsic connectivity networks (ICNs) were applied as raw features in the predictive models. Specifically, sample entropy was taken asan intra-ICN feature, and phase synchronization (PS) was used asan inter-ICN feature. The predictive models were based on the least absolute shrinkage and selectionator operator (LASSO) algorithm. The performance of the predictive model for inattention is r=0.79 (p<10 -8 ), and the performance of the predictive model for impulsivity is r=0.48 (p<10 -8 ). The ICN-related predictive patterns may provide valuable information for investigating the brain network mechanisms of ADHD. In summary, the predictive models for clinical symptoms could be beneficial for personalizing ADHD medications. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  18. Mitochondrial Dysfunction in Protein Conformational Disorders

    Indian Academy of Sciences (India)

    EstherShlomi

    protein misfolding of α-synuclein involves conformational changes in the protein .... upon association with a membrane surface its can adopt a helical form with an 11/3 ... case of α-synuclein electrostatic interactions exist between positively ...

  19. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions

    Directory of Open Access Journals (Sweden)

    Daisy W. Leung

    2015-04-01

    Full Text Available During viral RNA synthesis, Ebola virus (EBOV nucleoprotein (NP alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48 that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

  20. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

    Science.gov (United States)

    Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K

    2015-04-21

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  2. Protein misfolding disorders: pathogenesis and intervention

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2006-01-01

    of the functional structure of cellular proteins. Aberrant proteins, the result of production errors, inherited or acquired amino acid substitutions or damage, especially oxidative modifications, can in many cases not fold correctly and will be trapped in misfolded conformations. To rid the cell of misfolded...... be accompanied by a gain-of-function pathogenesis, which in many cases determines the pathological and clinical features. Examples are Parkinson and Huntington diseases. Although a number of strategies have been tried to decrease the amounts of accumulated and aggregated proteins, a likely future strategy seems......Newly synthesized proteins in the living cell must go through a folding process to attain their functional structure. To achieve this in an efficient fashion, all organisms, including humans, have evolved a large set of molecular chaperones that assist the folding as well as the maintenance...

  3. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype.

    Science.gov (United States)

    Forrest, Kerrie L; Bhave, Mrinal

    2007-10-01

    The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant-water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

  4. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles

    Science.gov (United States)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Holehouse, Alex S.; Chen, Carlos Chih-Hsiung; Feric, Marina; Arnold, Craig B.; Priestley, Rodney D.; Pappu, Rohit V.; Brangwynne, Clifford P.

    2017-11-01

    Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including 'high concentration' binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of ∼3-8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

  5. Digested disorder

    Science.gov (United States)

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a series of reader’s digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28516028

  6. Digested disorder

    Science.gov (United States)

    Reddy, Krishna D; DeForte, Shelly; Uversky, Vladimir N

    2014-01-01

    The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a new issue of reader’s digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28232877

  7. Assembly of the intrinsic factor domains and oligomerization of the protein in the presence of cobalamin

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Fedosova, Natalya U; Berglund, Lars

    2004-01-01

    oligomerized. A mixture of two fragments IF(30) + IF(20) and Cbl produced a firm complex, IF(30+20).Cbl, which could not associate to dimers. In contrast to IF(30+20).Cbl, the saturated full-length monomers IF(50).Cbl dimerized with K(d) approximately 1 microM. We suggest a two-domain organization of the full......-length protein, where two distant units, IF(30) and IF(20), can be assembled only by Cbl. They are connected by a protease-sensitive link, whose native structure is likely to be important for dimerization. However, linkage between two domains is not compulsory for Cbl binding. Advantages of the two...

  8. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wang, Xun-Heng; Li, Lihua

    2015-01-01

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  9. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun-Heng, E-mail: xhwang@hdu.edu.cn [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Li, Lihua [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-05-15

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  10. Intrinsic Motivation as a Mediator of Relationships Between Symptoms and Functioning Among Individuals With Schizophrenia Spectrum Disorders in a Diverse Urban Community

    OpenAIRE

    Yamada, Ann-Marie; Lee, Karen K.; Dinh, Tam Q.; Barrio, Concepción; Brekke, John S.

    2010-01-01

    This study investigated intrinsic motivation as a mediator of the relationship between clinical symptoms and functioning. The mediation model was tested with a sample of 166 adults with schizophrenia spectrum disorders attending psychosocial rehabilitation programs in a diverse urban community. Ethnic minority status was examined as a moderator of the mediation model. Motivation was measured using items reflecting intrapsychic drive. Symptoms were assessed with the expanded Brief Psychiatric ...

  11. A glycosylated form of the human cardiac hormone pro B-type natriuretic peptide is an intrinsically unstructured monomeric protein.

    Science.gov (United States)

    Crimmins, Dan L; Kao, Jeffrey L-F

    2008-07-01

    The N-terminal fragment of pro B-type natriuretic peptide (NT-proBNP) and proBNP are used as gold standard clinical markers of myocardial dysfunction such as cardiac hypertrophy and left ventricle heart failure. The actual circulating molecular forms of these peptides have been the subject of intense investigation particularly since these analytes are measured in clinical assays. Conflicting data has been reported and no firm consensus on the exact nature of the molecular species exists. Because these clinical assays are immunoassay-based, specific epitopes are detected. It is conceivable then that certain epitopes may be masked and therefore unavailable for antibody binding, thus the importance of determining the nature of the circulating molecular forms of these analytes. This situation is an unavoidable Achilles' heel of immunoassays in general. A recombinant O-linked glycosylated form of proBNP has been show to mimic some of the properties of extracted plasma from a heart failure patient. In particular the recombinant and native material co-migrated as diffuse Western-immunostained bands on SDS-PAGE and each band collapsed to an apparent homogeneous band following deglycosylation. Thus, glycosylated-proBNP may be one such circulating form. Here we provide extensive physiochemical characterization for this O-linked protein and compare these results to other described circulating species, non-glycosylated-proBNP and NT-proBNP. It will be shown that glycosylation has no influence on the secondary and quaternary structure of proBNP. In fact, at moderate concentration in benign physiological neutral pH buffer, all three likely circulating species are essentially devoid of major secondary structure, i.e., are intrinsically unstructured proteins (IUPs). Furthermore, all three proteins exist as monomers in solution. These results may have important implications in the design of NT-proBNP/BNP immunoassays.

  12. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    Science.gov (United States)

    Kadamur, Ganesh

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  13. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    Science.gov (United States)

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.

    Science.gov (United States)

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M; Meier, Elizabeth L; Casey Huang, Kerwyn; Goley, Erin D

    2015-06-23

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL; however, cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wild type. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment.

  15. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  16. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  17. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    International Nuclear Information System (INIS)

    Fritzsching, Keith J.; Hong, Mei; Schmidt-Rohr, Klaus

    2016-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ( 13 C– 13 C, 15 N– 13 C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13 C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13 C NMR data and almost all 15 N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13 C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a

  18. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  19. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology...

  20. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions

    International Nuclear Information System (INIS)

    Gil, S.; Kummerle, S.; Hosek, T.; Pierattelli, R.; Felli, I.C.; Solyom, Z.; Brutscher, B.

    2013-01-01

    We have shown here that 13 C-start 13 -C detected experiments do not suffer from fast hydrogen exchange between amide and solvent protons in IDP samples studied at close to physiological conditions, thus enabling us to recover information that would be difficult or even impossible to obtain through amide 1 H-detected experiments. Furthermore, in favourable cases the fast hydrogen exchange rates can even be turned into a spectroscopic advantage. By combining longitudinal 1 H relaxation optimized BEST-type techniques with 13 C-direct detection pulse schemes, important sensitivity improvements can be achieved, and experimental times can be significantly reduced. This opens up new applications for monitoring chemical shift changes in IDPs upon interaction to a binding partner, chemical modification, or by changing the environment, under sample conditions that were inaccessible by conventional techniques. (authors)

  1. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Špoutil, František; Osičková, Adriana; Procházková, Michaela; Benada, Oldřich; Kašpárek, Petr; Bumba, Ladislav; Klein, O. D.; Sedláček, Radislav; Šebo, Peter; Procházka, Jan; Osička, Radim

    2017-01-01

    Roč. 114, č. 9 (2017), s. 1641-1650 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LM2015064; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LM2015040; GA MŠk(CZ) LO1509; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk ED2.1.00/19.0395 Grant - others:Ministerstvo pro místní rozvoj(CZ) CZ2.16/3.1.00/24023 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : ameloblastin * amelogenin * biomineralization Subject RIV: EE - Microbiology, Virology; EB - Genetics ; Molecular Biology (UMG-J) OBOR OECD: Microbiology; Microbiology (UMG-J) Impact factor: 9.661, year: 2016

  2. Structural disorder in proteins of the rhabdoviridae replication complex.

    Science.gov (United States)

    Leyrat, Cédric; Gérard, Francine C A; de Almeida Ribeiro, Euripedes; Ivanov, Ivan; Ruigrok, Rob W H; Jamin, Marc

    2010-08-01

    Rhabdoviridae are single stranded negative sense RNA viruses. The viral RNA condensed by the nucleoprotein (N), the phosphoprotein (P) and the large subunit (L) of the RNA-dependent RNA polymerase are the viral components of the transcription/replication machineries. Both P and N contain intrinsically disordered regions (IDRs) that play different roles in the virus life cycle. Here, we describe the modular organization of P based on recent structural, biophysical and bioinformatics data. We show how flexible loops in N participate in the attachment of P to the N-RNA template by an induced-fit mechanism. Finally, we discuss the roles of IDRs in the mechanism of replication/transcription, and propose a new model for the interaction of the L subunit with its N-RNA template.

  3. DIBS: a repository of disordered binding sites mediating interactions with ordered proteins.

    Science.gov (United States)

    Schad, Eva; Fichó, Erzsébet; Pancsa, Rita; Simon, István; Dosztányi, Zsuzsanna; Mészáros, Bálint

    2018-02-01

    Intrinsically Disordered Proteins (IDPs) mediate crucial protein-protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP-mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post-translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. dosztanyi@caesar.elte.hu or bmeszaros@caesar.elte.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  4. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    Directory of Open Access Journals (Sweden)

    Linghong Lu

    2018-04-01

    Full Text Available Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.

  5. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    Science.gov (United States)

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  6. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  7. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  8. Rotational order–disorder structure of fluorescent protein FP480

    International Nuclear Information System (INIS)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-01-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate

  9. May disordered protein cause serious drug side effect?

    Science.gov (United States)

    Tou, Weng Ieong; Chen, Calvin Yu-Chian

    2014-04-01

    Insomnia is a self-reported disease where patients lose their ability to initiate and maintain sleep, leading to daytime performance impairment. Several drug targets to ameliorate insomnia symptoms have been discovered; however, these drug targets lead to serious side effects. Thus, we characterize the structural properties of these sleep-related receptors and the clock complex and discuss a possible drug design that will reduce side effects. Computational prediction shows that disordered property is shared. Over 30% of the structure of CLOCK, PER1/2/3, BMAL-1, muscarinic acetylcholine receptor-M1, melatonin receptor and casein kinase I are structurally disordered (the remaining proteins represent insomnia drugs might be closely related to the protein architecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Intrinsic Motivation.

    Science.gov (United States)

    Deci, Edward L.

    The paper draws together a wide variety of research which relates to the topic of intrinsic motivation; intrinsically motivated activities are defined as those which a person does for no apparent reward except the activity itself or the feelings which result from the activity. Most of this research was not originally reported within the framework…

  11. Synaptic proteins and receptors defects in autism spectrum disorders

    OpenAIRE

    Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong

    2014-01-01

    Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95), SH3 and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin (CDH) and protocadherin (PCDH), thousand-and-one-amino acid 2 kinase (TAOK2), and conta...

  12. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    Science.gov (United States)

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  13. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  14. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins

    NARCIS (Netherlands)

    Cummings, Jeffrey; Zelcer, Noam; Allen, John D.; Yao, Denggao; Boyd, Gary; Maliepaard, Mark; Friedberg, Thomas H.; Smyth, John F.; Jodrell, Duncan I.

    2004-01-01

    We have recently shown that drug conjugation catalysed by UDP-glucuronosyltransferases (UGTs) functions as an intrinsic mechanism of resistance to the topoisomerase I inhibitors 7-ethyl-10-hydroxycamptothecin and NU/ICRF 505 in human colon cancer cells and now report on the role of drug transport in

  15. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  16. Submission to GenBank of the Plasma membrane intrinsic protein (PIP) Subfamily in Cotton – GenBank Accession No. GU998827-GU998830 and GenBank Accession TPA;inferential No. BK007045-BK007052

    Science.gov (United States)

    The plasma membrane intrinsic proteins (PIP) are one of the five aquaporin protein subfamilies. Aquaporin proteins are known to facilitate water transport through biological membranes. In order to identify NIP aquaporin gene candidates in cotton (Gossypium hirsutum L.), in silico and molecular clon...

  17. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  18. BQP35 is a novel member of the intrinsically unstructured protein (IUP) family which is a potential antigen for the sero-diagnosis of Babesia sp. BQ1 (Lintan) infection.

    Science.gov (United States)

    Guan, Guiquan; Moreau, Emmanuelle; Liu, Junlong; Ma, Miling; Rogniaux, Hélène; Liu, Aihong; Niu, Qingli; Li, Youquan; Ren, Qiaoyun; Luo, Jianxun; Chauvin, Alain; Yin, Hong

    2012-07-06

    A new gene of Babesia sp. BQ1 (Lintan) (BQP35) was cloned by screening a merozoite cDNA expression library with infected sheep serum and using rapid amplification of cDNA ends (RACE). The nucleotide sequence of the cDNA was 1140bp with an open reading frame (ORF) of 936bp encoding a 35-kDa predicted polypeptide with 311 amino acid residues. Comparison of BQP35 cDNA and genomic DNA sequences showed that BQP35 does not possess an intron. Recombinant BQP35 (rBQP35), expressed in a prokaryotic expression system, showed abnormally slow migration on SDS-PAGE. Gel shifting, amino acid sequence and in silico disorder region prediction indicated that BQP35 protein has characteristics of intrinsically unstructured proteins (IUPs). This is the first description of such proteins in the Babesia genus. BQP35 induced antibodies production as early as one week after Babesia sp. BQ1 (Lintan) infection in sheep. No cross-reaction was observed with sera from sheep infected with other ovine piroplasms dominant in China, except with Babesia sp. Tianzhu. The interest of BQP35 as a diagnostic antigen is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The force-sensing device region of α-catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form.

    Science.gov (United States)

    Hirano, Yoshinori; Amano, Yu; Yonemura, Shigenobu; Hakoshima, Toshio

    2018-05-01

    Mechanotransduction by α-catenin facilitates the force-dependent development of adherens junctions (AJs) by recruiting vinculin to reinforce actin anchoring of AJs. The α-catenin mechanotransducing action is facilitated by its force-sensing device region that autoinhibits the vinculin-binding site 1 (VBS1). Here, we report the high-resolution structure of the force-sensing device region of α-catenin, which shows the autoinhibited form comprised of helix bundles E, F and G. The cryptic VBS1 is embedded into helix bundle E stabilized by direct interactions with the autoinhibitory region forming helix bundles F and G. Our molecular dissection study showed that helix bundles F and G are stable in solution in each isolated form, whereas helix bundle E that contains VBS1 is unstable and intrinsically disordered in solution in the isolated form. We successfully identified key residues mediating the autoinhibition and produced mutated α-catenins that display variable force sensitivity and autoinhibition. Using these mutants, we demonstrate both in vitro and in vivo that, in the absence of this stabilization, the helix bundle containing VBS1 would adopt an unfolded form, thus exposing VBS for vinculin binding. We provide evidence for importance of mechanotransduction with the intrinsic force sensitivity for vinculin recruitment to adherens junctions of epithelial cell sheets with mutated α-catenins. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Identifying Residual Structure in Intrinsically Disordered Systems : A 2D IR Spectroscopic Study of the GVGXPGVG Peptide

    NARCIS (Netherlands)

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  1. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    NARCIS (Netherlands)

    Lessing, J.; Roy, S.; Reppert, M.; Baer, M.; Marx, D.; Jansen, T.L.Th.A.; Knoester, J.; Tokmakoff, A.

    2012-01-01

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides.

  2. Intrinsic motivation as a mediator of relationships between symptoms and functioning among individuals with schizophrenia spectrum disorders in a diverse urban community.

    Science.gov (United States)

    Yamada, Ann-Marie; Lee, Karen K; Dinh, Tam Q; Barrio, Concepción; Brekke, John S

    2010-01-01

    This study investigated intrinsic motivation as a mediator of the relationship between clinical symptoms and functioning. The mediation model was tested with a sample of 166 adults with schizophrenia spectrum disorders attending psychosocial rehabilitation programs in a diverse urban community. Ethnic minority status was examined as a moderator of the mediation model. Motivation was measured using items reflecting intrapsychic drive. Symptoms were assessed with the expanded Brief Psychiatric Rating Scale and functioning with the Role Functioning Scale. Motivation was a significant mediator of the relationship between functioning and all symptom scores; fully mediating the relationship between functioning and negative, disorganized, and global symptoms, and partially mediating the relationship between positive symptoms and functioning. Motivation scores between ethnic minority and nonminority individuals differed significantly (p moderation effect was indicated. The strong mediation effect schizophrenia of motivation on the symptoms-functioning relationship supports future work to translate findings into effective recovery-oriented services.

  3. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    International Nuclear Information System (INIS)

    De Santis, E; Minicozzi, V; Morante, S; Rossi, G C; Stellato, F

    2016-01-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed. (paper)

  4. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    Science.gov (United States)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  5. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    OpenAIRE

    Kadamur, Ganesh; Ross, Elliott M.

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in...

  6. The Intrinsically Disordered Domain of the Antitoxin Phd Chaperones the Toxin Doc against Irreversible Inactivation and Misfolding*

    Science.gov (United States)

    De Gieter, Steven; Konijnenberg, Albert; Talavera, Ariel; Butterer, Annika; Haesaerts, Sarah; De Greve, Henri; Sobott, Frank; Loris, Remy; Garcia-Pino, Abel

    2014-01-01

    The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site. PMID:25326388

  7. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.).

    Science.gov (United States)

    Martins, Cristina de Paula Santos; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G; Costa, Marcio Gilberto Cardoso

    2015-01-01

    The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.

  8. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb..

    Directory of Open Access Journals (Sweden)

    Cristina de Paula Santos Martins

    Full Text Available The family of aquaporins (AQPs, or major intrinsic proteins (MIPs, includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs, tonoplast (TIPs, NOD26-like (NIPs, small basic (SIPs and unclassified X (XIPs intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb., the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.

  9. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding.

    Science.gov (United States)

    De Gieter, Steven; Konijnenberg, Albert; Talavera, Ariel; Butterer, Annika; Haesaerts, Sarah; De Greve, Henri; Sobott, Frank; Loris, Remy; Garcia-Pino, Abel

    2014-12-05

    The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19 F MRI Agents.

    Science.gov (United States)

    Kirberger, Steven E; Maltseva, Sofia D; Manulik, Joseph C; Einstein, Samuel A; Weegman, Bradley P; Garwood, Michael; Pomerantz, William C K

    2017-06-01

    19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Insights into Unfolded Proteins from the Intrinsic phi/psi Propensities of the AAXAA Host-Guest Series

    Czech Academy of Sciences Publication Activity Database

    Towse, C. L.; Vymětal, Jiří; Vondrášek, Jiří; Daggett, V.

    2016-01-01

    Roč. 110, č. 2 (2016), s. 348-361 ISSN 0006-3495 R&D Projects: GA MŠk(CZ) LH11020 Institutional support: RVO:61388963 Keywords : polyproline-II helix * beta-sheet protein * random-coil behavior Subject RIV: BO - Biophysics Impact factor: 3.656, year: 2016

  12. Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Atkins

    2015-08-01

    Full Text Available The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.

  13. Vitamin B12 Phosphate Conjugation and Its Effect on Binding to the Human B12 -Binding Proteins Intrinsic Factor and Haptocorrin

    DEFF Research Database (Denmark)

    Ó Proinsias, Keith; Ociepa, Michał; Pluta, Katarzyna

    2016-01-01

    The binding of vitamin B12 derivatives to human B12 transporter proteins is strongly influenced by the type and site of modification of the cobalamin original structure. We have prepared the first cobalamin derivative modified at the phosphate moiety. The reaction conditions were fully optimized...... and its limitations examined. The resulting derivatives, particularly those bearing terminal alkyne and azide groups, were isolated and used in copper-catalyzed alkyne-azide cycloaddition reactions (CuAAC). Their sensitivity towards light revealed their potential as photocleavable molecules. The binding...... abilities of selected derivatives were examined and compared with cyanocobalamin. The interaction of the alkylated derivatives with haptocorrin was less affected than the interaction with intrinsic factor. Furthermore, the configuration of the phosphate moiety was irrelevant to the binding process....

  14. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  16. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  17. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients' responsiveness to lithium.

    Science.gov (United States)

    Stern, S; Santos, R; Marchetto, M C; Mendes, A P D; Rouleau, G A; Biesmans, S; Wang, Q-W; Yao, J; Charnay, P; Bang, A G; Alda, M; Gage, F H

    2017-02-28

    Bipolar disorder (BD) is a progressive psychiatric disorder with more than 3% prevalence worldwide. Affected individuals experience recurrent episodes of depression and mania, disrupting normal life and increasing the risk of suicide greatly. The complexity and genetic heterogeneity of psychiatric disorders have challenged the development of animal and cellular models. We recently reported that hippocampal dentate gyrus (DG) neurons differentiated from induced pluripotent stem cell (iPSC)-derived fibroblasts of BD patients are electrophysiologically hyperexcitable. Here we used iPSCs derived from Epstein-Barr virus-immortalized B-lymphocytes to verify that the hyperexcitability of DG-like neurons is reproduced in this different cohort of patients and cells. Lymphocytes are readily available for research with a large number of banked lines with associated patient clinical description. We used whole-cell patch-clamp recordings of over 460 neurons to characterize neurons derived from control individuals and BD patients. Extensive functional analysis showed that intrinsic cell parameters are very different between the two groups of BD neurons, those derived from lithium (Li)-responsive (LR) patients and those derived from Li-non-responsive (NR) patients, which led us to partition our BD neurons into two sub-populations of cells and suggested two different subdisorders. Training a Naïve Bayes classifier with the electrophysiological features of patients whose responses to Li are known allows for accurate classification with more than 92% success rate for a new patient whose response to Li is unknown. Despite their very different functional profiles, both populations of neurons share a large, fast after-hyperpolarization (AHP). We therefore suggest that the large, fast AHP is a key feature of BD and a main contributor to the fast, sustained spiking abilities of BD neurons. Confirming our previous report with fibroblast-derived DG neurons, chronic Li treatment reduced

  18. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    Science.gov (United States)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  19. [Effects of redox state of disulfide bonds on the intrinsic fluorescence and denaturation of Trx-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea].

    Science.gov (United States)

    Zhang, Teng; Feng, Juan; Li, Yang; Chen, Rui; Tang, Li-Xia; Pang, Xiao-Feng; Ren, Zheng-Long

    2010-02-01

    In the present paper, thioredoxin-fused gibberellin-induced cysteine-rich protein from Gymnadnia conopsea, desigated as Trx-GcGASA and expressed prokaryotically, was purified and identified by using Ni(2+) -NTA affinity chromatography column and SDS-PAGE, and then its intrinsic fluorescence was investigated in the absence and presence of dithiothreitol (DTT), oxidized glutathione (GSSG), peroxide and guanidine hydrochloride (GdnHCl) by means of steady-state fluorescence spectroscopic methods. It was found that (1) at the neutral pH Trx-GcGASA had maximum fluorescence emission at 305 nm following excitation at different wavelengths varying from 250 to 280 nm, which was ascribed to the fluorescence emission from tyrosine residues. (2) The reduction of disulphide bonds lead to the changes in the relative fluorescence intensity between tyrosine and tryptophan residues from 0.7 to 1.8. (3) Both Tyr and Trp residues underwent 12%-21% decrease in fluorescence intensity with the addition of 0.5 mmol x L(-1) GSSG or 5 mmol x L(-1) peroxide. The latter was roughly consistent with the antioxidative activity reported in vivo. (4) No matter whether 1 mmol x L(-1) DTT was absent or present, the fusion protein could not be fully unfolded with lambda(max) Trx-GcGASA experienced GdnHCl-induced denaturation process, and the unfolding equilibrium curve could be well fitted by using two-state model, giving the Gibbs free energy change (deltaG) of 3.7 kJ x mol(-1). However, it was not the case for reduced Trx-GcGASA protein. The aforementioned experimental results will not only provide some guides to investigate the effects of fusion partner Trx on the unfolding thermodynamics, kinetics and refolding process of Trx-GcGASA, but also will be useful for further studies on the strucuture of GA-induced cysteine-rich protein with the help of spectroscopic methods.

  20. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecí lia; Alexandre, Bruno M.; Rosa, Margarida T.G.; Sapeta, Helena; Leitã o, Antó nio E.; Ramalho, José C.; Lam, TuKiet T.; Negrã o, Só nia; Abreu, Isabel A.; Oliveira, M. Margarida

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here

  1. The Tudor domain protein Spindlin1 is involved in intrinsic antiviral defense against incoming hepatitis B Virus and herpes simplex virus type 1.

    Directory of Open Access Journals (Sweden)

    Aurélie Ducroux

    2014-09-01

    Full Text Available Hepatitis B virus infection (HBV is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infection. Here we identified Spindlin1, a cellular Tudor-domain protein, as an HBx interacting partner. We further demonstrated that Spindlin1 is recruited to the cccDNA and inhibits its transcription in the context of infection. Spindlin1 knockdown induced an increase in HBV transcription and in histone H4K4 trimethylation at the cccDNA, suggesting that Spindlin1 impacts on epigenetic regulation. Spindlin1-induced transcriptional inhibition was greater for the HBV virus deficient for the expression of HBx than for the HBV WT virus, suggesting that HBx counteracts Spindlin1 repression. Importantly, we showed that the repressive role of Spindlin1 is not limited to HBV transcription but also extends to other DNA virus that replicate within the nucleus such as Herpes Simplex Virus type 1 (HSV-1. Taken together our results identify Spindlin1 as a critical component of the intrinsic antiviral defense and shed new light on the function of HBx in HBV infection.

  2. In vitro assembly into virus-like particles is an intrinsic quality of Pichia pastoris derived HCV core protein

    International Nuclear Information System (INIS)

    Acosta-Rivero, Nelson; Rodriguez, Armando; Musacchio, Alexis; Falcon, Viviana; Suarez, Viana M.; Martinez, Gillian; Guerra, Ivis; Paz-Lago, Dalila; Morera, Yanelys; Rosa, Maria C. de la; Morales-Grillo, Juan; Duenas-Carrera, Santiago

    2004-01-01

    Different variants of hepatitis C virus core protein (HCcAg) have proved to self-assemble in vitro into virus-like particles (VLPs). However, difficulties in obtaining purified mature HCcAg have limited these studies. In this study, a high degree of monomeric HCcAg purification was accomplished using chromatographic procedures under denaturing conditions. Size exclusion chromatography and sucrose density gradient centrifugation of renatured HCcAg (in the absence of structured RNA) under reducing conditions suggested that it assembled into empty capsids. The electron microscopy analysis of renatured HCcAg showed the presence of spherical VLPs with irregular shapes and an average diameter of 35 nm. Data indicated that HCcAg monomers assembled in vitro into VLPs in the absence of structured RNA, suggesting that recombinant HCcAg used in this work contains all the information necessary for the assembly process. However, they also suggest that some cellular factors might be required for the proper in vitro assembly of capsids

  3. Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains

    Energy Technology Data Exchange (ETDEWEB)

    Galzitskaya, Oxana V; Garbuzynskiy, Sergiy O; Lobanov, Michail Yu [Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region (Russian Federation)

    2007-07-18

    The determination of factors that influence conformational changes in proteins is very important for the identification of potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter, mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown that regions with strong expected packing density are responsible for amyloid formation. Our predictions are consistent with known disease-related amyloidogenic regions for 9 of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept that the mechanism of formation of amyloid fibrils is similar for different peptides and proteins. Moreover, we have demonstrated that regions with weak expected packing density are responsible for the appearance of disordered regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing density is a useful value for predicting both disordered and amyloidogenic regions of a protein based on sequence alone. Our results are important for understanding the structural characteristics of protein folding and misfolding.

  4. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.

    Science.gov (United States)

    Sanz-Hernández, Máximo; De Simone, Alfonso

    2017-11-01

    The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.

  5. Assessment of protein disorder region predictions in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan; Kryshtafovych, Andriy; Moult, John; Tramontano, Anna; Fidelis, Krzysztof

    2013-01-01

    The article presents the assessment of disorder region predictions submitted to CASP10. The evaluation is based on the three measures tested in previous CASPs: (i) balanced accuracy, (ii) the Matthews correlation coefficient for the binary predictions, and (iii) the area under the curve in the receiver operating characteristic (ROC) analysis of predictions using probability annotation. We also performed new analyses such as comparison of the submitted predictions with those obtained with a Naïve disorder prediction method and with predictions from the disorder prediction databases D2P2 and MobiDB. On average, the methods participating in CASP10 demonstrated slightly better performance than those in CASP9.

  6. Assessment of protein disorder region predictions in CASP10

    KAUST Repository

    Monastyrskyy, Bohdan

    2013-11-22

    The article presents the assessment of disorder region predictions submitted to CASP10. The evaluation is based on the three measures tested in previous CASPs: (i) balanced accuracy, (ii) the Matthews correlation coefficient for the binary predictions, and (iii) the area under the curve in the receiver operating characteristic (ROC) analysis of predictions using probability annotation. We also performed new analyses such as comparison of the submitted predictions with those obtained with a Naïve disorder prediction method and with predictions from the disorder prediction databases D2P2 and MobiDB. On average, the methods participating in CASP10 demonstrated slightly better performance than those in CASP9.

  7. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.

    Science.gov (United States)

    Basu, Sankar; Mukharjee, Debasish

    2017-07-01

    There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.

  8. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  9. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  10. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  11. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein.

    Science.gov (United States)

    Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia

    2010-01-01

    In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.

  12. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Kubáň, V.; Nováček, J.; Bumba, Ladislav; Žídek, L.

    2015-01-01

    Roč. 9, č. 2 (2015), s. 435-440 ISSN 1874-2718 R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:61388971 Keywords : FrpC * Self-processing module * Neisseria meningitidis Subject RIV: EE - Microbiology, Virology Impact factor: 0.687, year: 2015

  13. The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil.

    Science.gov (United States)

    Ibáñez de Opakua, Alain; Merino, Nekane; Villate, Maider; Cordeiro, Tiago N; Ormaza, Georgina; Sánchez-Carbayo, Marta; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2017-01-01

    The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.

  14. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II?

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Nørholm, Ann-Beth; Hendus-Altenburger, Ruth

    2010-01-01

    temperature, which most likely reflects formation of transient alpha-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble...... with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs...

  15. Homer1a protein expression in schizophrenia, bipolar disorder, and major depression.

    Science.gov (United States)

    Leber, Stefan L; Llenos, Ida C; Miller, Christine L; Dulay, Jeannette R; Haybaeck, Johannes; Weis, Serge

    2017-10-01

    In recent years, there was growing interest in postsynaptic density proteins in the central nervous system. Of the most important candidates of this specialized region are proteins belonging to the Homer protein family. This family of scaffolding proteins is suspected to participate in the pathogenesis of a variety of diseases. The present study aims to compare Homer1a expression in the hippocampus and cingulate gyrus of patients with major psychiatric disorders including schizophrenia, bipolar disorder and major depression. Immunohistochemistry was used to analyze changes of Homer1a protein expression in the hippocampal formation and the cingulate gyrus from the respective disease groups. Glial cells of the cingulate gyrus gray matter showed decreased Homer1a levels in bipolar disorder when compared to controls. The same results were seen when comparing cingulate gyrus gray matter glial cells in bipolar disorder with major depression. Stratum oriens glial cells of the hippocampus showed decreased Homer1a levels in bipolar disorder when compared to controls and major depression. Stratum lacunosum glial cells showed decreased Homer1a levels in bipolar disorder when compared to major depression. In stratum oriens interneurons Homer1a levels were increased in all disease groups when compared to controls. Stratum lucidum axons showed decreased Homer1a levels in bipolar disorder when compared to controls. Our data demonstrate altered Homer1a levels in specific brain regions and cell types of patients suffering from schizophrenia, bipolar disorder and major depression. These findings support the role of Homer proteins as interesting candidates in neuropsychiatric pathophysiology and treatment.

  16. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  17. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília

    2017-01-19

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  18. Unique Features of Halophilic Proteins.

    Science.gov (United States)

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  19. Rap G protein signal in normal and disordered lymphohematopoiesis.

    Science.gov (United States)

    Minato, Nagahiro

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy. © 2013 Elsevier Inc. All rights reserved.

  20. Gene Prioritization by Integrated Analysis of Protein Structural and Network Topological Properties for the Protein-Protein Interaction Network of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Yashna Paul

    2016-01-01

    Full Text Available Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment. There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.

  1. Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains

    DEFF Research Database (Denmark)

    Haq, S Raza; Chi, Celestine N; Bach, Anders

    2012-01-01

    Intrinsically disordered proteins are very common and mediate numerous protein-protein and protein-DNA interactions. While it is clear that these interactions are instrumental for the life of the mammalian cell, there is a paucity of data regarding their molecular binding mechanisms. We have here...... used short peptides as a model system for intrinsically disordered proteins. Linear free-energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate......-limiting barrier for binding, in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins towards their targets are generally...

  2. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder.

    Science.gov (United States)

    Trazzi, Stefania; De Franceschi, Marianna; Fuchs, Claudia; Bastianini, Stefano; Viggiano, Rocchina; Lupori, Leonardo; Mazziotti, Raffaele; Medici, Giorgio; Lo Martire, Viviana; Ren, Elisa; Rimondini, Roberto; Zoccoli, Giovanna; Bartesaghi, Renata; Pizzorusso, Tommaso; Ciani, Elisabetta

    2018-05-01

    Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.

  3. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    Full Text Available Major intrinsic proteins (MIPs, commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs. Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R selectivity filter and Froger's positions (FPs] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2 had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non

  4. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    Science.gov (United States)

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations. © 2015 International Society for Neurochemistry.

  5. Treatment of cardiovascular disorders using the cell differentiation signaling protein Nell1

    Science.gov (United States)

    Culiat, Cymbeline T

    2014-05-13

    It has been identified in accordance with the present invention that Nell1 is essential for normal cardiovascular development by promoting proper formation of the heart and blood vessels. The present invention therefore provides therapeutic methods for treating cardiovascular disorders by employing a Nell1 protein or nucleic acid molecule.

  6. Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry.

    Science.gov (United States)

    Taurines, Regina; Dudley, Edward; Conner, Alexander C; Grassl, Julia; Jans, Thomas; Guderian, Frank; Mehler-Wex, Claudia; Warnke, Andreas; Gerlach, Manfred; Thome, Johannes

    2010-04-01

    The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Proteomic profiling has been used in the past for biomarker research in several non-psychiatric and psychiatric disorders and could provide new insights, potentially presenting a useful tool for generating such biomarkers in autism. Serum protein pre-fractionation with C8-magnetic beads and protein profiling by matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-ToF-MS) were used to identify possible differences in protein profiles in patients and controls. Serum was obtained from 16 patients (aged 8-18) and age-matched controls. Three peaks in the MALDI-ToF-MS significantly differentiated the ASD sample from the control group. Sub-grouping the ASD patients into children with and without comorbid Attention Deficit and Hyperactivity Disorder, ADHD (ASD/ADHD+ patients, n = 9; ASD/ADHD- patients, n = 7), one peak distinguished the ASD/ADHD+ patients from controls and ASD/ADHD- patients. Our results suggest that altered protein levels in peripheral blood of patients with ASD might represent useful biomarkers for this devastating psychiatric disorder.

  7. A human phenome-interactome network of protein complexes implicated in genetic disorders

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Karlberg, Erik, Olof, Linnart; Størling, Zenia, Marian

    2007-01-01

    the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type...

  8. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  9. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    Science.gov (United States)

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  10. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor......-free or essential L-AAs are important in all these conditions. Optimal long-term outcome depends on early diagnosis and good metabolic control, but because of the rarity and severity of conditions, randomized controlled trials are scarce. In all of these disorders, it is commonly described that dietary adherence...... on their neuropsychological profile. There are little data about their ability to self-manage their own diet or the success of any formal educational programs that may have been implemented. Trials conducted in non-phenylketonuria (PKU) patients are rare, and the development of specialist L-AAs for non-PKU AA disorders has...

  11. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Nikita; Kumar, Ashutosh, E-mail: askutoshk@iitb.ac.in [Indian Institute of Technology Bombay, Department of Bioscience and Bioengineering (India)

    2016-09-15

    NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled {sup 13}C,{sup 15}N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.

  12. Resonance assignment of disordered protein with repetitive and overlapping sequence using combinatorial approach reveals initial structural propensities and local restrictions in the denatured state

    International Nuclear Information System (INIS)

    Malik, Nikita; Kumar, Ashutosh

    2016-01-01

    NMR resonance assignment of intrinsically disordered proteins poses a challenge because of the limited dispersion of amide proton chemical shifts. This becomes even more complex with the increase in the size of the system. Residue specific selective labeling/unlabeling experiments have been used to resolve the overlap, but require multiple sample preparations. Here, we demonstrate an assignment strategy requiring only a single sample of uniformly labeled "1"3C,"1"5N-protein. We have used a combinatorial approach, involving 3D-HNN, CC(CO)NH and 2D-MUSIC, which allowed us to assign a denatured centromeric protein Cse4 of 229 residues. Further, we show that even the less sensitive experiments, when used in an efficient manner can lead to the complete assignment of a complex system without the use of specialized probes in a relatively short time frame. The assignment of the amino acids discloses the presence of local structural propensities even in the denatured state accompanied by restricted motion in certain regions that provides insights into the early folding events of the protein.

  13. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.

    Science.gov (United States)

    Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    2017-08-29

    Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.

  14. Defining intrinsic vs. extrinsic atopic dermatitis.

    Science.gov (United States)

    Karimkhani, Chante; Silverberg, Jonathan I; Dellavalle, Robert P

    2015-06-16

    Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by eczematous lesions, i.e. ill-demarcated erythematous patches and plaques. AD is commonly associated with elevated immunoglobulin E (IgE) and atopic disorders, such as asthma, hay fever, and food allergies. Rackemann and Mallory were some of the first to distinguish between asthma based on the presence ("extrinsic") or absence ("intrinsic") of allergy. This distinction has subsequently been applied to AD based on the presence ("extrinsic") or absence ("intrinsic") of increased IgE and atopic disease. Although the distinction between intrinsic and extrinsic AD is widely used, it remains controversial.

  15. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-m...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...sorders. PubmedID 14643884 Title Protein kinase C epsilon: a new target to contro

  16. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    Directory of Open Access Journals (Sweden)

    Derek W. Stouth

    2017-11-01

    Full Text Available Protein arginine methyltransferases (PRMTs are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD. PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD, spinal muscular atrophy (SMA, and amyotrophic lateral sclerosis (ALS suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs. This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.

  17. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    Science.gov (United States)

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  18. Serum levels of carbonylated and nitrosylated proteins in mobbing victims with workplace adjustment disorders.

    Science.gov (United States)

    Di Rosa, A E; Gangemi, S; Cristani, M; Fenga, C; Saitta, S; Abenavoli, E; Imbesi, S; Speciale, A; Minciullo, P L; Spatari, G; Abbate, S; Saija, A; Cimino, F

    2009-12-01

    Today the most important problem in the work place is psychological abuse, which may affect the health because of high levels of stress and anxiety. There is evidence that most psychiatric disorders are associated with increased oxidative stress but nothing is reported about the presence of oxidative stress in mobbing victims. This study has been carried out in a group of 19 patients affected by workplace mobbing-due adjustment disorders, in comparison with 38 healthy subjects, to evaluate whether oxidative stress may be induced by mobbing. Serum levels of protein carbonyl groups and of nitrosylated proteins, biological markers of oxidative stress conditions, were higher than those measured in healthy subjects. These findings may contribute to a better understanding of the redox homeostasis dysregulation occurring in victims of workplace mobbing.

  19. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  20. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder.

    Science.gov (United States)

    Severance, Emily G; Gressitt, Kristin L; Yang, Shuojia; Stallings, Cassie R; Origoni, Andrea E; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dickerson, Faith B; Yolken, Robert H

    2014-05-01

    Immune sensitivity to wheat glutens and bovine milk caseins may affect a subset of individuals with bipolar disorder. Digested byproducts of these foods are exorphins that have the potential to impact brain physiology through action at opioid receptors. Inflammation in the gastrointestinal (GI) tract might accelerate exposure of food antigens to systemic circulation and help explain elevated gluten and casein antibody levels in individuals with bipolar disorder. We measured a marker of GI inflammation, anti-Saccharomyces cerevisiae antibodies (ASCA), in non-psychiatric controls (n = 207), in patients with bipolar disorder without a recent onset of psychosis (n = 226), and in patients with bipolar disorder with a recent onset of psychosis (n = 38). We compared ASCA levels to antibodies against gluten, casein, Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), influenza A, influenza B, measles, and Toxoplasma gondii. Elevated ASCA conferred a 3.5-4.4-fold increased odds ratio of disease association (age-, race-, and gender-corrected multinomial logistic regressions, p ≤ 0.00001) that was independent of type of medication received. ASCA correlated with food antibodies in both bipolar disorder groups (R(2)  = 0.29-0.59, p ≤ 0.0005), and with measles and T. gondii immunoglobulin G (IgG) in the recent onset psychosis bipolar disorder group (R(2)  = 0.31-0.36, p ≤ 0.004-0.01). Elevated seropositivity of a GI-related marker and its association with antibodies to food-derived proteins and self-reported GI symptoms suggest a GI comorbidity in at least a subgroup of individuals with bipolar disorder. Marker seroreactivity may also represent part of an overall heightened activated immune state inherent to this mood disorder. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Limbic system associated membrane protein as a potential target for neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Eero eVasar

    2013-03-01

    Full Text Available The studies performed in laboratory animals and psychiatric patients suggest a possible role of limbic system associated membrane protein (LAMP in the mechanisms of psychiatric disorders. Stressful manipulations and genetic invalidation have revealed a role of the Lsamp gene in the regulation of anxiety in rodents. Besides that, Lsamp deficient mice display reduced aggressiveness and impaired adaptation in novel and stressful environments. The behavioural effects of amphetamine were blunted in genetically modified mice. Recent pharmacological and biochemical studies point towards altered function of GABA-, 5-hydroxytryptamine- and dopaminergic systems in Lsamp deficient mice. Moreover, we found an association between the gene polymorphisms of LSAMP and major depressive disorder. Patients suffering from major depressive disorder had significantly increased ratio between risk and protective haplotypes of the LSAMP gene compared to healthy volunteers. However, the impact of these haplotypes for the function of LAMP is not clear and remains to be elucidated in future studies.

  2. Binding of disordered peptides to kelch : insights from enhanced sampling simulations

    NARCIS (Netherlands)

    Do, T.N.; Choy, W.Y.; Karttunen, M.E.J.

    2016-01-01

    Keap1 protein plays an essential role in regulating cellular oxidative stress response and is a crucial binding hub for multiple proteins, several of which are intrinsically disordered proteins (IDP). Among Kelch's IDP binding partners, NRF2 and PTMA are the two most interesting cases. They share a

  3. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders

    OpenAIRE

    Gery, Sigal; Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H. Phillip

    2007-01-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk i...

  4. Effect of soy protein on obesity-linked renal and pancreatic disorders in female rats

    International Nuclear Information System (INIS)

    Osman, H.F.; El-Sherbiny, E.M.

    2006-01-01

    The purpose of this study was to identify the effect of soy protein based diet on renal and pancreatic disorders in female obese rats. Animals assigned into group I in which 30 rats fed on a balanced diet. Group II contained 30 rats fed on a diet containing 30% fats for 4 weeks. At the end of the 4 th week, one-half of each group was treated as group III which contain 15 rats (half of group I) fed on diet containing 25% soy protein for 3 weeks and represents soy protein group, and the other half served as control. Group IV contained 15 rats (half of group II) fed on a diet containing 25% soy protein for 3 weeks and served as obese + soy protein group, and the other half fed on a normal balanced diet for 3 weeks and represents the obese group. Body weights of rats were recorded every week during the experimental period. Renal and pancreatic functions were measured as urea, creatinine, glomerular filtration rate (creatinine clearance), ammonia, sodium and potassium ions, total protein, albumin, globulin, glucose, insulin and alpha-amylase activity. Feeding with soy protein led to a very high significant increase in urea while creatinine was significantly decreased and creatinine clearance was significantly increased in the groups fed on soy protein. Ammonia concentration was increased in all groups and there was non-significant alteration in sodium and potassium ion concentrations. In soy protein groups (groups III and IV), total protein, albumin and globulin levels were increased. Glucose level was increased in obese rats and significantly decreased in groups III and IV. In group IV, insulin level was decreased which implicated to insulin excess in obesity. Soy protein decreased alpha-amylase activity in groups III and IV as compared to control rats. From these results, soy protein have a direct and protective effect on glomerular disorders and pancreatic secretions. This may be due to isoflavone contents in soy which can modulate the disturbance in metabolism

  5. Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.R. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Wu, B. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Yang, Y.T.; Chen, J. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Zhang, L.J.; Zhang, Z.W. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Shi, H.Y. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Huang, C.L.; Pan, J.X. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Xie, P. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China)

    2015-09-08

    Bipolar disorder (BD) is a common psychiatric mood disorder affecting more than 1-2% of the general population of different European countries. Unfortunately, there is no objective laboratory-based test to aid BD diagnosis or monitor its progression, and little is known about the molecular basis of BD. Here, we performed a comparative proteomic study to identify differentially expressed plasma proteins in various BD mood states (depressed BD, manic BD, and euthymic BD) relative to healthy controls. A total of 10 euthymic BD, 20 depressed BD, 15 manic BD, and 20 demographically matched healthy control subjects were recruited. Seven high-abundance proteins were immunodepleted in plasma samples from the 4 experimental groups, which were then subjected to proteome-wide expression profiling by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry. Proteomic results were validated by immunoblotting and bioinformatically analyzed using MetaCore. From a total of 32 proteins identified with 1.5-fold changes in expression compared with healthy controls, 16 proteins were perturbed in BD independent of mood state, while 16 proteins were specifically associated with particular BD mood states. Two mood-independent differential proteins, apolipoprotein (Apo) A1 and Apo L1, suggest that BD pathophysiology may be associated with early perturbations in lipid metabolism. Moreover, down-regulation of one mood-dependent protein, carbonic anhydrase 1 (CA-1), suggests it may be involved in the pathophysiology of depressive episodes in BD. Thus, BD pathophysiology may be associated with early perturbations in lipid metabolism that are independent of mood state, while CA-1 may be involved in the pathophysiology of depressive episodes.

  6. Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder

    International Nuclear Information System (INIS)

    Song, Y.R.; Wu, B.; Yang, Y.T.; Chen, J.; Zhang, L.J.; Zhang, Z.W.; Shi, H.Y.; Huang, C.L.; Pan, J.X.; Xie, P.

    2015-01-01

    Bipolar disorder (BD) is a common psychiatric mood disorder affecting more than 1-2% of the general population of different European countries. Unfortunately, there is no objective laboratory-based test to aid BD diagnosis or monitor its progression, and little is known about the molecular basis of BD. Here, we performed a comparative proteomic study to identify differentially expressed plasma proteins in various BD mood states (depressed BD, manic BD, and euthymic BD) relative to healthy controls. A total of 10 euthymic BD, 20 depressed BD, 15 manic BD, and 20 demographically matched healthy control subjects were recruited. Seven high-abundance proteins were immunodepleted in plasma samples from the 4 experimental groups, which were then subjected to proteome-wide expression profiling by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry. Proteomic results were validated by immunoblotting and bioinformatically analyzed using MetaCore. From a total of 32 proteins identified with 1.5-fold changes in expression compared with healthy controls, 16 proteins were perturbed in BD independent of mood state, while 16 proteins were specifically associated with particular BD mood states. Two mood-independent differential proteins, apolipoprotein (Apo) A1 and Apo L1, suggest that BD pathophysiology may be associated with early perturbations in lipid metabolism. Moreover, down-regulation of one mood-dependent protein, carbonic anhydrase 1 (CA-1), suggests it may be involved in the pathophysiology of depressive episodes in BD. Thus, BD pathophysiology may be associated with early perturbations in lipid metabolism that are independent of mood state, while CA-1 may be involved in the pathophysiology of depressive episodes

  7. Increased serum levels of high mobility group box 1 protein in patients with autistic disorder.

    Science.gov (United States)

    Emanuele, Enzo; Boso, Marianna; Brondino, Natascia; Pietra, Stefania; Barale, Francesco; Ucelli di Nemi, Stefania; Politi, Pierluigi

    2010-05-30

    High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein that functions as an activator for inducing the immune response and can be released from neurons after glutamate excitotoxicity. The objective of the present study was to measure serum levels of HMGB1 in patients with autistic disorder and to study their relationship with clinical characteristics. We enrolled 22 adult patients with autistic disorder (mean age: 28.1+/-7.7 years) and 28 age- and gender-matched healthy controls (mean age: 28.7+/-8.1 years). Serum levels of HMGB1 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with healthy subjects, serum levels of HMGB1 were significantly higher in patients with autistic disorder (10.8+/-2.6 ng/mL versus 5.6+/-2.5 ng/mL, respectively, Pautistic disorder. Increased HMGB1 may be a biological correlate of the impaired reciprocal social interactions in this neurodevelopmental disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Striatal-enriched Tyrosine Protein Phosphatase (STEP) in the Mechanisms of Depressive Disorders.

    Science.gov (United States)

    Kulikova, Elizabeth; Kulikov, Alexander

    2017-08-30

    Striatal-enriched tyrosine protein phosphatase (STEP) is expressed mainly in the brain. Its dysregulation is associated with Alzheimer's and Huntington's diseases, schizophrenia, fragile X syndrome, drug abuse and stroke/ischemia. However, an association between STEP and depressive disorders is still obscure. The review discusses the theoretical foundations and experimental facts concerning possible relationship between STEP dysregulation and depression risk. STEP dephosphorylates and inactivates several key neuronal signaling proteins such as extracellular signal-regulating kinase 1 and 2 (ERK1/2), stress activated protein kinases p38, the Src family tyrosine kinases Fyn, Pyk2, NMDA and AMPA glutamate receptors. The inactivation of these proteins decreases the expression of brain derived neurotrophic factor (BDNF) necessary for neurogenesis and neuronal survival. The deficit of BDNF results in progressive degeneration of neurons in the hippocampus and cortex and increases depression risk. At the same time, a STEP inhibitor, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), increases BDNF expression in the hippocampus and attenuated the depressivelike behavior in mice. Thus, STEP is involved in the mechanism of depressive disorders and it is a promising molecular target for atypical antidepressant drugs of new generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Science.gov (United States)

    Iturria-Medina, Yasser; Sotero, Roberto C; Toussaint, Paule J; Evans, Alan C

    2014-11-01

    Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b) that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c) the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d) the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  10. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Yasser Iturria-Medina

    2014-11-01

    Full Text Available Misfolded proteins (MP are a key component in aging and associated neurodegenerative disorders. For example, misfolded Amyloid-ß (Aß and tau proteins are two neuropathogenic hallmarks of Alzheimer's disease. Mechanisms underlying intra-brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model (ESM for MP dynamics that considers propagation-like interactions between MP agents and the brain's clearance response across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining 46∼56% of the variance in regional Aß loads, in 733 subjects from the ADNI database. Furthermore, this model strongly supports a the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer's disease progression, b that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference mechanisms associated with aging and neurodegenerative disorders.

  11. G Protein-Linked Signaling Pathways in Bipolar and Major Depressive Disorders

    Directory of Open Access Journals (Sweden)

    Hiroaki eTomita

    2013-12-01

    Full Text Available The G-protein linked signaling system (GPLS comprises a large number of G-proteins, G protein-coupled receptors (GPCRs, GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP, phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD and bipolar disorder (BPD. This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC and anterior cingulate (ACC were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, ‘activated’ cAMP signaling activity in BPD and ‘blunted’ cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects.

  12. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  13. Intrinsic intensity fluctuations in random lasers

    International Nuclear Information System (INIS)

    Molen, Karen L. van der; Mosk, Allard P.; Lagendijk, Ad

    2006-01-01

    We present a quantitative experimental and theoretical study of intensity fluctuations in the emitted light of a random laser that has different realizations of disorder for every pump pulse. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (β factor)

  14. Leptin: A biomarker for sleep disorders?

    OpenAIRE

    Pan, Weihong; Kastin, Abba J.

    2013-01-01

    Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal an...

  15. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  16. FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders

    International Nuclear Information System (INIS)

    Chiappetta, Gennaro; Pierantoni, Giovanna Maria; Fusco, Alfredo; Ferraro, Angelo; Botti, Gerardo; Monaco, Mario; Pasquinelli, Rosa; Vuttariello, Emilia; Arnaldi, Liliane; Di Bonito, Maurizio; D'Aiuto, Giuseppe

    2007-01-01

    Fos-related antigen 1 (FRA-1) is an immediate early gene encoding a member of AP-1 family of transcription factors involved in cell proliferation, differentiation, apoptosis, and other biological processes. fra-1 gene overexpression has an important role in the process of cellular transformation, and our previous studies suggest FRA-1 protein detection as a useful tool for the diagnosis of thyroid neoplasias. Here we investigate the expression of the FRA-1 protein in benign and malignant breast tissues by immunohistochemistry, Western blot, RT-PCR and qPCR analysis, to evaluate its possible help in the diagnosis and prognosis of breast neoplastic diseases. We investigate the expression of the FRA-1 protein in 70 breast carcinomas and 30 benign breast diseases by immunohistochemistry, Western blot, RT-PCR and qPCR analysis. FRA-1 protein was present in all of the carcinoma samples with an intense staining in the nucleus. Positive staining was also found in most of fibroadenomas, but in this case the staining was present both in the nucleus and cytoplasm, and the number of positive cells was lower than in carcinomas. Similar results were obtained from the analysis of breast hyperplasias, with no differences in FRA-1 expression level between typical and atypical breast lesions; however the FRA-1 protein localization is mainly nuclear in the atypical hyperplasias. In situ breast carcinomas showed a pattern of FRA-1 protein expression very similar to that observed in atypical hyperplasias. Conversely, no FRA-1 protein was detectable in 6 normal breast tissue samples used as controls. RT-PCR and qPCR analysis confirmed these results. Similar results were obtained analysing FRA-1 expression in fine needle aspiration biopsy (FNAB) samples. The data shown here suggest that FRA-1 expression, including its intracellular localization, may be considered a useful marker for hyperplastic and neoplastic proliferative breast disorders

  17. The impact of visual media to encourage low protein cooking in inherited metabolic disorders.

    Science.gov (United States)

    Evans, S; Daly, A; Hopkins, V; Davies, P; MacDonald, A

    2009-10-01

    The use of educational visual aids is one way to help children with inherited metabolic disorders (IMD) understand and develop a positive attitude towards their low protein diet. However, it is difficult to establish their effectiveness in the clinical setting. The present study aimed to evaluate the impact of a low protein recipe book and accompanying DVD for children with IMD. One hundred and five children (53% female; median age = 6-8 years) with IMD on low protein diets were each given a low protein recipe book and DVD. After 6 months, children and carers were posted a questionnaire asking whether they used these resources; identifying any change in frequency of low protein cooking; and the outcome when preparing recipes. One hundred and two questionnaires were returned, representing 105 patients. Seventy percent (n = 71) of questionnaires were from carers. Ninety-three percent (n = 66) of carers acknowledged receipt of the resource; one-third (n = 22) had not watched the DVD and 23% (n = 15) had not opened the recipe book; 55% (n = 36) had tried the recipes; and 71% (n = 47) said the recipe book and/or DVD motivated them to try new recipes. Children were more likely to have watched the DVD (75%; n = 21/28) and read the recipe book (86%; n = 24/28) than carers. Although a helpful educational tool, just over one-half of respondents had used the resource. Identifying visual media that, by itself, will motivate most families of children with IMD to prepare low protein recipes may be unrealistic. The combined approach of visual aids and 'hands-on' practical experience, such as low protein cooking workshops and individual counselling, may be more beneficial.

  18. Intrinsic Time Quantum Geometrodynamics

    OpenAIRE

    Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-01-01

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...

  19. Long-lasting hippocampal synaptic protein loss in a mouse model of posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Leonie Herrmann

    Full Text Available Despite intensive research efforts, the molecular pathogenesis of posttraumatic stress disorder (PTSD and especially of the hippocampal volume loss found in the majority of patients suffering from this anxiety disease still remains elusive. We demonstrated before that trauma-induced hippocampal shrinkage can also be observed in mice exhibiting a PTSD-like syndrome. Aiming to decipher the molecular correlates of these trans-species posttraumatic hippocampal alterations, we compared the expression levels of a set of neurostructural marker proteins between traumatized and control mice at different time points after their subjection to either an electric footshock or mock treatment which was followed by stressful re-exposure in several experimental groups. To our knowledge, this is the first systematic in vivo study analyzing the long-term neuromolecular sequelae of acute traumatic stress combined with re-exposure. We show here that a PTSD-like syndrome in mice is accompanied by a long-lasting reduction of hippocampal synaptic proteins which interestingly correlates with the strength of the generalized and conditioned fear response but not with the intensity of hyperarousal symptoms. Furthermore, we demonstrate that treatment with the serotonin reuptake inhibitor (SSRI fluoxetine is able to counteract both the PTSD-like syndrome and the posttraumatic synaptic protein loss. Taken together, this study demonstrates for the first time that a loss of hippocampal synaptic proteins is associated with a PTSD-like syndrome in mice. Further studies will have to reveal whether these findings are transferable to PTSD patients.

  20. Detergent-induced aggregation of an amyloidogenic intrinsically ...

    Indian Academy of Sciences (India)

    Shruti Arya

    2017-11-02

    Nov 2, 2017 ... the effect of a well-known anionic lipid mimetic, sodium dodecyl sulfate (SDS), on the aggregation ... for the fabrication of nano-structures for a wide variety ...... M 2014 Classification of intrinsically disordered regions.

  1. Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting-state study of attention, default mode and salience network connectivity.

    Science.gov (United States)

    Sidlauskaite, Justina; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2016-06-01

    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli.

  2. Synaptosomal-associated protein 25 gene polymorphisms and antisocial personality disorder: association with temperament and psychopathy.

    Science.gov (United States)

    Basoglu, Cengiz; Oner, Ozgur; Ates, Alpay; Algul, Ayhan; Bez, Yasin; Cetin, Mesut; Herken, Hasan; Erdal, Mehmet Emin; Munir, Kerim M

    2011-06-01

    The molecular genetic of personality disorders has been investigated in several studies; however, the association of antisocial behaviours with synaptosomal-associated protein 25 (SNAP25) gene polymorphisms has not. This association is of interest as SNAP25 gene polymorphism has been associated with attention-deficit hyperactivity disorder and personality. We compared the distribution of DdeI and MnII polymorphisms in 91 young male offenders and in 38 sex-matched healthy control subjects. We also investigated the association of SNAP25 gene polymorphisms with severity of psychopathy and with temperament traits: novelty seeking, harm avoidance, and reward dependence. The MnII T/T and DdeI T/T genotypes were more frequently present in male subjects with antisocial personality disorder (APD) than in sex-matched healthy control subjects. The association was stronger when the frequency of both DdeI and MnII T/T were taken into account. In the APD group, the genotype was not significantly associated with the Psychopathy Checklist-Revised scores, measuring the severity of psychopathy. However, the APD subjects with the MnII T/T genotype had higher novelty seeking scores; whereas, subjects with the DdeI T/T genotype had lower reward dependence scores. Again, the association between genotype and novelty seeking was stronger when both DdeI and MnII genotypes were taken into account. DdeI and MnII T/T genotypes may be a risk factor for antisocial behaviours. The association of the SNAP25 DdeI T/T and MnII T/T genotypes with lower reward dependence and higher novelty seeking suggested that SNAP25 genotype might influence other personality disorders, as well.

  3. Intrinsic contractures of the hand.

    Science.gov (United States)

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Current Nomenclature of Pseudohypoparathyroidism: Inactivating Parathyroid Hormone/Parathyroid Hormone-Related Protein Signaling Disorder.

    Science.gov (United States)

    Turan, Serap

    2017-12-30

    Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification

  5. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  6. Predicting Intrinsic Motivation

    Science.gov (United States)

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the…

  7. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.

    Science.gov (United States)

    Rusinga, Farai I; Weis, David D

    2017-08-01

    The effects of macromolecular crowding on the transient structure of intrinsically disordered proteins is not well-understood. Crowding by biological molecules inside cells could modulate transient structure and alter IDP function. Volume exclusion theory and observations of structured proteins suggest that IDP transient structure would be stabilized by macromolecular crowding. Amide hydrogen exchange (HX) of IDPs in highly concentrated polymer solutions would provide valuable insights into IDP transient structure under crowded conditions. Here, we have used mass spectrometry to measure HX by a transiently helical random coil domain of the activator of thyroid and retinoid receptor (ACTR) in solutions containing 300 g L -1 and 400 g L -1 of Ficoll, a synthetic polysaccharide, using a recently-developed strong cation exchange-based cleanup method [Rusinga, et al., Anal Chem 2017;89:1275-1282]. Transiently helical regions of ACTR exchanged faster in 300 g L -1 Ficoll than in dilute buffer. In contrast, one transient helix exchanged more slowly in 400 g L -1 Ficoll. Nonspecific interactions destabilize ACTR helicity in 300 g L -1 Ficoll because ACTR engages with the Ficoll polymer mesh. In contrast, 400 g L -1 Ficoll is a semi-dilute solution where ACTR cannot engage the Ficoll mesh. At this higher concentration, volume exclusion stabilizes ACTR helicity because ACTR is compacted in interstitial spaces between Ficoll molecules. Our results suggest that the interplay between nonspecific interactions and volume exclusion in different cellular compartments could modulate IDP function by altering the stability of IDP transient structures. Proteins 2017; 85:1468-1479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    Directory of Open Access Journals (Sweden)

    Dante Picchioni

    2014-03-01

    Full Text Available Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders.

  9. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies.

    Science.gov (United States)

    Aerts, Johannes M F G; Kallemeijn, Wouter W; Wegdam, Wouter; Joao Ferraz, Maria; van Breemen, Marielle J; Dekker, Nick; Kramer, Gertjan; Poorthuis, Ben J; Groener, Johanna E M; Cox-Brinkman, Josanne; Rombach, Saskia M; Hollak, Carla E M; Linthorst, Gabor E; Witte, Martin D; Gold, Henrik; van der Marel, Gijs A; Overkleeft, Herman S; Boot, Rolf G

    2011-06-01

    A biomarker is an analyte indicating the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. In the case of lysosomal storage disorders (LSDs), primary and secondary accumulating metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Clinical applications of biomarkers are found in improved diagnosis, monitoring disease progression, and assessing therapeutic correction. These are illustrated by reviewing the discovery and use of biomarkers for Gaucher disease and Fabry disease. In addition, recently developed chemical tools allowing specific visualization of enzymatically active lysosomal glucocerebrosidase are described. Such probes, coined inhibodies, offer entirely new possibilities for more sophisticated molecular diagnosis, enzyme replacement therapy monitoring, and fundamental research.

  10. C-reactive protein alterations in bipolar disorder: a meta-analysis.

    Science.gov (United States)

    Dargél, Aroldo A; Godin, Ophelia; Kapczinski, Flávio; Kupfer, David J; Leboyer, Marion

    2015-02-01

    There is growing evidence that bipolar disorder (BD) is associated with inflammation, including abnormal levels of acute-phase C-reactive protein (CRP). Our meta-analysis was conducted to estimate the size of the association between CRP levels and BD, accounting also for subgroup differences (mood phases and treatment). MEDLINE, EMBASE, PsycINFO, and ISI Web of Science and references of identified articles were searched up to June 2013 using the keywords (bipolar disorder) AND (C-reactive protein OR CRP). English language studies measuring blood levels of CRP in patients with BD and control subjects were selected, 136 abstracts were reviewed, 20 articles retrieved, and 11 studies included. Two independent reviewers extracted data. All studies were included in the primary analyses, and between-group differences for subanalyses were also reported. This meta-analysis was performed using random-effects models. Eleven studies comprising 1,618 subjects were eligible for inclusion. Overall, CRP levels were significantly elevated in patients with BD versus controls (standardized mean difference [SMD] = 0.39; 95% CI, 0.24 to 0.55; P < .0001). CRP levels were significantly higher in manic (SMD = 0.73; 95% CI, 0.44 to 1.02; P < .001) and euthymic (SMD = 0.26; 95% CI, 0.01 to 0.51; P = .04), but not in depressed (SMD = 0.28; 95% CI, -0.17 to 0.73; P = .22) patients with BD compared to controls. CRP levels were unrelated to use of lithium or antipsychotic medication. This meta-analysis supports an association between increased CRP levels and BD. Given that an elevated level of CRP is a marker of low-grade inflammation and a risk factor for cardiovascular and malignant diseases, measurement of CRP level might be relevant to the clinical care of bipolar patients. © Copyright 2015 Physicians Postgraduate Press, Inc.

  11. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment

    Directory of Open Access Journals (Sweden)

    Johnny Habchi

    2015-07-01

    Full Text Available We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N and phosphoprotein (P from three paramyxoviruses, namely the measles (MeV, Nipah (NiV and Hendra (HeV viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL of their N proteins undergoes upon binding to the C-terminal X domain (PXD of the homologous P proteins. We also show that NTAIL–PXD complexes are “fuzzy”, i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N–P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.

  12. Efficacy of independence sampling in replica exchange simulations of ordered and disordered proteins.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-11-15

    Recasting temperature replica exchange (T-RE) as a special case of Gibbs sampling has led to a simple and efficient scheme for enhanced mixing (Chodera and Shirts, J. Chem. Phys., 2011, 135, 194110). To critically examine if T-RE with independence sampling (T-REis) improves conformational sampling, we performed T-RE and T-REis simulations of ordered and disordered proteins using coarse-grained and atomistic models. The results demonstrate that T-REis effectively increase the replica mobility in temperatures space with minimal computational overhead, especially for folded proteins. However, enhanced mixing does not translate well into improved conformational sampling. The convergences of thermodynamic properties interested are similar, with slight improvements for T-REis of ordered systems. The study re-affirms the efficiency of T-RE does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational re-arrangements. Due to its simplicity and efficacy of enhanced mixing, T-REis is expected to be more effective when incorporated with various Hamiltonian-RE protocols. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  14. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress.

    Directory of Open Access Journals (Sweden)

    Jong-Won Park

    Full Text Available Transcriptome analysis of sugarcane hybrid CP72-1210 (cold susceptible and Saccharum spontaneum TUS05-05 (cold tolerant using Sugarcane Assembled Sequences (SAS from SUCEST-FUN Database showed that a total of 35,340 and 34,698 SAS genes, respectively, were expressed before and after chilling stress. The analysis revealed that more than 600 genes are differentially expressed in each genotype after chilling stress. Blast2Go annotation revealed that the major difference in gene expression profiles between CP72-1210 and TUS05-05 after chilling stress are present in the genes related to the transmembrane transporter activity. To further investigate the relevance of transmembrane transporter activity against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major intrinsic protein gene (SspNIP2 was selected for functional analysis, of which expression was induced after chilling stress in the cold tolerant TUS05-05. Quantitative real-time PCR showed that SspNIP2 expression was increased ~2.5 fold at 30 minutes after cold treatment and stayed induced throughout the 24 hours of cold treatment. The amino acid sequence analysis of the cloned SspNIP2 confirmed the presence of six transmembrane domains and two NPA (Asn-Pro-Ala motifs, signature features of major intrinsic protein families. Amino acid analysis confirmed that four amino acids, comprising the ar/R (aromatic residue/arginine region responsible for the substrate specificity among MIPs, are conserved among monocot silicon transporters and SspNIP2. Salinity stress test on SspNIP2 transgenic tobacco plants resulted in more vigorous transgenic lines than the non-transgenic tobacco plants, suggesting some degree of tolerance to salt stress conferred by SspNIP2. SspNIP2-transgenic plants, exposed to 2 weeks of water stress without irrigation, developed various degrees of water stress symptom. The water stress test confirmed that the SspNIP2 transgenic lines had lower evapotranspiration

  15. Myocardial Ablation of G Protein-Coupled Receptor Kinase 2 (GRK2 Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2 activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R injury. To do this we utilized two independent lines of GRK2 knockout (KO mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

  16. Concepts of intrinsic safety

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A newly introduced Japanese reactor concept, ISER (Intrinsically Safe and Economical Reactor), is intended to be a reference intrinsically safe light water reactor. ISER is designed similarly to PIUS but with greater economy in mind such that any utility in any country can choose it for its power system. Social assimilation and acceptability in the Asia Pacific Region including the United States are the keys to the ISER with the hope of dramatic reductions of social costs due to safeguards, reliability, financiability, and infrastructure building, particularly in the third world, as well as reactor safety itself. In this respect and others, the ISER proposal is different from other vendor-proposed reactor concepts and is unique

  17. Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders.

    Science.gov (United States)

    Aziz, Azhari; Harrop, Sean P; Bishop, Naomi E

    2011-01-19

    Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.

  18. Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1 and cXorf36 or Deleted in Autism-1 Related (DIA1R are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L, lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental

  19. Predictors of natively unfolded proteins: unanimous consensus score to detect a twilight zone between order and disorder in generic datasets

    Directory of Open Access Journals (Sweden)

    Deiana Antonio

    2010-04-01

    Full Text Available Abstract Background Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. Results In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii have a mean flexibility intermediate between that of folded and that of unfolded proteins. Conclusions Our results show that

  20. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  1. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  2. Molecular nonlinear dynamics and protein thermal uncertainty quantification

    Science.gov (United States)

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction. PMID:24697365

  3. The human selenoprotein VCP-interacting membrane protein (VIMP) is non-globular and harbors a reductase function in an intrinsically disordered region

    DEFF Research Database (Denmark)

    Christensen, Lea Cecilie; Jensen, Njal Winther; Lages Lino Vala, Andrea

    2012-01-01

    that Cys-188 in cVIMP-Cys forms a disulfide bond with Cys-174, consistent with the presence of a Cys174-Sec188 selenosulfide bond in the native sequence. For the disulfide bond in cVIMP-Cys we determined the reduction potential to -200 mV, and showed it to be a good substrate of thioredoxin. Based...

  4. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  5. JABAWS 2.2 distributed web services for Bioinformatics: protein disorder, conservation and RNA secondary structure.

    Science.gov (United States)

    Troshin, Peter V; Procter, James B; Sherstnev, Alexander; Barton, Daniel L; Madeira, Fábio; Barton, Geoffrey J

    2018-06-01

    JABAWS 2.2 is a computational framework that simplifies the deployment of web services for Bioinformatics. In addition to the five multiple sequence alignment (MSA) algorithms in JABAWS 1.0, JABAWS 2.2 includes three additional MSA programs (Clustal Omega, MSAprobs, GLprobs), four protein disorder prediction methods (DisEMBL, IUPred, Ronn, GlobPlot), 18 measures of protein conservation as implemented in AACon, and RNA secondary structure prediction by the RNAalifold program. JABAWS 2.2 can be deployed on a variety of in-house or hosted systems. JABAWS 2.2 web services may be accessed from the Jalview multiple sequence analysis workbench (Version 2.8 and later), as well as directly via the JABAWS command line interface (CLI) client. JABAWS 2.2 can be deployed on a local virtual server as a Virtual Appliance (VA) or simply as a Web Application Archive (WAR) for private use. Improvements in JABAWS 2.2 also include simplified installation and a range of utility tools for usage statistics collection, and web services querying and monitoring. The JABAWS CLI client has been updated to support all the new services and allow integration of JABAWS 2.2 services into conventional scripts. A public JABAWS 2 server has been in production since December 2011 and served over 800 000 analyses for users worldwide. JABAWS 2.2 is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws. g.j.barton@dundee.ac.uk.

  6. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders.

    Science.gov (United States)

    Gery, Sigal; Gueller, Saskia; Chumakova, Katya; Kawamata, Norihiko; Liu, Liqin; Koeffler, H Phillip

    2007-11-01

    Recently, activating myeloproliferative leukemia virus oncogene (MPL) mutations, MPLW515L/K, were described in myeloproliferative disorder (MPD) patients. MPLW515L leads to activation of downstream signaling pathways and cytokine-independent proliferation in hematopoietic cells. The adaptor protein Lnk is a negative regulator of several cytokine receptors, including MPL. We show that overexpression of Lnk in Ba/F3-MPLW515L cells inhibits cytokine-independent growth, while suppression of Lnk in UT7-MPLW515L cells enhances proliferation. Lnk blocks the activation of Jak2, Stat3, Erk, and Akt in these cells. Furthermore, MPLW515L-expressing cells are more susceptible to Lnk inhibitory functions than their MPL wild-type (MPLWT)-expressing counterparts. Lnk associates with activated MPLWT and MPLW515L and colocalizes with the receptors at the plasma membrane. The SH2 domain of Lnk is essential for its binding and for its down-regulation of MPLWT and MPLW515L. Lnk itself is tyrosine-phosphorylated following thrombopoietin stimulation. Further elucidating the cellular pathways that attenuate MPLW515L will provide insight into the pathogenesis of MPD and could help develop specific therapeutic approaches.

  7. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  8. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    Science.gov (United States)

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-04

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  10. Drug Discovery Targeting Serotonin G Protein-Coupled Receptors in the Treatment of Neuropsychiatric Disorders

    Science.gov (United States)

    Felsing, Daniel E.

    Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains

  11. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-Linked Disorders

    OpenAIRE

    Bogdanov, Mikhail; Mileykovskaya, Eugenia; Dowhan, William

    2008-01-01

    Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipi...

  12. C-reactive protein and cardiovascular risk in bipolar disorder patients: A systematic review.

    Science.gov (United States)

    Marshe, Victoria S; Pira, Shamira; Mantere, Outi; Bosche, Bert; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J; Rej, Soham

    2017-10-03

    New research is revealing a strong association between inflammatory markers with bipolar disorder (BD), potentially due to the high prevalence of cardiovascular disease and cardiovascular risk factors in BD. We aimed to synthesize the literature examining the association between the clinically most relevant inflammatory marker, C-reactive protein (CRP) and cardiovascular disease and cardiovascular risk factors in patients with BD. MEDLINE, Embase and PsychInfo were systematically searched for all relevant English language articles published prior to April 2017. Articles were included if they examined the association between CRP and cardiovascular risk factors/disease in BD. Fifteen relevant articles were retrieved. Studies were mostly cross-sectional and heterogeneous in the cardiovascular risk factors investigated. Overall, elevated CRP was associated with increased risk of metabolic syndrome, elevated body mass index, higher waist circumference, and obesity. CRP was inconsistently associated with elevated fasting glucose, insulin levels, serum triglycerides, total cholesterol levels, and low high density lipoprotein (HDL) levels. Atypical antipsychotic use may mediate some of these effects. No study examined CRP's association with actual cardiovascular disease (e.g. coronary artery disease) in BD. In BD, CRP is associated with increases in several cardiovascular risk factors, suggesting that systemic inflammation could be a shared driving force for both outcomes of BD and cardiovascular risk. Further longitudinal research is needed in this area to verify causality, including an examination of actual cardiovascular disease. Non-pharmacological and pharmacological treatments with anti-inflammatory effects should also be investigated, particularly in patients with increased CRP, for their potential to reduce cardiovascular risk in BD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  14. Identification of protein sub-networks implicated in Autism Spectrum Disorders

    OpenAIRE

    Correia, C.; Diekmann, Y.; Pereira-Leal, J.B.; Vicente, A.M.; Autism Genome Project Consortium

    2011-01-01

    Autism Spectrum Disorders (ASDs) represent a group of childhood neurodevelopmental disorders characterized by three primary areas of impairment: social interaction, communication, and restricted and repetitive patterns of interest or behavior. Although autism is one of the most heritable neuropsychiatric disorders, most of the known genetic risk has been traced to rare variants. Genome-wide association studies (GWAS) have thus far met limited success in the identification of common risk varia...

  15. Thermodiffusion as a close-to-interface effect that matters in non-isothermal (dis)orderly protein aggregations

    Energy Technology Data Exchange (ETDEWEB)

    Gadomski, A., E-mail: agad@utp.edu.pl; Kruszewska, N., E-mail: nkruszewska@utp.edu.pl

    2014-08-01

    The goal of this discussion letter is to argue how and why an inherent nanoscale thermodiffusion (Soret-type) effect can be relevant in (dis)orderly protein aggregation. We propose a model in which the aggregation of proteins, in the presence of temperature gradient, is described in terms of Smoluchowski dynamics in the phase space of nuclei sizes. The Soret coefficient of the aggregation is proportional to the variations of the aggregation free energy over temperature. The free energy is related to the (interface) boundary condition of the system. When boundary condition is of equilibrium Gibbs–Thomson type, with a well-stated surface tension of the nucleus, to the system can be assigned a negative Soret effect. On the contrary, when a non-equilibrium perturbing (salting-out) term enters the boundary condition, a positive Soret effect may manifest. A zero-value Soret regime is expected to occur in between, yielding very soft (“fragile”) non-Kossel protein-type crystals. - Highlights: • Comprehension for non-isothermal formation of (dis)orderly protein aggregation. • Classification of temperature-sensitive morphologies in colloid-type aggregation. • Morphologies split into near-equilibrium and nonequilibrium structural outcomes. • Classification on mesoscopic nonequilibrium thermodynamics near local equilibrium.

  16. Hydrophobicity diversity in globular and nonglobular proteins measured with the Gini index.

    Science.gov (United States)

    Carugo, Oliviero

    2017-12-01

    Amino acids and their properties are variably distributed in proteins and different compositions determine all protein features, ranging from solubility to stability and functionality. Gini index, a tool to estimate distribution uniformity, is widely used in macroeconomics and has numerous statistical applications. Here, Gini index is used to analyze the distribution of hydrophobicity in proteins and to compare hydrophobicity distribution in globular and intrinsically disordered proteins. Based on the analysis of carefully selected high-quality data sets of proteins extracted from the Protein Data Bank (http://www.rcsb.org) and from the DisProt database (http://www.disprot.org/), it is observed that hydrophobicity is distributed in a more diverse way in intrinsically disordered proteins than in folded and soluble globular proteins. This correlates with the observation that the amino acid composition deviates from the uniformity (estimate with the Shannon and the Gini-Simpson indices) more in intrinsically disordered proteins than in globular and soluble proteins. Although statistical tools tike the Gini index have received little attention in molecular biology, these results show that they allow one to estimate sequence diversity and that they are useful to delineate trends that can hardly be described, otherwise, in simple and concise ways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies.

    Science.gov (United States)

    Nichols, T C; Hough, C; Agersø, H; Ezban, M; Lillicrap, D

    2016-05-01

    Animal models of inherited bleeding disorders are important for understanding disease pathophysiology and are required for preclinical assessment of safety prior to testing of novel therapeutics in human and veterinary medicine. Experiments in these animals represent important translational research aimed at developing safer and better treatments, such as plasma-derived and recombinant protein replacement therapies, gene therapies and immune tolerance protocols for antidrug inhibitory antibodies. Ideally, testing is done in animals with the analogous human disease to provide essential safety information, estimates of the correct starting dose and dose response (pharmacokinetics) and measures of efficacy (pharmacodynamics) that guide the design of human trials. For nearly seven decades, canine models of hemophilia, von Willebrand disease and other inherited bleeding disorders have not only informed our understanding of the natural history and pathophysiology of these disorders but also guided the development of novel therapeutics for use in humans and dogs. This has been especially important for the development of gene therapy, in which unique toxicities such as insertional mutagenesis, germ line gene transfer and viral toxicities must be assessed. There are several issues regarding comparative medicine in these species that have a bearing on these studies, including immune reactions to xenoproteins, varied metabolism or clearance of wild-type and modified proteins, and unique tissue tropism of viral vectors. This review focuses on the results of studies that have been performed in dogs with inherited bleeding disorders that closely mirror the human condition to develop safe and effective protein and gene-based therapies that benefit both species. © 2016 International Society on Thrombosis and Haemostasis.

  18. Intrinsic and extrinsic mortality reunited.

    Science.gov (United States)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins.

    Directory of Open Access Journals (Sweden)

    David Karlin

    Full Text Available Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa, several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains that could be detected simply by comparing orthologous proteins.

  20. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk.

    Science.gov (United States)

    Eraly, Satish A; Nievergelt, Caroline M; Maihofer, Adam X; Barkauskas, Donald A; Biswas, Nilima; Agorastos, Agorastos; O'Connor, Daniel T; Baker, Dewleen G

    2014-04-01

    Posttraumatic stress disorder (PTSD) has been associated in cross-sectional studies with peripheral inflammation. It is not known whether this observed association is the result of PTSD predisposing to inflammation (as sometimes postulated) or to inflammation predisposing to PTSD. To determine whether plasma concentration of the inflammatory marker C-reactive protein (CRP) helps predict PTSD symptoms. The Marine Resiliency Study, a prospective study of approximately 2600 war zone-deployed Marines, evaluated PTSD symptoms and various physiological and psychological parameters before deployment and at approximately 3 and 6 months following a 7-month deployment. Participants were recruited from 4 all-male infantry battalions imminently deploying to a war zone. Participation was requested of 2978 individuals; 2610 people (87.6%) consented and 2555 (85.8%) were included in the present analysis. Postdeployment data on combat-related trauma were included for 2208 participants (86.4% of the 2555 included) and on PTSD symptoms at 3 and 6 months after deployment for 1861 (72.8%) and 1617 (63.3%) participants, respectively. Severity of PTSD symptoms 3 months after deployment assessed by the Clinician-Administered PTSD Scale (CAPS). We determined the effects of baseline plasma CRP concentration on postdeployment CAPS using zero-inflated negative binomial regression (ZINBR), a procedure designed for distributions, such as CAPS in this study, that have an excess of zeroes in addition to being positively skewed. Adjusting for the baseline CAPS score, trauma exposure, and other relevant covariates, we found baseline plasma CRP concentration to be a highly significant overall predictor of postdeployment CAPS scores (P = .002): each 10-fold increment in CRP concentration was associated with an odds ratio of nonzero outcome (presence vs absence of any PTSD symptoms) of 1.51 (95% CI, 1.15-1.97; P = .003) and a fold increase in outcome with a nonzero value (extent of symptoms

  1. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder.

    Science.gov (United States)

    Ogier de Baulny, Hélène; Schiff, Manuel; Dionisi-Vici, Carlo

    2012-05-01

    Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  3. Protein and calorie intakes in adult and pediatric subjects with urea cycle disorders participating in clinical trials of glycerol phenylbutyrate☆

    Science.gov (United States)

    Hook, Debra; Diaz, George A.; Lee, Brendan; Bartley, James; Longo, Nicola; Berquist, William; Le Mons, Cynthia; Rudolph-Angelich, Ingrid; Porter, Marty; Scharschmidt, Bruce F.; Mokhtarani, Masoud

    2016-01-01

    Background Little prospectively collected data are available comparing the dietary intake of urea cycle disorder (UCD) patients to UCD treatment guidelines or to healthy individuals. Objective To examine the protein and calorie intakes of UCD subjects who participated in clinical trials of glycerol phenylbutyrate (GPB) and compare these data to published UCD dietary guidelines and nutritional surveys. Design Dietary data were recorded for 45 adult and 49 pediatric UCD subjects in metabolic control during participation in clinical trials of GPB. Protein and calorie intakes were compared to UCD treatment guidelines, average nutrient intakes of a healthy US population based on the National Health and Nutrition Examination Survey (NHANES) and Recommended Daily Allowances (RDA). Results In adults, mean protein intake was higher than UCD recommendations but lower than RDA and NHANES values, while calorie intake was lower than UCD recommendations, RDA and NHANES. In pediatric subjects, prescribed protein intake was higher than UCD guidelines, similar to RDA, and lower than NHANES data for all age groups, while calorie intake was at the lower end of the recommended UCD range and close to RDA and NHANES data. In pediatric subjects height, weight, and body mass index (BMI) Z-scores were within normal range (− 2 to 2). Conclusions Pediatric patients treated with phenylbutyrate derivatives exhibited normal height and weight. Protein and calorie intakes in adult and pediatric UCD subjects differed from UCD dietary guidelines, suggesting that these guidelines may need to be reconsidered. PMID:27014577

  4. Protein and calorie intakes in adult and pediatric subjects with urea cycle disorders participating in clinical trials of glycerol phenylbutyrate.

    Science.gov (United States)

    Hook, Debra; Diaz, George A; Lee, Brendan; Bartley, James; Longo, Nicola; Berquist, William; Le Mons, Cynthia; Rudolph-Angelich, Ingrid; Porter, Marty; Scharschmidt, Bruce F; Mokhtarani, Masoud

    2016-03-01

    Little prospectively collected data are available comparing the dietary intake of urea cycle disorder (UCD) patients to UCD treatment guidelines or to healthy individuals. To examine the protein and calorie intakes of UCD subjects who participated in clinical trials of glycerol phenylbutyrate (GPB) and compare these data to published UCD dietary guidelines and nutritional surveys. Dietary data were recorded for 45 adult and 49 pediatric UCD subjects in metabolic control during participation in clinical trials of GPB. Protein and calorie intakes were compared to UCD treatment guidelines, average nutrient intakes of a healthy US population based on the National Health and Nutrition Examination Survey (NHANES) and Recommended Daily Allowances (RDA). In adults, mean protein intake was higher than UCD recommendations but lower than RDA and NHANES values, while calorie intake was lower than UCD recommendations, RDA and NHANES. In pediatric subjects, prescribed protein intake was higher than UCD guidelines, similar to RDA, and lower than NHANES data for all age groups, while calorie intake was at the lower end of the recommended UCD range and close to RDA and NHANES data. In pediatric subjects height, weight, and body mass index (BMI) Z-scores were within normal range (- 2 to 2). Pediatric patients treated with phenylbutyrate derivatives exhibited normal height and weight. Protein and calorie intakes in adult and pediatric UCD subjects differed from UCD dietary guidelines, suggesting that these guidelines may need to be reconsidered.

  5. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein.

    Science.gov (United States)

    Khandaker, Md Shahriar K; Dudek, Daniel M; Beers, Eric P; Dillard, David A; Bevan, David R

    2016-08-01

    The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins

    DEFF Research Database (Denmark)

    Tyanova, S.; Frishman, D.; Cox, J.

    2013-01-01

    of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels...

  7. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  8. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study.

    Science.gov (United States)

    Setiawan, Elaine; Attwells, Sophia; Wilson, Alan A; Mizrahi, Romina; Rusjan, Pablo M; Miler, Laura; Xu, Cynthia; Sharma, Sarita; Kish, Stephen; Houle, Sylvain; Meyer, Jeffrey H

    2018-04-01

    People with major depressive disorder frequently exhibit increasing persistence of major depressive episodes. However, evidence for neuroprogression (ie, increasing brain pathology with longer duration of illness) is scarce. Microglial activation, which is an important component of neuroinflammation, is implicated in neuroprogression. We examined the relationship of translocator protein (TSPO) total distribution volume (V T ), a marker of microglial activation, with duration of untreated major depressive disorder, and with total illness duration and antidepressant exposure. In this cross-sectional study, we recruited participants aged 18-75 years from the Toronto area and the Centre for Addiction and Mental Health (Toronto, ON, Canada). Participants either had major depressive episodes secondary to major depressive disorder or were healthy, as confirmed with a structured clinical interview and consultation with a study psychiatrist. To be enrolled, participants with major depressive episodes had to score a minimum of 17 on the 17-item Hamilton Depression Rating Scale, and had to be medication free or taking a stable dose of medication for at least 4 weeks before PET scanning. Eligible participants were non-smokers; had no history of or concurrent alcohol or substance dependence, neurological illness, autoimmune disorder, or severe medical problems; and were free from acute medical illnesses for the previous 2 weeks before PET scanning. Participants were excluded if they had used brain stimulation treatments within the 6 months before scanning, had used anti-inflammatory drugs lasting at least 1 week within the past month, were taking hormone replacement therapy, had psychotic symptoms, had bipolar disorder (type I or II) or borderline antisocial personality disorder, or were pregnant or breastfeeding. We scanned three primary grey-matter regions of interest (prefrontal cortex, anterior cingulate cortex, and insula) and 12 additional regions and subregions using 18

  9. Intrinsically Passive Handling and Grasping

    NARCIS (Netherlands)

    Stramigioli, Stefano; Scherpen, Jacquelien M.A.; Khodabandehloo, Koorosh

    2000-01-01

    The paper presents a control philosophy called Intrinsically Passive Control, which has the feature to properly behave during interaction with any passive objects. The controlled robot will never become unstable due to the physical structure of the controller.

  10. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    Science.gov (United States)

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  11. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Elise Delaforge

    2016-09-01

    Full Text Available Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  12. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  13. Effects of nitrogen and irrigation on gluten protein composition and their relationship to yellow berry disorder in wheat (triticum aestivum)

    International Nuclear Information System (INIS)

    Wong, B.R.; Felix, F.R.; Chavez, T

    2014-01-01

    In Mexico and the rest of the world, the presence of yellow berry (YB) in wheat grains (Triticum aestivum) has been related with poor quality, this defect is associated with low protein content in the grains. However, the quality of the wheat depends not only on the protein content, but also on the composition of the gluten proteins. The effect of the various agronomic factors on the composition of wheat gluten has been a subject of study worldwide. However, in Mexico, wheat quality still remains an issue, as there is a lack of knowledge regarding the optimal agronomic conditions to produce wheat with good-quality gluten. For this reason, the effects of nitrogen (N) rates and irrigations on the amount of gliadin subclasses, glutenin subunits (two main groups) and grain protein content as well as the relation of these proteins to the YB content in wheat grains were investigated. The experiment was conducted on arable farmland in the Valley of Empalme, Sonora, Mexico (27 degree 58' N, 110 degree 49' W; 10 m altitude), during the fall-winter period of 2009-2010. Tarachi, the hard wheat cultivar studied, was selected for its relative susceptibility to the presence of elevated YB content in mature wheat kernels. Three levels of N (75, 150 or 250 kg ha-1) and three levels of irrigation (1, 2 or 3 auxiliary irrigations) were studied. Using a N rate of 150 kg ha-1 with 3 auxiliary irrigations, wheat with good-quality gluten was obtained. The results suggest that the YB disorder is primarily related to the amount of protein in the wheat grain. (author)

  14. Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum

    Science.gov (United States)

    Jhingree, Jacquelyn R.; Bellina, Bruno; Pacholarz, Kamila J.; Barran, Perdita E.

    2017-07-01

    Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge.

  15. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P.; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A. W.; Holleboom, Adriaan G.; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P. H.; Huynen, Martijn A.; Veltman, Joris A.; Wevers, Ron A.; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J.

    2016-01-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are

  16. Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Annalisa Alfieri

    2017-06-01

    Full Text Available Altered synaptic function has been associated with neurological and psychiatric conditions including intellectual disability, schizophrenia and autism spectrum disorder (ASD. Amongst the recently discovered synaptic proteins is p140Cap, an adaptor that localizes at dendritic spines and regulates their maturation and physiology. We recently showed that p140Cap knockout mice have cognitive deficits, impaired long-term potentiation (LTP and long-term depression (LTD, and immature, filopodia-like dendritic spines. Only a few p140Cap interacting proteins have been identified in the brain and the molecular complexes and pathways underlying p140Cap synaptic function are largely unknown. Here, we isolated and characterized the p140Cap synaptic interactome by co-immunoprecipitation from crude mouse synaptosomes, followed by mass spectrometry-based proteomics. We identified 351 p140Cap interactors and found that they cluster to sub complexes mostly located in the postsynaptic density (PSD. p140Cap interactors converge on key synaptic processes, including transmission across chemical synapses, actin cytoskeleton remodeling and cell-cell junction organization. Gene co-expression data further support convergent functions: the p140Cap interactors are tightly co-expressed with each other and with p140Cap. Importantly, the p140Cap interactome and its co-expression network show strong enrichment in genes associated with schizophrenia, autism, bipolar disorder, intellectual disability and epilepsy, supporting synaptic dysfunction as a shared biological feature in brain diseases. Overall, our data provide novel insights into the molecular organization of the synapse and indicate that p140Cap acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders.

  17. Increased seroreactivity in tic disorder patients to a 60 kDa protein band from a neuronal cell line

    NARCIS (Netherlands)

    Hoekstra, P.J.; Limburg, Piet; Troost, P.W.; van Lang, N.; De Bildt, A.; Korf, J; Kallenberg, Cees; Minderaa, R.B.; Horst, G.

    In tic disorders, increased seroreactivity against neuronal antigens has been demonstrated, without performing molecular characterization of antigens. Here, unselected patients with a tic disorder were compared with healthy controls, autistic disorder (AD), and obsessive-compulsive disorder (OCD)

  18. Lower glutamic acid decarboxylase 65kD mRNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia

    Science.gov (United States)

    Glausier, JR; Kimoto, S; Fish, KN; Lewis, DA

    2014-01-01

    Background Altered GABA signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in schizophrenia and schizoaffective disorder. PFC levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67kD (GAD67) has been consistently reported to be lower in these disorders, but the status of the second GABA-synthesizing enzyme, GAD65, remains unclear. Methods GAD65 mRNA levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. GAD65 relative protein levels were quantified in a subset of subject pairs by confocal immunofluorescence microscopy. Results Mean GAD65 mRNA levels were 13.6% lower in schizoaffective disorder subjects, but did not differ in schizophrenia subjects, relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein measures within schizoaffective disorder subjects was not attributable to factors commonly comorbid with the diagnosis. Conclusions In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in subjects with schizoaffective disorder relative to subjects with schizophrenia, these findings may support an interpretation that GAD65 down-regulation provides a homeostatic response complementary to GAD67 down-regulation expression that serves to reduce inhibition in the face of lower PFC network activity. PMID:24993056

  19. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    Science.gov (United States)

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  20. Random heteropolymers preserve protein function in foreign environments

    Science.gov (United States)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  1. Multiple-Localization and Hub Proteins

    Science.gov (United States)

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  2. Mechanisms of protein misfolding: Novel therapeutic approaches to protein-misfolding diseases

    DEFF Research Database (Denmark)

    Salahuddin, Parveen; Siddiqi, Mohammad Khursheed; Khan, Sanaullah

    2016-01-01

    ’s disease (PD), Alzheimer’s disease (AD), Prion disease and Amylo lateral Sclerosis (ALS). Furthermore, tau protein shows intrinsically disorder conformation; therefore its interaction with microtubule is impaired and this protein undergoes aggregation. This is also underlying cause of Alzheimers and other......In protein misfolding, protein molecule acquires wrong tertiary structure, thereby induces protein misfolding diseases. Protein misfolding can occur through various mechanisms. For instance, changes in environmental conditions, oxidative stress, dominant negative mutations, error in post......-translational modifications, increase in degradation rate and trafficking error. All of these factors cause protein misfolding thereby leading to diseases conditions. Both in vitro and in vivo observations suggest that partially unfolded or misfolded intermediates are particularly prone to aggregation. These partially...

  3. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3-SH2-Tyrosine Kinase Protein Family.

    Science.gov (United States)

    Dos Santos, Helena G; Siltberg-Liberles, Jessica

    2016-09-19

    One of the largest multigene families in Metazoa are the tyrosine kinases (TKs). These are important multifunctional proteins that have evolved as dynamic switches that perform tyrosine phosphorylation and other noncatalytic activities regulated by various allosteric mechanisms. TKs interact with each other and with other molecules, ultimately activating and inhibiting different signaling pathways. TKs are implicated in cancer and almost 30 FDA-approved TK inhibitors are available. However, specific binding is a challenge when targeting an active site that has been conserved in multiple protein paralogs for millions of years. A cassette domain (CD) containing SH3-SH2-Tyrosine Kinase domains reoccurs in vertebrate nonreceptor TKs. Although part of the CD function is shared between TKs, it also presents TK specific features. Here, the evolutionary dynamics of sequence, structure, and phosphorylation across the CD in 17 TK paralogs have been investigated in a large-scale study. We establish that TKs often have ortholog-specific structural disorder and phosphorylation patterns, while secondary structure elements, as expected, are highly conserved. Further, domain-specific differences are at play. Notably, we found the catalytic domain to fluctuate more in certain secondary structure elements than the regulatory domains. By elucidating how different properties evolve after gene duplications and which properties are specifically conserved within orthologs, the mechanistic understanding of protein evolution is enriched and regions supposedly critical for functional divergence across paralogs are highlighted. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba

    2003-01-01

    Intrinsic factor (IF) is the gastric protein that promotes the intestinal uptake of vitamin B12. Gastric IF from animal sources is used in diagnostic tests and in vitamin pills. However, administration of animal IF to humans becomes disadvantageous because of possible pathogenic transmission...

  5. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder

    DEFF Research Database (Denmark)

    Jacoby, Anne Sophie; Munkholm, Klaus; Vinberg, Maj

    2016-01-01

    BACKGROUND: Peripheral blood brain-derived neurotrophic factor (BDNF) and inflammatory markers may reflect key pathophysiological mechanisms in bipolar disorder in relation to disease activity and neuroprogression. AIMS: To investigate whether neutrophins and inflammatory marker vary with mood...... overall compared with healthy control subjects. However, in adjusted models, no statistically significant differences were found in any measure between patients and control individuals. Levels of hsCRP in depressive states were decreased with 40% (95% CI: 5-62%, p=0.029) compared with euthymia and with 48...

  6. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    Science.gov (United States)

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins.

    Directory of Open Access Journals (Sweden)

    Fang-Fen Yuan

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is an early onset childhood neurodevelopmental disorder with high heritability. A number of genetic risk factors and environment factors have been implicated in the pathogenesis of ADHD. Genes encoding for subtypes of voltage-dependent K channels (Kv and accessory proteins to these channels have been identified in genome-wide association studies (GWAS of ADHD. We conducted a two-stage case-control study to investigate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1 and the risk of developing ADHD. In the discovery stage comprising 256 cases and 372 controls, KChIP1 rs1541665 and FHIT rs3772475 were identified; they were further genotyped in the validation stage containing 328cases and 431 controls.KChIP1 rs1541665 showed significant association with a risk of ADHD at both stages, with CC vs TT odds ratio (OR = 1.961, 95% confidence interval (CI = 1.366-2.497, in combined analyses (P-FDR = 0.007. Moreover, we also found rs1541665 involvement in ADHD-I subtype (OR (95% CI = 2.341(1.713, 3.282, and Hyperactive index score (P = 0.005 in combined samples.Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactionsof rs1541665 collaboratingwith maternal stress pregnancy (Pmul = 0.021 and blood lead (Padd = 0.017 to modify ADHD risk. In conclusion, the current study provides evidence that genetic variants of Kv accessory proteins may contribute to the susceptibility of ADHD.Further studies with different ethnicitiesare warranted to produce definitive conclusions.

  8. Intrinsic Motivation in Physical Education

    Science.gov (United States)

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  9. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  10. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub radical-induced cell death1

    DEFF Research Database (Denmark)

    O'Shea, Charlotte; Staby, Lasse; Bendsen, Sidsel Krogh

    2017-01-01

    Intrinsically disordered protein regions (IDRs) lack a well-defined three-dimensional structure, but often facilitate key protein functions. Some interactions between IDRs and folded protein domains rely on short linear motifs (SLiMs). These motifs are challenging to identify, but once found can...... point to larger networks of interactions, such as with proteins that serve as hubs for essential cellular functions. The stress-associated plant protein Radical-Induced Cell Death1 (RCD1) is one such hub, interacting with many transcription factors via their flexible IDRs. To identify the SLiM bound......046 formed different structures or were fuzzy in the complexes. These findings allow us to present a model of the stress-associated RCD1-transcription factor interactome and to contribute to the emerging understanding of the interactions between folded hubs and their intrinsically disordered partners....

  12. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  13. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  14. Identification of streptococcal proteins reacting with sera from Behçet's disease and rheumatic disorders.

    Science.gov (United States)

    Cho, Sung Bin; Lee, Ju Hee; Ahn, Keun Jae; Cho, Suhyun; Park, Yong-Beom; Lee, Soo-Kon; Bang, Dongsik; Lee, Kwang Hoon

    2010-01-01

    We evaluated the reactivity of sera from Behçet's disease (BD), systemic lupus erythematosus (SLE), dermatomyositis (DM), rheumatoid arthritis (RA), and Takayasu's arteritis (TA) patients against human α-enolase and streptococcal α-enolase, and identified additional streptococcal antigens. Enzyme-linked immunosorbent assay (ELISA) and immunoblotting were performed using sera from patients with BD, SLE, DM, RA, and TA and healthy volunteers (control) against human α-enolase and streptococcal α-enolase. Immunoblot analysis and matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry were used to identify and recombine other streptococcal antigens. Specific positive signals against recombinant human α-enolase were detected by IgM ELISA of serum samples from 50% of BD, 14.3% of SLE, 57.1% of DM, 42.9% of RA, and 57.1% of TA patients. Specific positive signals against streptococcal α-enolase were detected from 42.9% of BD, 14.3% of DM, and 14.3% of TA patients. No SLE and RA sera reacted against streptococcal α-enolase antigen. Streptococcal proteins reacting with sera were identified as hypothetical protein (HP) for SLE and DM patients, acid phosphatase (AP) for RA patients, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for TA patients. We observed that RA patients did not present serum reactivity against either HP or GAPDH though BD, SLE, DM, and TA patients did. Also, AP reacted with sera from BD, SLE, DM, RA, and TA patients.

  15. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    Full Text Available Mycobacterium tuberculosis (Mtb, a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC, an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA. The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In

  16. Common variants in the G protein beta3 subunit gene and thyroid disorders in a formerly iodine-deficient population.

    Science.gov (United States)

    Völzke, Henry; Bornhorst, Alexa; Rimmbach, Christian; Petersenn, Holger; Geissler, Ingrid; Nauck, Matthias; Wallaschofski, Henri; Kroemer, Heyo K; Rosskopf, Dieter

    2009-10-01

    Heterotrimeric G proteins are key mediators of signals from membrane receptors-including the thyroid-stimulating hormone (TSH) receptor-to cellular effectors. Gain-of-function mutations in the TSH receptor and the Galpha(S) subunit occur frequently in hyperfunctioning thyroid nodules and differentiated thyroid carcinomas, whereby the T allele of a common polymorphism (825C>T, rs5443) in the G protein beta3 subunit gene (GNB3) is associated with increased G protein-mediated signal transduction and a complex phenotype. The aim of this study was to investigate whether this common polymorphism affects key parameters of thyroid function and morphology and influences the pathogenesis of thyroid diseases in the general population. The population-based cross-sectional Study of Health in Pomerania is a general health survey with focus on thyroid diseases in northeast Germany, a formerly iodine-deficient area. Data from 3428 subjects (1800 men and 1628 women) were analyzed for an association of the GNB3 genotype with TSH, free triiodothyronine and thyroxine levels, urine iodine and thiocyanate excretion, and thyroid ultrasound morphology including thyroid volume, presence of goiter, and thyroid nodules. There was no association between GNB3 genotype status and the functional or morphological thyroid parameters investigated, neither in crude analyses nor upon multivariable analyses including known confounders of thyroid disorders. Based on the data from this large population-based survey, we conclude that the GNB3 825C>T polymorphism does not affect key parameters of thyroid function and morphology in the general population of a formerly iodine-deficient area.

  17. Assessing brain immune activation in psychiatric disorders : Clinical and preclinical PET imaging studies of the 18-kDa translocator protein

    NARCIS (Netherlands)

    van der Doef, Thalia F; Doorduin, Janine; van Berckel, Bart N M; Cervenka, Simon

    2015-01-01

    Accumulating evidence from different lines of research suggests an involvement of the immune system in the pathophysiology of several psychiatric disorders. During recent years, a series of positron emission tomography (PET) studies have been published using radioligands for the translocator protein

  18. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  19. Evaluation of disorder predictions in CASP9

    KAUST Repository

    Monastyrskyy, Bohdan

    2011-01-01

    Lack of stable three-dimensional structure, or intrinsic disorder, is a common phenomenon in proteins. Naturally, unstructured regions are proven to be essential for carrying function by many proteins, and therefore identification of such regions is an important issue. CASP has been assessing the state of the art in predicting disorder regions from amino acid sequence since 2002. Here, we present the results of the evaluation of the disorder predictions submitted to CASP9. The assessment is based on the evaluation measures and procedures used in previous CASPs. The balanced accuracy and the Matthews correlation coefficient were chosen as basic measures for evaluating the correctness of binary classifications. The area under the receiver operating characteristic curve was the measure of choice for evaluating probability-based predictions of disorder. The CASP9 methods are shown to perform slightly better than the CASP7 methods but not better than the methods in CASP8. It was also shown that capability of most CASP9 methods to predict disorder decreases with increasing minimum disorder segment length.

  20. Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

    Science.gov (United States)

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.

  1. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation

    CSIR Research Space (South Africa)

    Ripamonti, U

    1999-08-01

    Full Text Available Sintered hydroxyapatites induce bone formation in adult baboons via intrinsic osteoinductivity regulated by the geometry of the substratum. Bone is thereby formed without exogenous bone morphogenetic proteins (BMPs), well-characterized inducers...

  2. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    Science.gov (United States)

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Novel microcephalic primordial dwarfism disorder associated with variants in the centrosomal protein ninein.

    Science.gov (United States)

    Dauber, Andrew; Lafranchi, Stephen H; Maliga, Zoltan; Lui, Julian C; Moon, Jennifer E; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A; Pers, Tune H; Baron, Jeffrey; Rosenfeld, Ron G; Hirschhorn, Joel N; Harris, Matthew P; Hwa, Vivian

    2012-11-01

    Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. The objective of the study was to find the genetic etiology of a novel presentation of MPD. The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients.

  4. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein.

    Directory of Open Access Journals (Sweden)

    Symen Ligthart

    Full Text Available Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS. We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463 as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10 appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18 had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes.

  5. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Directory of Open Access Journals (Sweden)

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  6. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII

    Science.gov (United States)

    Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2014-01-01

    The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428

  7. Intrinsic motivation as a predictor of work outcome after vocational rehabilitation in schizophrenia.

    Science.gov (United States)

    Saperstein, Alice M; Fiszdon, Joanna M; Bell, Morris D

    2011-09-01

    Intrinsic motivation is a construct commonly used in explaining goal-directed behavior. In people with schizophrenia, intrinsic motivation is usually subsumed as a feature of negative symptoms or underlying neurocognitive dysfunction. A growing literature reflects an interest in defining and measuring motivational impairment in schizophrenia and in delineating the specific role of intrinsic motivation as both an independent predictor and a mediator of psychosocial functioning. This cross-sectional study examined intrinsic motivation as a predictor of vocational outcomes for 145 individuals with schizophrenia and schizoaffective disorder participating in a 6-month work rehabilitation trial. Correlation and mediation analyses examined baseline intrinsic motivation and negative symptoms in relation to work hours and work performance. Data support a significant relationship between intrinsic motivation and negative symptoms and significant correlations with outcome variables, such that lower negative symptoms and greater intrinsic motivation were associated with better work functioning. Moreover, in this sample, intrinsic motivation fully mediated the relationships between negative symptoms, work productivity, and work performance. These results have significant implications on the design of work rehabilitation interventions for people with schizophrenia and support a role for targeting intrinsic motivation directly to influence vocational functioning. Future directions for research and intervention are discussed.

  8. Intrinsic stability of technical superconductors

    International Nuclear Information System (INIS)

    Veringa, H.J.

    1981-10-01

    For the operation of technical superconductors under high current density conditions, the superconducting wires composing high current cables should be intrinsically stabilized. In this report the various important stability criteria are derived and investigated on their validity. An experimental set up is made to check the occurrence of magnetic instabilities if the different applicable criteria are violated. It is found that the observed instabilities can be predicted on the basis of the model given in this report. Production of high current cables based upon composites made by the ECN technique seems to be possible. (Auth.)

  9. Nuclear Filtering of Intrinsic Charm

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-01-01

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x F . Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/Ψ production and found at large x F a similar, albeit weaker effect, which does not contradict data.

  10. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    Science.gov (United States)

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  11. Symmetries of collective models in intrinsic frame

    International Nuclear Information System (INIS)

    Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.

    2013-01-01

    In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)

  12. Intrinsic cylindrical and spherical waves

    International Nuclear Information System (INIS)

    Ludlow, I K

    2008-01-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed

  13. Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology

    International Nuclear Information System (INIS)

    Shafey, Dina; Cote, Patrice D.; Kothary, Rashmi

    2005-01-01

    Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the α-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease

  14. Learning to learn - intrinsic plasticity as a metaplasticity mechanism for memory formation.

    Science.gov (United States)

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2013-10-01

    "Use it or lose it" is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity - a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability - this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but

  15. Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation

    Science.gov (United States)

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.

    2013-01-01

    “Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical

  16. C-reactive protein and white blood cell levels in schizophrenia, bipolar disorders and depression - associations with mortality and psychiatric outcomes

    DEFF Research Database (Denmark)

    Horsdal, H T; Köhler-Forsberg, O; Benros, Michael E

    2017-01-01

    BACKGROUND: Mental disorders have been associated with increased levels of inflammatory markers, which can affect disease trajectories. We aimed to assess levels of C-reactive protein (CRP) and white blood cells (WBC) across individuals with schizophrenia, bipolar disorder, and depression......, and to investigate associations with subsequent psychiatric admission and mortality. METHODS: We identified all adults in the Central Denmark Region during 2000-2012 with a first diagnosis of schizophrenia, bipolar disorder, or depression and a baseline measurement of CRP and/or WBC count. We followed.......5mg/L) (particularly during manic states, 3.9mg/L), followed by schizophrenia (3.1mg/L), and depression (2.8mg/L), while baseline WBC count did not differ (median 7.1×10(9)/L). Elevated CRP levels were associated with increased all-cause mortality by adjusted HRs of 1.56 (95% CI: 1.02-2.38) for levels...

  17. Altered intrinsic and extrinsic connectivity in schizophrenia.

    Science.gov (United States)

    Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J

    2018-01-01

    Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

  18. Intrinsic irreversibility in quantum theory

    International Nuclear Information System (INIS)

    Prigogine, I.; Petrosky, T.Y.

    1987-01-01

    Quantum theory has a dual structure: while solutions of the Schroedinger equation evolve in a deterministic and time reversible way, measurement introduces irreversibility and stochasticity. This presents a contrast to Bohr-Sommerfeld-Einstein theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of stochastic processes. A new form of quantum theory is presented here, which contains an intrinsic form of irreversibility, independent of observation. This new form applies to situations corresponding to a continuous spectrum and to quantum states with finite life time. The usual non-commutative algebra associated to quantum theory is replaced by more general algebra, in which operators are also non-distributive. Our approach leads to a number of predictions, which hopefully may be verified or refuted in the next years. (orig.)

  19. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  20. Possible Inhibitor from Traditional Chinese Medicine for the β Form of Calcium-Dependent Protein Kinase Type II in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Recently, an important topic of major depressive disorder (MDD had been published in 2013. MDD is one of the most prevalent and disabling mental disorders. Consequently, much research is being undertaken into the causes and treatment. It has been found that inhibition of the β form of calcium/calmodulin-dependent protein kinase type II (β-CaMKII can ameliorate the disorder. Upon screening the traditional Chinese medicine (TCM database by molecular docking, sengesterone, labiatic acid, and methyl 3-O-feruloylquinate were selected for molecular dynamics. After 20 ns simulation, the RMSD, total energy, and structure variation could define the protein-ligand interaction. Furthermore, sengesterone, the principle candidate compound, has been found to have an effect on the regulation of emotions and memory development. In structure variation, we find the sample functional group of important amino acids make the protein stable and have limited variation. Due to similarity of structure variations, we suggest that these compounds may have an effect on β-CaMKII and that sengesterone may have a similar efficacy as the control. However labiatic acid may be a stronger inhibitor of β-CaMKII based on the larger RMSD and variation.