WorldWideScience

Sample records for intrinsic local charge

  1. Intrinsic space charge resonances and the space charge limit

    International Nuclear Information System (INIS)

    Parzen, G.

    1990-01-01

    A study has been done of the dependence of the space charge limit on the choice of ν-values using a simulation program. This study finds a strong dependence of the space charge limit on the location of the ν-values relative to the intrinsic space charge resonances, which are driven by the space charge forces due to the beam itself. Four accelerators were studied. For some of these accelerators the study suggest that the space charge limit can be increased by about a factor of 2 proper choice of the ν-values. The lower order 1/2 and 1/4 intrinsic resonances appear to be the important resonances. There is some evidence for effects due to the 1/6 and 1/8 intrinsic resonances, particularly for larger synchrotrons. 5 figs

  2. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  3. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  4. Intrinsic Charge Transport in Organic Field-Effect Transistors

    Science.gov (United States)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  5. Intrinsic localized gap states in IGZO and its parent single crystalline TCOs

    Energy Technology Data Exchange (ETDEWEB)

    Schmeißer, D.; Haeberle, J.

    2016-03-31

    We report on the X-ray absorption data for Indium–Gallium–Zink–Oxide thin films, amorphous ZnO films, amorphous SnO{sub x} films, and single crystalline In{sub 2}O{sub 3}, Ga{sub 2}O{sub 3}, ZnO, and SnO{sub 2} data. These absorption data probe the empty conduction band states explicitly. Also they allow for an elemental assignment using resonant excitation to derive the contributions of each metal ion. We find that the lowest states appear right at the Fermi energy and result from configuration interaction induced charge transfer states which we consider as intrinsic gap states. - Highlights: • We identify contributions of localized configuration interaction induced gap states. • Auger profiles taken on metal absorption edges show metallic density of states around E{sub F}. • D-shell opening leads to a charge-transfer state involving metallic d-states.

  6. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  7. Charge mobility modification of semiconducting carbon nanotubes by intrinsic defects

    International Nuclear Information System (INIS)

    Bai, Hongcun; Ma, Yujia; Ma, Jinsuo; Mei, Jingnan; Tong, Yan; Ji, Yongqiang

    2017-01-01

    Charge carrier mobility is a central transport property in nanoscale electronics. Carbon nanotubes (CNTs) are supposed to have high carrier mobility. The preparation methods of CNTs have been greatly improved, but the defects always exist. This work presented first-principle investigations on the charge carrier mobility of carbon nanotubes containing several intrinsic defects. The charge carrier mobilities of zigzag (10, 0) tubes with Stone–Wales, mono vacant and 5/8/5 defects were studied as an example to explore the role of defects. Most carrier mobilities were decreased, but several values of mobility are unexpectedly increased upon the appearance of the defects. This interesting result is discussed based on the changes of the stretching modulus, the effective mass of the carrier and deformation potential constant induced by the defects. (paper)

  8. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  9. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    Science.gov (United States)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  10. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    Science.gov (United States)

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  11. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  12. Diffusion of intrinsic localized modes by attractor hopping

    International Nuclear Information System (INIS)

    Meister, Matthias; Vazquez, Luis

    2003-01-01

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability θ and a delay time τ A . The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, θ and τ A being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in θ, a decrease in τ A and reduces the average distance a mode travels during the transition period

  13. Diffusion of intrinsic localized modes by attractor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Matthias [Dpto FIsica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y FIsica de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza (Spain); Vazquez, Luis [Dpto Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz (Spain)

    2003-11-28

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability {theta} and a delay time {tau}{sub A}. The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, {theta} and {tau}{sub A} being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in {theta}, a decrease in {tau}{sub A} and reduces the average distance a mode travels during the transition period.

  14. Search for light-induced intrinsic localized modes: negative result

    Czech Academy of Sciences Publication Activity Database

    Kempa, Martin; Ondrejkovič, Petr; Ollivier, J.; Rols, S.; Kulda, J.; Margueron, S.; Fernandez, M.; Hlinka, Jiří

    2012-01-01

    Roč. 440, č. 1 (2012), 42-46 ISSN 0015-0193 R&D Projects: GA ČR GPP204/11/P404 Institutional research plan: CEZ:AV0Z10100520 Keywords : alkali halides * intrinsic localized modes * phonon density of states * inelastic neutron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.415, year: 2012

  15. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    International Nuclear Information System (INIS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-01-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  16. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-08-19

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  17. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-28

    We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high

  18. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-01

    We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at

  19. Fractional charge definitions and conditions

    International Nuclear Information System (INIS)

    Goldhaber, Alfred Scharff

    2003-01-01

    The phenomenon of fractional charge has come to prominence in recent decades through theoretical and experimental discoveries of isolable objects which carry fractions of familiar charge units--electric charge Q, spin S, baryon number B and lepton number L. It is shown here on the basis of a few simple assumptions that all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which many-body correlations can produce familiar adiabatic, continuous renormalization, and in some circumstances nonadiabatic, discrete renormalization. The fractional charges may be carried either by fundamental particles or by fundamental solitons. This excludes nontopological solitons and also skyrmions: The only known fundamental solitons in three or fewer space dimensions d are the kink (d=1), the vortex (d=2), and the magnetic monopole (d=3). Further, for a charge which is not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional local values of B-L for electrically charged elementary particles

  20. Charging for Local Social Services: the Case of Estonia

    Directory of Open Access Journals (Sweden)

    Katrin Pihor

    2012-12-01

    Full Text Available Increasing fiscal pressure has forced local governments to seek new sources of autonomous revenues for financing public services. Charging users of social services has been modest, but with an aging society and growing social costs, this option needs to be reconsidered. This paper combines the results of the survey on the application of user charges on local social services in Estonian local governments (LGs with the official financial and population statistics in order to discover trends and explore factors determining the application of user charges in a small, unitary, highly centralised, post-soviet country. We conclude that user charges are mainly considered as a source of information and additional income to partially cover service costs – the possibilities of increased efficiency and demand control have remained undervalued. The probability of charging users of social services tends to be greater if the income level of inhabitants is higher, reflecting the ‘ability to pay’ principle. Charging users is more probable in the municipalities where the social costs are higher in volume or in proportion to the budget’s expenditures.

  1. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  2. Inefficient charging for delivered gas by local gas distributors

    Directory of Open Access Journals (Sweden)

    Siniša Bikić

    2005-10-01

    Full Text Available In this region, especially in Serbia, common belief is that local distributors of gas used by households don’t charge for gas properly. It is suspected that there are two sources for improper ways of gas charging. Local distributors charge for delivered gas only, according to flow rat but not according to gas quality. It is usual that local distributors deliver gas of different quality than one signed in contract. In this work will be considered only one of aspects inefficient charging for delivered gas by local gas distributors, which is connected to variable atmospheric pressure. There is doubt, that local distributors make mistakes during accounting for delivered gas to costumers in regard atmospheric pressure. At the beginning of every investigation, problem has to be located and recognized. Authors are going to collect as much as possible available data, to elaborate and analyze data by scientific methods and to represent conclusions. So, the aim of this work is to diagnose current state and to approve or disapprove above mentioned suspicions. In our region this theme is very interesting, both because of energy efficiency and air pollution control. In this way both consumer and distributor will know, how mush energy they have really spent.

  3. Determination of Intrinsic Magnetic Response from Local Measurements of Fringing Fields

    OpenAIRE

    Wen, Bo; Millis, Andrew J.; Pardo, Enric; Subedi, Pradeep; Kent, Andrew D.; Yeshurun, Yosi; Sarachik, Myriam P.

    2014-01-01

    Micron-sized Hall bars and micro-SQUIDs are now used routinely to measure the local static and dynamic magnetic response with micron-scale spatial resolution. While this provides a powerful new tool, determining the intrinsic magnetization presents new challenges, as it requires correcting for demagnetization fields that vary widely with position on a sample. In this paper we develop a method to correct for the demagnetization effect at local points of a rectangular prism shaped sample using ...

  4. Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Abdullaev, F.Kh.; Konotop, V.V.

    2003-01-01

    The existence of strongly localized matter solitons, intrinsic localized modes (ILM's), in an array of atomic-molecular Bose-Einstein condensates (AMBEC's) is shown. The theory is based on the Wannier function expansion of the system order parameter and predicts the possibility of strong localization of the atomic and molecular components whose relative populations are determined by the Raman detuning parameter and by the atom-molecule conversion rate. ILM's can possess different symmetries and spatial distributions of the components. In this context AMBEC arrays can be viewed as potential compressors and separators of atomic and molecular condensates

  5. Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter

    OpenAIRE

    Brown, A.R.; Asenov, A.; Watling, J.R.

    2002-01-01

    We study, using numerical simulation, the intrinsic parameter fluctuations in sub 10 nm gate length double gate MOSFETs introduced by discreteness of charge and atomicity of matter. The employed "atomistic" drift-diffusion simulation approach includes quantum corrections based on the density gradient formalism. The quantum confinement and source-to-drain tunnelling effects are carefully calibrated in respect of self-consistent Poisson-Schrodinger and nonequilibrium Green's function simulation...

  6. Local charge measurement using off-axis electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Gontard, L.C.; Dunin-Borkowski, R.0E.

    2016-01-01

    A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the to...

  7. Fractional Charge Definitions and Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, A.S.

    2004-06-04

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.

  8. Fractional Charge Definitions and Conditions

    International Nuclear Information System (INIS)

    Goldhaber, A.S.

    2004-01-01

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles

  9. Irrational Charge from Topological Order

    Science.gov (United States)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  10. 27 CFR 53.175 - Readjustment for local advertising charges.

    Science.gov (United States)

    2010-04-01

    ... television station, or appears in a newspaper or magazine, or is displayed by means of an outdoor advertising... advertising charges. 53.175 Section 53.175 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Readjustment for local advertising charges. (a) In general. If a manufacturer has paid the tax imposed by...

  11. Transverse intrinsic localized modes in monatomic chain and in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Klopov, M. [Department of Physics, Faculty of Science, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn (Estonia); Shelkan, A., E-mail: shell@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-03-06

    In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in this direction, there may exist localized anharmonic transverse modes with the frequencies above the spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal (chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical and numerical calculations it may exceed 10{sup 10} periods. We call these vibrations as transverse intrinsic localized modes. - Highlights: • In a stretched monatomic chain, long-living nonlinear transverse localized modes may exist. • Transverse vibrations of a chain slowly decay due to creation of longitudinal phonons. • Lifetime of transverse vibrations of a chain may exceed billion periods of vibrations. • In stretched graphene, long-living out-of-plain localized vibrations may exist.

  12. 26 CFR 48.6416(b)(1)-3 - Readjustment for local advertising charges.

    Science.gov (United States)

    2010-04-01

    ..., advertising which is broadcast over a radio station or television station, or appears in a newspaper or... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Readjustment for local advertising charges. 48... Readjustment for local advertising charges. (a) In general. If a manufacturer has paid the tax imposed by...

  13. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  14. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  15. Lifetime of charge carriers in intrinsic indium antimonide

    International Nuclear Information System (INIS)

    Bruhns, H.; Kruse, H.

    1980-01-01

    The lifetime of additional photoinjected electron-hole pairs in intrinsic InSb at 291 K is investigated by measuring the photoconductive (PC) decay. Apart from studying the usual PC-decay an arangement is used with superimposed magnetic field transverse to the electric field. Depending on the direction of the magnetic field the photoinjected plasma is either driven into the sample's bulk or travels parallel to the illuminated surface. The Auger-lifetime is evaluated from the measurements by a numerical magnetohydrodynamical simulation taking into account surface recombination as well as the Suhl profile of the intrinsic plasma. A lifetime of tau = (57+-3) ns is found which is independent of the magnetic field up to 2.3 T. (author)

  16. Spontaneous spin polarization and charge localization in metal nanowires: the role of a geometric constriction

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Huerto, R; Ballone, P [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2010-07-28

    An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r{sub s} {>=} 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.

  17. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    Science.gov (United States)

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  18. Charging dynamics and strong localization of a two-dimensional electron cloud

    International Nuclear Information System (INIS)

    Dianoux, R; Smilde, H J H; Marchi, F; Buffet, N; Mur, P; Comin, F; Chevrier, J

    2007-01-01

    The dynamics of charge injection in silicon nanocrystals embedded in a silicon dioxide matrix is studied using electrostatic force microscopy. We show that the presence of silicon nanocrystals with a density of 10 11 cm -2 is essential for strong localization of charges, and results in exceptional charge retention properties compared to nanocrystal-free SiO 2 samples. In both systems, a logarithmic dependence of the diameter of the charged area on the injection time is experimentally observed on a timescale between 0.1 and 10 s (voltage≤10 V). A field-emission injection, limited by Coulomb blockade and a lateral charge spreading due to a repulsive radial electric field are used to model the sample charging. Once the tip is retracted, the electron cloud is strongly confined in the nanocrystals and remains static

  19. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  20. Improved local lattice Monte Carlo simulation for charged systems

    Science.gov (United States)

    Jiang, Jian; Wang, Zhen-Gang

    2018-03-01

    Maggs and Rossetto [Phys. Rev. Lett. 88, 196402 (2002)] proposed a local lattice Monte Carlo algorithm for simulating charged systems based on Gauss's law, which scales with the particle number N as O(N). This method includes two degrees of freedom: the configuration of the mobile charged particles and the electric field. In this work, we consider two important issues in the implementation of the method, the acceptance rate of configurational change (particle move) and the ergodicity in the phase space sampled by the electric field. We propose a simple method to improve the acceptance rate of particle moves based on the superposition principle for electric field. Furthermore, we introduce an additional updating step for the field, named "open-circuit update," to ensure that the system is fully ergodic under periodic boundary conditions. We apply this improved local Monte Carlo simulation to an electrolyte solution confined between two low dielectric plates. The results show excellent agreement with previous theoretical work.

  1. Intrinsic Local Distortions and charge carrier behavior in CMR manganites and cobaltites

    Science.gov (United States)

    Bridges, Frank

    2010-03-01

    We compare and contrast the local structure and electronic configurations in two oxide systems La1-xSrxCoO3 (LSCO) and La1-yCayMnO3 (LCMO). Although these oxides may appear quite similar they have rather different properties. At x=0, LaCoO3 (LCO) has unusual magnetic properties - diamagnetic at low T but developing a moment near 100K. The Sr doped LSCO materials show ferromagnetism for x > 0.2. For LCO, one of the possible spin state configurations called the intermediate spin (IS) state (S=1), should be Jahn-Teller (JT) active, while the low spin (S=0) and high spin (S=2) states have no JT distortion. Early local structure measurements suggested a JT distortion was present in LCO and therefore supported an IS spin model. However we find no evidence for any significant JT distortion (and hence no support for the IS model) for a range of bulk and nanoparticle cobaltites La1-xSrxCoO3, x = 0 - 0.35. In contrast there are large JT distortions in the manganites LCMO, 0.2 K-edge XANES data that shown no significant shift of the edge for the cobaltites as the Sr concentration increases from x =0 to 0.35 indicating essentially no change in the electronic configuration about Co; consequently, the holes introduced via Sr doping appear to go primarily into the O bands. In contrast there is a large shift of the Mn K-edge with Ca doping indicating a change in the average Mn valence, and a corresponding change in the Mn electronic configuration. We briefly discuss some possible models.

  2. Importance of intrinsic and non-network contribution in PageRank centrality and its effect on PageRank localization

    OpenAIRE

    Deyasi, Krishanu

    2016-01-01

    PageRank centrality is used by Google for ranking web-pages to present search result for a user query. Here, we have shown that PageRank value of a vertex also depends on its intrinsic, non-network contribution. If the intrinsic, non-network contributions of the vertices are proportional to their degrees or zeros, then their PageRank centralities become proportion to their degrees. Some simulations and empirical data are used to support our study. In addition, we have shown that localization ...

  3. Diffusion in Intrinsic and Highly Doped III-V Semiconductors

    CERN Multimedia

    Stolwijk, N

    2002-01-01

    %title\\\\ \\\\Diffusion plays a key role in the fabrication of semiconductor devices. The diffusion of atoms in crystals is mediated by intrinsic point defects. Investigations of the diffusion behaviour of self- and solute atoms on the Ga sublattice of gallium arsenide led to the conclusion that in intrinsic and n-type material charged Ga vacancies are involved in diffusion processes whereas in p-type material diffusion if governed by charged Ga self-interstitials. Concerning the As sublattice of gallium arsenide there is a severe lack of reliable diffusion data. The few available literature data on intrinsic GaAs are not mutually consistent. A systematic study of the doping dependence of diffusion is completely missing. The most basic diffusion process - self-diffusion of As and its temperature and doping dependence - is practically not known. For GaP a similar statement holds.\\\\ \\\\The aim of the present project is to perform a systematic diffusion study of As diffusion in intrinsic and doped GaAs and in GaP. P...

  4. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  5. Vasectomy under local anaesthesia performed free of charge as a ...

    African Journals Online (AJOL)

    Vasectomy under local anaesthesia performed free of charge as a family planning service: Complications and results. ... The complication (5.6%) and failure rates (0%) were lowest for the registrar who had performed the smallest number of vasectomies and whose average operation time was longest. Comparing the first ...

  6. Local charge trapping in Ge nanoclustersdetected by Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, S.V., E-mail: kondr@univ.kiev.ua [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Lysenko, V.S. [Institute of Semiconductor Physics, 41 Prospect Nauki, 03028, Kyiv (Ukraine); Kozyrev, Yu. N. [O.O. Chuiko Institute of Surface Chemistry, 17 GeneralaNaumova Str. 03164, Kiev (Ukraine); Kratzer, M. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Storozhuk, D.P.; Iliash, S.A. [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Czibula, C. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Teichert, C., E-mail: teichert@unileoben.ac.at [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria)

    2016-12-15

    The understanding of local charge trapping on the nanoscale is crucial for the design of novel electronic devices and photodetectors based on SiGe nanoclusters (NCs). Here, the local spatial distribution of the surface potential of the Ge NCs was detected using Kelvin probe force microscopy (KPFM). Different surface potentials between Ge NCs and the wetting layer (WL) surface were detected at room temperature. Changes of the local contact potential differences (CPD) were studied after injection of electrons or holes into single Ge NCs on top of the Si layer using a conductive atomic force microscopy tip. The CPD image contrast was increased after electron injection by applying a forward bias to the n-tip/i-Ge NC/p-Si junction. Injecting holes into a single Ge NC was also accompanied by filling of two-dimensional states in the surrounding region, which is governed by leakage currents through WL or surface states and Coulomb charging effects. A long retention time of holes trapped by the Ge NC was found.

  7. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    Science.gov (United States)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  8. Intrinsic Vertebral Markers for Spinal Level Localization in Anterior Cervical Spine Surgery: A Preliminary Report.

    Science.gov (United States)

    Jha, Deepak Kumar; Thakur, Anil; Jain, Mukul; Arya, Arvind; Tripathi, Chandrabhushan; Kumari, Rima; Kushwaha, Suman

    2016-12-01

    Prospective clinical study. To observe the usefulness of anterior cervical osteophytes as intrinsic markers for spinal level localization (SLL) during sub-axial cervical spinal surgery via the anterior approach. Various landmarks, such as the mandibular angle, hyoid bone, thyroid cartilage, first cricoid ring, and C6 carotid tubercle, are used for gross cervical SLL; however, none are used during cervical spinal surgery via the anterior approach. We present our preliminary assessment of SLL over anterior vertebral surfaces (i.e., intrinsic markers) in 48 consecutive cases of anterior cervical spinal surgeries for the disc-osteophyte complex (DOC) in degenerative diseases and granulation or tumor tissue associated with infectious or neoplastic diseases, respectively, at an ill-equipped center. This prospective study on patients undergoing anterior cervical surgery for various sub-axial cervical spinal pathologies aimed to evaluate the feasibility and accuracy of SLL via intraoperative palpation of disease-related morphological changes on anterior vertebral surfaces visible on preoperative midline sagittal T1/2-weighted magnetic resonance images. During a 3-year period, 48 patients (38 males,10 females; average age, 43.58 years) who underwent surgery via the anterior approach for various sub-axial cervical spinal pathologies, including degenerative disease (n= 42), tubercular infection (Pott's disease; n=3), traumatic prolapsed disc (n=2), and a metastatic lesion from thyroid carcinoma (n=1), comprised the study group. Intrinsic marker palpation yielded accurate SLL in 79% of patients (n=38). Among those with degenerative diseases (n=42), intrinsic marker palpation yielded accurate SLL in 76% of patients (n=32). Intrinsic marker palpation is an attractive potential adjunct for SLL during cervical spinal surgeries via the anterior approach in well-selected patients at ill-equipped centers (e.g., those found in developing countries). This technique may prove helpful

  9. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Almora, Osbel; Guerrero, Antonio; Garcia-Belmonte, Germà, E-mail: garciag@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló (Spain)

    2016-01-25

    Identification of specific operating mechanisms becomes particularly challenging when mixed ionic-electronic conductors are used in optoelectronic devices. Ionic effects in perovskite solar cells are believed to distort operation curves and possess serious doubts about their long term stability. Current hysteresis and switchable photovoltaic characteristics have been connected to the kinetics of ion migration. However, the nature of the specific ionic mechanism (or mechanisms) able to explain the operation distortions is still poorly understood. It is observed here that the local rearrangement of ions at the electrode interfaces gives rise to commonly observed capacitive effects. Charging transients in response to step voltage stimuli using thick CH{sub 3}NH{sub 3}PbI{sub 3} samples show two main polarization processes and reveal the structure of the ionic double-layer at the interface with the non-reacting contacts. It is observed that ionic charging, with a typical response time of 10 s, is a local effect confined in the vicinity of the electrode, which entails absence of net mobile ionic concentration (space-charge) in the material bulk.

  10. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  11. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  12. Tuning of tunneling current noise spectra singularities by localized states charging

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.

    2008-01-01

    We report the results of theoretical investigations of tunneling current noise spectra in a wide range of applied bias voltage. Localized states of individual impurity atoms play an important role in tunneling current noise formation. It was found that switching "on" and "off" of Coulomb interaction of conduction electrons with two charged localized states results in power law singularity of low-frequency tunneling current noise spectrum ($1/f^{\\alpha}$) and also results on high frequency com...

  13. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  14. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  15. Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering.

    Science.gov (United States)

    Hsieh, Yun-Ting; Chen, Jung-Yao; Fukuta, Seijiro; Lin, Po-Chen; Higashihara, Tomoya; Chueh, Chu-Chen; Chen, Wen-Chang

    2018-06-12

    The rapid development of wearable electronic devices has prompted a strong demand to develop stretchable organic solar cells (OSCs) to serve as the advanced powering systems. However, to realize an intrinsically stretchable OSC is challenging because it requires all the constituent layers to possess certain elastic properties. It thus necessitates a combined engineering of charge-transporting layers and photoactive materials. Herein, we first describe a stretchable electron-extraction layer using a blend of poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN) and nitrile butadiene rubber (NBR, Nipol 1072). This hybrid PFN/NBR layer exhibits a much lower Derjaguin-Muller-Toporov modulus (0.45 GPa) than the value (1.25 GPa) of the pristine PFN and could withstand a high strain (60% strain) without showing any cracks. Moreover, besides enriching the stretchability of PFN, the terminal carboxyl groups of NBR can ionize PFN to promote its solution-processability in polar solvents and to ensure the interfacial dipole formation at the corresponding interface in the device, as evidenced by the Fourier transform infrared and ultraviolet photoelectron spectroscopy analyses. By further coupling the replacement of [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with nonfullerene acceptors owing to better mechanical stretchability in the photoactive layer, OSCs with improved intrinsically stretchability and performance were demonstrated. An all-polymer OSC can exhibit a power conversion efficiency of 2.82% after 10% stretching, surpassing the PCBM-based device that can only withstand 5% strain.

  16. Lorentz-diffeomorphism quasi-local conserved charges and Virasoro algebra in Chern–Simons-like theories of gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available The Chern–Simons-like theories of gravity (CSLTG are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz–Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.

  17. Intact Four-atom Organic Tetracation Stabilized by Charge Localization in the Gas Phase.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Toyota, Kazuo; Mitsubayashi, Naoya; Kozaki, Masatoshi; Okada, Keiji; Nakashima, Nobuaki

    2016-10-05

    Several features distinguish intact multiply charged molecular cations (MMCs) from other species such as monocations and polycations: high potential energy, high electron affinity, a high density of electronic states with various spin multiplicities, and charge-dependent reactions. However, repulsive Coulombic interactions make MMCs quite unstable, and hence small organic MMCs are currently not readily available. Herein, we report that the isolated four-atom molecule diiodoacetylene survives after the removal of four electrons via tunneling. We show that the tetracation remains metastable towards dissociation because of the localization (91-95 %) of the positive charges on the terminal iodine atoms, ensuring minimum Coulomb repulsion between adjacent atoms as well as maximum charge-induced attractive dipole interactions between iodine and carbon. Our approach making use of iodines as the positively charged sites enables small organic MMCs to remain intact. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Charged hadrons in local finite-volume QED+QCD with C* boundary conditions

    CERN Document Server

    Lucini, Biagio; Ramos, Alberto; Tantalo, Nazario

    2016-01-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C* boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C* boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in this setup in a fully consistent fashion, without relying on gauge fixing. We argue that this class of states covers most of the interesting phenomenological applications in the framework of numerical simulations. We also calculate finite-volume corrections to the mass of stable charg...

  19. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    Science.gov (United States)

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  20. Iterated local search and record-to-record travel applied to the fixed charge transportation problem

    DEFF Research Database (Denmark)

    Andersen, Jeanne; Klose, Andreas

    The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported......, transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single...

  1. From Baxter Q-operators to local charges

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven [Humboldt-Univ., Berlin (Germany). Institut fuer Mathematik und Institut fuer Physik; Albert-Einstein-Institut, Potsdam (Germany). MPI fuer Gravitationsphysik; Meneghelli, Carlo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Fachbereich Mathematik

    2012-10-15

    We discuss how the shift operator and the Hamiltonian enter the hierarchy of Baxter Q-operators in the example of gl(n) homogeneous spin-chains. Building on the construction that was recently carried out by the authors and their collaborators, we find that a reduced set of Q-operators can be used to obtain local charges. The mechanism relies on projection properties of the corresponding R-operators on a highest/lowest weight state of the quantum space. It is intimately related to the ordering of the oscillators in the auxiliary space. Furthermore, we introduce a diagrammatic language that makes these properties manifest and the results transparent. Our approach circumvents the paradigm of constructing the transfer matrix with equal representations in quantum and auxiliary space and underlines the strength of the Q-operator construction.

  2. From Baxter Q-operators to local charges

    International Nuclear Information System (INIS)

    Frassek, Rouven; Albert-Einstein-Institut, Potsdam; Meneghelli, Carlo; Hamburg Univ.

    2012-10-01

    We discuss how the shift operator and the Hamiltonian enter the hierarchy of Baxter Q-operators in the example of gl(n) homogeneous spin-chains. Building on the construction that was recently carried out by the authors and their collaborators, we find that a reduced set of Q-operators can be used to obtain local charges. The mechanism relies on projection properties of the corresponding R-operators on a highest/lowest weight state of the quantum space. It is intimately related to the ordering of the oscillators in the auxiliary space. Furthermore, we introduce a diagrammatic language that makes these properties manifest and the results transparent. Our approach circumvents the paradigm of constructing the transfer matrix with equal representations in quantum and auxiliary space and underlines the strength of the Q-operator construction.

  3. From Baxter Q-operators to local charges

    Science.gov (United States)

    Frassek, Rouven; Meneghelli, Carlo

    2013-02-01

    We discuss how the shift operator and the Hamiltonian enter the hierarchy of Baxter Q-operators in the example of gl(n) homogeneous spin-chains. Building on the construction that was recently carried out by the authors and their collaborators, we find that a reduced set of Q-operators can be used to obtain local charges. The mechanism relies on projection properties of the corresponding ℛ-operators on a highest/lowest weight state of the quantum space. It is intimately related to the ordering of the oscillators in the auxiliary space. Furthermore, we introduce a diagrammatic language that makes these properties manifest and the results transparent. Our approach circumvents the paradigm of constructing the transfer matrix with equal representations in quantum and auxiliary space and underlines the strength of the Q-operator construction.

  4. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  5. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

    DEFF Research Database (Denmark)

    Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T

    2010-01-01

    of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low......The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...

  6. Negative and positive magnetoresistance in bilayer graphene: Effects of weak localization and charge inhomogeneity

    International Nuclear Information System (INIS)

    Chen Yungfu; Bae, Myung-Ho; Chialvo, Cesar; Dirks, Travis; Bezryadin, Alexey; Mason, Nadya

    2011-01-01

    We report measurements of magnetoresistance in bilayer graphene as a function of gate voltage (carrier density) and temperature. We examine multiple contributions to the magnetoresistance, including those of weak localization (WL), universal conductance fluctuations (UCF), and inhomogeneous charge transport. A clear WL signal is evident at all measured gate voltages (in the hole doped regime) and temperature ranges (from 0.25 to 4.3 K), and the phase coherence length extracted from the WL data does not saturate at low temperatures. The WL data is fit to demonstrate that the electron-electron Nyquist scattering is the major source of phase decoherence. A decrease in UCF amplitude with increase in gate voltage and temperature is shown to be consistent with a corresponding decrease in the phase coherence length. In addition, a weak positive magnetoresistance at higher magnetic fields is observed, and attributed to inhomogeneous charge transport. -- Research highlights: → Weak localization theory describes low-field magnetoresistance in bilayer graphene. → Electron-electron Nyquist scattering limits phase coherence in bilayer graphene. → Positive magnetoresistance reveals charge inhomogeneity in bilayer graphene.

  7. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  8. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  9. Translation-invariant global charges in a local scattering theory of massless particles

    International Nuclear Information System (INIS)

    Strube, D.

    1989-01-01

    The present thesis is dedicated to the study for specifically translation-invariant charges in the framework of a Wightman field theory without mass gap. The aim consists thereby in the determination of the effect of the charge operator on asymptotic scattering states of massless particles. In the first section the most important results in the massive case and of the present thesis in the massless case are presented. The object of the second section is the construction of asymptotic scattering states. In the third section the charge operator, which is first only defined on strictly local vectors, is extended to these scattering states, on which it acts additively. Finally an infinitesimal transformation of scalar asymptotic fields is determined. By this for the special case of translation-invariant generators and scalar massless asymptotic fields the same results is present as in the massive case. (orig./HSI) [de

  10. Characterization of intrinsic and induced lateral conduction in space dielectric materials

    International Nuclear Information System (INIS)

    Hanna, R.; Paulmier, T.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    Characterization of lateral charge carrier conduction in space dielectrics is of high importance for the prediction of charging behavior and electrostatic discharges on satellites. In the present paper, a new experimental approach for the analysis of surface conduction, which is not well understood and characterized in the literature, is established and discussed. Though this method, based on the use of two Kelvin probes, we have been able to discriminate between lateral and bulk charge transports and to reveal the presence of an intrinsic lateral conductivity on Teflon ® FEP irradiated with low energy electron beam. We demonstrated that lateral intrinsic conductivity is enhanced when incident current density increases and when approaching the sample surface. The experimental results are analyzed through trapping/detrapping and hopping models. Depending on radiation configuration mode, we have revealed as well the presence of a lateral conductivity that is enhanced by radiation ionization processes, and explained as well with a trapping/recombination model

  11. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    Science.gov (United States)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.

  12. Spectroscopic fingerprints for charge localization in the organic semiconductor (DOEO)4[HgBr4]·TCE

    Science.gov (United States)

    Koplak, Oksana V.; Chernenkaya, Alisa; Medjanik, Katerina; Brambilla, Alberto; Gloskovskii, Andrei; Calloni, Alberto; Elmers, Hans-Joachim; Schönhense, Gerd; Ciccacci, Franco; Morgunov, Roman B.

    2015-05-01

    Changes of the electronic structure accompanied by charge localization and a transition to an antiferromagnetic ground state were observed in the organic semiconductor (DOEO)4[HgBr4]·TCE. Localization starts in the temperature region of about 150 K and the antiferromagnetic state occurs below 60 K. The magnetic moment of the crystal contains contributions of inclusions (droplets), and individual paramagnetic centers formed by localized holes and free charge carriers at 2 K. Two types of inclusions of 100-400 nm and 2-5 nm sizes were revealed by transmission electron microscopy. Studying the temperature- and angular dependence of electron spin resonance (ESR) spectra revealed fingerprints of antiferromagnetic contributions as well as paramagnetic resonance spectra of individual localized charge carriers. The results point on coexistence of antiferromagnetic long and short range order as evident from a second ESR line. Photoelectron spectroscopy in the VUV, soft and hard X-ray range shows temperature-dependent effects upon crossing the critical temperatures around 60 K and 150 K. The substantially different probing depths of soft and hard X-ray photoelectron spectroscopy yield information on the surface termination. The combined investigation using complementary methods at the same sample reveals the close relation of changes in the transport properties and in the energy distribution of electronic states.

  13. Sensitivity of the CSR self-interaction to the local longitudinal charge concentration of an electron bunch

    CERN Document Server

    Li, R

    2001-01-01

    Recent measurements of the coherent synchrotron radiation (CSR) effects indicated that the observed emittance growth and energy modulation due to the orbit-curvature-induced bunch self-interaction are sometimes bigger than predictions based on Gaussian longitudinal charge distributions. In this paper, by performing a model study, we show both analytically and numerically that when the longitudinal bunch charge distribution involves concentration of charges in a small fraction of the bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur. The level of this enhancement is sensitive to the level of the local charge concentration.

  14. Magnetic field and contact resistance dependence of non-local charge imbalance

    International Nuclear Information System (INIS)

    Kleine, A; Baumgartner, A; Trbovic, J; Schoenenberger, C; Golubev, D S; Zaikin, A D

    2010-01-01

    Crossed Andreev reflection (CAR) in metallic nanostructures, a possible basis for solid-state electron entangler devices, is usually investigated by detecting non-local voltages in multi-terminal superconductor/normal metal devices. This task is difficult because other subgap processes may mask the effects of CAR. One of these processes is the generation of charge imbalance (CI) and the diffusion of non-equilibrium quasi-particles in the superconductor. Here we demonstrate a characteristic dependence of non-local CI on a magnetic field applied parallel to the superconducting wire, which can be understood by a generalization of the standard description of CI to non-local experiments. These results can be used to distinguish CAR and CI and to extract CI relaxation times in superconducting nanostructures. In addition, we investigate the dependence of non-local CI on the resistance of the injector and detector contacts and demonstrate a quantitative agreement with a recent theory using only material and junction characteristics extracted from separate direct measurements.

  15. Intrinsic neuromodulation: altering neuronal circuits from within.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1996-02-01

    There are two sources of neuromodulation for neuronal circuits: extrinsic inputs and intrinsic components of the circuits themselves. Extrinsic neuromodulation is known to be pervasive in nervous systems, but intrinsic neuromodulation is less recognized, despite the fact that it has now been demonstrated in sensory and neuromuscular circuits and in central pattern generators. By its nature, intrinsic neuromodulation produces local changes in neuronal computation, whereas extrinsic neuromodulation can cause global changes, often affecting many circuits simultaneously. Studies in a number of systems are defining the different properties of these two forms of neuromodulation.

  16. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  17. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  18. Quasi-local conserved charges of spin-3 topologically massive gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available In this paper we obtain conserved charges of spin-3 topologically massive gravity by using a quasi-local formalism. We find a general formula to calculate conserved charge of the spin-3 topologically massive gravity which corresponds to a Killing vector field ξ. We show that this general formula reduces to the previous one for the ordinary spin-3 gravity presented in [18] when we take into account only transformation under diffeomorphism, without considering generalized Lorentz gauge transformation (i.e. λξ=0, and by taking 1μ→0. Then we obtain a general formula for the entropy of black hole solutions of the spin-3 topologically massive gravity. Finally we apply our formalism to calculate energy, angular momentum and entropy of a special black hole solution and we find that obtained results are consistent with previous results in the limiting cases. Moreover our results for energy, angular momentum and entropy are consistent with the first law of black hole mechanics.

  19. Charge Analyzer Responsive Local Oscillations

    Science.gov (United States)

    Krause, Linda Habash; Thornton, Gary

    2015-01-01

    The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local

  20. Determination of intrinsic equilibrium constants at an alumina/electrolyte interface

    Directory of Open Access Journals (Sweden)

    SLOBODAN K. MILONJIC

    2004-12-01

    Full Text Available Intrinsic ionization and complexation constants at an alumina/electrolyte interface were studied by the site binding model, while the sorption of alkali cations from aqueous solutions was interpreted by the triple-layer model. The surface properties of alumina were investigated by the potentiometric acid-base titration method. The point of zero charge (pHpzc of alumina obtained by this method was found to be 7.2. The obtained mean values of the intrinsic protonation and ionization constants of the surface hydroxyl groups and the intrinsic surface complexation constant, in different electrolytes, are pKinta1 = 4.4, pKinta2 = 9.6 and pKintM+ = 9.5, respectively.

  1. A reduced-cost iterated local search heuristic for the fixed-charge transportation problem

    NARCIS (Netherlands)

    Buson, Erika; Roberti, Roberto; Toth, Paolo

    2014-01-01

    The fixed-charge transportation problem (FCTP) is a generalization of the transportation problem where an additional fixed cost is paid for sending a flow from an origin to a destination. We propose an iterated local search heuristic based on the utilization of reduced costs for guiding the restart

  2. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Adami, H.; Setare, M.R. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2016-04-15

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory. (orig.)

  3. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    Science.gov (United States)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  4. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1994-01-01

    It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref

  5. Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities

    International Nuclear Information System (INIS)

    Sabry, R.

    2008-01-01

    Modulation instability of ion thermal waves (ITWs) is investigated in a plasma composed of positive and negative ions as well as a fraction of stationary charged (positive or negative) dust impurities. For this purpose, a linear dispersion relation and a nonlinear Schroedinger equation are derived. The latter admits localized envelope solitary wave solutions of bright (pulses) and dark (holes, voids) type. The envelope soliton depends on the intrinsic plasma parameters. It is found that modulation instability of ITWs is significantly affected by the presence of positively/negatively charged dust grains. The findings of this investigation should be useful in understanding the stable electrostatic wave packet acceleration mechanisms in pair-ion plasma, and also enhances our knowledge on the occurrence of instability associated to the existence of charged dust impurities in pair-ion plasmas. Our results should be of relevance for laboratory plasmas.

  6. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe3

    International Nuclear Information System (INIS)

    Kim, H.J.; Tomic, A.T.; Tessmer, S.H.; Billinge, S.J.L.; Malliakas, C.D.; Kanatzidis, M.G.

    2006-01-01

    The local structure of CeTe 3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system

  7. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, Ravishankar; Goddard, William A. [Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States)

    2015-02-14

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With four parameters per solvent, this “CANDLE” model simultaneously reproduces solvation energies of large datasets of neutral molecules, cations, and anions with a mean absolute error of 1.8 kcal/mol in water and 3.0 kcal/mol in acetonitrile.

  8. Characterization of the intrinsic density profiles for liquid surfaces

    International Nuclear Information System (INIS)

    Chacon, Enrique; Tarazona, Pedro

    2005-01-01

    This paper presents recent advances in the characterization of the intrinsic structures in computer simulations of liquid surfaces. The use of operational definitions for the intrinsic surface, associated with each molecular configuration of a liquid slab, gives direct access to the intrinsic profile and to the wavevector dependent surface tension. However, the characteristics of these functions depend on the definition used for the intrinsic surface. We discuss the pathologies associated with a local Gibbs dividing surface definition, and consider the alternative definition of a minimal area surface, going though a set of surface pivots, self-consistently chosen to represent the first liquid layer

  9. Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, Toby W.; Martin, Aiden A.; Aharonovich, Igor, E-mail: Igor.Aharonovich@uts.edu.au; Toth, Milos, E-mail: Milos.Toth@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

    2014-08-11

    We present a direct-write chemical technique for controlling the charge state of near-surface nitrogen vacancy centers (NVs) in diamond by surface fluorination. Fluorination of H-terminated diamond is realized by electron beam stimulated desorption of H{sub 2}O in the presence of NF{sub 3} and verified with environmental photoyield spectroscopy (EPYS) and photoluminescence (PL) spectroscopy. PL spectra of shallow NVs in H- and F-terminated nanodiamonds show the expected dependence of the NV charge state on their energetic position with respect to the Fermi-level. EPYS reveals a corresponding difference between the ionization potential of H- and F-terminated diamond. The electron beam fluorination process is highly localized and can be used to fluorinate H-terminated diamond, and to increase the population of negatively charged NV centers.

  10. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.; McGehee, Michael D.

    2013-01-01

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  13. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism

    Directory of Open Access Journals (Sweden)

    Sergei E. Permyakov

    2015-09-01

    Full Text Available We show here that chicken gizzard caldesmon (CaD and its C-terminal domain (residues 636–771, CaD136 are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A and a double tryptophan mutant (W674A/W707A suggested that although the interaction of CaD136 with calmodulin (CaM can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

  14. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    Science.gov (United States)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  15. Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS

    NARCIS (Netherlands)

    Lou, X.; Li, B.; de Waal, B.F.M.; Schill, J.; Baker, M.B.; Bovee, R.A.A.; van Dongen, J.L.J.; Milroy, L.G.; Meijer, E.W.

    2018-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the

  16. 26 CFR 48.4216(e)-1 - Exclusion of local advertising charges from sale price.

    Science.gov (United States)

    2010-04-01

    ... a newspaper or magazine, or is displayed by means of an outdoor advertising sign or poster. Section..., television, or newspaper advertising specifically naming refrigerators or other articles taxable at the same... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Exclusion of local advertising charges from sale...

  17. Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium

    Science.gov (United States)

    Von Ross, O.

    1980-01-01

    A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.

  18. Branching in current-voltage characteristics of intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  19. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    Science.gov (United States)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  20. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  1. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  2. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    Science.gov (United States)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  3. Local Atomic Structure and Discommensurations in the Charge Density Wave of CeTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H J; Tomic, A T; Tessmer, S H; Billinge, S J.L. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Malliakas, C D; Kanatzidis, M G [Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States)

    2006-06-09

    The local structure of CeTe{sub 3} in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function analysis of x-ray diffraction data. Local atomic distortions in the Te nets due to the CDW are larger than observed crystallographically, resulting in distinct short and long Te-Te bonds. Observation of different distortion amplitudes in the local and average structures is explained by the discommensurated nature of the CDW, since the pair distribution function is sensitive to the local displacements within the commensurate regions, whereas the crystallographic result averages over many discommensurated domains. The result is supported by STM data. This is the first quantitative local structural study within the commensurate domains in an IC-CDW system.

  4. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  5. Radiation signatures from a locally energized flaring loop

    Science.gov (United States)

    Emslie, A. G.; Vlahos, L.

    1980-01-01

    The radiation signatures from a locally energized solar flare loop based on the physical properties of the energy release mechanisms were consistent with hard X-ray, microwave, and EUV observations for plausible source parameters. It was found that a suprathermal tail of high energy electrons is produced by the primary energy release, and that the number of energetic charged particles ejected into the interplanetary medium in the model is consistent with observations. The radiation signature model predicts that the intrinsic polarization of the hard X-ray burst should increase over the photon energy range of 20 to 100 keV.

  6. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    International Nuclear Information System (INIS)

    Oh, Y J; Jo, W; Kim, S; Park, S; Kim, Y S

    2008-01-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 μm, and the 90 deg. rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 μm 2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection

  7. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates

    Directory of Open Access Journals (Sweden)

    Fatma E. El-Khouly

    2017-10-01

    Full Text Available Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG, patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB. We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%—carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole—are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.

  8. Evaluation of local radiation damage in silicon sensor via charge collection mapping with the Timepix read-out chip

    International Nuclear Information System (INIS)

    Platkevic, M; Jakubek, J; Jakubek, M; Pospisil, S; Zemlicka, J; Havranek, V; Semian, V

    2013-01-01

    Studies of radiation hardness of silicon sensors are standardly performed with single-pad detectors evaluating their global electrical properties. In this work we introduce a technique to visualize and determine the spatial distribution of radiation damage across the area of a semiconductor sensor. The sensor properties such as charge collection efficiency and charge diffusion were evaluated locally at many points of the sensor creating 2D maps. For this purpose we used a silicon sensor bump bonded to the pixelated Timepix read-out chip. This device, operated in Time-over-threshold (TOT) mode, allows for the direct energy measurement in each pixel. Selected regions of the sensor were intentionally damaged by defined doses (up to 10 12 particles/cm 2 ) of energetic protons (of 2.5 and 4 MeV). The extent of the damage was measured in terms of the detector response to the same ions. This procedure was performed either on-line during irradiation or off-line after it. The response of the detector to each single particle was analyzed determining the charge collection efficiency and lateral charge diffusion. We evaluated the changes of these parameters as a function of radiation dose. These features are related to the local properties such as the spatial homogeneity of the sensor. The effect of radiation damage was also independently investigated measuring local changes of signal response to γ, and X rays and alpha particles.

  9. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery

    International Nuclear Information System (INIS)

    Harush-Frenkel, Oshrat; Bivas-Benita, Maytal; Nassar, Taher; Springer, Chaim; Sherman, Yoav; Avital, Avraham; Altschuler, Yoram; Borlak, Jurgen; Benita, Simon

    2010-01-01

    Nanoparticle (NP) based drug delivery systems provide promising opportunities in the treatment of lung diseases. Here we examined the safety and tolerability of pulmonary delivered NPs consisting of PEG-PLA as a function of particle surface charge. The rationale for such a comparison should be attributed to the differential pulmonary toxicity of positively and negatively charged PEG-PLA NP. Thus, the local and systemic effects of pulmonary administered NPs were investigated following 5 days of daily endotracheal instillation to BALB/c mice that were euthanized on the eighth or nineteenth day of the experiment. We collected bronchoalveolar lavages and studied hematological as well as histochemistry parameters. Notably, the cationic stearylamine based PEG-PLA NPs elicited increased local and systemic toxic effects both on the eighth and nineteenth day. In contrast, anionic NPs of similar size were much better tolerated with local inflammatory effects observed only on the eighth experimental day after pulmonary instillation. No systemic toxicity effect was observed although a moderate change was noted in the platelet count that was not considered to be of clinical significance. No pathological observations were detected in the internal organs following instillation of anionic NPs. Overall these observations suggest that anionic PEG-PLA NPs are useful pulmonary drug carriers that should be considered as a promising therapeutic drug delivery system.

  10. Cosmological information in the intrinsic alignments of luminous red galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: nchisari@astro.princeton.edu, E-mail: cdvorkin@ias.edu [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  11. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  12. Five Stereoactive Orbitals on Silicon: Charge and Spin Localization in the n-Si4Me10(-•) Radical Anion by Trigonal Bipyramidalization.

    Science.gov (United States)

    MacLeod, Matthew K; Michl, Josef

    2013-05-16

    RIUMP2/def2-TZVPPD calculations show that in addition to its usual conformation with charge and spin delocalized over the Si backbone, the isolated Si4Me10(-•) radical anion also has isomeric conformations with localized charge and spin. A structure with localization on a terminal Si atom has been examined in detail. In vacuum, it is calculated to lie 11.5 kcal/mol higher in energy than the charge-and-spin delocalized conformation, and in water the difference is as little as 1.6 kcal/mol. According to natural orbital and localized orbital analyses, the charge-and-spin-carrying terminal Si atom uses five stereoactive hybrid orbitals in a trigonal bipyramidal geometry. Four are built mostly from 3s and 3p atomic orbitals (AOs) and are used to attach a Si3(CH3)7 and three CH3 groups, whereas the larger equatorial fifth orbital is constructed from 4s and 4p AOs and acts as a nonbonding (radical) hybrid orbital with an occupancy of about 0.65 e.

  13. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  14. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  15. Factors affecting the electrostatic charge of ceramic powders; Factores que afectan la carga electrostatica en polvos ceremicos

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I; Romero, J; Fernandez, J F

    2011-07-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  16. Hidden Structural Codes in Protein Intrinsic Disorder.

    Science.gov (United States)

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  17. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium

    International Nuclear Information System (INIS)

    Brotzmann, Sergej; Bracht, Hartmut

    2008-01-01

    Diffusion experiments of phosphorus (P), arsenic (As), and antimony (Sb) in high purity germanium (Ge) were performed at temperatures between 600 and 920 deg. C. Secondary ion mass spectrometry and spreading resistance profiling were applied to determine the concentration profiles of the chemically and electrically active dopants. Intrinsic and extrinsic doping conditions result in a complementary error function and box-shaped diffusion profiles, respectively. These profiles demonstrate enhanced dopant diffusion under extrinsic doping. Accurate modeling of dopant diffusion is achieved on the basis of the vacancy mechanism taking into account singly negatively charged dopant-vacancy pairs and doubly negatively charged vacancies. The activation enthalpy and pre-exponential factor for dopant diffusion under intrinsic condition were determined to 2.85 eV and 9.1 cm 2 s -1 for P, 2.71 eV and 32 cm 2 s -1 for As, and 2.55 eV and 16.7 cm 2 s -1 for Sb. With increasing atomic size of the dopants the activation enthalpy decreases. This is attributed to differences in the binding energy of the dopant-vacancy pairs

  18. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.

    Science.gov (United States)

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Pickup, David M; Liu, Yi-Sheng; Edström, Kristina; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-07-01

    During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.

  19. Intrinsically bent DNA in replication origins and gene promoters.

    Science.gov (United States)

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  20. Magnetically charged calorons with non-trivial holonomy

    Science.gov (United States)

    Kato, Takumi; Nakamula, Atsushi; Takesue, Koki

    2018-06-01

    Instantons in pure Yang-Mills theories on partially periodic space R^3× {S}^1 are usually called calorons. The background periodicity brings on characteristic features of calorons such as non-trivial holonomy, which plays an essential role for confinement/deconfinement transition in pure Yang-Mills gauge theory. For the case of gauge group SU(2), calorons can be interpreted as composite objects of two constituent "monopoles" with opposite magnetic charges. There are often the cases that the two monopole charges are unbalanced so that the calorons possess net magnetic charge in R3. In this paper, we consider several mechanism how such net magnetic charges appear for certain types of calorons through the ADHM/Nahm construction with explicit examples. In particular, we construct analytically the gauge configuration of the (2 , 1)-caloron with U(1)-symmetry, which has intrinsically magnetic charge.

  1. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  2. Fermion local charged boson model and cuprate superconductors

    International Nuclear Information System (INIS)

    Sinha, K.P.; Kakani, S.L.

    2002-01-01

    One of the most exciting developments in Science in past few years is the discovery of high temperature superconductivity (HTSC) in cuprates. It has been observed that the superconducting state in these cuprates is rather normal compared to the anomalous normal state. This discovery has led to deluge of experimental and theoretical researches all along the world. These cuprates are close to metal-insulator transition and the stability of the insulating and metallic phase depends on the degree of doping. Measurements of physical properties of these systems have revealed many anomalous results both in the superconducting and normal states, e.g. d-wave superconducting gap, the presence of pseudo gap in the normal state, static or dynamic striped structure of CuO 2 planes etc. These have posed serious theoretical challenges towards formulating the mechanisms of pairing and explanation of anomalous behaviour. Several theoretical proposals have been advanced and only a few are likely to survive in the teeth of some reliable experimental data. A combined mechanism mediated by phonons and lochons (local charged bosons, local pairs or bipolarons) for the pairing of fermions (holes or electrons) belonging to a wide band provides a microscopic explanation of anomalous normal state properties of HTSC cuprates and vindicates features of the phenomenological marginal Fermi liquid formulation. In the present review article detailed features of combined lochon and phonon mediated pairing mechanism are presented and a contact with the normal and superconducting state properties of HTSC in YBa 2 Cu 3 O x does indicate pair hopping between planes via such resonant centres lying in between the CuO 2 planes. (author)

  3. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  4. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    Science.gov (United States)

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  5. Charge exchange recombination spectroscopy as a plasma diagnostic tool

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1984-12-01

    Intensity and line profile measurements of the spectra of light hydrogenic ion which are excited by charge exchange reactions with fast neutral atoms are being widely used as diagnostics for fusion plasma research. This technique, which is referred to as charge exchange recombination spectroscopy, allows measurements of the densities of fully stripped impurity ions and particle transport coefficients with only minor uncertainties arising from atomic processes. The excitation of long wavelength transitions in light ions such as He + , C 5+ , and O 7+ allows relatively easy measurements of ion velocity distributions to determine ion temperatures and plasma rotation velocities. Among its advantages for such measurements are the facts that fiber optic coupling between a remote spectrometer and the immediate reactor environment is possible in many cases. The measurement is localized by the intersection region of a neutral beamline and viewing sightline, and intrinsic ions can be used so that injection of potentially perturbing impurities can be avoided. A particularly challenging application of this technique lies in the diagnosis of alpha particles expected to be produced in the present generation of Q approx. = 1 tokamak experiments

  6. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    Science.gov (United States)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  7. Somatostatin receptors in rat hippocampus: localization to intrinsic neurons

    International Nuclear Information System (INIS)

    Palacios, J.M.; Reubi, J.C.; Maurer, R.

    1986-01-01

    The effect of neurotoxic chemical and electrolytical lesions on somatostatin (SS) receptor binding in the septo-hippocampal afferents, pyramidal and granule cells of the rat hippocampus was examined by autoradiography using the stable SS analogue 125 I-204-090 as radioligand. Electrolytical lesions of the septum did not result in modification of SS binding in the hippocampus. In contrast, both granule cell lesion with colchicine and pyramidal or pyramidal and granule cell lesions with increasing kainic acid doses did result in a specific decrease of binding in the dentate gyrus and hippocampus (CA 1 and CA 3 ). These results suggest that SS receptors in the hippocampus are probably associated with elements from intrinsic neurons. (Author)

  8. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  9. Bond charges and electronic charge transfer in ternary semiconductors

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    By means of a simple molecule-theoretic model of 'linear superposition of two-electron molecules' the bond charges between nearest neighbours and the effective charges of ions are calculated for ternary zinc-blende structure alloys as well as chalcopyrite semiconductors. Taking into account both, the charge transfer among the ions caused by the differences of electronegativities of atoms used and between the bonds created by the internal stress of the lattice a nearly unvaried averaged bond charge amount of the alloy is found, but rather dramatically changed local bond charge parameters in comparison with the respective values of binary compounds used. This fact should influence the noncentral force interaction in such semiconductors. (author)

  10. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3

    Science.gov (United States)

    Ma, Jie; Wang, Lin-Wang

    2015-03-01

    Perovskite-based solar cells have achieved high solar-energy conversion efficiencies and attracted wide attentions nowadays. Despite the rapid progress in solar-cell devices, many fundamental issues of the hybrid perovskites have not been fully understood. Experimentally, it is well known that in CH3NH3PbI3, the organic molecules CH3NH3 are randomly orientated at the room temperature, but the impact of the random molecular orientation has not been investigated. Using linear-scaling ab-initiomethods, we have calculated the electronic structures of the tetragonal phase of CH3NH3PbI3 with randomly orientated organic molecules in large supercells up to ~20,000 atoms. Due to the dipole moment of the organic molecule, the random orientation creates a novel system with long-range potential fluctuations unlike alloys or other conventional disordered systems. We find that the charge densities of the conduction-band minimum and the valence-band maximum are localized separately in nanoscales due to the potential fluctuations. The charge localization causes electron-hole separation and reduces carrier recombination rates, which may contribute to the long carrier lifetime observed in experiments. We have also proposed a model to explain the charge localization.

  11. Secondary electron emission and self-consistent charge transport in semi-insulating samples

    Energy Technology Data Exchange (ETDEWEB)

    Fitting, H.-J. [Institute of Physics, University of Rostock, Universitaetsplatz 3, D-18051 Rostock (Germany); Touzin, M. [Unite Materiaux et Transformations, UMR CNRS 8207, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France)

    2011-08-15

    Electron beam induced self-consistent charge transport and secondary electron emission (SEE) in insulators are described by means of an electron-hole flight-drift model (FDM) now extended by a certain intrinsic conductivity (c) and are implemented by an iterative computer simulation. Ballistic secondary electrons (SE) and holes, their attenuation to drifting charge carriers, and their recombination, trapping, and field- and temperature-dependent detrapping are included. As a main result the time dependent ''true'' secondary electron emission rate {delta}(t) released from the target material and based on ballistic electrons and the spatial distributions of currents j(x,t), charges {rho}(x,t), field F(x,t), and potential V(x,t) are obtained where V{sub 0} = V(0,t) presents the surface potential. The intrinsic electronic conductivity limits the charging process and leads to a conduction sample current to the support. In that case the steady-state total SE yield will be fixed below the unit: i.e., {sigma} {eta} + {delta} < 1.

  12. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    KAUST Repository

    Mei, Yaochuan

    2017-08-02

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  13. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps.

    Science.gov (United States)

    Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D

    2017-08-15

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  14. Spin Drag and Spin-Charge Separation in Cold Fermi Gases

    International Nuclear Information System (INIS)

    Polini, Marco; Vignale, Giovanni

    2007-01-01

    Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet

  15. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E; Brammer, Michael; Fletcher, Paul C; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G M

    2013-08-06

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.

  16. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    International Nuclear Information System (INIS)

    Wirtz, L.

    2001-10-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the attraction due to the self-image potential. In a simulation that treats electronic and nuclear dynamics simultaneously, we show that the image attraction dominates over the repulsive force. Backscattering of very slow multiply charged projectiles high above the surface without touching it ('trampoline effect') does not take place. Instead, the projectile ion penetrates into the surface or is reflected due to close binary collision with surface ions. The case of a singly charged ion in front of an LiF surface is within the reach of ab-initio calculations. We use a multi-configuration self consistent field (MCSCF) and a multi-reference configuration interaction (MR-CI) method to calculate adiabatic potential energy curves for a system consisting of the projectile ion and an embedded cluster of surface ions. With increasing cluster size, the energy levels of the embedded cluster converge towards the band structure of the infinitely extended solid. Due to

  17. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    International Nuclear Information System (INIS)

    Dommes, O A; Okatova, O V; Pavlov, G M

    2016-01-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10 -6 M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared. (paper)

  18. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping

    International Nuclear Information System (INIS)

    Chowdhury, M H; Kabir, M Z

    2011-01-01

    An analytical model is developed to study the electrical properties (electric field and potential distributions, potential energy barrier height and polarization phenomenon) of polycrystalline materials at intrinsic or low doping for detector and solar cell applications by considering an arbitrary amount of grain boundary charge and a finite width of grain boundary region. The general grain boundary model is also applicable to highly doped polycrystalline materials. The electric field and potential distributions are obtained by solving Poisson's equation in both depleted grains and grain boundary regions. The electric field and potential distributions across the detector are analysed under various doping, trapping and applied biases. The electric field collapses, i.e. a nearly zero-average electric field region exists in some part of the biased detector at high trapped charge densities at the grain boundaries. The model explains the conditions of existence of a zero-average field region, i.e. the polarization mechanisms in polycrystalline materials. The potential energy barrier at the grain boundary exists if the electric field changes its sign at the opposite side of the grain boundary. The energy barrier does not exist in all grain boundaries in the low-doped polycrystalline detector and it never exists in intrinsic polycrystalline detectors under applied bias condition provided that there is no charge trapping in the grain.

  19. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  20. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  1. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  2. Conical Intersections, charge localization, and photoisomerization pathway selection in a minimal model of a degenerate monomethine dye

    International Nuclear Information System (INIS)

    Olsen, Seth; McKenzie, Ross H.

    2009-01-01

    We propose a minimal model Hamiltonian for the electronic structure of a monomethine dye, in order to describe the photoisomerization of such dyes. The model describes interactions between three diabatic electronic states, each of which can be associated with a valence bond structure. Monomethine dyes are characterized by a charge-transfer resonance; the indeterminacy of the single-double bonding structure dictated by the resonance is reflected in a duality of photoisomerization pathways corresponding to the different methine bonds. The possible multiplicity of decay channels complicates mechanistic models of the effect of the environment on fluorescent quantum yields, as well as coherent control strategies. We examine the extent and topology of intersection seams between the electronic states of the dye and how they relate to charge localization and selection between different decay pathways. We find that intersections between the S 1 and S 0 surfaces only occur for large twist angles. In contrast, S 2 /S 1 intersections can occur near the Franck-Condon region. When the molecule has left-right symmetry, all intersections are associated with con- or disrotations and never with single bond twists. For asymmetric molecules (i.e., where the bridge couples more strongly to one end) the S 2 and S 1 surfaces bias torsion about different bonds. Charge localization and torsion pathway biasing are correlated. We relate our observations with several recent experimental and theoretical results, which have been obtained for dyes with similar structure.

  3. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    International Nuclear Information System (INIS)

    Ku, S.; Abiteboul, J.; Dimond, P.H.; Dif-Pradalier, G.; Kwon, J.M.; Sarazin, Y.; Hahm, T.S.; Garbet, X.; Chang, C.S.; Latu, G.; Yoon, E.S.; Ghendrih, Ph.; Yi, S.; Strugarek, A.; Solomon, W.; Grandgirard, V.

    2012-01-01

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  4. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  5. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  6. Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions.

    Science.gov (United States)

    Pavlov, Georges M; Dommes, Olga A; Okatova, Olga V; Gavrilova, Irina I; Panarin, Evgenii F

    2018-04-18

    Molecular characteristics of statistical copolymers based on hydrophilic poly(N-methyl-N-vinylacetamide) have been monitored throughout the entire possible range of charge density from 1.5 to 39 mol%. Different trends in the dependence of intrinsic viscosity on the average charge density of polymer chains at minimal ionic strength were revealed. A new parameter, lqq/Abare, describing this behavior was proposed (lqq is the average distance between the neighboring charges along the chain, and Abare is the statistical segment length of a non-charged homologue). For polyelectrolyte chains, this parameter allows the regions of charge density values where electrostatic long-range or short-range interactions dominate to be indicated. Two homologous series of copolymers were characterized by methods of molecular hydrodynamics under conditions of suppressed charge effects. Intrinsic viscosity in salt-free solutions characterizing an individual macromolecule was estimated by a method proposed earlier [Pavlov et al., Russ. J. Appl. Chem., 2006, 79, 1407-1412].

  7. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    International Nuclear Information System (INIS)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-01-01

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problem with N surface elements, the computational complexity of the method essentially scales with N α , where α < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed

  8. Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center

    International Nuclear Information System (INIS)

    Kadin, A.M.; Smith, L.N.; Skocpol, W.J.

    1980-01-01

    Using a generalized two-fluid picture to describe a quasi-one-dimensional superconductor near T/sub c/, we provide a heuristic derivation for a set of equations governing the temporal and spatial evolution of the charge imbalance (or branch imbalance) in the quasiparticles. We show that these equations are isomorphic to those that describe a simple electrical transmission line, so that charge imbalance waves may propagate in the superconductor in analogy with electrical signals that propagate down the transmission line. We propose as a model for a phase-slip center in a superconducting filament a localized Josephson oscillator coupled to the transmission line. Applying standard transmission-line theory to solve the problem, we show that the Josephson oscillations in the center generate charge imbalance waves that the propagate out to a frequency-dependent distance of the order of the quasiparticle diffusion length GAMMA/sub Q/*= (Dtau/sub Q/*)/sup 1/2/ before they damp out. The time-averaged behavior of the model reduces to the earlier model of Skocpol, Beasley, and Tinkham. A novel consequence of the model is a prediction of intrinsic hysteresis in the dc current--voltage relation. The model also provides a convenient framework for dealing with ac effects in phase-slip centers, including resonance and synchronization in systems of closely spaced phase-slip centers and microbridges

  9. Intrinsic shapes of discy and boxy ellipticals

    International Nuclear Information System (INIS)

    Fasano, Giovanni

    1991-01-01

    Statistical tests for intrinsic shapes of elliptical galaxies have given so far inconclusive and sometimes contradictory results. These failures have been often charged to the fact that classical tests consider only the two axisymmetric shapes (oblate versus prolate), while ellipticals are truly triaxial bodies. On the other hand, recent analyses indicate that the class of elliptical galaxies could be a mixture of (at least) two families having different morphology and dynamical behaviour: (i) a family of fast-rotating, disc-like ellipticals (discy); (ii) a family of slow-rotating, box-shaped ellipticals (boxy). In this paper we review the tests for instrinsic shapes of elliptical galaxies using data of better quality (CCD) with respect to previous applications. (author)

  10. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    Science.gov (United States)

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  11. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    Science.gov (United States)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common

  12. Analysis method and utilization mechanism of the overall value of EV charging

    International Nuclear Information System (INIS)

    Guo, Chunlin; Chan, Ching Chuen

    2015-01-01

    Highlights: • Analysis on the overall value of EV charging from a viewpoint of system. • An analytical model of the overall value of EV charging was presented. • A model was proposed to calculate the value of emission reduction by EV. • A model to evaluate the improvement in new energy utilization was given. • A utilization mechanism apt to overall optimization was proposed. - Abstract: Electric Vehicle (EV) can save energy while reducing emissions and has thus attracted the attention of both academics and industry. The cost and benefit of charging are one of the key issues in relation to EV development that has been researched extensively. But many studies are carried out from a viewpoint of some local entities rather than a global system, focus on specific types or aspects of EV charging, or use mixed models that can only be computed by computer simulation and lack physical transparency. This paper illuminated that it is necessary to consider the value of EV charging on a system scale. In order to achieve this, it presents an analytical model for analyzing the overall value of EVs, an analysis model to evaluate the reduction of pollutions relevant to photovoltaic power, and a model to transfer the intrinsic savings of wind power to the off-peak charging loads. It is estimated that EV charging has a significant positive value, providing the basis for enhanced EV subsidies. Accordingly, a utilization mechanism apt to optimize globally is proposed, upon which sustainable business models can be formed by providing adequate support, including the implementation of a peak–valley tariff, charging subsidies and one-time battery subsidies. This utilization mechanism, by taking full advantage of the operation system of power utilities to provide basic support and service, may provide new approaches to the development of EVs. The method proposed here is of important value for the systematic considerations about EV development and maybe can help broaden the

  13. Impaired development of intrinsic connectivity networks in children with medically intractable localization-related epilepsy.

    Science.gov (United States)

    Ibrahim, George M; Morgan, Benjamin R; Lee, Wayne; Smith, Mary Lou; Donner, Elizabeth J; Wang, Frank; Beers, Craig A; Federico, Paolo; Taylor, Margot J; Doesburg, Sam M; Rutka, James T; Snead, O Carter

    2014-11-01

    Typical childhood development is characterized by the emergence of intrinsic connectivity networks (ICNs) by way of internetwork segregation and intranetwork integration. The impact of childhood epilepsy on the maturation of ICNs is, however, poorly understood. The developmental trajectory of ICNs in 26 children (8-17 years) with localization-related epilepsy and 28 propensity-score matched controls was evaluated using graph theoretical analysis of whole brain connectomes from resting-state functional magnetic resonance imaging (fMRI) data. Children with epilepsy demonstrated impaired development of regional hubs in nodes of the salience and default mode networks (DMN). Seed-based connectivity and hierarchical clustering analysis revealed significantly decreased intranetwork connections, and greater internetwork connectivity in children with epilepsy compared to controls. Significant interactions were identified between epilepsy duration and the expected developmental trajectory of ICNs, indicating that prolonged epilepsy may cause progressive alternations in large-scale networks throughout childhood. DMN integration was also associated with better working memory, whereas internetwork segregation was associated with higher full-scale intelligence quotient scores. Furthermore, subgroup analyses revealed the thalamus, hippocampus, and caudate were weaker hubs in children with secondarily generalized seizures, relative to other patient subgroups. Our findings underscore that epilepsy interferes with the developmental trajectory of brain networks underlying cognition, providing evidence supporting the early treatment of affected children. Copyright © 2014 Wiley Periodicals, Inc.

  14. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  15. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  16. Intrinsic Motivation.

    Science.gov (United States)

    Deci, Edward L.

    The paper draws together a wide variety of research which relates to the topic of intrinsic motivation; intrinsically motivated activities are defined as those which a person does for no apparent reward except the activity itself or the feelings which result from the activity. Most of this research was not originally reported within the framework…

  17. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    Science.gov (United States)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  18. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    Science.gov (United States)

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  19. Intrinsic contractures of the hand.

    Science.gov (United States)

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Effect of degree of order of silicon dioxide on localization processes of non-equilibrium charge carriers under the influence of gamma-radiation

    CERN Document Server

    Garibov, A A; Agaev, T N

    1999-01-01

    The effect of the degree of order of SiO sub 2 on the localization process of non-equilibrium charge carriers (NCC) when exposed to gamma-quanta at 77 K has been investigated. It has been found that with decreasing SiO sub 2 structure degree of order, a localization probability of NCC increases. A contribution of surface defect states in SiO sub 2 to localization, migration and recombination annihilation processes of NCC induced by ionizing radiation has been determined.

  1. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  2. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-01

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values α loc =1.0 and β loc =0.39, and global exponent values α=1.7 and β=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering

  3. Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps

    Science.gov (United States)

    Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.

    2017-12-01

    The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.

  4. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  5. Local charge exchange of He{sup +} ions at Aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering University of Virginia, Charlottesville, VA 22904 (United States)

    2017-04-04

    We report on experiments designed to observe the correlation between the autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. The autoionizing states are formed when incident He{sup +*} and He{sup ++} are neutralized by resonant electron capture at the surface. 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact, where the dielectronic transition occurs after promotion of the 1s electron of incoming ions. - Highlights: • We observe the correlation between autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. • 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. • These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact.

  6. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Intrinsic and extrinsic mortality reunited.

    Science.gov (United States)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Reconfigurable and writable magnetic charge crystals

    Science.gov (United States)

    Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong

    2017-07-18

    Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.

  9. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    Science.gov (United States)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides, but there is a hint

  10. Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure

    International Nuclear Information System (INIS)

    Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong

    2014-01-01

    Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)

  11. Nanocrystals in the glass and centers of localization of free charge carriers in the thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2012-01-01

    Conduction mechanism of doped silicate glass (DSG) based on existence of nanocrystals in the glass is proposed. These nanocrystals act as localization centers of free charge carriers. Random distribution of the nanocrystal's sizes and distances between them leads to charge transport by variable length hopping. It is shown that dopant atoms generate the narrow impurity subband of 0.03 eV in width. This subband joins close to the glass valence band top or slightly (less than 0.01 eV) separated from the last. What is why the hopping mechanism coexists with thermal activation one and at low temperatures (T -n ), 0.25 800 K) structure transitions of nanocrystals take place and conductivity of DSG decreases sharply. Beyond of the minimum of conductivity (above 1000 K) energy gap is formed between the impurity subband and the valence band top of glass, so DSG behaves like a typical semiconductor. (author)

  12. Design of Smart Charging Infrastructure Hardware and Firmware Design of the Various Current Multiplexing Charging System

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chu, Peter; Gadh, Rajit

    2013-10-07

    Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system

  13. Experimental studies of the charge limit phenomenon in NEA GaAs photocathodes

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.K.; Aoyagi, H.; Clendenin, J.E.; Frisch, J.C.; Mulhollan, G.A.; Saez, P.J.; Schultz, D.C.; Turner, J.L.

    1994-06-01

    Negative electron affinity GaAs photocathodes have been in continuous use at SLAC for generating polarized electron beams since early 1992. If the quantum efficiency of a GaAs cathode is below a critical value, the maximum photoemitted charge with photons of energies close to the band gap in a 2-ns pulse is found to be limited by the intrinsic properties of the cathode instead of by the space charge limit. We have studied this novel charge limit phenomenon in a variety of GaAs photocathodes of different structures and doping densities. We find that the charge limit is strongly dependent on the cathode's quantum efficiency and the extraction electric field, and to a lesser degree on the excitation laser wavelength. In addition, we show that the temporal behavior of the charge limit depends critically on the doping density

  14. Charge collection and SEU (Single Event Upset) mechanisms

    International Nuclear Information System (INIS)

    Musseau, O.

    1994-01-01

    The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices due to interaction with cosmic ions. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs along the ion track. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are discussed. (author)

  15. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Fabrikant, J.I.; Holley, W.R.; Tobias, C.A.; Castro, J.R.

    1980-01-01

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  16. Theory and simulation of charge transport in disordered organic semiconductors

    NARCIS (Netherlands)

    Bobbert, P.A.; Kondov, I.; Sutman, G.

    2013-01-01

    Charge transport in polymeric or small-molecule organic semiconductors used in organic light-emitting diodes (OLEDs) occurs by hopping of charges between sites at which the charges are localized. The energetic disorder in these semiconductors has a profound influence on the charge transport: charges

  17. Charge densities and charge noise in mesoscopic conductors

    Indian Academy of Sciences (India)

    This generalization leads to a local Wigner–Smith life-time matrix. Keywords. Density ... Of interest is the charge distribution in such a conductor and ..... is the transmission probability of the scattering problem without absorption if .... as a voltage probe which has its potential adjusted in such a way that there is no net current.

  18. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  19. Mobility of delocalized charge carriers in an ideal homopolar glass as a function of temperature

    International Nuclear Information System (INIS)

    Iskra, V.D.

    1986-01-01

    The relationship between temperature and the mobility of delocalized charge carriers for an intrinsic random field of a homopolar glass is investigated through application of a method of scattering amplitude calculation based on employing short-lived potential factorization

  20. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    Science.gov (United States)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths

  1. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    Science.gov (United States)

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    Science.gov (United States)

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  3. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.

    Science.gov (United States)

    Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny

    2017-05-24

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.

  4. Design of Fast Response Smart Electric Vehicle Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-11-25

    The response time of the smart electrical vehicle (EV) charging infrastructure is the key index of the system performance. The traffic between the smart EV charging station and the control center dominates the response time of the smart charging stations. To accelerate the response of the smart EV charging station, there is a need for a technology that collects the information locally and relays it to the control center periodically. To reduce the traffic between the smart EV charger and the control center, a Power Information Collector (PIC), capable of collecting all the meters power information in the charging station, is proposed and implemented in this paper. The response time is further reduced by pushing the power information to the control center. Thus, a fast response smart EV charging infrastructure is achieved to handle the shortage of energy in the local grid.

  5. Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus

    Science.gov (United States)

    Hu, Sile; Xiang, Junsen; Lv, Meng; Zhang, Jiahao; Zhao, Hengcan; Li, Chunhong; Chen, Genfu; Wang, Wenhong; Sun, Peijie

    2018-01-01

    We report a comprehensive investigation of the electrical, thermal, and thermoelectric transport properties of bulk single-crystalline black phosphorus in wide temperature (2-300 K) and field (0-9 T) ranges. Electrical transport below T ≈ 250 K is found to be dominated by extrinsic hole-type charge carriers with large mobility exceeding 104 cm2/V s at low temperatures. While thermal transport measurements reveal an enhanced in-plane thermal conductivity maximum κ = 180 W/m K at T ≈ 25 K, it appears still to be largely constrained by extrinsic phonon scattering processes, e.g., the electron-phonon process, in addition to intrinsic umklapp scattering. The thermoelectric power and Nernst effect seem to be strongly influenced by ambipolar transport of charge carriers with opposite signs in at least the high-temperature region above 200 K, which diminishes the thermoelectric power factor of this material. Our results provide a timely update to the transport properties of bulk black phosphorus for future fundamental and applied research.

  6. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei

    2014-01-01

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T −γ ) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced

  7. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2014-12-07

    The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T{sup −γ}) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced.

  8. Biodiversity Conservation: Why Local Inhabitants Destroy Habitat In ...

    African Journals Online (AJOL)

    This review identifies some intrinsic and extrinsic factors that tend to drive the destruction of habitat, game poaching and unsustainable utilization of plants products by communities surrounding many protected areas around the world, leading to wildlife and plant species decline. Intrinsic factors are basic needs of the locals; ...

  9. Optical patterning of trapped charge in nitrogen-doped diamond

    Science.gov (United States)

    Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.

    2016-08-01

    The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.

  10. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  11. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

    Science.gov (United States)

    Yang, Sang Mo; Strelcov, Evgheni; Paranthaman, M Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V

    2015-02-11

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.

  12. Thermodynamic interpretation of the field equation of BTZ charged black hole near the horizon

    International Nuclear Information System (INIS)

    Larranaga, A.

    2008-01-01

    As is already known, a spacetime horizon acts like a boundary of a thermal system and we can associate with it notions such as temperature and entropy. Following the work of M. Akbar, in this paper we will show how it is possible to interpret the field equation of a charged BTZ black hole near the horizon as a thermodynamic identity dE=TdS+P r dA+ΦdQ$, where Φ is the electric potential and $Q$ is the electric charge of a BTZ black hole. These results indicate that the field equations for the charged BTZ black hole possess intrinsic thermodynamic properties near the horizon.

  13. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  14. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  15. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state.

    Science.gov (United States)

    Zhou, Fuqing; Huang, Suhua; Zhuang, Ying; Gao, Lei; Gong, Honghan

    2017-01-01

    New neuroimaging techniques have led to significant advancements in our understanding of cerebral mechanisms of primary insomnia. However, the neuronal low-frequency oscillation remains largely uncharacterized in chronic primary insomnia (CPI). In this study, the amplitude of low-frequency fluctuation (ALFF), a data-driven method based on resting-state functional MRI, was used to examine local intrinsic activity in 27 patients with CPI and 27 age-, sex-, and education-matched healthy controls. We examined neural activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz), because blood-oxygen level dependent (BOLD) fluctuations in different low-frequency bands may present different neurophysiological manifestations that pertain to a spatiotemporal organization. The ALFF associated with the primary disease effect was widely distributed in the cerebellum posterior lobe (CPL), dorsal and ventral prefrontal cortex, anterior cingulate cortex, precuneus, somatosensory cortex, and several default-mode sub-regions. Several brain regions (i.e., the right cerebellum, anterior lobe, and left putamen) exhibited an interaction between the frequency band and patient group. In the slow-5 band, increased ALFF of the right postcentral gyrus/inferior parietal lobule (PoCG/IPL) was enhanced in association with the sleep quality (ρ = 0.414, P  = 0.044) and anxiety index (ρ = 0.406, P  = 0.049) of the CPI patients. These findings suggest that during chronic insomnia, the intrinsic functional plasticity primarily responds to the hyperarousal state, which is the loss of inhibition in sensory-informational processing. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations.

  16. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.

    Science.gov (United States)

    Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-29

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  17. Relativistic local quantum field theory for m=0 particles; Campos cuanticos locales relativos a particulas de masa no nula

    Energy Technology Data Exchange (ETDEWEB)

    Morales Villasevil, A

    1965-07-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.

  18. MIS photodetectors on intrinsic semiconductors for thermal infrared imagery - A design aid for focal plane matrices

    Science.gov (United States)

    Farre, J.

    1980-12-01

    The physical mechanisms determining the operational behavior of an MIS photodetector for thermal infrared imagery based on a two-dimensional matrix of intrinsic semiconductors constituting a charge injection device are examined. The general principles of a thermal infrared imagery system composed of radiation source, atmosphere, sensor system with entrance optics, detector and environment, and data processing means are introduced, and the parameters of the system as a whole influencing detector characteristics are indicated. The properties of an ideal and a real MIS photodetector are discussed, with attention given to the physical properties of narrow bandgap materials such as InSb, operational properties in the dynamic regime, the carrier tunneling component and experimentally observed instability phenomena. The matrix organization of MIS photodetectors is then considered, with particular attention given to a simple model of charge transfer between two electrodes and the two principal reading mechanisms: charge injection and the floating potential method.

  19. Managing employee motivation: Exploring the connections between managers' enforcement actions, employee perceptions, and employee intrinsic motivation

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Falk; Jacobsen, Christian Bøtcher; Andersen, Lotte Bøgh

    2017-01-01

    analyze whether local managers—the primary enforcers of external interventions—affect how employees perceive a command system and thereby affect employee intrinsic motivation. Using a multilevel dataset of 1,190 teachers and 32 school principals, we test whether principals’ use of “hard”, “mixed” or “soft......” enforcement of a command system (obligatory teacher-produced student plans) is associated with teacher intrinsic motivation. Results show that teachers experiencing a “hard” enforcement have lower intrinsic motivation than teachers experiencing a “soft” enforcement. As expected by motivation crowding theory......A number of studies show that the use of external interventions, such as command systems and economic incentives, can decrease employee intrinsic motivation. Our knowledge of why the size of “the hidden cost of rewards” differs between organizations is, however, still sparse. In this paper, we...

  20. Signal peptides and protein localization prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2005-01-01

    In 1999, the Nobel prize in Physiology or Medicine was awarded to Gunther Blobel “for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell”. Since the subcellular localization of a protein is an important clue to its function, the characteriz...

  1. Model for screened, charge-regulated electrostatics of an eye lens protein: Bovine gammaB-crystallin

    Science.gov (United States)

    Wahle, Christopher W.; Martini, K. Michael; Hollenbeck, Dawn M.; Langner, Andreas; Ross, David S.; Hamilton, John F.; Thurston, George M.

    2017-09-01

    We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γ B ) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54 ×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γ B charge pairs. We model intrinsic p K values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of p K values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic p K values for isolated γ B molecules and we calculate the probabilities of leading proton occupancy configurations, for 4 Debye screening lengths from 6 to 20 Å. We select the interior dielectric value to model γ B titration data. At p H 7.1 and Debye length 6.0 Å, on a given γ B molecule the predicted top occupancy pattern is present nearly 20% of the time, and 90% of the time one or another of the first 100 patterns will be present. Many of these occupancy patterns differ in net charge sign as well as in surface voltage profile. We illustrate how charge pattern probabilities deviate from the multinomial distribution that would result from use of effective p K values alone and estimate the extents to which γ B charge pattern distributions broaden at lower p H and narrow as ionic strength is lowered. These results suggest that for accurate modeling of orientation-dependent γ B -γ B interactions, consideration of numerous pairs of proton occupancy patterns will be needed.

  2. Intrinsic mobility limit for anisotropic electron transport in Alq3.

    Science.gov (United States)

    Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R

    2008-03-21

    Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.

  3. Possible mechanism for d0 ferromagnetism mediated by intrinsic defects

    KAUST Repository

    Zhang, Zhenkui

    2014-01-01

    We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is

  4. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices

    International Nuclear Information System (INIS)

    Röhr, Jason A; Nelson, Jenny; Kirchartz, Thomas

    2017-01-01

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm’s law and the Mott–Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm’s law is applicable the Mott–Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density–voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm’s law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott–Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm’s law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm’s law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results. (paper)

  5. Carbon nanotube charge collectors for nanoimprinted hybrid perovskite photovoltaics (Conference Presentation)

    Science.gov (United States)

    Zakhidov, Anvar A.; Haroldson, Ross; Saranin, Danila; Martinez, Patricia; Ishteev, Artur

    2017-06-01

    The hybrid (organo-inorganic) lead-halide perovskites revolutionized the field of solar cell research due to the impressive power conversion efficiencies of up to 21% recently reported in perovskite based solar cells. This talk will present first the general concepts of excitonic photovoltaics, as compared to conventional Si-type solar cells, asking a question: is hybrid perovskite PV an excitonic solar cell or not? Do we need excitons dissociation at D-A interfaces or CNT charge collectors? Then I will show our recent experimental results on the fast spectroscopy of excitons, magnetic field effect on generation of correlated (e-h) pairs. Also will discuss our Hall effect results, that allows to evaluate intrinsic charge carrier transport and direct measurements of mobility in these materials performed for the first time in steady-state dc transport regime. From these measurements, we have obtained the electron-hole recombination coefficient, the carrier diffusion length and lifetime. Our main results include the intrinsic Hall carrier mobility reaching up to 60 cm2V-1s-1 in perovskite single crystals, carrier lifetimes of up to 3 ms (surprisingly too long!), and carrier diffusion lengths as long as 650 μm (huge if compared to organic and even best inorganic materials). Our results also demonstrate that photocarrier recombination in these disordered solution-processed perovskites is as weak as in the best (high-purity single crystals) of conventional direct-band inorganic semiconductors. Moreover, as we show in our experiment, carrier trapping in perovskites is also strongly suppressed, which accounts for such long carrier lifetimes and diffusion lengths, significantly longer than similar parameters in the best inorganic semiconductors, such e.g. as GaAs. All these remarkable transport properties of hybrid perovskites need to be understood from fundamental physics point of view. Looks like we need some new concepts to explain the mysterious properties of

  6. Three-charge black holes on a circle

    International Nuclear Information System (INIS)

    Harmark, Troels; Obers, Niels A.; Roenne, Peter B.; Kristjansson, Kristjan R.

    2007-01-01

    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes

  7. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  8. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults

    Directory of Open Access Journals (Sweden)

    Natalie J. Forde

    2017-04-01

    Full Text Available Magnetic resonance imaging (MRI studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD. Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd; 17.2 (3.4, 16.8 (3.2, and 17.7 (3.8, respectively]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity and local gyrification index were calculated for each point on the surface (vertex with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found

  9. 27 CFR 53.100 - Exclusion of local advertising charges from sale price.

    Science.gov (United States)

    2010-04-01

    ... television station, appears in a newspaper or magazine, or is displayed by means of an outdoor advertising... advertising charges from sale price. 53.100 Section 53.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND... advertising charges from sale price. (a) In general. Section 4216(e) of the Code deals with the treatment to...

  10. Influence of turn (or fold) and local charge in fragmentation of the peptide analogue molecule CH3CO-Gly-NH2 following single-photon VUV (118.22 nm) ionization.

    Science.gov (United States)

    Bhattacharya, Atanu; Bernstein, Elliot R

    2011-10-06

    The radical cationic reactivity of the peptide analogue molecule CH(3)CO-Gly-NH(2) is addressed both experimentally and theoretically. The radical cation intermediate of CH(3)CO-Gly-NH(2) is created by single-photon ionization of this molecule at 118.22 nm (~10.5 eV). The two most stable conformers (C(7) and C(5)) of this molecule exhibit different folds along the backbone: the C(7) conformer has a γ-turn structure, and the C(5) conformer has a β-strand structure. The experimental results show that the radical cation intermediate of CH(3)CO-Gly-NH(2) dissociates and generates a fragment-ion signal at 73 amu that is observed through TOFMS. Theoretical results show how the fragment-ion signal at 73 amu is generated by only one conformer of CH(3)CO-Gly-NH(2) (C(7)) and how local charge and specific hydrogen bonding in the molecule influence fragmentation of the radical cation intermediate of CH(3)CO-Gly-NH(2). The specific fold of the molecule controls fragmentation of this reactive radical cation intermediate. Whereas the radical cation of the C(7) conformer dissociates through a hydrogen-transfer mechanism followed by HNCO elimination, the radical cation of the C(5) conformer does not dissociate at all. CASSCF calculations show that positive charge in the radical cationic C(7) conformer is localized at the NH(2)CO moiety of the molecular ion. This site-specific localization of the positive charge enhances the acidity of the terminal NH(2) group, facilitating hydrogen transfer from the NH(2) to the COCH(3) end of the molecular ion. Positive charge in the C(5) conformer of the CH(3)CO-Gly-NH(2) radical cation is, however, localized at the COCH(3) end of the molecular ion, and this conformer does not have enough energy to surmount the energy barrier to dissociation on the ion potential energy surface. CASSCF results show that conformation-specific localization of charge in the CH(3)CO-Gly-NH(2) molecular ion occurs as a result of the different hydrogen

  11. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  12. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  13. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    2017-06-01

    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.

  14. Intrinsic Turbulence Stabilization in a Stellarator

    Directory of Open Access Journals (Sweden)

    P. Xanthopoulos

    2016-06-01

    Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].

  15. Intrinsic work function of molecular films

    International Nuclear Information System (INIS)

    Ivančo, Ján

    2012-01-01

    The electronic properties of molecular films are analysed with the consideration of the molecular orientation. The study demonstrates that surfaces of electroactive oligomeric molecular films can be classified—analogously to the elemental surfaces—by their intrinsic work functions. The intrinsic work function of molecular films is correlated with their ionisation energies; again, the behaviour is analogous to the correlation existing between the first ionisation energy of elements and the work function of the corresponding elemental surfaces. The proposed intrinsic work-function concept suggests that the mechanism for the energy-level alignment at the interfaces associated with molecular films is virtually controlled by work functions of materials brought into the contact. - Highlights: ► Molecular films exhibit their own (intrinsic) work function. ► Intrinsic work function is correlated with ionisation energy of molecular films. ► Intrinsic work function determines dipole at interface with a particular surface. ► Surface vacuum-level change upon film growth does not relate to interfacial dipole.

  16. Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.

    Science.gov (United States)

    Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2018-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  18. Common Origin for Neutrino Anarchy and Charged Hierarchies

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Okui, Takemichi; Sundrum, Raman

    2009-01-01

    The generation of exponential flavor hierarchies from extra-dimensional wave function overlaps is reexamined. We find, surprisingly, that the coexistence of anarchic fermion mass matrices with such hierarchies is intrinsic and natural to this setting. The salient features of charged fermion and neutrino masses and mixings can thereby be captured within a single framework. Both Dirac and Majorana neutrinos can be realized. Implications for a variety of weak-scale scenarios, including warped compactification and supersymmetry, are discussed. When the new weak-scale physics is sensitive to the origin of flavor structure, Dirac neutrinos are preferred

  19. Symmetries of collective models in intrinsic frame

    International Nuclear Information System (INIS)

    Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.

    2013-01-01

    In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)

  20. Transfer of momentum, mass and charge in heavy ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Feldmeier, H.; Dworzecka, M.

    1979-01-01

    A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)

  1. 29 CFR 1601.13 - Filing; deferrals to State and local agencies.

    Science.gov (United States)

    2010-07-01

    ...; deferrals to State and local agencies. (a) Initial presentation of a charge to the Commission. (1) Charges... give full weight to the policy of section 706(c) of title VII, which affords State and local fair... date of the alleged violation. (b) Initial presentation of a charge to a FEP agency. (1) When a charge...

  2. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  3. XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    Science.gov (United States)

    Koutroumpa, Dimitra; Smith, Randall K.; Edgar, Richard J.; Kuntz, Kip D.; Plucinsky, Paul P.; Snowden, Steven L.

    2010-01-01

    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of by Solar Wind Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku.

  4. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  5. Copper absorption from foods labelled intrinsically and extrinsically with Cu-65 stable isotope.

    Science.gov (United States)

    Harvey, L J; Dainty, J R; Beattie, J H; Majsak-Newman, G; Wharf, S G; Reid, M D; Fairweather-Tait, S J

    2005-03-01

    To determine copper absorption from copper containing foods labelled either intrinsically or extrinsically with a highly enriched Cu-65 stable isotope label. A longitudinal cross-over study. The study was conducted at the Institute of Food Research, Human Nutrition Unit, Norwich, UK. Subjects were recruited locally via advertisements placed around the Norwich Research Park. A total of 10 volunteers (nine female, one male) took part in the study, but not all volunteers completed each of the test meals. A highly enriched Cu-65 stable isotope label was administered to volunteers in the form of a reference dose or in breakfast test meals consisting of red wine, soya beans, mushrooms or sunflower seeds. Faecal monitoring and mass spectrometry techniques were used to estimate the relative quantities of copper absorbed from the different test meals. True copper absorption from the reference dose (54%) was similar to extrinsically labelled red wine (49%) and intrinsically labelled sunflower seeds (52%), but significantly higher than extrinsically labelled mushrooms (35%), intrinsically (29%) and extrinsically (15%) labelled soya beans and extrinsically labelled sunflower seed (32%) test meals. The use of Cu-65 extrinsic labels in copper absorption studies requires validation according to the food being examined; intrinsic and extrinsic labelling produced significantly different results for sunflower seeds.

  6. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  7. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  8. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  9. Intrinsic Time Quantum Geometrodynamics

    OpenAIRE

    Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-01-01

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...

  10. Deterministic Electrical Charge-State Initialization of Single Nitrogen-Vacancy Center in Diamond

    Directory of Open Access Journals (Sweden)

    Y. Doi

    2014-03-01

    Full Text Available Apart from applications in classical information-processing devices, the electrical control of atomic defects in solids at room temperature will have a tremendous impact on quantum devices that are based on such defects. In this study, we demonstrate the electrical manipulation of individual prominent representatives of such atomic solid-state defects, namely, the negative charge state of single nitrogen-vacancy defect centers (NV^{−} in diamond. We experimentally demonstrate, deterministic, purely electrical charge-state initialization of individual NV centers. The NV centers are placed in the intrinsic region of a p-i-n diode structure that facilitates the delivery of charge carriers to the defect for charge-state switching. The charge-state dynamics of a single NV center were investigated by time-resolved measurements and a nondestructive single-shot readout of the charge state. Fast charge-state switching rates (from negative to neutrally charged defects, which are greater than 0.72 ± 0.10  μs^{−1}, were realized. Furthermore, in no-operation mode, the realized charge states were stable for presumably much more than 0.45 s. We believe that the results obtained are useful not only for ultrafast electrical control of qubits, long T_{2} quantum memory, and quantum sensors associated with single NV centers but also for classical memory devices based on single atomic storage bits working under ambient conditions.

  11. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  12. Interactions between charged spherical macroions

    International Nuclear Information System (INIS)

    Stevens, M.J.; Falk, M.L.; Robbins, M.O.

    1996-01-01

    Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics

  13. A preon model with hidden electric and magnetic type charges

    International Nuclear Information System (INIS)

    Pati, J.C.; Strathdee, J.

    1980-11-01

    The U(1) x U(1) binding forces in an earlier preonic composite model of quarks and leptons are interpreted as arising from hidden electric and magnetic type charges. The preons may possess intrinsic spin zero; the half-integer spins of the composites being contributed by the force field. The quark-lepton gauge symmetry is interpreted as an effective low-energy symmetry arising at the composite level. Some remarks are made regarding the possible composite nature of the graviton. (author)

  14. Reinforcement active learning in the vibrissae system: optimal object localization.

    Science.gov (United States)

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Charged rotating black holes on a 3-brane

    International Nuclear Information System (INIS)

    Aliev, A.N.; Guemruekcueoglu, A.E.

    2005-01-01

    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superseded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the 'squared' energy-momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of nonuniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles

  16. Current algebra and the local nature of symmetries in local quantum theory

    International Nuclear Information System (INIS)

    Doplicher, S.

    In this report we mainly discuss the problem of finding local observables which measure the charges in a volume smaller than their localization region, in particular providing the existence of local observables with a specific physical interpretation. In the same way we can also establish the existence of a version of the current algebra structure. Similar local observables can be constructed for the energy-momentum; we also comment on the local implementation of supersymmetries. (orig./HSI)

  17. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  18. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  19. Incentives and intrinsic motivation in healthcare.

    Science.gov (United States)

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco; Schirra, Laura K.; Winget, Paul; Kozlik, Michael; Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.; Forker, Roman; Bredas, Jean-Luc; Fritz, Torsten; Monti, Oliver L. A.

    2015-01-01

    with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron

  1. Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; Perio, P. de; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, LIBPhys, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Galloway, M.; Kazama, S.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Marrodan Undagoitia, T.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Rosso, A.G.; Molinario, A.; Wang, Z. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. von [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Cervantes, M.; Lang, R.F.; Masson, D.; Reichard, S. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [CNRS/IN2P3, Universite de Nantes, SUBATECH, IMT Atlantique, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Lombardi, F.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Vargas, M.; Weinheimer, C.; Wittweg, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Messina, M. [Columbia University, Physics Department, New York, NY (United States); New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Pienaar, J. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); University of Chicago, Department of Physics, Kavli Institute of Cosmological Physics, Chicago, IL (United States); Ramirez Garcia, D. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Reuter, C. [University of Zurich, Physik-Institut, Zurich (Switzerland); Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Lavina, L.S. [Universite Paris Diderot, CNRS/IN2P3, LPNHE, Universite Pierre et Marie Curie, Paris (France); Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); University of Chicago, Department of Physics, Kavli Institute of Cosmological Physics, Chicago, IL (United States); Weber, M. [Columbia University, Physics Department, New York, NY (United States); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Wei, Y. [University of Zurich, Physik-Institut, Zurich (Switzerland); University of California, Department of Physics, San Diego, CA (United States); Collaboration: XENON Collaboration

    2018-02-15

    In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ({sup 222}Rn), thoron ({sup 220}Rn) and krypton ({sup 85}Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∝ 4 years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentrations where we find good agreement. We report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode. (orig.)

  2. Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

    International Nuclear Information System (INIS)

    Aprile, E.; Anthony, M.; Perio, P. de; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Plante, G.; Rizzo, A.; Zhang, Y.; Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A.; Agostini, F.; Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S.; Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos; Silva, M.; Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I.; Barrow, P.; Baudis, L.; Galloway, M.; Kazama, S.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wulf, J.; Bauermeister, B.; Calven, J.; Conrad, J.; Ferella, A.D.; Moraa, K.; Pelssers, B.; Berger, T.; Brown, E.; Piro, M.C.; Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Marrodan Undagoitia, T.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H.; Bruno, G.; Rosso, A.G.; Molinario, A.; Wang, Z.; Budnik, R.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N.; Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. von; Cervantes, M.; Lang, R.F.; Masson, D.; Reichard, S.; Cussonneau, J.P.; Diglio, S.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D.; Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M.; Fei, J.; Lombardi, F.; Ni, K.; Ye, J.; Fieguth, A.; Murra, M.; Vargas, M.; Weinheimer, C.; Wittweg, C.; Fulgione, W.; Lindemann, S.; Messina, M.; Naganoma, J.; Shagin, P.; Pienaar, J.; Ramirez Garcia, D.; Reuter, C.; Lavina, L.S.; Stein, A.; Wang, H.; Trinchero, G.; Tunnell, C.; Weber, M.; Wei, Y.

    2018-01-01

    In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ( 222 Rn), thoron ( 220 Rn) and krypton ( 85 Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∝ 4 years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentrations where we find good agreement. We report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode. (orig.)

  3. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    ). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...... encompassed by a central coordinative control, is proposed to realize the flexibility offered by EV. The local control enables adaptive charging; whereas the central coordinative control prepares optimized charging schedules. Results from various scenarios show that the proposed algorithm enables significant......Increased environmental awareness in the recent years has encouraged rapid growth of renewable energy sources (RESs); especially solar PV and wind. One of the effective solutions to compensate intermittencies in generation from the RESs is to enable consumer participation in demand response (DR...

  4. The Neuroscience of Growth Mindset and Intrinsic Motivation.

    Science.gov (United States)

    Ng, Betsy

    2018-01-26

    Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  5. Exploring 4D quantum Hall physics with a 2D topological charge pump.

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel

    2018-01-03

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  6. Exploring 4D quantum Hall physics with a 2D topological charge pump

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  7. Integrity of Cerebellar Fastigial Nucleus Intrinsic Neurons Is Critical for the Global Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Eugene V. Golanov

    2017-09-01

    Full Text Available Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1 hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS-injected animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as “diving response”.

  8. On the connection between quantum fields and von Neumann algebras of local operators

    International Nuclear Information System (INIS)

    Driessler, W.; Summers, S.J.; Wichmann, E.H.

    1986-01-01

    The relationship between a standard local quantum field and a net of local von Neumann algebras is discussed. Two natural possibilities for such an association are identified, and conditions for these to obtain are found. It is shown that the local net can naturally be so chosen that it satisfies the Special Condition of Duality. The notion of an intrinsically local field operator is introduced, and it is shown that such an operator defines a local net with which the field is locally associated. A regularity condition on the field is formulated, and it is shown that if this condition holds, then there exists a unique local net with which the field is locally associated if and only if the field algebra contains at least one intrinsically local operator. Conditions under which a field and other fields in its Borchers class are associated with the same local net are found, in terms of the regularity condition mentioned. (orig.)

  9. The Neuroscience of Growth Mindset and Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Betsy Ng

    2018-01-01

    Full Text Available Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  10. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  11. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  12. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  13. Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.

    Science.gov (United States)

    Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning

    2015-01-07

    Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Javadi, Alisa; Nielsen, Henri Thyrrestrup

    2013-01-01

    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount...... of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range where Anderson localization is observed to numerical simulations, and the method offers sensitivity down to 1nm....

  15. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  16. Engineering of Fermi level by nin diamond junction for control of charge states of NV centers

    Science.gov (United States)

    Murai, T.; Makino, T.; Kato, H.; Shimizu, M.; Murooka, T.; Herbschleb, E. D.; Doi, Y.; Morishita, H.; Fujiwara, M.; Hatano, M.; Yamasaki, S.; Mizuochi, N.

    2018-03-01

    The charge-state control of nitrogen-vacancy (NV) centers in diamond is very important toward its applications because the NV centers undergo stochastic charge-state transitions between the negative charge state (NV-) and the neutral charge state (NV0) of the NV center upon illumination. In this letter, engineering of the Fermi level by a nin diamond junction was demonstrated for the control of the charge state of the NV centers in the intrinsic (i) layer region. By changing the size (d) of the i-layer region between the phosphorus-doped n-type layer regions (nin) from 2 μm to 10 μm, we realized the gradual change in the NV- charge-state population in the i-layer region from 60% to 80% under 532 nm excitation, which can be attributed to the band bending in the i-layer region. Also, we quantitatively simulated the changes in the Fermi level in the i-layer region depending on d with various concentrations of impurities in the i-layer region.

  17. Charge equilibrium processes of energetic incident ions and their range

    International Nuclear Information System (INIS)

    Kawagoshi, Hiroshi; Karashima, Shosuke; Watanabe, Tsutomu.

    1984-01-01

    The charge state of energetic ions passing through a certain matter is varied by charge-exchange processes. A rate equation for charge fraction is given by using electron loss and capture cross sections in collision with a target atom under idealized condition. We solved the rate equation of the charge-exchange process of a single electron in a form of linear coupled differential equation. Our calcuiation for the range of ion were carried out for He, Ne and Ar ions passing through an atomic hydrogen gas target. We discuss the charge states of the projectile in relation to a local charge balance consituting a state of charge equilibrium in the target. (author)

  18. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  19. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  20. Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity

    International Nuclear Information System (INIS)

    Lima de Miranda, Rodrigo; Kruse, Jan; Raetzke, Klaus; Faupel, Franz; Fritsch, Detlev; Abetz, Volker; Budd, Peter M.; Selbie, James D.; McKeown, Neil B.; Ghanem, Bader S.

    2007-01-01

    The performance of polymeric membranes for gas separation is mainly determined by the free volume. Polymers of intrinsic microporosity are interesting due to the high abundance of accessible free volume. We performed measurements of the temperature dependence of the positron lifetime, generally accepted for investigation of free volume, in two polymers of intrinsic microporosity (PIM-1 and PIM-7) in the range from 143 to 523 K. The mean value of the free volume calculated from the ortho-positronium lifetime is in the range of typical values for high free volume polymers. However, the temperature dependence of the local free volume is non-monotonous in contrast to the macroscopic thermal expansion. The explanation is linked to the spirocenters in the polymer. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Charge transport through molecular rods with reduced pi-conjugation.

    Science.gov (United States)

    Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike

    2008-10-24

    A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.

  2. Extrinsic and Intrinsic Responses to Environmental Change: Insights from Terrestrial Paleoecological Archives

    Science.gov (United States)

    Seddon, A. W. R.; Mackay, A. W.

    2015-12-01

    Current understanding of ecological behaviour indicates that systems can experience sudden and abrupt changes in state, driven either by a large external change in environmental conditions (extrinsically forced), or the result of a set local feedbacks and site-specific interactions (intrinsically mediated responses). Responses mediated by intrinsic processes are notoriously diffi- cult to predict, they can occur as slow environmental variables gradually erode the resilience of the system eventually resulting in threshold transitions between alternative stable states. Finding ways to identify, model and predict such complex ecosystem behavior has been identified as a priority research challenge for both ecology and paleoecology. The paleoecological record can play a role in understanding the processes behind abrupt ecological change because it enables the reconstruction of processes occurring over decadal-centennial timescales or longer. Therefore, paleoecological data can be used to identify the existence of ecological thresholds and to investigate the environmental processes that can lead to loss of resilience and abrupt transitions between alternate states. In addition, incidences of abrupt vegetation changes in the past can serve as palaeoecological model systems; analogues of abrupt dynamics which can be used to test theories surrounding ecological responses to climate change. Here, I present examples from a range of terrestrial ecosystems (Holocene environmental changes from a coastal lagoon in the Galapagos Islands; Northern European vegetation changes since the last deglaciation; the North American hemlock decline) demonstrating evidence of abrupt ecosystem change. For each system I present a set of statistical techniques tailored to distin- guish between extrinsic versus intrinsically mediated ecological responses. Examples are provided from both single sites (i.e. landscape scale) and multiple sites (regional-continental scale). These techniques provide a

  3. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  4. Charge modulation as fingerprints of phase-string triggered interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan

    2015-07-07

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.

  5. Intrinsic Ambipolarity and Rotation in Stellarators

    International Nuclear Information System (INIS)

    Helander, P.; Simakov, A. N.

    2008-01-01

    It is shown that collisional plasma transport is intrinsically ambipolar only in quasiaxisymmetric or quasihelically symmetric magnetic configurations. Only in such fields can the plasma rotate freely, and then only in the direction of quasisymmetry. In a non-quasi-symmetric magnetic field, the average radial electric field is determined by parallel viscosity, which in turn is usually governed by collisional processes. Locally, the radial electric field may be affected by turbulent Reynolds stress producing zonal flows, but on a radial average taken over several ion gyroradii, it is determined by parallel viscosity, at least if the turbulence is electrostatic and obeys the conventional gyrokinetic orderings. This differs from the situation in a tokamak, where there is no flow damping by parallel viscosity in the symmetry direction and the turbulent Reynolds stress may affect the global radial electric field

  6. Charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 μm in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors

  7. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  8. Charge Carrier Trapping Processes in RE2O2S (RE = La, Gd, Y, and Lu)

    NARCIS (Netherlands)

    Luo, H.; Bos, A.J.J.; Dorenbos, P.

    2017-01-01

    Two different charge carrier trapping processes have been investigated in RE2O2S:Ln3+ (RE = La, Gd, Y, and Lu; Ln = Ce, Pr, and Tb) and RE2O2S:M (M = Ti4+ and Eu3+). Cerium, praseodymium and terbium act as recombination centers and hole trapping centers while host intrinsic defects provide the

  9. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  10. Crowding out intrinsic motivation in the public sector

    OpenAIRE

    Georgellis, Y; Iossa, E; Tabvuma, V

    2011-01-01

    Employing intrinsically motivated individuals has been proposed as a means of improving public sector performance. In this article, we investigate whether intrinsic motivation affects the sorting of employees between the private and the public sectors, paying particular attention to whether extrinsic rewards crowd out intrinsic motivation. Using British longitudinal data, we find that individuals are attracted to the public sector by the intrinsic rather than the extrinsic rewards that the se...

  11. Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET

    Science.gov (United States)

    Wadhwa, Girish; Raj, Balwinder

    2018-05-01

    Nanoscale devices are emerging as a platform for detecting biomolecules. Various issues were observed during the fabrication process such as random dopant fluctuation and thermal budget. To reduce these issues charge-plasma-based concept is introduced. This paper proposes the implementation of charge-plasma-based gate underlap dielectric modulated junctionless tunnel field effect transistor (DM-JLTFET) for the revelation of biomolecule immobilized in the open cavity gate channel region. In this p+ source and n+ drain regions are introduced by employing different work function over the intrinsic silicon. Also dual material gate architecture is implemented to reduce short channel effect without abandoning any other device characteristic. The sensitivity of biosensor is studied for both the neutral and charge-neutral biomolecules. The effect of device parameters such as channel thickness, cavity length and cavity thickness on drain current have been analyzed through simulations. This paper investigates the performance of charge-plasma-based gate underlap DM-JLTFET for biomolecule sensing applications while varying dielectric constant, charge density at different biasing conditions.

  12. Revisiting conserved charges in higher curvature gravitational theories

    Science.gov (United States)

    Ghodrati, M.; Hajian, K.; Setare, M. R.

    2016-12-01

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the "solution phase space method," conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f( R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS_3, charged static BTZ, and 3-dimensional z=3 Lifshitz black holes.

  13. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  14. How to pay for waste collection? Taxes, charges, user fees or market prices

    International Nuclear Information System (INIS)

    Ascari, S.; Universita Commerciale Luigi Bocconi, Milan

    1995-01-01

    Increased environmental awareness leads to the reexamination of the waste collection charging problem, where the public nature of the service is challenged by their private utility, while economic instruments should also be aimed at pursuing environmental goals. Hence the case for applying the benefit principle of taxation is discussed. The choice of payment vehicle for waste collection services is analysed first as an environmental instrument, where unit pricing is compared with recycling subsidies and landfill levies; and as a local public finance tool, aimed at triggering utility efficiency, budget transparency, and equity. Alternative solutions like lump sum and parametric charges (in particular, the opportunity of charging waste collection by local property taxes) are also seen from these perspectives. Finally, price structure and the case for fees raised directly by the franchise instead of local public charges are discussed as a means of improving productive efficiency and combating tax evasion

  15. Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe{sub 2}O{sub 4}: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L.; Fan, W.B. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Hou, Y.H., E-mail: hyhhyl@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Guo, K.X. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Ouyang, Y.F. [Department of Physics, Guangxi University, Nanning 530004 (China); Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    The cobalt ferrite (CoFe{sub 2}O{sub 4}) with spinel structure has achieved a great interest as a very important magnetic material which has covered a wide range of applications. The formation condition and energy of possible intrinsic point defects have been investigated by the first-principles calculations, and the effects of the intrinsic point defects on the electronic and magnetic properties of CoFe{sub 2}O{sub 4} have been analyzed. It is found that the growth conditions have a great effect on the formation energy of intrinsic point defects, and each point defect with its fully ionized state is the most stable for the intrinsic point defects with various charge states. In an oxygen rich environment, the cation vacancies are easy to form shallow acceptors, which is conducive to the strength of the p-type conductivity. While in the metal rich environment, the oxygen vacancies tend to form donors which lead to the n-type conductivity. There exists extra levels in the band gap when point defects are present, resulting in a reduction of the band gap. The net magnetic moment depends highly on the defects. - Highlights: • The intrinsic defects in CoFe{sub 2}O{sub 4} were investigated by first-principles calculation. • The effects of intrinsic defects on the electronic structures and magnetic properties of CoFe{sub 2}O{sub 4} were analyzed.

  16. Design of RFID Mesh Network for Electric Vehicle Smart Charging Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-09-04

    With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers

  17. Intrinsic electron traps in atomic-layer deposited HfO{sub 2} insulators

    Energy Technology Data Exchange (ETDEWEB)

    Cerbu, F.; Madia, O.; Afanas' ev, V. V.; Houssa, M.; Stesmans, A. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Andreev, D. V. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Bauman Moscow State Technical University—Kaluga Branch, 248000 Kaluga, Moscow obl. (Russian Federation); Fadida, S.; Eizenberg, M. [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa (Israel); Breuil, L. [imec, 3001 Leuven (Belgium); Lisoni, J. G. [imec, 3001 Leuven (Belgium); Institute of Physics and Mathematics, Faculty of Science, Universidad Austral de Chile, Valdivia (Chile); Kittl, J. A. [Laboratory of Semiconductor Physics, Department of Physics and Astronomy, University of Leuven, 3001 Leuven (Belgium); Advanced Logic Lab, Samsung Semiconductor, Inc., Austin, 78754 Texas (United States); Strand, J.; Shluger, A. L. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-05-30

    Analysis of photodepopulation of electron traps in HfO{sub 2} films grown by atomic layer deposition is shown to provide the trap energy distribution across the entire oxide bandgap. The presence is revealed of two kinds of deep electron traps energetically distributed at around E{sub t} ≈ 2.0 eV and E{sub t} ≈ 3.0 eV below the oxide conduction band. Comparison of the trapped electron energy distributions in HfO{sub 2} layers prepared using different precursors or subjected to thermal treatment suggests that these centers are intrinsic in origin. However, the common assumption that these would implicate O vacancies cannot explain the charging behavior of HfO{sub 2}, suggesting that alternative defect models should be considered.

  18. Enhanced intrinsic voltage gain in artificially stacked bilayer CVD graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Himadri; Kataria, Satender [RWTH Aachen University, Chair for Electronic Devices, Aachen (Germany); University of Siegen, School of Science and Technology, Siegen (Germany); Aguirre-Morales, Jorge-Daniel; Fregonese, Sebastien; Zimmer, Thomas [IMS Laboratory, Centre National de la Recherche Scientifique, University of Bordeaux, Talence (France); Passi, Vikram [University of Siegen, School of Science and Technology, Siegen (Germany); AMO GmbH, Advanced Microelectronics Center Aachen (Germany); Iannazzo, Mario; Alarcon, Eduard [Technical University of Catalonia, Department of Electronics Engineering, UPC, Barcelona (Spain); Lemme, Max C. [RWTH Aachen University, Chair for Electronic Devices, Aachen (Germany); University of Siegen, School of Science and Technology, Siegen (Germany); AMO GmbH, Advanced Microelectronics Center Aachen (Germany)

    2017-11-15

    We report on electronic transport in dual-gate, artificially stacked bilayer graphene field effect transistors (BiGFETs) fabricated from large-area chemical vapor deposited (CVD) graphene. The devices show enhanced tendency to current saturation, which leads to reduced minimum output conductance values. This results in improved intrinsic voltage gain of the devices when compared to monolayer graphene FETs. We employ a physics based compact model originally developed for Bernal stacked bilayer graphene FETs (BSBGFETs) to explore the observed phenomenon. The improvement in current saturation may be attributed to increased charge carrier density in the channel and thus reduced saturation velocity due to carrier-carrier scattering. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Further insight on recombination losses in the intrinsic layer of a-Si:H solar cells using computer modeling tools

    Science.gov (United States)

    Rubinelli, Francisco A.; Ramirez, Helena; Ruiz, Carlos M.; Schmidt, Javier A.

    2017-05-01

    Recombination losses of a-Si:H based p-i-n solar cells in the annealed state are analyzed with device computer modeling. Under AM1.5 illumination, the recombination rate in the intrinsic layer is shown to be controlled by a combination of losses through defect and tail states. The influence of the defect concentration on the characteristic parameters of a solar cell is analyzed. The impact on the light current-voltage characteristic curve of adopting very low free carrier mobilities and a high density of states at the band edge is explored under red and AM1.5 illumination. The distribution of trapped charge, electric field, and recombination loses inside the intrinsic layer is examined, and their influence on the solar cell performance is discussed. Solar cells with intrinsic layers deposited with and without hydrogen dilution are examined. It is found that the photocurrent at -2 V is not always a good approximation of the saturated reverse-bias photocurrent in a-Si:H p-i-n solar cells at room temperature. The importance of using realistic electrical parameters in solar cell simulations is emphasized.

  20. Defining intrinsic vs. extrinsic atopic dermatitis.

    Science.gov (United States)

    Karimkhani, Chante; Silverberg, Jonathan I; Dellavalle, Robert P

    2015-06-16

    Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by eczematous lesions, i.e. ill-demarcated erythematous patches and plaques. AD is commonly associated with elevated immunoglobulin E (IgE) and atopic disorders, such as asthma, hay fever, and food allergies. Rackemann and Mallory were some of the first to distinguish between asthma based on the presence ("extrinsic") or absence ("intrinsic") of allergy. This distinction has subsequently been applied to AD based on the presence ("extrinsic") or absence ("intrinsic") of increased IgE and atopic disease. Although the distinction between intrinsic and extrinsic AD is widely used, it remains controversial.

  1. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  2. Intrinsic-extrinsic factors in sport motivation.

    Science.gov (United States)

    Pedersen, Darhl M

    2002-10-01

    Participants were 83 students (36 men and 47 women). 10 intrinsic-extrinsic factors involved in sport motivation were obtained. The factors were generated from items obtained from the participants rather than items from the experimenter. This was done to avoid the possible influence of preconceptions on the part of the experimenter regarding what the final dimensions may be. Obtained motivational factors were Social Reinforcement, Fringe Benefits, Fame and Fortune, External Forces, Proving Oneself, Social Benefits, Mental Enrichment, Expression of Self, Sense of Accomplishment, and Self-enhancement. Each factor was referred to an intrinsic-extrinsic dimension to describe its relative position on that dimension. The order of the factors as listed indicates increasing intrinsic motivation. i.e., the first four factors were rated in the extrinsic range, whereas the remaining six were rated to be in the intrinsic range. Next, the participants rated the extent to which each of the various factors was involved in their decision to participate in sport activities. The pattern of use of the motivational factors was the same for both sexes except that men indicated greater use of the Fringe Benefits factor. Overall, the more intrinsic a sport motivation factor was rated, the more likely it was to be rated as a factor in actual sport participation.

  3. On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS{sub 3} geometries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh-Jabbari, M.M. [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Yavartanoo, H. [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China)

    2016-09-15

    Expanding upon [arXiv:1404.4472, arXiv:1511.06079], we provide a further detailed analysis of Banados geometries, the most general solutions to the AdS{sub 3} Einstein gravity with Brown-Henneaux boundary conditions. We analyze in some detail the causal, horizon, and boundary structure, and the geodesic motion on these geometries, as well as the two classes of symplectic charges one can associate with these geometries: charges associated with the exact symmetries and the Virasoro charges. We elaborate on the one-to-one relation between the coadjoint orbits of two copies of the Virasoro group and Banados geometries. We discuss that the information as regards the Banados geometries falls into two categories: ''orbit invariant'' information and ''Virasoro hairs''. The former concerns geometric quantities, while the latter are specified by the non-local surface integrals. We elaborate on multi-BTZ geometries which have a number of disconnected pieces at the horizon bifurcation curve. We study multi-BTZ black hole thermodynamics and discuss that the thermodynamic quantities are orbit invariants. We also comment on the implications of our analysis for a 2d CFT dual which could possibly be dual to AdS{sub 3} Einstein gravity. (orig.)

  4. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    Science.gov (United States)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  5. Cracking of charged polytropes with generalized polytropic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2017-02-15

    We discuss the occurrence of cracking in charged anisotropic polytropes with generalized polytropic equation of state through two different assumptions; (i) by carrying out local density perturbations under a conformally flat condition (ii) by perturbing anisotropy, polytropic index and charge parameters. For this purpose, we consider two different definitions of polytropes that exist in literature. We conclude that under local density perturbations scheme cracking does not appear in both types of polytropes and stable configuration is observed, while with the second type of perturbation cracking appears in both types of polytropes under certain conditions. (orig.)

  6. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  7. ISS Local Environment Spectrometers (ISLES)

    Science.gov (United States)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  8. The electro-optical and charge transport study of imidazolidin derivative: Quantum chemical investigations

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2016-11-01

    Full Text Available Imidazolidin derivatives gained significant attention in our daily life from better biological activity to the semiconducting materials. The present investigation deals with the in depth study of (Z-2-sulfanylidene-5-(thiophen-2-ylmethylideneimidazolidin-4-one (STMI with respect to their structural, electronic, optical and charge transport properties as semiconducting material. The ground and first excited state geometries were optimized by applying density functional theory (DFT and time dependent DFT, respectively. The light has been shed on the frontier molecular orbitals (FMOs and observed comprehensible intramolecular charge transfer (ICT from the highest occupied molecular orbitals (HOMOs to the lowest unoccupied molecular orbitals (LUMOs. The absorption, emission, ionization potentials (IP, electron affinities (EA, total and partial densities of states and structure-property relationship have been discussed. Finally, hole as well as electron reorganization energies, transfer integrals and intrinsic mobilities have been calculated then charge transport behavior of STMI was discussed, intensively.

  9. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor events (four times). Next autumn, students study choice was collect...

  10. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    https://doi.org/10.1080/23311908.2017.1340083 This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor e...

  11. Intrinsic and extrinsic geometry of random surfaces

    International Nuclear Information System (INIS)

    Jonsson, T.

    1992-01-01

    We prove that the extrinsic Hausdorff dimension is always greater than or equal to the intrinsic Hausdorff dimension in models of triangulated random surfaces with action which is quadratic in the separation of vertices. We furthermore derive a few naive scaling relations which relate the intrinsic Hausdorff dimension to other critical exponents. These relations suggest that the intrinsic Hausdorff dimension is infinite if the susceptibility does not diverge at the critical point. (orig.)

  12. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Arneodo, M.; Ferrero, M.I.; Peroni, C.; Beaufays, J.; Jacholkowska, A.; Kellner, G.; Osborne, A.M.; Bee, C.P.; Bird, I.; Coughlan, J.; Sloan, T.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Montgomery, H.E.; Peschel, H.; Pietrzyk, U.; Poetsch, M.; Schneider, A.; Combley, F.; Foster, J.; Whalley, M.; Wheeler, S.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.; Figiel, J.; Gajewski, J.; Janata, F.; Poensgen, B.; Schiemann, H.; Studt, M.; Torre, A. de la; Geddes, N.; Johnson, A.S.; Loken, J.; Long, K.; Renton, P.; Taylor, G.N.; Williams, W.S.C.; Grard, F.; Windmolders, R.

    1988-01-01

    The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F 2 n /F 2 p of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μd interactions. (orig.)

  13. Intrinsic Motivation: An Overlooked Component for Student Success

    Science.gov (United States)

    Augustyniak, Robert A.; Ables, Adrienne Z.; Guilford, Philip; Lujan, Heidi L.; Cortright, Ronald N.; DiCarlo, Stephen E.

    2016-01-01

    Intrinsic motivation to learn involves engaging in learning opportunities because they are seen as enjoyable, interesting, or relevant to meeting one's core psychological needs. As a result, intrinsic motivation is associated with high levels of effort and task performance. Students with greater levels of intrinsic motivation demonstrate strong…

  14. The value of nature: Economic, intrinsic, or both?

    Science.gov (United States)

    There has been a long standing argument that ecosystems have intrinsic value and therefore there is no need to put a price tag on Mother Nature. The concept of intrinsic value reflects the perspective that nature has value in its own right, independent of human uses. Intrinsic va...

  15. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    Science.gov (United States)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  16. The quasilocalized charge approximation

    International Nuclear Information System (INIS)

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  17. D-branes and coherent topological charge structure in QCD

    Science.gov (United States)

    Thacker, Hank

    2006-12-01

    Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.

  18. Field effect of screened charges: electrical detection of peptides and proteins by a thin-film resistor.

    Science.gov (United States)

    Lud, Simon Q; Nikolaides, Michael G; Haase, Ilka; Fischer, Markus; Bausch, Andreas R

    2006-02-13

    For many biotechnological applications the label-free detection of biomolecular interactions is becoming of outstanding importance. In this Article we report the direct electrical detection of small peptides and proteins by their intrinsic charges using a biofunctionalized thin-film resistor. The label-free selective and quantitative detection of small peptides and proteins is achieved using hydrophobized silicon-on-insulator (SOI) substrates functionalized with lipid membranes that incorporate metal-chelating lipids. The response of the nanometer-thin conducting silicon film to electrolyte screening effects is taken into account to determine quantitatively the charges of peptides. It is even possible to detect peptides with a single charge and to distinguish single charge variations of the analytes even in physiological electrolyte solutions. As the device is based on standard semiconductor technologies, parallelization and miniaturization of the SOI-based biosensor is achievable by standard CMOS technologies and thus a promising basis for high-throughput screening or biotechnological applications.

  19. Intrinsic and extrinsic motivation for smoking cessation.

    Science.gov (United States)

    Curry, S; Wagner, E H; Grothaus, L C

    1990-06-01

    An intrinsic-extrinsic model of motivation for smoking cessation was evaluated with 2 samples (ns = 1.217 and 151) of smokers who requested self-help materials for smoking cessation. Exploratory and confirmatory principal components analysis on a 36-item Reasons for Quitting (RFQ) scale supported the intrinsic-extrinsic motivation distinction. A 4-factor model, with 2 intrinsic dimensions (concerns about health and desire for self-control) and 2 extrinsic dimensions (immediate reinforcement and social influence), was defined by 20 of the 36 RFQ items. The 20-item measure demonstrated moderate to high levels of internal consistency and convergent and discriminant validity. Logistic regression analyses indicated that smokers with higher levels of intrinsic relative to extrinsic motivation were more likely to achieve abstinence from smoking.

  20. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  1. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  2. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  3. Expressing intrinsic volumes as rotational integrals

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel

    2010-01-01

    A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms of the ...

  4. Automated analysis of lightning leader speed, local flash rates and electric charge structure in thunderstorms

    Science.gov (United States)

    Van Der Velde, O. A.; Montanya, J.; López, J. A.

    2017-12-01

    A Lightning Mapping Array (LMA) maps radio pulses emitted by lightning leaders, displaying lightning flash development in the cloud in three dimensions. Since the last 10 years about a dozen of these advanced systems have become operational in the United States and in Europe, often with the purpose of severe weather monitoring or lightning research. We introduce new methods for the analysis of complex three-dimensional lightning data produced by LMAs and illustrate them by cases of a mid-latitude severe weather producing thunderstorm and a tropical thunderstorm in Colombia. The method is based on the characteristics of bidrectional leader development as observed in LMA data (van der Velde and Montanyà, 2013, JGR-Atmospheres), where mapped positive leaders were found to propagate at characteristic speeds around 2 · 104 m s-1, while negative leaders typically propagate at speeds around 105 m s-1. Here, we determine leader speed for every 1.5 x 1.5 x 0.75 km grid box in 3 ms time steps, using two time intervals (e.g., 9 ms and 27 ms) and circles (4.5 km and 2.5 km wide) in which a robust Theil-Sen fitting of the slope is performed for fast and slow leaders. The two are then merged such that important speed characteristics are optimally maintained in negative and positive leaders, and labeled with positive or negative polarity according to the resulting velocity. The method also counts how often leaders from a lightning flash initiate or pass through each grid box. This "local flash rate" may be used in severe thunderstorm or NOx production studies and shall be more meaningful than LMA source density which is biased by the detection efficiency. Additionally, in each grid box the median x, y and z components of the leader propagation vectors of all flashes result in a 3D vector grid which can be compared to vectors in numerical models of leader propagation in response to cloud charge structure. Finally, the charge region altitudes, thickness and rates are summarized

  5. An intrinsic representation of atomic structure: From clusters to periodic systems

    Science.gov (United States)

    Li, Xiao-Tian; Xu, Shao-Gang; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-10-01

    We have improved our distance matrix and eigen-subspace projection function (EPF) [X.-T. Li et al., J. Chem. Phys. 146, 154108 (2017)] to describe the atomic structure for periodic systems. Depicting the local structure of an atom, the EPF turns out to be invariant with respect to the choices of the unit cell and coordinate frame, leading to an intrinsic representation of the crystal with a set of EPFs of the nontrivial atoms. The difference of EPFs reveals the difference of atoms in local structure, while the accumulated difference between two sets of EPFs can be taken as the distance between configurations. Exemplified with the cases of carbon allotropes and boron sheets, our EPF approach shows exceptional rationality and efficiency to distinguish the atomic structures, which is crucial in structure recognition, comparison, and analysis.

  6. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Science.gov (United States)

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  7. Revisiting conserved charges in higher curvature gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Ghodrati, M. [University of Michigan, Michigan Center for Theoretical Physics, Randall Laboratory of Physics, Ann Arbor, MI (United States); Hajian, K. [Institute for Research in Fundamental Sciences (IPM), School of Physics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Campus of Bijar, Bijar (Iran, Islamic Republic of)

    2016-12-15

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the ''solution phase space method,'' conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f(R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS{sub 3}, charged static BTZ, and 3-dimensional z = 3 Lifshitz black holes. (orig.)

  8. Revisiting conserved charges in higher curvature gravitational theories

    International Nuclear Information System (INIS)

    Ghodrati, M.; Hajian, K.; Setare, M.R.

    2016-01-01

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the ''solution phase space method,'' conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f(R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS 3 , charged static BTZ, and 3-dimensional z = 3 Lifshitz black holes. (orig.)

  9. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET

    International Nuclear Information System (INIS)

    Singh, Sangeeta; Kondekar, P. N.; Pal, Pawan

    2016-01-01

    We investigate the transient behavior of an n-type double gate negative capacitance junctionless tunnel field effect transistor (NC-JLTFET). The structure is realized by using the work-function engineering of metal electrodes over a heavily doped n + silicon channel and a ferroelectric gate stack to get negative capacitance behavior. The positive feedback in the electric dipoles of ferroelectric materials results in applied gate bias boosting. Various device transient parameters viz. transconductance, output resistance, output conductance, intrinsic gain, intrinsic gate delay, transconductance generation factor and unity gain frequency are analyzed using ac analysis of the device. To study the impact of the work-function variation of control and source gate on device performance, sensitivity analysis of the device has been carried out by varying these parameters. Simulation study reveals that it preserves inherent advantages of charge-plasma junctionless structure and exhibits improved transient behavior as well. (paper)

  10. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  11. Identifying the neural substrates of intrinsic motivation during task performance.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall

    2017-10-01

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  12. Refining the intrinsic chimera flap: a review.

    Science.gov (United States)

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  13. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  14. An assay for serum vitamin-B12 and for intrinsic factor antibody type I by means of hog intrinsic factor

    International Nuclear Information System (INIS)

    Hudak, J.; Berger, Z.; Varga, L.

    1980-01-01

    A new radioassay method was elaborated for the determination of the plasma level of vitamin B 12 and of the intrinsic factor antibody type I. The assay applies vitamin-B 12 labelled with 58 Co, but replaces human intrinsic factor by hog intrinsic factor. 124 cases were investigated by both the original and this modified method, and the results were in very good agreement. (L.E.)

  15. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  16. Flavor Structure of Intrinsic Nucleon Sea

    International Nuclear Information System (INIS)

    Peng, Jen-Chieh; Chang, Wen-Chen; Cheng, Hai-Yang; Liu, Keh-Fei

    2015-01-01

    The concept of intrinsic charm suggested by Brodsky et al. is extended to lighter quarks. Extraction of the intrinsic ū, d-macron, and s-macron seas is obtained from an analysis of the d-macron − ū, s + s-macron, and ū + d-macron − s −s-macron distributions. The connection between the intrinsic/extrinsic seas and the connected/disconnected seas in lattice QCD is also examined. It is shown that the connected and disconnected components for the ū(x) + d-macron(x) sea can be separated. The striking x-dependence of the [s(x) + s-macron(x)]/[ū(x) + d-macron(x)] ratio is interpreted as an interplay between the connected and disconnected seas. (author)

  17. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    OpenAIRE

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, Robert; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Neher, D.; Koch, N.

    2017-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contr...

  18. Local cohomology and superselection structure

    International Nuclear Information System (INIS)

    Roberts, J.E.

    1976-02-01

    A novel quantum analogue of the classical problem of cohomology incorporating locality is introduced and is shown to generate those superselection sectors whose charge can be strictly localized. In a 2-dimensional space-time there are further possibilities; in particular, soliton sectors can be generated by this procedure [fr

  19. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  20. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  1. Improved charge collection of the buried p-i-n a-Si:H radiation detectors

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Street, R.A.

    1989-09-01

    Charge collection in hydrogenated amorphous silicon (a-Si:H) radiation detectors is improved for high LET particle detection by adding thin intrinsic layers to the usual p-i-n structure. This buried p-i-n structure enables us to apply higher bias and the electric field is enhanced. When irradiated by 5.8 MeV α particles, the 5.7 μm thick buried p-i-n detector with bias 300V gives a signal size of 60,000 electrons, compared to about 20,000 electrons with the simple p-i-n detectors. The improved charge collection in the new structure is discussed. The capability of tailoring the field profile by doping a-Si:H opens a way to some interesting device structures. 17 refs., 7 figs

  2. Local electromagnetic waves in layered superconductors

    International Nuclear Information System (INIS)

    Gvozdikov, V.M.; Vega-Monroy, R.

    1999-01-01

    A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)

  3. An intrinsically fluorescent dendrimer as a nanoprobe of cell transport.

    Science.gov (United States)

    Al-Jamal, Khuloud T; Ruenraroengsak, Pakatip; Hartell, Nicholas; Florence, Alexander T

    2006-07-01

    Dendrimers, spherical or quasi-spherical synthetic polymers in the nano-size range, have found useful applications as prospective carriers in drug and gene delivery. The investigation of dendrimer uptake by cells has been previously achieved by the incorporation of a fluorescent dye to the dendrimer either by chemical conjugation or by physical interaction. Here we describe the synthesis of two intrinsically fluorescent lysine based cationic dendrimers which lack a fluorophore, but which has sufficient fluorescence intensity to be detected at low concentrations. The nomenclature used to describe our compounds results in, for example the 6th generation dendrimer being notated as Gly-Lys(63) (NH2)(64); Gly denotes that the compound has a glycine in the core coupled to 63 lysine branching units (Lys(63)) and that the surface has 64 free amino groups (NH2)(64). The use of these dendrimers in probing transport avoids the need for fluorescent tagging with its attendant problems. The uptake of Gly-Lys(63) (NH2)(64) into Caco-2 cells was followed using confocal microscopy. Being cationic, it first adsorbs to the cell surface, enters the cytoplasm and reaches the nucleus within 35-45 min. Estimates of the diffusion coefficient of the dendrimer within the cell cytoplasm leads to a value of 6.27 ( +/- 0.49) x 10(-11) cm(2) s(-1), which is up to 1000 times lower than the diffusion coefficient of the dendrimer in water. Intrinsically fluorescent dendrimers of different size and charge are useful probes of transport in cells.

  4. Local randomness: Examples and application

    Science.gov (United States)

    Fu, Honghao; Miller, Carl A.

    2018-03-01

    When two players achieve a superclassical score at a nonlocal game, their outputs must contain intrinsic randomness. This fact has many useful implications for quantum cryptography. Recently it has been observed [C. Miller and Y. Shi, Quantum Inf. Computat. 17, 0595 (2017)] that such scores also imply the existence of local randomness—that is, randomness known to one player but not to the other. This has potential implications for cryptographic tasks between two cooperating but mistrustful players. In the current paper we bring this notion toward practical realization, by offering near-optimal bounds on local randomness for the CHSH game, and also proving the security of a cryptographic application of local randomness (single-bit certified deletion).

  5. Uncomfined fractionally charged quarks and the problem of hidrons

    International Nuclear Information System (INIS)

    Okun, L.B.; Shifman, M.A.

    1979-01-01

    A model for partial confinement of fractionally charged quarks with broken local but conserved global color symmetry is discussed. It is shown that it is impossible to liberate quarks and gluons in this way without severe contradictions with experimental data. The model predicts either observable violations of asymptotic freedom or hidrons - new hadron-like objects with mass around 1 GeV and fractional charges

  6. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  7. On the Penrose inequality for charged black holes

    International Nuclear Information System (INIS)

    Disconzi, Marcelo M; Khuri, Marcus A

    2012-01-01

    Bray and Khuri (2011 Asian J. Math. 15 557–610; 2010 Discrete Continuous Dyn. Syst. A 27 741766) outlined an approach to prove the Penrose inequality for general initial data sets of the Einstein equations. In this paper we extend this approach so that it may be applied to a charged version of the Penrose inequality. Moreover, assuming that the initial data are time-symmetric, we prove the rigidity statement in the case of equality for the charged Penrose inequality, a result which seems to be absent from the literature. A new quasi-local mass, tailored to charged initial data sets is also introduced, and used in the proof. (paper)

  8. Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model.

    Science.gov (United States)

    Geng, Hua; Peng, Qian; Wang, Linjun; Li, Haijiao; Liao, Yi; Ma, Zhiying; Shuai, Zhigang

    2012-07-10

    A tunneling-enabled hopping mechanism is proposed, providing a pratical tool to quantitatively assess charge mobility in organic semiconductors. The paradoxical phenomena in TIPS-pentacene is well explained in that the optical probe indicates localized charges while transport measurements show bands of charge. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An investigation into waste charges in Ireland, with emphasis on public acceptability.

    Science.gov (United States)

    Dunne, Louise; Convery, Frank J; Gallagher, Louise

    2008-12-01

    There are 34 local authorities in Ireland with legal responsibility to deal with waste arising in their jurisdictions. In 2003 the National government introduced legislation that allows local authorities to recover the costs of waste collection and disposal, and to do so by 'executive function', i.e., not requiring support or agreement by the relevant local political representatives. The year 2005 was set as the date by which implementation of a pay by weight or volume was to be introduced. The local authorities were given autonomy as to how they addressed this challenge, so we have - in theory - 34 potentially different experiences from which to learn. This paper examines the pay-as-you-throw (PAYT) waste system in Ireland as it develops in line with EU and National demands, with a view to assessing economic and environmental efficiency. All local authorities were surveyed and thirteen responded. While this only represents about 38% of the total number, it includes jurisdictions that contribute in total more than 50% of waste arising. Key figures in the policy and business community were also interviewed in order to identify how the charging schemes were implemented, and to what effect. These insights and parallel investigations are used to review the potential for problems regarding public acceptability of environmental taxes and examine the evidence for economic and environmental efficiency, as well as problem areas, using data from each of the responding local authority jurisdictions. Concentrating on the incentives and drivers across households, municipalities and private waste contractors, the variations in charging system, annual charges and landfill charges are compared where information was available. The various jurisdictions are also examined in terms of relative successes and problems encountered in the transition from fixed charge or free waste collection to PAYT systems. The Irish situation is placed in the context of the international literature on

  10. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    Science.gov (United States)

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  11. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  12. Diffusion and drift of charges in semiconductor detectors

    International Nuclear Information System (INIS)

    Meidinger, N.

    1991-01-01

    For this analysis, a fully depleteable pn-CCD (a novel, energy and local resolution semiconductor using the drift chamber principle) has been tested for verification at different temperatures, photon energies, and drift times, including theoretical calculations. Experimental results are in good agreement with calculated data, and deviations (≤11%) have been understood to an extent that proposals can be made for improving the accuracy. Charge splitting has been found to be reduced in the case of reduced charge collecting areas, i.e. for example at lower temperatures, or with shorter drift times. This effect is also reduced in the case of larger charge collecting areas (pixels). With the given topology of the cell structure, the charge splitting can be much more strongly suppressed as compared to other X-ray CCD design types. (orig.) [de

  13. Local Electric Field Facilitates High-Performance Li-Ion Batteries.

    Science.gov (United States)

    Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi

    2017-08-22

    By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO 3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO 3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g -1 at 100 mA g -1 , with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.

  14. 7 CFR 1403.9 - Late payment interest and administrative charges.

    Science.gov (United States)

    2010-01-01

    ... apply: (i) To debts owed by Federal agencies and State and local governments. Interest on debts owed by... the rate of interest charged by the U.S. Treasury for funds borrowed by CCC on the day the debt became... shall be expressed as an annual rate of interest which CCC charges on delinquent debts. The late payment...

  15. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  16. Safety Design for Smart Electric Vehicle Charging with Current and Multiplexing Control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-21

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the server and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.

  17. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  18. Concepts of intrinsic safety

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A newly introduced Japanese reactor concept, ISER (Intrinsically Safe and Economical Reactor), is intended to be a reference intrinsically safe light water reactor. ISER is designed similarly to PIUS but with greater economy in mind such that any utility in any country can choose it for its power system. Social assimilation and acceptability in the Asia Pacific Region including the United States are the keys to the ISER with the hope of dramatic reductions of social costs due to safeguards, reliability, financiability, and infrastructure building, particularly in the third world, as well as reactor safety itself. In this respect and others, the ISER proposal is different from other vendor-proposed reactor concepts and is unique

  19. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  20. Quantifying team cooperation through intrinsic multi-scale measures: respiratory and cardiac synchronization in choir singers and surgical teams.

    Science.gov (United States)

    Hemakom, Apit; Powezka, Katarzyna; Goverdovsky, Valentin; Jaffer, Usman; Mandic, Danilo P

    2017-12-01

    A highly localized data-association measure, termed intrinsic synchrosqueezing transform (ISC), is proposed for the analysis of coupled nonlinear and non-stationary multivariate signals. This is achieved based on a combination of noise-assisted multivariate empirical mode decomposition and short-time Fourier transform-based univariate and multivariate synchrosqueezing transforms. It is shown that the ISC outperforms six other combinations of algorithms in estimating degrees of synchrony in synthetic linear and nonlinear bivariate signals. Its advantage is further illustrated in the precise identification of the synchronized respiratory and heart rate variability frequencies among a subset of bass singers of a professional choir, where it distinctly exhibits better performance than the continuous wavelet transform-based ISC. We also introduce an extension to the intrinsic phase synchrony (IPS) measure, referred to as nested intrinsic phase synchrony (N-IPS), for the empirical quantification of physically meaningful and straightforward-to-interpret trends in phase synchrony. The N-IPS is employed to reveal physically meaningful variations in the levels of cooperation in choir singing and performing a surgical procedure. Both the proposed techniques successfully reveal degrees of synchronization of the physiological signals in two different aspects: (i) precise localization of synchrony in time and frequency (ISC), and (ii) large-scale analysis for the empirical quantification of physically meaningful trends in synchrony (N-IPS).

  1. Elements of the Competitive Situation That Affect Intrinsic Motivation.

    Science.gov (United States)

    Reeve, Johnmarshall; Deci, Edward L.

    1996-01-01

    Explores the effects of three elements of the competitive situation (competitive set, competitive outcome, and interpersonal context) on intrinsic motivation in a sample of college students (n=100). Competitive outcome and interpersonal context affected intrinsic motivation: winning increased intrinsic motivation, while pressured interpersonal…

  2. Data analysis on the public charge infrastructure in the city of Amsterdam

    NARCIS (Netherlands)

    Van Den Hoed, R.; Helmus, J. R.; De Vries, R.; Bardok, D.

    2014-01-01

    In recent years electric mobility has gained a great deal of attention, leading to electric vehicles on the market and development of necessary charging infrastructure. Charging infrastructure is mostly enabled through subsidies by local or national governments to overcome the chicken and egg

  3. A radioisotope dilution assay for unlabelled vitamin B12-intrinsic factor complex employing the binding intrinsic factor antibody: probable evidence for two types of binding antibody

    International Nuclear Information System (INIS)

    Jacob, E.; O'Brien, H.A.W.; Mollin, D.L.

    1977-01-01

    A new radioisotope dilution assay for vitamin B 12 -intrinsic factor complex is described. The method is based on the use of the binding type intrinsic antibody (the binding reagent), which when combined with the intrinsic factor-vitamin B 12 complex (labelled ligand), is quantitatively adsorbed onto zirconium phosphate gel pH 6.25. The new assay has been shown to provide a measure of intrinsic factor comparable with other intrinsic factor assays, but it has the important advantage of being able to measure the unlabelled vitamin B 12 -intrinsic factor complex (unlabelled ligand), and will, therefore, be valuable in the study of physiological events in the gastrointestinal tract. During the study, it was found that there is some evidence for at least two types of binding intrinsic factor antibody: One which combines preferentially with the intrinsic factor-vitamin B 12 complex and one which combines equally well with this complex or with free intrinsic factor. (author)

  4. Charge collection and SEU mechanisms

    Science.gov (United States)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws

  5. Intrinsic position uncertainty impairs overt search performance.

    Science.gov (United States)

    Semizer, Yelda; Michel, Melchi M

    2017-08-01

    Uncertainty regarding the position of the search target is a fundamental component of visual search. However, due to perceptual limitations of the human visual system, this uncertainty can arise from intrinsic, as well as extrinsic, sources. The current study sought to characterize the role of intrinsic position uncertainty (IPU) in overt visual search and to determine whether it significantly limits human search performance. After completing a preliminary detection experiment to characterize sensitivity as a function of visual field position, observers completed a search task that required localizing a Gabor target within a field of synthetic luminance noise. The search experiment included two clutter conditions designed to modulate the effect of IPU across search displays of varying set size. In the Cluttered condition, the display was tiled uniformly with feature clutter to maximize the effects of IPU. In the Uncluttered condition, the clutter at irrelevant locations was removed to attenuate the effects of IPU. Finally, we derived an IPU-constrained ideal searcher model, limited by the IPU measured in human observers. Ideal searchers were simulated based on the detection sensitivity and fixation sequences measured for individual human observers. The IPU-constrained ideal searcher predicted performance trends similar to those exhibited by the human observers. In the Uncluttered condition, performance decreased steeply as a function of increasing set size. However, in the Cluttered condition, the effect of IPU dominated and performance was approximately constant as a function of set size. Our findings suggest that IPU substantially limits overt search performance, especially in crowded displays.

  6. The measurement of the intrinsic impurities of molybdenum and carbon in the Alcator C-Mod tokamak plasma using low resolution spectroscopy

    Science.gov (United States)

    May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Goetz, J. A.; Graf, M. A.; Rice, J. E.; Marmar, E. S.; Fournier, K. B.; Goldstein, W. H.

    1997-06-01

    The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy ( Delta lambda ~1-10 AA). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all of the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Despite the all metal first wall, a carbon concentration of 1 to 2% existed in the plasma and was the major low-Z impurity in Alcator C-Mod. Thus, the behaviour of intrinsic molybdenum and carbon penetrating into the main plasma and the effect on the plasma must be measured and characterized during various modes of Alcator C-Mod operation. To this end, soft X-ray extreme ultraviolet (XUV) emission lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a~1) at the plasma edge to potassium to chlorine-like (0.4Data Nucl. Data Tables 33 (1985) 149), which were incorporated into the collisional radiative model. The intrinsic i

  7. An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.

    Science.gov (United States)

    Kazemi, Mohammad

    2017-11-10

    The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.

  8. Charge-transfer channel in quantum dot-graphene hybrid materials

    Science.gov (United States)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  9. Charge regulation at semiconductor-electrolyte interfaces.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Predicting Intrinsic Motivation

    Science.gov (United States)

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the…

  11. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  12. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    International Nuclear Information System (INIS)

    Pooth, Alexander; Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Martin, Trevor

    2015-01-01

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs

  13. Infrared intensities and charge mobility in hydrogen bonded complexes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta,” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-08-21

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al.[J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X–H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the –XH⋯Y– fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  14. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    International Nuclear Information System (INIS)

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, R.; Neher, D.; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Koch, N.

    2016-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10 4 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  15. Individualistic vs. Competitive Participation: The Effect on Intrinsic Motivation.

    Science.gov (United States)

    Jones, Brent M.; And Others

    Studies investigating intrinsic motivation and competition have supported the view that competition decreases intrinsic motivation. More recent studies suggest that the specific outcome of a competition (a win or a loss) differentially affects intrinsic motivation by highlighting the informational rather than the controlling aspect of the reward…

  16. Surface charge accumulation of particles containing radionuclides in open air.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    Science.gov (United States)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  18. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2015-09-18

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

  19. Intrinsic activity in the fly brain gates visual information during behavioral choices.

    Directory of Open Access Journals (Sweden)

    Shiming Tang

    2010-12-01

    Full Text Available The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.

  20. Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Gu, Yaxu; Rong, Caicai; Xu, Yadong; Shen, Hao; Zha, Gangqiang; Wang, Ning; Lv, Haoyan; Li, Xinyi; Wei, Dengke; Jie, Wanqi

    2015-01-01

    Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high

  1. Flexible Local Load Controller for Fast ElectricVehicle Charging Station Supplemented with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; SUN, BO; Schaltz, Erik

    2014-01-01

    Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation of dedica......Electric vehicle charging infrastructure is hitting the stage where its impact on performance and operation of power systems becomes more and more pronounced. Aiming to utilize the existing power distribution infrastructure and delay its expansion, an approach that includes installation...... of dedicated flywheel energy storage system (FESS) within the charging station and compensating some of the adverse effects of high power charging is explored in this paper. Although sharing some similarities with vehicle to grid (V2G) technology, the principal advantage of this strategy is the fact that many...

  2. Plasmons in inhomogeneously doped neutral and charged graphene nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Silveiro, Iván [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Javier García de Abajo, F., E-mail: javier.garciadeabajo@icfo.es [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona (Spain)

    2014-03-31

    We study plasmons in graphene nanodisks including the effect of inhomogeneity in the distribution of the doping charge. Specifically, we discuss the following two configurations: charged disks containing a fixed amount of additional carriers, which are self-consistently distributed along the surface to produce a uniform DC potential; and neutral disks exposed to a neighboring external point charge. A suitable finite-element method is elaborated to compute the charge density associated with the plasmons in the electrostatic limit. For charged disks, we find dipolar plasmons similar to those of uniformly doped graphene structures, in which the plasmon induced charge piles up near the edges. In contrast, in neutral disks placed near an external point charge, plasmons are strongly localized away from the edges. Surprisingly, a single external electron is enough to trap plasmons. The disks also display axially symmetric dark-plasmons, which can be excited through external illumination by coupling them to a neighboring metallic element. Our results have practical relevance for graphene nanophotonics under inhomogeneous doping conditions.

  3. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  4. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects.

    Science.gov (United States)

    Zhang, Ruiqi; Wu, Xiaojun; Yang, Jinlong

    2016-02-21

    The diffusion of Li in electrode materials is a key factor for the charging/discharging rate capacity of a Li-ion battery (LIB). Recently, two-dimensional phosphorene has been proposed as a very promising electrode material due to its ultrafast and directional lithium diffusion, as well as large energy capacity. Herein, on the basis of density functional theory, we report that intrinsic point defects, including vacancy and stone-wales defects, will block the directional ultrafast diffusion of lithium in phosphorene. On the defect-free phosphorene, diffusion of Li along the zig-zag lattice direction is 1.6 billion times faster than along the armchair lattice direction, and 260 times faster than that in graphite. After introducing intrinsic vacancy and stone-wales defect, the diffusion energy barrier of Li along the zig-zag lattice direction increases sharply to the range of 0.17-0.49 eV, which blocks the ultrafast migration of lithium along the zig-zag lattice direction. Moreover, the open circuit voltage increases with the emergence of defects, which is not suitable for anode materials. In addition, the formation energies of the defects in phosphorene are considerably lower than those in graphene and silicene sheet; therefore, it is highly important to generate defect-free phosphorene for LIB applications.

  5. Intrinsic motivation and sportsmanship: mediating role of interpersonal relationships.

    Science.gov (United States)

    Núñez, Juan L; Martín-Albo, José; Navarro, José G; Sánchez, Juana M; González-Cutre, David

    2009-06-01

    This study analyzed the mediating role of interpersonal relations between intrinsic motivation and sportsmanship. Athletes (98 men, 97 women), ages 11 to 43 years, completed measures of intrinsic motivation toward sports, self-concept of social and family relations, and sportsmanship orientation. A structural equation model indicated that self-concept of interpersonal relations mediated the relation between intrinsic motivation and sportsmanship. Also, intrinsic motivation was directly and positively associated with self-concept of interpersonal relations, which, in turn, was positively and significantly related to sportsmanship. Variances explained by self-concept of interpersonal relations and by sportsmanship were 32 and 56%, respectively. The motivational interaction between the context of interpersonal relations and the sports context proposed in the hierarchical model of intrinsic and extrinsic motivation was discussed.

  6. On the BRST charge over infinite-dimensional algebras

    International Nuclear Information System (INIS)

    Hlousek, Zvonimir.

    1988-01-01

    The author studies the BRST charge defined over an infinite algebra of gauged local symmetries. This is of great importance to string theories. The BRST charge of the gauge symmetry must be nilpotent. In string theories this implies the cancellation of conformal anomalies in critical dimension; 26 for bosonic string, 10 for superstring, and 2 for O(2) string. Furthermore, the O(2) symmetry of the O(2) string (a string theory with two, two-dimensional supersymmetries) is realized as a Kac-Moody symmetry. In general, the BRST quantization of the local, gauged KAC-Moody symmetry requires special care due to chiral anomaly. The chiral anomaly breaks the chiral gauge invariance, and the corresponding BRST charge is not nilpotent. To arrive at the nilpotent BRST charge for the gauged Kac-Moody symmetry, one has to modify the theory by adding a one-cocycle over the gauge group. A similar problem and its solution exist in the case of supersymmetric Kac-Moody algebras. The BRST charge of the first quantized string theory is a building block of the covariant string field theory. The BRST invariance of the first quantized theory generalizes to gauge invariance of string field theory. In Witten's open string field theory the BRST charge plays a role of exterior derivation on the space of string field functionals. The Fock space realization of the theory was given by Gross and Jevicki. For the consistency of the theory it is crucial that all the vertex operators are BRST invariant. The ghost part of the vertex comes in few varieties. The author has shown that all the versions of the ghost vertex are equivalent, as long as the total vertex is BRST invariant

  7. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-01-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  8. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  9. Stress Induced Charge-Ordering Process in LiMn_2O_4

    International Nuclear Information System (INIS)

    Chen, Yan; Yu, Dunji; An, Ke

    2016-01-01

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn_2O_4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn_2O_4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  10. Distributed Coordination of Electric Vehicle Charging in a Community Microgrid Considering Real-Time Price

    DEFF Research Database (Denmark)

    Li, Chendan; Schaltz, Erik; Quintero, Juan Carlos Vasquez

    2016-01-01

    The predictable increasing adoption of EV by residential users imposes the necessity of Electric Vehicle charging coordination, in order to charge effectively while minimizing the impact on the grid. In this paper, a two-stage distributed coordination algorithm for electric vehicle charging...... management in a community microgrid is proposed. Each local EV charging controller is taken as an agent, which can manage the charging to achieve the optimization of the whole community by communicating in a sparse network. The proposed algorithm aims at optimizing real-time, which manages the charging...

  11. Electric Vehicle Charging Stations as a Climate Change Mitigation Strategy

    Science.gov (United States)

    Cave, Bridget; DeYoung, Russell J.

    2014-01-01

    In order to facilitate the use of electric vehicles at NASA Langley Research Center (LaRC), charging stations should be made available to LaRC employees. The implementation of charging stations would decrease the need for gasoline thus decreasing CO2 emissions improving local air quality and providing a cost savings for LaRC employees. A charging station pilot program is described that would install stations as the need increased and also presents a business model that pays for the electricity used and installation at no cost to the government.

  12. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  13. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  14. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-22

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  15. Impact of uncoordinated plug-in electric vehicle charging on residential power demand

    Science.gov (United States)

    Muratori, Matteo

    2018-03-01

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  16. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    International Nuclear Information System (INIS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-01-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves

  17. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  18. Tai Chi Chuan Optimizes the Functional Organization of the Intrinsic Human Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Gao-Xia eWei

    2014-04-01

    Full Text Available Whether Tai Chi Chuan (TCC can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right postcentral gyrus (PosCG and less functional homogeneity in the left anterior cingulate cortex (ACC and the right dorsal lateral prefrontal cortex (DLPFC. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization in the left ACC and increases in functional homogeneity (improved functional integration in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain’s intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population.

  19. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    Science.gov (United States)

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  20. Algebraic description of intrinsic modes in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig

  1. It's about time: Earlier rewards increase intrinsic motivation.

    Science.gov (United States)

    Woolley, Kaitlin; Fishbach, Ayelet

    2018-06-01

    Can immediate (vs. delayed) rewards increase intrinsic motivation? Prior research compared the presence versus absence of rewards. By contrast, this research compared immediate versus delayed rewards, predicting that more immediate rewards increase intrinsic motivation by creating a perceptual fusion between the activity and its goal (i.e., the reward). In support of the hypothesis, framing a reward from watching a news program as more immediate (vs. delayed) increased intrinsic motivation to watch the program (Study 1), and receiving more immediate bonus (vs. delayed, Study 2; and vs. delayed and no bonus, Study 3) increased intrinsic motivation in an experimental task. The effect of reward timing was mediated by the strength of the association between an activity and a reward, and was specific to intrinsic (vs. extrinsic) motivation-immediacy influenced the positive experience of an activity, but not perceived outcome importance (Study 4). In addition, the effect of the timing of rewards was independent of the effect of the magnitude of the rewards (Study 5). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    Science.gov (United States)

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  3. A systematic review of publications on charged particle therapy for hepatocellular carcinoma.

    Science.gov (United States)

    Igaki, Hiroshi; Mizumoto, Masashi; Okumura, Toshiyuki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Sakurai, Hideyuki

    2018-06-01

    Charged particle therapy (proton beam therapy and carbon ion therapy) is a form of radiotherapy which has the unique characteristic of superior depth dose distribution, and has been used for the treatment of hepatocellular carcinoma (HCC) in a limited number of patients, especially in Japan. We undertook a systematic review to define the clinical utility of charged particle therapy for patients with HCC. We searched the MEDLINE database from 1983 to June 2016 to identify clinical studies on charged particle therapy for HCC. Primary outcomes of interest were local control, overall survival, and late radiation morbidities. A total of 13 cohorts from 11 papers were selected from an initial dataset of 78 papers. They included a randomized controlled trial comparing proton beam therapy with transarterial chemoembolization, 9 phase I or II trials and 2 retrospective studies. The reported actuarial local control rates ranged from 71.4-95% at 3 years, and the overall survival rates ranged from 25-42.3% at 5 years. Late severe radiation morbidities were uncommon, and a total of 18 patients with grade ≥3 late adverse events were reported among the 787 patients included in this analysis. Charged particle therapy for HCC was associated with good local control with limited probability of severe morbidities. The cost-effectiveness and the distinctive clinical advantages of charged particle therapies should be clarified in order to become a socially accepted treatment modality for HCC.

  4. Management Control, Intrinsic Motivation and Creativity

    DEFF Research Database (Denmark)

    Godt Gregersen, Mikkel

    This thesis consists of a cape and three papers. The overall research question is: How can intrinsic motivation and management control coexist in a creative environment and how can coordination be possible in such a context? The cape ties together the research done in the three papers....... It is divided into six sections. The first section introduces the concepts of intrinsic motivation, creativity and management control. This is followed by a section on management control in a creative context. These two sections frame the thesis and introduce the setting in which the research has been done...... of the conclusion is that intrinsic motivation and management control can coexist under the conditions that all three basic needs, i.e. autonomy, competence and relatedness, are supported. This can happen when control takes point of departure in the individual employee. The second part of the conclusion...

  5. Intrinsic Losses Based on Information Geometry and Their Applications

    Directory of Open Access Journals (Sweden)

    Yao Rong

    2017-08-01

    Full Text Available One main interest of information geometry is to study the properties of statistical models that do not depend on the coordinate systems or model parametrization; thus, it may serve as an analytic tool for intrinsic inference in statistics. In this paper, under the framework of Riemannian geometry and dual geometry, we revisit two commonly-used intrinsic losses which are respectively given by the squared Rao distance and the symmetrized Kullback–Leibler divergence (or Jeffreys divergence. For an exponential family endowed with the Fisher metric and α -connections, the two loss functions are uniformly described as the energy difference along an α -geodesic path, for some α ∈ { − 1 , 0 , 1 } . Subsequently, the two intrinsic losses are utilized to develop Bayesian analyses of covariance matrix estimation and range-spread target detection. We provide an intrinsically unbiased covariance estimator, which is verified to be asymptotically efficient in terms of the intrinsic mean square error. The decision rules deduced by the intrinsic Bayesian criterion provide a geometrical justification for the constant false alarm rate detector based on generalized likelihood ratio principle.

  6. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    Science.gov (United States)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  7. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  8. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  9. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  10. Determination of the plastic deformation and residual stress tensor distribution using surface and bulk intrinsic magnetic properties

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2015-01-01

    We have developed an unique method to provide the stress calibration curve in steels: performing flaw-less welding in the under examination steel, we obtained to determine the level of the local plastic deformation and the residual stress tensors. These properties where measured using both the X-ray and the neutron diffraction techniques, concerning their surface and bulk stresses type II (intra-grain stresses) respectively, as well as the stress tensor type III by using the electron diffraction technique. Measuring the distribution of these residual stresses along the length of a welded sample or structure, resulted in determining the local stresses from the compressive to tensile yield point. Local measurement of the intrinsic surface and bulk magnetic property tensors allowed for the un-hysteretic correlation. The dependence of these local magnetic tensors with the above mentioned local stress tensors, resulting in a unique and almost un-hysteretic stress calibration curve of each grade of steel. This calibration integrated the steel's mechanical and thermal history, as well as the phase transformations and the presence of precipitations occurring during the welding process.Additionally to that, preliminary results in different grade of steels reveal the existence of a universal law concerning the dependence of magnetic and magnetostrictive properties of steels on their plastic deformation and residual stress state, as they have been accumulated due to their mechanical and thermal fatigue and history. This universality is based on the unique dependence of the intrinsic magnetic properties of steels normalized with a certain magnetoelastic factor, upon the plastic deformation or residual stress state, which, in terms, is normalized with their yield point of stress. (authors)

  11. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  12. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Rumbles, Garry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-19

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solid state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.

  13. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    Science.gov (United States)

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  14. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    Science.gov (United States)

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological

  15. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis

    DEFF Research Database (Denmark)

    Martel, Britta Cathrina; Litman, Thomas; Hald, Andreas

    2016-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. In this study, we used microarray analysis to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared...... with mild extrinsic and intrinsic AD similar to previous reports for severe AD. Interestingly, expression of genes involved in inflammatory responses in intrinsic AD resembled that of psoriasis more than that of extrinsic AD. Overall, differences in expression of inflammation-associated genes found among...... patients with mild intrinsic and extrinsic AD correlated with previous findings for patients with severe intrinsic and extrinsic AD....

  16. Management Control, Intrinsic Motivation and Creativity

    OpenAIRE

    Gregersen, Mikkel Godt

    2017-01-01

    This thesis consists of a cape and three papers. The overall research question is: How can intrinsic motivation and management control coexist in a creative environment and how can coordination be possible in such a context? The cape ties together the research done in the three papers. It is divided into six sections. The first section introduces the concepts of intrinsic motivation, creativity and management control. This is followed by a section on management control in a ...

  17. Self-synchronization of the modulation of energy-levels population with electrons in GaAs induced by picosecond pulses of probe radiation and intrinsic stimulated emission

    Energy Technology Data Exchange (ETDEWEB)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.; Krivonosov, A. N. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation)

    2016-10-15

    Picosecond optical pumping leads to the initiation of intrinsic picosecond stimulated emission in GaAs. As was established previously, due to the interaction of pulses of probe radiation with those of intrinsic emission, the dependence of the absorption α of the probe pulse on its delay τ with respect to the pump pulse is modulated with oscillations. It is found that the oscillatory dependences α(τ) have a similar shape only in the case of certain combinations of energies of the interacting pulses. As a result, it is assumed that the above interaction is, in fact, a synchronization of modulations (formed by pulses) of charge-carrier populations at energy levels; this synchronization occurs in the direction of the reconstruction of detailed equilibrium. The real-time picosecond self-modulation of the absorption α is measured for the first time. The characteristics of this self-modulation as well as absorption α and intrinsic emission self-modulation characteristics measured previously by correlation methods are now accounted for by the concept of synchronization.

  18. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  19. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  20. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  1. A dynamic birth-death model via Intrinsic Linkage

    Directory of Open Access Journals (Sweden)

    Robert Schoen

    2013-05-01

    Full Text Available BACKGROUND Dynamic population models, or models with changing vital rates, are only beginning to receive serious attention from mathematical demographers. Despite considerable progress, there is still no general analytical solution for the size or composition of a population generated by an arbitrary sequence of vital rates. OBJECTIVE The paper introduces a new approach, Intrinsic Linkage, that in many cases can analytically determine the birth trajectory of a dynamic birth-death population. METHODS Intrinsic Linkage assumes a weighted linear relationship between (i the time trajectory of proportional increases in births in a population and (ii the trajectory of the intrinsic rates of growth of the projection matrices that move the population forward in time. Flexibility is provided through choice of the weighting parameter, w, that links these two trajectories. RESULTS New relationships are found linking implied intrinsic and observed population patterns of growth. Past experience is "forgotten" through a process of simple exponential decay. When the intrinsic growth rate trajectory follows a polynomial, exponential, or cyclical pattern, the population birth trajectory can be expressed analytically in closed form. Numerical illustrations provide population values and relationships in metastable and cyclically stable models. Plausible projection matrices are typically found for a broad range of values of w, although w appears to vary greatly over time in actual populations. CONCLUSIONS The Intrinsic Linkage approach extends current techniques for dynamic modeling, revealing new relationships between population structures and the changing vital rates that generate them.

  2. MUSIC for localization of thunderstorm cells

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Rynne, T.M. [Scientific Applications and Research Associates, Inc., Huntington Beach, CA (United States)

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surface electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.

  3. Tribo-electric charging of dielectric solids of identical composition

    Science.gov (United States)

    Angus, John C.; Greber, Isaac

    2018-05-01

    Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.

  4. Exploring the link between intrinsic motivation and quality

    Science.gov (United States)

    Christy, Steven M.

    1992-12-01

    This thesis proposes that it is workers' intrinsic motivation that leads them to produce quality work. It reviews two different types of evidence- expert opinion and empirical studies--to attempt to evaluate a link between intrinsic motivation and work quality. The thesis reviews the works of Total Quality writers and behavioral scientists for any connection they might have made between intrinsic motivation and quality. The thesis then looks at the works of Deming and his followers in an attempt to establish a match between Deming's motivational assumptions and the four task rewards in the Thomas/Tymon model of intrinsic motivation: choice, competence, meaningfulness, and progress. Based upon this analysis, it is proposed that the four Thomas/Tymon task rewards are a promising theoretical foundation for explaining the motivational basis of quality for workers in Total Quality organizations.

  5. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    Science.gov (United States)

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  6. Charge ordering in the rare earth manganates: the experimental situation

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Cheetham, A.K.; Raveau, Bernard

    2000-01-01

    Charge-ordered phases of rare earth manganates are novel manifestations arising from interactions between the charge carriers and phonons, giving rise to the localization of carriers at specific sites in the lattice below a certain temperature. Accompanying this phenomenon, the Mn 3+ (e g ) orbitals and the associated lattice distortions also exhibit long range ordering (orbital ordering). What makes the manganates even more interesting is the occurrence of complex spin ordering related to anisotropic magnetic interactions. In this article, we discuss the emerging scenario of charge-ordered rare earth manganates in the light of specific case studies and highlight some of the new experimental findings related to spin, orbital and charge ordering. We also examine features such as the charge stripes and phase separation found experimentally in these materials, and discuss the factors that affect charge-ordering such as the size of A-site cations and magnetic and electric fields, as well as isotopic and chemical substitutions. (author)

  7. Personality traits associated with intrinsic academic motivation in medical students.

    Science.gov (United States)

    Tanaka, Masaaki; Mizuno, Kei; Fukuda, Sanae; Tajima, Seiki; Watanabe, Yasuyoshi

    2009-04-01

    Motivation is one of the most important psychological concepts in education and is related to academic outcomes in medical students. In this study, the relationships between personality traits and intrinsic academic motivation were examined in medical students. The study group consisted of 119 Year 2 medical students at Osaka City University Graduate School of Medicine. They completed questionnaires dealing with intrinsic academic motivation (the Intrinsic Motivation Scale toward Learning) and personality (the Temperament and Character Inventory [TCI]). On simple regression analyses, the TCI dimensions of persistence, self-directedness, co-operativeness and self-transcendence were positively associated with intrinsic academic motivation. On multiple regression analysis adjusted for age and gender, the TCI dimensions of persistence, self-directedness and self-transcendence were positively associated with intrinsic academic motivation. The temperament dimension of persistence and the character dimensions of self-directedness and self-transcendence are associated with intrinsic academic motivation in medical students.

  8. Sources of intrinsic rotation in the low-flow ordering

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.

    2011-01-01

    A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low-flow ordering contains new terms, neglected in previous first-principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.

  9. On a non-local gas dynamics like integrable hierarchy

    International Nuclear Information System (INIS)

    Brunelli, Jose Carlos; Das, Ashok

    2004-01-01

    We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)

  10. Cooperative motion of intrinsic and actuated semiflexible swimmers

    NARCIS (Netherlands)

    Llopis, I.; Pagonabarraga, I.; Lagomarsino, M.C.; Lowe, C.P.

    2013-01-01

    We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic

  11. Disorder- and correlation-induced charge carriers localization in oxyborate MgFeBO{sub 4}, Mg{sub 0.5}Co{sub 0.5}FeBO{sub 4}, CoFeBO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu.V. [Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Kazak, N.V., E-mail: nat@iph.krasn.ru [Kirensky Institute of Physics, 660036 Krasnoyarsk (Russian Federation); Platunov, M.S. [Kirensky Institute of Physics, 660036 Krasnoyarsk (Russian Federation); Ivanova, N.B. [Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Bezmaternykh, L.N. [Kirensky Institute of Physics, 660036 Krasnoyarsk (Russian Federation); Arauzo, A. [Servicio de Medidas Físicas, Universidad de Zaragoza, 50009 Zaragoza (Spain); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Departamento de Física de la Materia Condensada, 50009 Zaragoza (Spain); Ovchinnikov, S.G. [Siberian Federal University, 660074 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 660036 Krasnoyarsk (Russian Federation); Siberian State Aerospace University, 660014 Krasnoyarsk (Russian Federation)

    2015-09-05

    Highlights: • The electrical resistance of the single crystalline warwickites has been measured. • The temperature-induced changes in the charge transfer mechanisms have been found. • The microscopic parameters of the electronic structure have been determined. • The studied warwickites have been classified as disordered correlated systems. • The Co substitution was found to lead to the weakening of the localization. - Abstract: The temperature dependence of the resistivity of single crystalline Mg{sub 1−x}Co{sub x}FeBO{sub 4} samples with x = 0.0, 0.5, 1.0 is investigated for the temperature range (210–400 K). The conduction was found to be governed by Mott variable-range hopping (VRH) in the low-temperature range (T = 210–270 K) and by thermo-activation mechanism in the high-temperature range (T = 280–400 K). Microscopic electronic parameters, such as the density of the localized states near the Fermi level, localization length, the hopping length, and the activation energy have been obtained. The change of the activation energy observed at high-temperature range was attributed to local structure distortions around Fe and Co atoms. The complicated behavior of charge transfer mechanisms is discussed based on two approaches: atomic disorder and electron correlations.

  12. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel

    2009-01-01

    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  13. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  14. Dynamics of transportan in bicelles is surface charge dependent

    Energy Technology Data Exchange (ETDEWEB)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena [Stockholm University, Department of Biochemistry and Biophysics, Arrhenius Laboratories (Sweden)], E-mail: lena.maler@dbb.su.se

    2006-06-15

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide {sup 15}N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S{sup 2} is on average 0.11 {+-} 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of {sup 1}H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

  15. Dynamics of transportan in bicelles is surface charge dependent

    International Nuclear Information System (INIS)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena

    2006-01-01

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15 N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1 H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected

  16. The impact of irradiation induced specimen charging on microanalysis in a scanning electron microscope

    International Nuclear Information System (INIS)

    Stevens-Kalceff, M.A.

    2003-01-01

    Full text: It is necessary to assess and characterize the perturbing influences of experimental probes on the specimens under investigation. The significant influence of electron beam irradiation on poorly conducting materials has been assessed by a combination of specialized analytical scanning electron and scanning probe microscopy techniques including Cathodoluminescence Microanalysis and Kelvin Probe Microscopy. These techniques enable the defect structure and the residual charging of materials to be characterized at high spatial resolution. Cathodoluminescence is the non-incandescent emission of light resulting from the electron irradiation. CL microscopy and spectroscopy in a Scanning Electron Microscope (SEM) enables high spatial resolution and high sensitivity detection of defects in poorly conducting materials. Local variations in the distribution of defects can be non-destructively characterized with high spatial (lateral and depth) resolution by adjusting electron beam parameters to select the specimen micro-volume of interest. Kelvin Probe Microscopy (KPM) is a Scanning Probe Microscopy technique in which long-range Coulomb forces between a conductive atomic force probe and the specimen enable the surface potential to be characterized with high spatial resolution. A combination of Kelvin Probe Microscopy (KPM) and Cathodoluminescence (CL) microanalysis has been used to characterize ultra pure silicon dioxide exposed to electron irradiation in a Scanning Electron Microscope. Silicon dioxide is an excellent model specimen with which to investigate charging induced effects. It is a very poor electrical conductor, homogeneous and electron irradiation produces easily identifiable surface modification which enables irradiated regions to be easily and unambiguously located. A conductive grounded coating is typically applied to poorly conducting specimens prior to investigation in an SEM to prevent deflection of the electron beam and surface charging, however

  17. Intrinsic rotation produced by ion orbit loss and X-loss

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Boedo, J. A. [University of California - San Diego, San Diego, California 92093 (United States); Evans, T. E.; Groebner, R. J. [General Atomics, San Diego, California 92186 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08453 (United States)

    2012-11-15

    A practical calculation model for the intrinsic rotation imparted to the edge plasma by the directionally preferential loss of ions on orbits that cross the last closed flux surface is presented and applied to calculate intrinsic rotation in several DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharges. The intrinsic rotation produced by ion loss is found to be sensitive to the edge temperature and radial electric field profiles, which has implications for driving intrinsic rotation in future large tokamaks.

  18. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  19. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is

  20. Differential scanning microcalorimetry of intrinsically disordered proteins.

    Science.gov (United States)

    Permyakov, Sergei E

    2012-01-01

    Ultrasensitive differential scanning calorimetry (DSC) is an indispensable thermophysical technique enabling to get direct information on enthalpies accompanying heating/cooling of dilute biopolymer solutions. The thermal dependence of protein heat capacity extracted from DSC data is a valuable source of information on intrinsic disorder level of a protein. Application details and limitations of DSC technique in exploration of protein intrinsic disorder are described.

  1. Dynamics of space and polarization charges of ferroelectric thin films measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, J.H.; Jo, W.

    2006-01-01

    Retention behavior and local hysteresis characteristics in Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films on Pt electrodes have been investigated by electrostatic force microscopy (EFM). A sol-gel method is used to synthesize PZT thin films and drying conditions are carefully explored over a wide range of temperature. Decay and retention mechanisms of single-poled and reverse-poled regions of the ferroelectric thin films are explained by space charge redistribution. Trapping behavior of space charges is dependent on the nature of interface between ferroelectric thin films and bottom electrodes. Local measurement of polarization-electric field curves by EFM shows inhomogeneous space charge entrapment

  2. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  3. Effect of the nuclear charge of a fast structural ion on its internal effective stopping in collisions with atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gusarevich, E. S., E-mail: gusarevich@gmail.com [Lomonosov Nothern (Arctic) Federal University (Russian Federation)

    2017-02-15

    The energy losses of fast structural ions in collisions with atoms have been considered in the eikonal approximation. The structural ions are ions consisting of a nucleus and a certain number of electrons bound to it. The effect of nuclear charge Z of the ion on its effective deceleration κ{sup (p)} (energy losses associated with excitation of only intrinsic ion shells) has been analyzed. It is shown that the allowance for the interaction of an atom with the ion nucleus for Z{sub a}Z/v > 1, where Z{sub a} is the charge of the atomic nucleus and v is the velocity of collisions in atomic units, considerably affects the value of κ{sup (p)}, which generally necessitates taking into account nonperturbatively the effect of both charges Z{sub a} and Z on κ{sup (p)}.

  4. Restoring the azimuthal symmetry of lateral distributions of charged particles in the range of the KASCADE-Grande experiment

    International Nuclear Information System (INIS)

    Sima, O.; Rebel, H.; Haungs, A.; Toma, G.; Manailescu, C.; Morariu, C.; Arteaga, J.C.; Bekk, K.; Bertaina, M.; Bluemer, J.; Bozdog, H.; Brancus, I.M.; Chiavassa, A.; Cosavella, F.; Souza, V. de; Doll, P.; Engel, R.; Finger, M.; Glasstetter, R.; Grupen, C.

    2011-01-01

    The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and

  5. The intrinsic stochasticity of near-integrable Hamiltonian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu

    1989-09-01

    Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).

  6. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  7. Informationally administered reward enhances intrinsic motivation in schizophrenia.

    Science.gov (United States)

    Lee, Hyeon-Seung; Jang, Seon-Kyeong; Lee, Ga-Young; Park, Seon-Cheol; Medalia, Alice; Choi, Kee-Hong

    2017-10-01

    Even when individuals with schizophrenia have an intact ability to enjoy rewarding moments, the means to assist them to translate rewarding experiences into goal-directed behaviors is unclear. The present study sought to determine whether informationally administered rewards enhance intrinsic motivation to foster goal-directed behaviors in individuals with schizophrenia (SZ) and healthy controls (HCs). Eighty-four participants (SZ=43, HCs=41) were randomly assigned to conditions involving either a performance-contingent reward with an informationally administered reward or a task-contingent reward with no feedback. Participants were asked to play two cognitive games of equalized difficulty. Accuracy, self-reported intrinsic motivation, free-choice intrinsic motivation (i.e., game play during a free-choice observation period), and perceived competency were measured. Intrinsic motivation and perceived competency in the cognitive games were similar between the two participant groups. The informationally administered reward significantly enhanced self-reported intrinsic motivation and perceived competency in both the groups. The likelihood that individuals with schizophrenia would play the game during the free-choice observation period was four times greater in the informationally administered reward condition than that in the no-feedback condition. Our findings suggest that, in the context of cognitive remediation, individuals with schizophrenia would benefit from informationally administered rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    International Nuclear Information System (INIS)

    Buividovich, P.V.; Kalaydzhyan, T.; Polikarpov, M.I.

    2011-11-01

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  9. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  10. The effects of extrinsic rewards on children's intrinsic motivation

    OpenAIRE

    大槻, 千秋

    1981-01-01

    An experiment was conducted with preschool children to test whether a person's intrinsic motivation in an activity may be decreased by extrinsic salient rewards in Japan like in America. Children solved some jigsaw puzzles and received assorted candies, then they were observed how long they did other jigsaw puzzles. The results showed that the effects of extrinsic rewards on intrinsic motivation in an activity varied with the subject's social background. In uptown children's intrinsic motivat...

  11. Self-perception of intrinsic and extrinsic motivation.

    Science.gov (United States)

    Calder, B J; Staw, B M

    1975-04-01

    Self-perception theory predicts that intrinsic and extrinsic motivation do not combine additively but rather interact. To test this predicted interaction, intrinsic and extrinsic motivation were both manipulated as independent variables. The results revealed a significant interaction for task satisfaction and a trend for the interaction on a behavioral measure. These results are discussed in terms of a general approach to the self-perception of motivation.

  12. Local structural changes in paramagnetic and charge-ordered phases of Sm0.2Pr0.3Sr0.5MnO3: an EXAFS study

    International Nuclear Information System (INIS)

    Priolkar, K R; Kulkarni, Vishwajeet; Sarode, P R; Emura, S

    2008-01-01

    Sm 0.5-x Pr x Sr 0.5 MnO 3 exhibits a variety of ground states as x is varied from 0 to 0.5. At an intermediate doping of x = 0.3 a charge-ordered CE-type antiferromagnetic insulating (AFI) ground state is seen. The transition to this ground state is from a paramagnetic-insulating (PMI) phase through a ferromagnetic-metallic phase (FMM). Local structures in PMI and AFI phases of the x = 0.3 sample have been investigated using Pr K-edge and Sm K-edge extended x-ray absorption fine structure (EXAFS). It can be seen that the tilting and rotation of the MnO 6 octahedra about the b-axis are responsible for the charge-ordered CE-type antiferromagnetic ground state at low temperatures. In addition a shift in the position of the rare-earth ion along the c-axis has to be considered to account for observed distribution of bond distances around the rare-earth ion

  13. Charge transfer in pi-stacked systems including DNA

    International Nuclear Information System (INIS)

    Siebbeles, L.D.A.

    2003-01-01

    Charge migration in DNA is a subject of intense current study motivated by long-range detection of DNA damage and the potential application of DNA as a molecular wire in nanoscale electronic devices. A key structural element, which makes DNA a medium for long-range charge transfer, is the array of stacked base pairs in the interior of the double helix. The overlapping pi-orbitals of the nucleobases provide a pathway for motion of charge carriers generated on the stack. This 'pi-pathway' resembles the columnarly stacked macrocyclic cores in discotic materials such as triphenylenes. The structure of these pi-stacked systems is highly disordered with dynamic fluctuations occurring on picosecond to nanosecond time scales. Theoretical calculations, concerning the effects of structural disorder and nucleobase sequence in DNA, on the dynamics of charge carriers are presented. Electronic couplings and localization energies of charge carriers were calculated using density functional theory (DFT). Results for columnarly stacked triphenylenes and DNA nucleobases are compared. The results are used to provide insight into the factors that control the mobility of charge carriers. Further, experimental results on the site-selective oxidation of guanine nucleobases in DNA (hot spots for DNA damage) are analyzed on basis of the theoretical results

  14. Propositional systems in local field theories

    International Nuclear Information System (INIS)

    Banai, M.

    1980-07-01

    The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)

  15. Do people differentiate between intrinsic and extrinsic goals for physical activity?

    Science.gov (United States)

    McLachlan, Sarah; Hagger, Martin S

    2011-04-01

    The distinction between intrinsic and extrinsic goals, and between goal pursuit for intrinsically and extrinsically motivated reasons, is a central premise of self-determination theory. Proponents of the theory have proposed that the pursuit of intrinsic goals and intrinsically motivated goal striving each predict adaptive psychological and behavioral outcomes relative to the pursuit of extrinsic goals and extrinsically motivated goal striving. Despite evidence to support these predictions, research has not explored whether individuals naturally differentiate between intrinsic and extrinsic goals. Two studies tested whether people make this differentiation when recalling goals for leisure-time physical activity. Using memory-recall methods, participants in Study 1 were asked to freely generate physical activity goals. A subsample (N = 43) was asked to code their freely generated goals as intrinsic or extrinsic. In Study 2, participants were asked to recall intrinsic and extrinsic goals after making a decision regarding their future physical activity. Results of these studies revealed that individuals' goal generation and recall exhibited significant clustering by goal type. Participants encountered some difficulties when explicitly coding goals. Findings support self-determination theory and indicate that individuals discriminate between intrinsic and extrinsic goals.

  16. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization

    International Nuclear Information System (INIS)

    Perez, Pedro; Malano, Francisco; Valente, Mauro

    2012-01-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  17. Self-Determination Theory: Intrinsic Motivation and Behavioral Change.

    Science.gov (United States)

    Flannery, Marie

    2017-03-01

    Motivation is a central concept in behavioral change. This article reviews the self-determination theory with an emphasis on "intrinsic motivation," which is facilitated when three basic psychological needs (autonomy, competence, and relatedness) are met. Intrinsic motivation is associated with improved well-being and sustained behavioral change.

  18. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  19. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  20. Thermodynamics of charged black holes with a nonlinear electrodynamics source

    International Nuclear Information System (INIS)

    Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian

    2009-01-01

    We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.

  1. On well-posedness of variational models of charged drops.

    Science.gov (United States)

    Muratov, Cyrill B; Novaga, Matteo

    2016-03-01

    Electrified liquids are well known to be prone to a variety of interfacial instabilities that result in the onset of apparent interfacial singularities and liquid fragmentation. In the case of electrically conducting liquids, one of the basic models describing the equilibrium interfacial configurations and the onset of instability assumes the liquid to be equipotential and interprets those configurations as local minimizers of the energy consisting of the sum of the surface energy and the electrostatic energy. Here we show that, surprisingly, this classical geometric variational model is mathematically ill-posed irrespective of the degree to which the liquid is electrified. Specifically, we demonstrate that an isolated spherical droplet is never a local minimizer, no matter how small is the total charge on the droplet, as the energy can always be lowered by a smooth, arbitrarily small distortion of the droplet's surface. This is in sharp contrast to the experimental observations that a critical amount of charge is needed in order to destabilize a spherical droplet. We discuss several possible regularization mechanisms for the considered free boundary problem and argue that well-posedness can be restored by the inclusion of the entropic effects resulting in finite screening of free charges.

  2. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  3. A Basic Inequality for Submanifolds in Locally Conformal almost ...

    Indian Academy of Sciences (India)

    For submanifolds tangent to the structure vector field in locally conformal almost cosymplectic manifolds of pointwise constant -sectional curvature, we establish a basic inequality between the main intrinsic invariants of the submanifold on one side, namely its sectional curvature and its scalar curvature; and its main ...

  4. Ethnic Stigma, Academic Anxiety, and Intrinsic Motivation in Middle Childhood

    Science.gov (United States)

    Gillen-O’Neel, Cari; Ruble, Diane N.; Fuligni, Andrew J.

    2011-01-01

    Previous research addressing the dynamics of stigma and academics has focused on African-American adolescents and adults. The present study examined stigma awareness, academic anxiety, and intrinsic motivation among 451 young (ages 6–11) and diverse (African-American, Chinese, Dominican, Russian, and European-American) students. Results indicated that ethnic-minority children reported higher stigma awareness than European-American children. For all children, stigma awareness was associated with higher academic anxiety and lower intrinsic motivation. Despite these associations, ethnic-minority children reported higher levels of intrinsic motivation than their European-American peers. A significant portion of the higher intrinsic motivation among Dominican students was associated with their higher levels of school belonging, suggesting that supportive school environments may be important sources of intrinsic motivation among some ethnic-minority children. PMID:21883152

  5. Extrinsic and intrinsic regulation of axon regeneration at a crossroads.

    Science.gov (United States)

    Kaplan, Andrew; Ong Tone, Stephan; Fournier, Alyson E

    2015-01-01

    Repair of the injured spinal cord is a major challenge in medicine. The limited intrinsic regenerative response mounted by adult central nervous system (CNS) neurons is further hampered by astrogliosis, myelin debris and scar tissue that characterize the damaged CNS. Improved axon regeneration and recovery can be elicited by targeting extrinsic factors as well as by boosting neuron-intrinsic growth regulators. Our knowledge of the molecular basis of intrinsic and extrinsic regulators of regeneration has expanded rapidly, resulting in promising new targets to promote repair. Intriguingly certain neuron-intrinsic growth regulators are emerging as promising targets to both stimulate growth and relieve extrinsic inhibition of regeneration. This crossroads between the intrinsic and extrinsic aspects of spinal cord injury is a promising target for effective therapies for this unmet need.

  6. Motivating crowding theory - opening the black box of intrinsic motivation

    DEFF Research Database (Denmark)

    Jacobsen, Christian Bøtcher

    2010-01-01

    Public employees work for many other reasons than because they are paid for it. In other words, intrinsic motivation is an important determinant for their performance. Nonetheless, public sector organizations increasingly rely on extrinsic motivation factors such as monetary incentives to motivate...... employees. Motivation crowding theory claims that this may be at the expense of intrinsic motivation, if the extrinsic motivation factor is perceived to be controlling. On the other hand, intrinsic motivation will be enhanced (crowded in), if the extrinsic motivation factor is perceived to be supportive......, monetary incentives are found to cause different crowding effects for these different types of intrinsic motivation. The results call for more theoretical work on the drivers of motivation crowding effects and for practitioners to pay more attention to what type of intrinsic motivation is at stake, when...

  7. Intrinsic and extrinsic motivation for stereotypic and repetitive behavior.

    Science.gov (United States)

    Joosten, Annette V; Bundy, Anita C; Einfeld, Stewart L

    2009-03-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess anxiety as an intrinsic motivator. Rasch analysis of data from 279 MASs (74 children) revealed that the items formed two unidimensional scales. Anxiety was a more likely intrinsic motivator than sensory seeking for children with dual diagnoses; the reverse was true for children with intellectual disability only. Escape and gaining a tangible object were the most common extrinsic motivators for those with dual diagnoses and attention and escape for children with intellectual disability.

  8. Multiple-Localization and Hub Proteins

    Science.gov (United States)

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  9. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Ambuj Srivastava

    2018-05-01

    Full Text Available Intrinsically disordered regions (IDRs and protein (IDPs are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT upon binding. We found that DOT regions are generally small in size (less than 3 residues for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

  10. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2014-11-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH 4 -air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO 4 cells crushed while under charge, prismatic form factor LiCoO 2 cells, primary spiral-wound constructed LiMnO 2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO 2 and primary spiral-wound Saft FRIWO M52EX LiMnO 2 cells pose a CH 4 -air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO 4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO 2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant.

  11. Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning

    International Nuclear Information System (INIS)

    Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K.

    2015-01-01

    Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrasted to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field

  12. Personalizing Sample Databases with Facebook Information to Increase Intrinsic Motivation

    Science.gov (United States)

    Marzo, Asier; Ardaiz, Oscar; Sanz de Acedo, María Teresa; Sanz de Acedo, María Luisa

    2017-01-01

    Motivation is fundamental for students to achieve successful and complete learning. Motivation can be extrinsic, i.e., driven by external rewards, or intrinsic, i.e., driven by internal factors. Intrinsic motivation is the most effective and must be inspired by the task at hand. Here, a novel strategy is presented to increase intrinsic motivation…

  13. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  14. Bond charge approximation for valence electron density in elemental semiconductors

    International Nuclear Information System (INIS)

    Bashenov, V.K.; Gorbachov, V.E.; Marvakov, D.I.

    1985-07-01

    The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)

  15. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow.

    Science.gov (United States)

    Kulmuni, J; Westram, A M

    2017-06-01

    The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Improved grid operation through power smoothing control strategies utilizing dedicated energy storage at an electric vehicle charging station

    DEFF Research Database (Denmark)

    Martinsen, Thomas; Holjevac, Ninoslav; Bremdal, Bernt A.

    2016-01-01

    project (Flex-ChEV) supported by the ERA-Net Smart Grid FP7 program. The principal asset of the proposed charging station (CS) is a dedicated Energy Storage System (ESS) to compensate for adverse effects on the grid caused by peak charging demand and which could impose severe trials for the local DSO....... Furthermore, CS of this kind could serve multiple business purposes in a smart grid. It can serve as a hub for seamless integration of local renewable and distributed energy resources, it can provide added flexibility for the local grid through different ancillary services and it can act as an efficient......This paper addresses the principal service aspects for electric vehicles (EV), as well as issues related to energy storage design, charging station integration into power system and load management issues. It builds on the research conducted in the Flexible Electric Vehicle Charging Infrastructure...

  17. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  18. 48 CFR 936.202-70 - Specifications charges.

    Science.gov (United States)

    2010-10-01

    ..., subcontractors, and material and equipment suppliers. Where the cost of reproduction is $10 or more, the charge shall be a minimum of $10 and subject to a maximum of $500, depending upon the size of the project and...., builders and contractors exchanges in the locality in which the project is to be constructed, and others...

  19. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  20. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  1. Changes in Intrinsic Motivation as a Function of Negative Feedback and Threats.

    Science.gov (United States)

    Deci, Edward L.; Cascio, Wayne F.

    Recent studies have demonstrated that external rewards can affect intrinsic motivation to perform an activity. Money tends to decrease intrinsic motivation, whereas positive verbal reinforcements tend to increase intrinsic motivation. This paper presents evidence that negative feedback and threats of punishment also decrease intrinsic motivation.…

  2. Laser-induced charge separation in organic nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Behn, Dino; Kjelstrup-Hansen, Jakob

    Organic semiconductors have unique properties that can be tailored via synthetic chemistry for specific applications, which combined with their low price and straight-forward processing over large areas make them interesting materials for future devices. Certain oligomers can self-assemble into c......Organic semiconductors have unique properties that can be tailored via synthetic chemistry for specific applications, which combined with their low price and straight-forward processing over large areas make them interesting materials for future devices. Certain oligomers can self......-assemble into crystalline nanofibers by vapor deposition onto muscovite mica substrates, and we have recently shown that such nanofibers can be transferred to different substrates by roll-printing and used as the active material in e.g. organic field-effect transistors (OFETs), organic light-emitting transistors (OLETs......), and organic phototransistors (OPTs). However, several device-related issues incl. charge-separation and local band structure remain poorly understood. In this work, we use electrostatic force microscopy (EFM) combined with optical microscopy to study the local surface charge of an individual organic nanofiber...

  3. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  4. Palatalization and Intrinsic Prosodic Vowel Features in Russian

    Science.gov (United States)

    Ordin, Mikhail

    2011-01-01

    The presented study is aimed at investigating the interaction of palatalization and intrinsic prosodic features of the vowel in CVC (consonant+vowel+consonant) syllables in Russian. The universal nature of intrinsic prosodic vowel features was confirmed with the data from the Russian language. It was found that palatalization of the consonants…

  5. Charge- and transverse momentum dependence of correlations in proton-proton interactions at very high energies

    International Nuclear Information System (INIS)

    Hofmann, W.

    1977-07-01

    The charge- and momentum dependence of correlations between secondaries emitted in pp-collisions at √s = 52 GeV was investigated using the Split-Field-Magnet spectrometer at the CERN Intersecting Storage Rings (ISR). For nondiffractive inelastic events the central particle production is characterized by local conservation of charge and global compensation of transverse momenta. Strong short range correlations due to cluster decay and Bose-Einstein effects are observed. A consistent description of the correlations is given in the framework of cluster models. Local conservation of charge is also detected in events, where a particle of high transverse momentum is produced. The observations are in good agreement with the predictions of a simple quark parton model. (orig.) [de

  6. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Deborah L. Harrington

    2017-06-01

    Full Text Available Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI are common in Parkinson’s disease (PD, but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF and regional homogeneity (ReHo, a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex, sensorimotor cortex (primary motor, pre/post-central gyrus, basal ganglia (putamen, caudate, and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a

  7. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  8. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  9. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  10. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    International Nuclear Information System (INIS)

    Ishii, Masashi

    2010-01-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch 2 . Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  11. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Masashi, E-mail: ISHII.Masashi@nims.go.j [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-05-05

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch{sup 2}. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  12. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-01-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H and K are related to the B – V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  13. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  14. Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations

    International Nuclear Information System (INIS)

    Nerikar, Pankaj; Watanabe, Taku; Tulenko, James S.; Phillpot, Simon R.; Sinnott, Susan B.

    2009-01-01

    The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached

  15. SLE local martingales in logarithmic representations

    International Nuclear Information System (INIS)

    Kytölä, Kalle

    2009-01-01

    A space of local martingales of SLE-type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases, not much is known about this representation. The purpose of this paper is to exhibit examples of representations where L 0 is not diagonalizable—a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation to the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE κ=6 describing the exploration path in critical percolation and its relation to the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of κ, thus at all central charges and not only at specific rational values

  16. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite

    National Research Council Canada - National Science Library

    Tautz, Maurice

    2003-01-01

    ... photoelectrons can be blocked by local potential barriers. In this report, we discuss two analytic models for sunlight charging of a rapidly spinning spherical satellite, both of which are based on blocked photoelectron currents...

  17. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  18. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach.

    Science.gov (United States)

    Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-09-22

    The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.

  19. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    Science.gov (United States)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  20. Kinematical tests for the intrinsic shapes of galaxies

    International Nuclear Information System (INIS)

    Capaccioli, M.; Fasano, G.

    1984-01-01

    Determining the intrinsic shape of elliptical galaxies has been an illusive enterprise, but one fundamental to the understanding of their internal dynamics and formation. Here the problem is approached dynamically; noting that the velocity dispersion is largest when sighted down the longest axis, the correlations are derived of velocity dispersion with observed eccentricity expected, after the known trend of velocity dispersion with luminosity is removed. Using a compilation of published data, the relation between luminosity and velocity dispersion is determined more accurately. The residuals are examined as a function of axis ratio in order to construct a test for the intrinsic shape of galaxies. The effects of projection are modelled and possible intrinsic variations are examined. (author)

  1. Electronic structure, Born effective charges and spontaneous polarization in magnetoelectric gallium ferrite

    International Nuclear Information System (INIS)

    Roy, Amritendu; Garg, Ashish; Mukherjee, Somdutta; Gupta, Rajeev; Prasad, Rajendra; Auluck, Sushil

    2011-01-01

    We present a theoretical study of the structure-property correlation in gallium ferrite, based on first-principles calculations followed by a subsequent comparison with experiments. The local spin density approximation (LSDA + U) of the density functional theory has been used to calculate the ground state structure, electronic band structure, density of states and Born effective charges. The calculations reveal that the ground state structure is orthorhombic Pc 2 1 n having A-type antiferromagnetic spin configuration, with lattice parameters matching well with those obtained experimentally. Plots of the partial density of states of constituent ions exhibit noticeable hybridization of Fe 3d, Ga 4s, Ga 4p and O 2p states. However, the calculated charge density and electron localization function show a largely ionic character of the Ga/Fe-O bonds which is also supported by a lack of any significant anomaly in the calculated Born effective charges with respect to the corresponding nominal ionic charges. The calculations show a spontaneous polarization of ∼ 59 μC cm -2 along the b-axis which is largely due to asymmetrically placed Ga1, Fe1, O1, O2 and O6 ions.

  2. Do intrinsic and extrinsic motivation relate differently to employee outcomes?

    OpenAIRE

    Kuvaas, Bard; Buch, Robert; Weibel, Antoinette; Dysvik, Anders; Nerstad, Christina

    2017-01-01

    In most theories that address how individual financial incentives affect work performance, researchers have assumed that two types of motivation—intrinsic and extrinsic—mediate the relationship between incentives and performance. Empirically, however, extrinsic motivation is rarely investigated. To explore the predictive validity of these theories of intrinsic and extrinsic motivation in work settings, we tested how both intrinsic and extrinsic motivation affected supervisor-ra...

  3. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    Science.gov (United States)

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  4. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    Science.gov (United States)

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  5. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary; Briseno, Alejandro; Collela, Nicolas

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stacking axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.

  6. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  7. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    Science.gov (United States)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  8. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research

    Science.gov (United States)

    Di Domenico, Stefano I.; Ryan, Richard M.

    2017-01-01

    Intrinsic motivation refers to people’s spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation. PMID:28392765

  9. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research.

    Science.gov (United States)

    Di Domenico, Stefano I; Ryan, Richard M

    2017-01-01

    Intrinsic motivation refers to people's spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation.

  10. Discovery of Intrinsic Primitives on Triangle Meshes

    KAUST Repository

    Solomon, Justin

    2011-04-01

    The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark. © 2011 The Author(s).

  11. Hierarchical control of a photovoltaic/battery based DC microgrid including electric vehicle wireless charging station

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Fan, Haodong; Guerrero, Josep M.

    2017-01-01

    In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery...... coils, receiving coils and compensation capacitors, the wireless power transmission system is designed to be resonant when it is operating at the rated power, with the aim to achieve the optimum transmission system efficiency. Simulation and experimental results of the hierarchical control...... charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local...

  12. Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection

    OpenAIRE

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [59Fe]-superparamagnetic iron oxide nanoparticles ([59Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. 59Fe was incorporated into Fe3O4 nanoparticle cry...

  13. Search for positron localization near transition-metal solutes of negative effective charge in Ni and Cu

    International Nuclear Information System (INIS)

    Hunter, D.M.; Grynszpan, R.I.; Arrott, A.S.

    1993-01-01

    Results of an early (1973) angular correlation (ACAR) study of dilute (0.5 at.%) Cu based alloys by a Japanese group were interpreted in terms of an attraction of e + by transition metal solutes of effective negative charge. Doppler Broadening (DB) measurements reveal no such an effect for Cu(Mn) and Cu(Ni) solid solutions as well as for Ni alloys with 3d, 4d and 5d transition metal solutes (0.1 to 1.5 at.%) i.e. no evidence of e + localization near these impurities is seen. Our results strongly suggest that the ACAR results are due to the metallurgical state of the samples. In contrast, significant DB lineshape parameter variations, observed for our Ni(Zr) alloys, are attributed to positron trapping in and near Ni 5 Zr precipitates. Our DB results for a series of Ni(Au) alloys are understood in terms of a combination of the effect of an overall lattice expansion and a positron preference for clusters of Au atoms. The above comparison between DB and ACAR results is supported by our 'spin polarized' DB results for a (001) Ni single crystal which resemble those obtained by other groups using a 'spin polarized' 2D-ACAR technique. (orig.)

  14. Genome-Wide Identification of Antimicrobial Intrinsic Resistance Determinants in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Leng, Bingfeng; Haaber, Jakob

    2016-01-01

    The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products...... that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We...... with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets...

  15. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  16. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy.

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A

    2014-09-10

    In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.

  17. PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE NORTHWEST PHOTON DOMINATED REGION OF NGC 7023. III. QUANTIFYING THE TRADITIONAL PROXY FOR PAH CHARGE AND ASSESSING ITS ROLE

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2015-06-10

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer/IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed. Here, results from fitting the 5.2–14.5 μm spectrum at each pixel using exclusively PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb/) and observed PAH band strength ratios, determined after isolating the PAH bands, are combined. This enables the first quantitative and spectrally consistent calibration of PAH charge proxies. Calibration is straightforward because the 6.2/11.2 μm PAH band strength ratio varies linearly with the ionized fraction (PAH ionization parameter) as determined from the intrinsic properties of the individual PAHs comprising the database. This, in turn, can be related to the local radiation field, electron density, and temperature. From these relations diagnostic templates are developed to deduce the PAH ionization fraction and astronomical environment in other objects. The commonly used 7.7/11.2 μm PAH band strength ratio fails as a charge proxy over a significant fraction of the nebula. The 11.2/12.7 μm PAH band strength ratio, commonly used as a PAH erosion indicator, is revealed to be a better tracer for PAH charge across NGC 7023. Attempting to calibrate the 12.7/11.2 μm PAH band strength ratio against the PAH hydrogen adjacency ratio (duo+trio)/solo is, unexpectedly, anti-correlated. This work both validates and extends the results from Paper I and Paper II.

  18. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  19. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    International Nuclear Information System (INIS)

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C.; Taylor, Janet; Miller, Crispin J.; Davidson, Susan; Sanjose, Silvia de; Bosch, Xavier; Stern, Peter L.; West, Catharine M.L.

    2013-01-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA 25 ) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenic assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity

  20. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C. [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom); Taylor, Janet [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom); Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); Miller, Crispin J. [Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); Davidson, Susan [Christie National Health Service Foundation Trust, Manchester (United Kingdom); Sanjose, Silvia de; Bosch, Xavier [Cancer Epidemiology Research Program, Catalan Institute of Oncology, L' Hospitalet de Llobregat (Spain); Stern, Peter L. [Immunology Group, Paterson Institute for Cancer Research, Manchester (United Kingdom); West, Catharine M.L., E-mail: Catharine.West@manchester.ac.uk [Translational Radiobiology Group, Institute of Cancer Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester (United Kingdom)

    2013-04-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA{sub 25}) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenic assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity.