WorldWideScience

Sample records for intravital live microscopy

  1. Intravital microscopy: new insights into cellular interactions.

    Science.gov (United States)

    Gavins, Felicity N E

    2012-10-01

    Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Microhemodynamic parameters quantification from intravital microscopy videos

    International Nuclear Information System (INIS)

    Ortiz, Daniel; Cabrales, Pedro; Briceño, Juan Carlos

    2014-01-01

    Blood flow and blood–endothelium interactions correspond with the genesis of cardiovascular diseases. Therefore, quantitative analysis of blood flow dynamics at the microcirculation level is of special interest. Regulatory mechanisms mediated by blow flow have been studied in detail using in vitro approaches. However, these mechanisms have not been fully validated in vivo due to technical limitations that arise when quantifying microhemodynamics with the required level of detail. Intravital microscopy combined with high-speed video recordings has been used for the analysis of blood flow in small blood vessels of chronic and acute experimental tissue preparations. This tool can be used to study the interaction between the flowing blood and the vessel walls of arterioles and venules with sufficient temporal and spatial resolution. Our objective was to develop a simple and robust cross-correlation algorithm for the automatic analysis of high-speed video recordings of microcirculatory blood flow. The algorithm was validated using in vitro and in vivo systems. Results indicate that the algorithm's ability to estimate the velocity of local red blood cells as a function of blood vessel radius is highly accurate. They thereby suggest that the algorithm could be used to explore dynamic changes in blood flow under different experimental conditions including a wide range of flow rates and hematocrit levels. The algorithm can also be used to measure volumetric flow rates, radial velocity profiles, wall shear rate, and wall shear stress. Several applications are presently explored, including the analysis of velocity profiles in the branches of arterial bifurcations. This work demonstrates the robustness of the cross-correlation technique in various flow conditions and elucidates its potential application for in vivo determination of blood flow dynamics in the microcirculation. (paper)

  3. Intravital microscopy of the inguinal lymph node.

    Science.gov (United States)

    Sellers, Stephanie L; Payne, Geoffrey W

    2011-04-04

    with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.

  4. Intravital Imaging

    OpenAIRE

    Pittet, Mikael J.; Weissleder, Ralph

    2011-01-01

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible, and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biolo...

  5. Automated motion artifact removal for intravital microscopy, without a priori information

    Science.gov (United States)

    Lee, Sungon; Vinegoni, Claudio; Sebas, Matthew; Weissleder, Ralph

    2014-03-01

    Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration and cardiac activity are major sources of image artifacts and impose severe limitations on the effective imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology capable of automatically removing motion artifacts during intravital microscopy imaging of organs and orthotopic tumors. The method is universally applicable to different laser scanning modalities including confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the physiological motion source and imaged organ. The methodology, which is based on raw data acquisition followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation in mice heart, kidney, liver, pancreas and dorsal window chamber.

  6. Intravital imaging.

    Science.gov (United States)

    Pittet, Mikael J; Weissleder, Ralph

    2011-11-23

    Until recently, the idea of observing life deep within the tissues of a living mouse, at a resolution sufficient to pick out cellular behaviors and molecular signals underlying them, remained a much-coveted dream. Now, a new era of intravital fluorescence microscopy has dawned. In this Primer, we review the technologies that made this revolution possible and demonstrate how intravital imaging is beginning to provide quantitative and dynamic insights into cell biology, immunology, tumor biology, and neurobiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Denis Soulet

    Full Text Available In vivo imaging using two-photon microscopy is an essential tool to explore the dynamic of physiological events deep within biological tissues for short or extended periods of time. The new capabilities offered by this technology (e.g. high tissue penetrance, low toxicity have opened a whole new era of investigations in modern biomedical research. However, the potential of using this promising technique in tissues of living animals is greatly limited by the intrinsic irregular movements that are caused by cardiac and respiratory cycles and muscular and vascular tone. Here, we show real-time imaging of the brain, spinal cord, sciatic nerve and myenteric plexus of living mice using a new automated program, named Intravital_Microscopy_Toolbox, that removes frames corrupted with motion artifacts from time-lapse videos. Our approach involves generating a dissimilarity score against precalculated reference frames in a specific reference channel, thus allowing the gating of distorted, out-of-focus or translated frames. Since the algorithm detects the uneven peaks of image distortion caused by irregular animal movements, the macro allows a fast and efficient filtering of the image sequence. In addition, extra features have been implemented in the macro, such as XY registration, channel subtraction, extended field of view with maximum intensity projection, noise reduction with average intensity projections, and automated timestamp and scale bar overlay. Thus, the Intravital_Microscopy_Toolbox macro for ImageJ provides convenient tools for biologists who are performing in vivo two-photon imaging in tissues prone to motion artifacts.

  8. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    OpenAIRE

    Khorshed, Reema?A.; Hawkins, Edwin?D.; Duarte, Delfim; Scott, Mark?K.; Akinduro, Olufolake?A.; Rashidi, Narges?M.; Spitaler, Martin; Lo?Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is ...

  9. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

    OpenAIRE

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion...

  10. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  11. Motion characterization scheme to minimize motion artifacts in intravital microscopy

    Science.gov (United States)

    Lee, Sungon; Courties, Gabriel; Nahrendorf, Matthias; Weissleder, Ralph; Vinegoni, Claudio

    2017-03-01

    Respiratory- and cardiac-induced motion artifacts pose a major challenge for in vivo optical imaging, limiting the temporal and spatial imaging resolution in fluorescence laser scanning microscopy. Here, we present an imaging platform developed for in vivo characterization of physiologically induced axial motion. The motion characterization system can be straightforwardly implemented on any conventional laser scanning microscope and can be used to evaluate the effectiveness of different motion stabilization schemes. This method is particularly useful to improve the design of novel tissue stabilizers and to facilitate stabilizer positioning in real time, therefore facilitating optimal tissue immobilization and minimizing motion induced artifacts.

  12. Usefulness of Intravital Multiphoton Microscopy in Visualizing Study of Mouse Cochlea and Volume Changes in the Scala Media

    Directory of Open Access Journals (Sweden)

    Hyun Mi Ju

    2017-07-01

    Full Text Available Conventional microscopy has limitations in viewing the cochlear microstructures due to three-dimensional spiral structure and the overlying bone. But these issues can be overcome by imaging the cochlea in vitro with intravital multiphoton microscopy (MPM. By using near-infrared lasers for multiphoton excitation, intravital MPM can detect endogenous fluorescence and second harmonic generation of tissues. In this study, we used intravital MPM to visualize various cochlear microstructures without any staining and non-invasively analyze the volume changes of the scala media (SM without removing the overlying cochlear bone. The intravital MPM images revealed various tissue types, ranging from thin membranes to dense bone, as well as the spiral ganglion beneath the cochlear bone. The two-dimensional, cross-sectional, and serial z-stack intravital MPM images also revealed the spatial dilation of the SM in the temporal bone of pendrin-deficient mice. These findings suggest that intravital MPM might serve as a new method for obtaining microanatomical information regarding the cochlea, similar to standard histopathological analyses in the animal study for the cochlea. Given the capability of intravital MPM for detecting an increase in the volume of the SM in pendrin-deficient mice, it might be a promising new tool for assessing the pathophysiology of hearing loss in the future.

  13. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl3 application: a novel model suitable for intravital microscopy and thrombolysis studies

    OpenAIRE

    Karatas, Hulya; Erdener, Sefik Evren; Gursoy-Ozdemir, Yasemin; Gurer, Gunfer; Soylemezoglu, Figen; Dunn, Andrew K; Dalkara, Turgay

    2011-01-01

    Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl3-soaked filter paper strip (0.3 × ...

  14. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

    Science.gov (United States)

    Miller, Mark J.; Wei, Sindy H.; Cahalan, Michael D.; Parker, Ian

    2003-03-01

    The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of 11 μm·min1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm·min1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.

  15. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    Directory of Open Access Journals (Sweden)

    Reema A. Khorshed

    2015-07-01

    Full Text Available Measuring three-dimensional (3D localization of hematopoietic stem cells (HSCs within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.

  16. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography.

    Science.gov (United States)

    Umetani, K; Fukushima, K

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  17. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  18. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  19. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    International Nuclear Information System (INIS)

    Cemazar, Maja; Wilson, Ian; Dachs, Gabi U; Tozer, Gillian M; Sersa, Gregor

    2004-01-01

    Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

  20. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study

    Directory of Open Access Journals (Sweden)

    Tolón Rosa M

    2011-01-01

    Full Text Available Abstract Background The phytocannabinoid cannabidiol (CBD exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS. Methods Vascular responses of pial vessels were analyzed by intravital microscopy and inflammatory parameters measured by qRT-PCR. Results CBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD. Conclusions These data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid.

  1. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl(3) application: a novel model suitable for intravital microscopy and thrombolysis studies.

    Science.gov (United States)

    Karatas, Hulya; Erdener, Sefik Evren; Gursoy-Ozdemir, Yasemin; Gurer, Gunfer; Soylemezoglu, Figen; Dunn, Andrew K; Dalkara, Turgay

    2011-06-01

    Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl(3)-soaked filter paper strip (0.3 × 1 mm(2)) on the duramater over the trunk of the distal MCA through a cranial window for 3 minutes induced intraarterial thrombus without damaging the peri-arterial cortex in the mouse. This caused a rapid regional cerebral blood flow decrease within 10 minutes and total occlusion of the MCA segment under the filter paper in 17±2 minutes, which resulted in a typical cortical infarct of 27±4 mm(3) at 24 hours and moderate sensorimotor deficits. There was no significant hemispheric swelling or hemorrhage or mortality at 24 hours. Reperfusion was obtained in half of the mice with tissue plasminogen activator, which allowed live monitoring of clot lysis along with restoration of tissue perfusion and MCA flow. In conclusion, this relatively simple and noninvasive stroke model is easy to perform under a microscope, making it suitable for live imaging and thrombolysis studies.

  2. Data-adaptive image-denoising for detecting and quantifying nanoparticle entry in mucosal tissues through intravital 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Torsten Bölke

    2014-11-01

    Full Text Available Intravital 2-photon microscopy of mucosal membranes across which nanoparticles enter the organism typically generates noisy images. Because the noise results from the random statistics of only very few photons detected per pixel, it cannot be avoided by technical means. Fluorescent nanoparticles contained in the tissue may be represented by a few bright pixels which closely resemble the noise structure. We here present a data-adaptive method for digital denoising of datasets obtained by 2-photon microscopy. The algorithm exploits both local and non-local redundancy of the underlying ground-truth signal to reduce noise. Our approach automatically adapts the strength of noise suppression in a data-adaptive way by using a Bayesian network. The results show that the specific adaption to both signal and noise characteristics improves the preservation of fine structures such as nanoparticles while less artefacts were produced as compared to reference algorithms. Our method is applicable to other imaging modalities as well, provided the specific noise characteristics are known and taken into account.

  3. The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation.

    Directory of Open Access Journals (Sweden)

    Craig N Jenne

    Full Text Available Platelets are central players in inflammation and are an important component of the innate immune response. The ability to visualize platelets within the live host is essential to understanding their role in these processes. Past approaches have involved adoptive transfer of labelled platelets, non-specific dyes, or the use of fluorescent antibodies to tag platelets in vivo. Often, these techniques result in either the activation of the platelet, or blockade of specific platelet receptors. In this report, we describe two new methods for intravital visualization of platelet biology, intravenous administration of labelled anti-CD49b, which labels all platelets, and CD41-YFP transgenic mice, in which a percentage of platelets express YFP. Both approaches label endogenous platelets and allow for their visualization using spinning-disk confocal fluorescent microscopy. Following LPS-induced inflammation, we were able to measure a significant increase in both the number and size of platelet aggregates observed within the vasculature of a number of different tissues. Real-time observation of these platelet aggregates reveals them to be large, dynamic structures that are continually expanding and sloughing-off into circulation. Using these techniques, we describe for the first time, platelet recruitment to, and behaviour within numerous tissues of the mouse, both under control conditions and following LPS induced inflammation.

  4. A Novel Intravital Imaging Window for Longitudinal Microscopy of the Mouse Ovary

    Science.gov (United States)

    Bochner, Filip; Fellus-Alyagor, Liat; Kalchenko, Vyacheslav; Shinar, Shiri; Neeman, Michal

    2015-01-01

    The ovary is a dynamic organ that undergoes dramatic remodeling throughout the ovulatory cycle. Maturation of the ovarian follicle, release of the oocyte in the course of ovulation as well as formation and degradation of corpus luteum involve tightly controlled remodeling of the extracellular matrix and vasculature. Ovarian tumors, regardless of their tissue of origin, dynamically interact with the ovarian microenvironment. Their activity in the tissue encompasses recruitment of host stroma and immune cells, attachment of tumor cells to mesothelial layer, degradation of the extracellular matrix and tumor cell migration. High-resolution dynamic imaging of such processes is particularly challenging for internal organs. The implementation of a novel imaging window as reported here enabled longitudinal microscopy of ovarian physiology and orthotopic tumor invasion. PMID:26207832

  5. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    Klenke, Frank Michael; Gebhard, Martha-Maria; Ewerbeck, Volker; Abdollahi, Amir; Huber, Peter E; Sckell, Axel

    2006-01-01

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  6. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy

    DEFF Research Database (Denmark)

    Hak, Sjoerd; Cebulla, Jana; Huuse, Else Marie

    2014-01-01

    In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only...... kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging...

  7. Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Mukund Seshadri

    2007-02-01

    Full Text Available The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA were investigated in vivo using intravital microscopy (IVM and magnetic resonance imaging (MRI. Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p. and correlated with induction of tumor necrosis factor-α (TNF-α, endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ~ 4-fold increase in longitudinal relaxation rates (ΔR1, indicative of increased contrast agent accumulation within the tumor. Dualimmunostained tumor sections (CD31/TdT revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1 and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome.

  8. Correlation of microvascular abnormalities and endothelial dysfunction in Type-1 Diabetes Mellitus (T1DM): a real-time intravital microscopy study.

    Science.gov (United States)

    Cheung, Anthony T W; Tomic, M Meighan Smith; Chen, Peter C Y; Miguelino, Eric; Li, Chin-Shang; Devaraj, Sridevi

    2009-01-01

    We hypothesize that real-time in vivo microvascular abnormalities should correlate with biochemical markers of inflammation/endothelial dysfunction in T1DM. Real-time quantification of T1DM and healthy non-diabetic control microcirculation was conducted utilizing computer-assisted intravital microscopy. Selected biochemical markers (high sensitivity C-reactive protein (hsCRP), soluble vascular cell adhesion molecules (sVCAM), soluble intercellular adhesion molecules (sICAM), soluble E-selectin (sE-selectin), nitrotyrosine, superoxide anion (O2-), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)) were used for correlation. The severity of microvascular abnormalities, as reflected by the arithmetic severity index (SI), was significantly increased in T1DM vs. controls (5.89 +/- 1.47 vs. 2.34 +/- 1.48; Pprogression and therapeutic efficacy studies.

  9. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  10. Axial tomography in live cell laser microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  11. Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue

    Directory of Open Access Journals (Sweden)

    Zahra Erami

    2016-01-01

    Full Text Available E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.

  12. Real-Time Live Confocal Fluorescence Microscopy as a New Tool for Assessing Platelet Vitality.

    Science.gov (United States)

    Hermann, Martin; Nussbaumer, Oliver; Knöfler, Ralf; Hengster, Paul; Nussbaumer, Walter; Streif, Werner

    2010-01-01

    BACKGROUND: Assessment of platelet vitality is important for patients presenting with inherited or acquired disorders of platelet function and for quality assessment of platelet concentrates. METHODS: Herein we combined live stains with intra-vital confocal fluorescence microscopy in order to obtain an imaging method that allows fast and accurate assessment of platelet vitality. Three fluorescent dyes, FITC-coupled wheat germ agglutinin (WGA), tetramethylrhodamine methyl ester perchlorate (TMRM) and acetoxymethylester (Rhod-2), were used to assess platelet morphology, mitochondrial activity and intra-platelet calcium levels. Microscopy was performed with a microlens-enhanced Nipkow spinning disk-based system allowing live confocal imaging. RESULTS: Comparison of ten samples of donor platelets collected before apheresis and platelets collected on days 5 and 7 of storage showed an increase in the percentage of Rhod-2-positive platelets from 3.6 to 47 and finally to 71%. Mitochondrial potential was demonstrated in 95.4% of donor platelets and in 92.5% of platelets stored for 7 days. CONCLUSION: Such fast and accurate visualization of known key parameters of platelet function could be of relevance for studies addressing the quality of platelets after storage and additional manipulation, such as pathogen inactivation, as well as for the analysis of inherited platelet function disorders.

  13. Imaging windows for long-term intravital imaging

    Science.gov (United States)

    Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco

    2014-01-01

    Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure. PMID:28243510

  14. Intravital imaging of fluorescent markers and FRET probes by DNA tattooing

    Directory of Open Access Journals (Sweden)

    Spencer David M

    2007-01-01

    Full Text Available Abstract Background Advances in fluorescence microscopy and mouse transgenesis have made it possible to image molecular events in living animals. However, the generation of transgenic mice is a lengthy process and intravital imaging requires specialized knowledge and equipment. Here, we report a rapid and undemanding intravital imaging method using generally available equipment. Results By DNA tattooing we transfect keratinocytes of living mice with DNA encoding fluorescent biosensors. Subsequently, the behavior of individual cells expressing these biosensors can be visualized within hours and using conventional microscopy equipment. Using this "instant transgenic" model in combination with a corrected coordinate system, we followed the in vivo behavior of individual cells expressing either FRET- or location-based biosensors for several days. The utility of this approach was demonstrated by assessment of in vivo caspase-3 activation upon induction of apoptosis. Conclusion This "instant skin transgenic" model can be used to follow the in vivo behavior of individual cells expressing either FRET- or location-based probes for several days after tattooing and provides a rapid and inexpensive method for intravital imaging in murine skin.

  15. Fluorescein Derivatives in Intravital Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Michael S. Roberts

    2013-08-01

    Full Text Available Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

  16. Super-resolution microscopy of living bacterial cells

    Science.gov (United States)

    Ponomareva, E. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.; Vedyaykin, A. D.

    2017-11-01

    Currently several methods of super-resolution optical microscopy are known. One of them – super-resolution radial fluctuations (SRRF) microscopy – was successfully used in present work to study the structures, formed by FtsZ protein in living E.coli cells with a resolution well below the diffraction limit.

  17. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  18. Assessing resolution in live cell structured illumination microscopy

    Science.gov (United States)

    Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš

    2017-12-01

    Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.

  19. Three-dimensional live microscopy beyond the diffraction limit

    International Nuclear Information System (INIS)

    Fiolka, Reto

    2013-01-01

    In fluorescence microscopy it has become possible to fundamentally overcome the diffraction limited resolution in all three spatial dimensions. However, to have the most impact in biological sciences, new optical microscopy techniques need to be compatible with live cell imaging: image acquisition has to be fast enough to capture cellular dynamics at the new resolution limit while light exposure needs to be minimized to prevent photo-toxic effects. With increasing spatial resolution, these requirements become more difficult to meet, even more so when volumetric imaging is performed. In this review, techniques that have been successfully applied to three-dimensional, super-resolution live microscopy are presented and their relative strengths and weaknesses are discussed. (special issue article)

  20. Silicon nitride waveguide platform for fluorescence microscopy of living cells.

    Science.gov (United States)

    Tinguely, Jean-Claude; Helle, Øystein Ivar; Ahluwalia, Balpreet Singh

    2017-10-30

    Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si 3 N 4 ) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si 3 N 4 material is finally shown to be biocompatible for growing and imaging living cells.

  1. Imaging windows for long-term intravital imaging: General overview and technical insights.

    Science.gov (United States)

    Alieva, Maria; Ritsma, Laila; Giedt, Randy J; Weissleder, Ralph; van Rheenen, Jacco

    2014-01-01

    Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.

  2. Intravital Microscopy of the Inguinal Lymph Node

    OpenAIRE

    Sellers, Stephanie L.; Payne, Geoffrey W.

    2011-01-01

    Lymph nodes (LN's), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infe...

  3. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  4. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  5. The effects of atomic force microscopy upon nominated living cells

    International Nuclear Information System (INIS)

    O'Hagan, Barry Michael Gerard; Doyle, Peter; Allen, James M.; Sutton, Kerry; McKerr, George

    2004-01-01

    This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment

  6. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.

    NARCIS (Netherlands)

    Hoebe, R.A.; van Oven, C.H.; Gadella, Th.W.J.; Dhonukshe, P.B.; van Noorden, C.J.F.; Manders, E.M.M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy

  7. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

    NARCIS (Netherlands)

    Hoebe, R. A.; van Oven, C. H.; Gadella, T. W. J.; Dhonukshe, P. B.; van Noorden, C. J. F.; Manders, E. M. M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (

  8. Intravital two-photon imaging of adoptively transferred B lymphocytes in inguinal lymph nodes.

    Science.gov (United States)

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2009-01-01

    Intravital two-photon imaging allows the observation of immune cells in intact organs of live animals in real time. Recently, several studies using two-photon microscopy have detailed the motility of mouse B and T lymphocyte within lymph nodes and have shown a dependence upon chemokine receptor signaling for the basal velocity of the cells. For, example, T cells from Gnia2 (-/-)mice, deficient in the heterotrimer G-protein G alpha subunit G(alpha i2) have markedly impaired chemokine-triggered chemotaxis. In vivo these cells have reduced motility and impaired positioning within lymph nodes. Gnia2 (-/-) B cells exhibit similar defects. In addition, B cells from Rgs1 (-/-) mice, deficient in a major negative regulator of G(alpha i), have a more robust motility than do wild-type B cells. Here, we describe procedures for visualizing the behavior of fluorescently labeled and adoptively transferred B lymphocytes within the inguinal lymph node of live mice.

  9. Intravital imaging of CD8+ T cell function in cancer.

    Science.gov (United States)

    Mempel, Thorsten R; Bauer, Christian A

    2009-01-01

    Recent technological advances in photonics are making intravital microscopy (IVM) an increasingly powerful approach for the mechanistic exploration of biological processes in the physiological context of complex native tissue environments. Direct, dynamic and multiparametric visualization of immune cell behavior in living animals at cellular and subcellular resolution has already proved its utility in auditing basic immunological concepts established through conventional approaches and has also generated new hypotheses that can conversely be complemented and refined by traditional experimental methods. The insight that outgrowing tumors must not necessarily have evaded recognition by the adaptive immune system, but can escape rejection by actively inducing a state of immunological tolerance calls for a detailed investigation of the cellular and molecular mechanisms by which the anti-cancer response is subverted. Along with molecular imaging techniques that provide dynamic information at the population level, IVM can be expected to make a critical contribution to this effort by allowing the observation of immune cell behavior in vivo at single cell-resolution. We review here how IVM-based investigation can help to clarify the role of cytotoxic T lymphocytes (CTL) in the immune response against cancer and identify the ways by which their function might be impaired through tolerogenic mechanisms.

  10. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...... scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength....

  11. Nanomechanical characterization of living mammary tissues by atomic force microscopy.

    Science.gov (United States)

    Plodinec, Marija; Lim, Roderick Y H

    2015-01-01

    The mechanical properties of living cells and tissues are important for a variety of functional processes in vivo, including cell adhesion, migration, proliferation and differentiation. Changes in mechano-cellular phenotype, for instance, are associated with cancer progression. Atomic force microscopy (AFM) is an enabling technique that topographically maps and quantifies the mechanical properties of complex biological matter in physiological aqueous environments at the nanometer length scale. Recently we applied AFM to spatially resolve the distribution of nanomechanical stiffness across human breast cancer biopsies in comparison to healthy tissue and benign tumors. This led to the finding that AFM provides quantitative mechano-markers that may have translational significance for the clinical diagnosis of cancer. Here, we provide a comprehensive description of sample preparation methodology, instrumentation, data acquisition and analysis that allows for the quantitative nanomechanical profiling of unadulterated tissue at submicron spatial resolution and nano-Newton (nN) force sensitivity in physiological conditions.

  12. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    Science.gov (United States)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  13. Single-molecule fluorescence microscopy in living Caenorhabditis elegans

    NARCIS (Netherlands)

    van Krugten, Jaap; Peterman, Erwin J.G.

    2018-01-01

    Transportation of organelles and biomolecules is vital for many cellular processes. Single-molecule (SM) fluorescence microscopy can expose molecular aspects of the dynamics that remain unresolved in ensemble experiments. For example, trajectories of individual, moving biomolecules can reveal

  14. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely...... by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection...

  15. From good to bad : Intravital imaging of the hijack of physiological processes by cancer cells

    NARCIS (Netherlands)

    Suijkerbuijk, Saskia J.E.; van Rheenen, Jacco

    2017-01-01

    Homeostasis of tissues is tightly regulated at the cellular, tissue and organismal level. Interestingly, tumor cells have found ways to hijack many of these physiological processes at all the different levels. Here we review how intravital microscopy techniques have provided new insights into our

  16. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie

    2012-01-01

    live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction...

  17. Physical chemistry in a single live cell: confocal microscopy.

    Science.gov (United States)

    Amin, Md Asif; Nandi, Somen; Mondal, Prasenjit; Mahata, Tanushree; Ghosh, Surajit; Bhattacharyya, Kankan

    2017-05-24

    A live cell is a complex, yet extremely important container. Understanding the dynamics in a selected intracellular component is a challenging task. We have recently made significant progress in this direction using a confocal microscope as a tool. The smallest size of the focused spot in a confocal microscope is ∼0.2 μm (200 nm). This is nearly one hundred times smaller than the size of a live cell. Thus, one can selectively study different intracellular components/organelles in a live cell. In this paper, we discuss how one can image different intracellular components/organelles, record fluorescence spectra and decay at different locations, ascertain local polarity and viscosity, and monitor the dynamics of solvation, proton transfer, red-ox and other phenomena at specified locations/organelles inside a cell. We will highlight how this knowledge enriched us in differentiating between cancer and non-cancer cells, 3D tumor spheroids and towards drug delivery.

  18. Morphological signs of the intravital contraction (retraction of thrombotic emboli

    Directory of Open Access Journals (Sweden)

    R R Khismatullin

    2018-02-01

    Full Text Available Aim. To establish whether contraction (retraction of thrombi and thrombotic emboli occurs in vivo using structural signs of blood clot compression, such as compressive deformation of erythrocytes and redistribution of fibrin on the surface of a clot. Methods. Three postmortem pulmonary thrombotic emboli were examined by scanning electron microscopy and light microscopy after staining with hematoxylin and eosin as well as with Mallory’s method. Results. In 2 studied pulmonary emboli, extracted 7 and 15 hours after patients’ death, polyhedral erythrocytes (polyhedrocytes were revealed that were formed as a result of mechanical deformation under the action of contractile forces generated by activated platelets. In addition, the uneven distribution of fibrin within the emboli was found with displacement of fibrin to the periphery of the emboli, which is characteristic for contracted blood clot. In the first and the «oldest» clot extracted 38 hours after the patient’s death, the described contraction signs were absent, which was likely related to the postmortem autolysis or intravital pathological impairment of contraction. Conclusion. Thrombotic emboli ex vivo have morphological signs of contraction, suggesting intravital compression of the primary thrombi and/or thrombotic emboli, which might be an important pathogenetic mechanism for modulation of impaired blood flow at the sites of thrombotic occlusion of a vessel; the presence or absence of compressed erythrocytes inside and predominant location of fibrin on the periphery of a thrombus or embolus can potentially serve as additional pathomorphological criteria of death coming prescription.

  19. New Environmental Scanning Electron Microscopy and Observation of Live Nature

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Tihlaříková, Eva; Shiojiri, M.

    2013-01-01

    Roč. 6, 1-2 (2013), s. 1-5 ISSN 2228-9038 R&D Projects: GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : ESEM * detection systems * methodology * live samples Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Exploring the Potential of Airyscan Microscopy for Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Kseniya Korobchevskaya

    2017-07-01

    Full Text Available Biological research increasingly demands the use of non-invasive and ultra-sensitive imaging techniques. The Airyscan technology was recently developed to bridge the gap between conventional confocal and super-resolution microscopy. This technique combines confocal imaging with a 0.2 Airy Unit pinhole, deconvolution and the pixel-reassignment principle in order to enhance both the spatial resolution and signal-to-noise-ratio without increasing the excitation power and acquisition time. Here, we present a detailed study evaluating the performance of Airyscan as compared to confocal microscopy by imaging a variety of reference samples and biological specimens with different acquisition and processing parameters. We found that the processed Airyscan images at default deconvolution settings have a spatial resolution similar to that of conventional confocal imaging with a pinhole setting of 0.2 Airy Units, but with a significantly improved signal-to-noise-ratio. Further gains in the spatial resolution could be achieved by the use of enhanced deconvolution filter settings, but at a steady loss in the signal-to-noise ratio, which at more extreme settings resulted in significant data loss and image distortion.

  1. Examination of living fungal spores by scanning electron microscopy

    International Nuclear Information System (INIS)

    Read, N.D.; Lord, K.M.

    1991-01-01

    Ascospores of Sordaria macrospora germinated and produced hyphae exhibiting normal growth and differentiation after examination by scanning electron microscopy and following numerous, different preparative protocols. Seventy-nine to ninety-nine percent of the ascospores retained normal viability after being observed in the fully frozen-hydrated, partially freeze-dried, and vacuum-dried states at accelerating voltages of 5 and 40 keV. Hyphae did not survive these treatments. From these observations it is concluded that ascospores of S. macrospora can remain in a state of suspended animation while being observed in the scanning electron microscope. The ascospores also survived, but with reduced viability: 6 h in glutaraldehyde and formaldehyde, 6 h in OsO4, or 2 h in glutaraldehyde and formaldehyde followed by 2 h in OsO 4 . However, the ascospores did not germinate after dehydration in ethanol. (author)

  2. Planar patch-clamp force microscopy on living cells

    Energy Technology Data Exchange (ETDEWEB)

    Pamir, Evren [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany); George, Michael; Fertig, Niels [Nanion Technologies GmbH, Erzgiessereistr. 4, 80335 Munich (Germany); Benoit, Martin [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany)], E-mail: martin.benoit@physik.uni-muenchen.de

    2008-05-15

    Here we report a new combination of the patch-clamp technique with the atomic force microscope (AFM). A planar patch-clamp chip microstructured from borosilicate glass was used as a support for mechanical probing of living cells. The setup not only allows for immobilizing even a non-adherent cell for measurements of its mechanical properties, but also for simultaneously measuring the electrophysiological properties of a single cell. As a proof of principle experiment we measured the voltage-induced membrane movement of HEK293 and Jurkat cells in the whole-cell voltage clamp configuration. The results of these measurements are in good agreement with previous studies. By using the planar patch-clamp chip for immobilization, the AFM not only can image non-adhering cells, but also gets easily access to an electrophysiologically controlled cellular probe at low vibrational noise.

  3. Correlation of live-cell imaging with volume scanning electron microscopy.

    Science.gov (United States)

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model.

    Science.gov (United States)

    Ring, Andrej; Tilkorn, Daniel; Ottomann, Christian; Geomelas, Menedimos; Steinstraesser, Lars; Langer, Stefan; Goertz, Ole

    2011-04-01

    The aim of this study was to assess the impact of an epidermal substitute, a lactocapromer terpolymer matrix, on microcirculation in wounds. Lactocapromer terpolymer matrices were placed into the dorsal skinfold chamber of mice (n = 10). Untreated chamber preparations served as controls (n = 10). The microcirculation in tissue adjacent to the implant was observed by intravital fluorescence microscopy. Alongside the stable microhaemodynamics, a strong induction of angiogenesis adjacent to the implants was observed. A progressive increase in the functional vessel density was detected throughout the observation time of 10 days. Additionally, a stable and increasing perfusion within the newly developed vascular network in the outer circumference of the matrix was noted. The lactocapromer terpolymer matrix showed no adverse effect on the microcirculation in the host tissue. In contrast, as detected by intravital microscopy, the biomaterial protected the microcirculation and induced angiogenesis. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  5. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy.

    Science.gov (United States)

    Chen, Tao; Lu, Feng; Streets, Aaron M; Fei, Peng; Quan, Junmin; Huang, Yanyi

    2013-06-07

    We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism.

  6. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  7. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Johnny Tam

    Full Text Available Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  8. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    Science.gov (United States)

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  9. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Jan Leo Rinnenthal

    Full Text Available Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC (i for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm(2 are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm(2 can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify

  10. Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells

    International Nuclear Information System (INIS)

    Kim, Kyujung; Cho, Eun-Jin; Suh, Jin-Suck; Huh, Yong-Min; Kim, Donghyun; Kim, Dong Jun

    2009-01-01

    We investigated evanescent field enhancement based on subwavelength nanogratings for improved sensitivity in total internal reflection microscopy of live cells. The field enhancement is associated with subwavelength-grating-coupled plasmon excitation. An optimum sample employed a silver grating on a silver film and an SF10 glass substrate. Field intensity was enhanced by approximately 90% when measured by fluorescent excitation of microbeads relative to that on a bare prism as a control, which is in good agreement with numerical results. The subwavelength-grating-mediated field enhancement was also applied to live cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  11. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  12. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  13. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  14. High-speed atomic force microscopy imaging of live mammalian cells.

    Science.gov (United States)

    Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2017-01-01

    Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons.

  15. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  16. Peculiarities of living cell response to the external stimuli revealed via quasistatic mode of atomic force microscopy

    Science.gov (United States)

    Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Timoshenko, T. E.; Timoshchuk, K. I.; Samsonov, M. V.; Shirinsky, V. P.

    2017-10-01

    The technique of atomic force microscopy allows revealing living cell morphology and mechanical properties characterization under physiologically relevant conditions. Here, we review our recent results on living cell reaction to different external influences obtained by this technique. The Bruker PeakForce QNM quasistatic mode was used to study living fibroblasts, erythrocytes, sensory neurons, and endothelial cells.

  17. IQGAP1 Interactome Analysis by In Vitro Reconstitution and Live Cell 3-Color FRET Microscopy

    Science.gov (United States)

    Wallrabe, Horst; Cai, Ying; Sun, Yuansheng; Periasamy, A.; Luzes, R.; Fang, Xiaolan; Kan, Ho-Man; Cameron, L. C.; Schafer, Dorothy A.; Bloom, George S.

    2014-01-01

    IQGAP1 stimulates branched actin filament nucleation by activating N-WASP, which then activates the Arp2/3 complex. N-WASP can be activated by other factors, including GTP-bound Cdc42 or Rac1, which also bind IQGAP1. Here we report the use of purified proteins for in vitro binding and actin polymerization assays, and Förster (or fluorescence) resonance energy transfer (FRET) microscopy of cultured cells to illuminate functional interactions among IQGAP1, N-WASP, actin, and either Cdc42 or Rac1. In pyrene-actin assembly assays containing N-WASP and Arp2/3 complex, IQGAP1 plus either small G protein cooperatively stimulated actin filament nucleation by reducing the lag time before 50% maximum actin polymerization was reached. Similarly, Cdc42 and Rac1 modulated the binding of IQGAP1 to N-WASP in a dose-dependent manner, with Cdc42 enhancing the interaction and Rac1 reducing the interaction. These in vitro reconstitution results suggested that IQGAP1 interacts by similar, yet distinct mechanisms with Cdc42 versus Rac1 to regulate actin filament assembly through N-WASP in vivo. The physiological relevance of these multi-protein interactions was substantiated by 3-color FRET microscopy of live MDCK cells expressing various combinations of fluorescent N-WASP, IQGAP1, Cdc42, Rac1 and actin. This study also establishes 3-color FRET microscopy as a powerful tool for studying dynamic intermolecular interactions in live cells. PMID:24124181

  18. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  19. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  20. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria

    Science.gov (United States)

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F.

    2013-12-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.

  1. Rapid subsurface detection of nanoscale defects in live microprocessors by functional infrared emission spectral microscopy.

    Science.gov (United States)

    Saloma, Caesar; Tarun, Alvarado; Bailon, Michelle; Soriano, Maricor

    2005-12-01

    We demonstrate the rapid and nondestructive detection of subsurface nanometer-size defects in 90 nm technology live microprocessors with a new technique called functional infrared emission spectral microscopy. Broken, leaky, and good transistors with similar photoemission images are identified from each other by their different emission spectra that are calculated as linear combinations of weighted basis spectra. The basis spectra are derived from a spectral library by principal component analysis. Leaky transistors do not exhibit apparent morphological damage and are undetectable by optical or scanning probe microscopy alone. The emission signals from two or more transistors combined incoherently, and defect detection is primarily limited by the signal-to-noise ratio of the detected spectrum and not by the separation distance of neighboring transistors.

  2. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  3. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    Science.gov (United States)

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  4. Motion Analysis of Live Objects by Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Chunyan Yao

    2012-01-01

    Full Text Available Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm, microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples are also introduced. The review is useful to people in the related field for easy referral of the state of the art.

  5. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    Science.gov (United States)

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. Copyright © 2014 the American Physiological Society.

  6. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.

    Science.gov (United States)

    Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie

    2017-02-15

    In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.

  7. Monitoring biosensor activity in living cells with fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Hum, Julia M; Siegel, Amanda P; Pavalko, Fredrick M; Day, Richard N

    2012-11-07

    Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events, and this is commonly measured with intensity-based ratiometric imaging methods. An alternative method for monitoring the activities of the FRET-based biosensor proteins is fluorescence lifetime imaging microscopy (FLIM). FLIM measurements are made in the time domain, and are not affected by factors that commonly limit intensity measurements. In this review, we describe the use of the digital frequency domain (FD) FLIM method for the analysis of FRET signals. We illustrate the methods necessary for the calibration of the FD FLIM system, and demonstrate the analysis of data obtained from cells expressing "FRET standard" fusion proteins. We then use the FLIM-FRET approach to monitor the changes in activities of two different biosensor proteins in specific regions of single living cells. Importantly, the factors required for the accurate determination and reproducibility of lifetime measurements are described in detail.

  8. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  9. Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    You, Sixian; Liu, Yuan; Arp, Zane; Zhao, Youbo; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2017-07-01

    Docosanol is an over-the-counter topical agent that has proved to be one of the most effective therapies for treating herpes simplex labialis. However, the mechanism by which docosanol suppresses lesion formation remains poorly understood. To elucidate its mechanism of action, we investigated the uptake of docosanol in living cells using coherent anti-Stokes Raman scattering microscopy. Based on direct visualization of the deuterated docosanol, we observed highly concentrated docosanol inside living cells 24 h after drug treatment. In addition, different spatial patterns of drug accumulation were observed in different cell lines. In keratinocytes, which are the targeted cells of docosanol, the drug molecules appeared to be docking at the periphery of the cell membrane. In contrast, the drug molecules in fibroblasts appeared to accumulate in densely packed punctate regions throughout the cytoplasm. These results suggest that this molecular imaging approach is suitable for the longitudinal tracking of drug molecules in living cells to identify cell-specific trafficking and may also have implications for elucidating the mechanism by which docosanol suppresses lesion formation.

  10. Use of virtual microscopy for didactic live-audience presentation in anatomic pathology.

    Science.gov (United States)

    Romer, David J; Suster, Saul

    2003-02-01

    Didactic presentations on the topic of anatomic pathology in front of a live audience have been largely dependent on the use of standard 2 x 2 inch projection slides (Kodachromes) of selected still images from the topic at hand. Because of the highly visual nature of the specialty of anatomic pathology, this method has had some serious limitations. With the advent of digital imaging techniques and the availability of new electronic software for the projection of images, new possibilities have become available for didactic presentations in anatomic pathology in front of a large, live audience. We describe a method whereby large digital images or "virtual slides" were produced from digitally scanned whole-mount sections of histologic glass slides and projected using a combination of PowerPoint (Microsoft Corp, Redmond, WA) and virtual microscopy in front of a live audience. To provide a seamless transition between the two presentation formats, the personal computer-based PowerPoint slides were hyperlinked to a browser-based virtual microscope viewer. The presenter, with the use of a mouse, was able to "move" the image of the scanned slide on the screen, to transition seamlessly among various magnifications, and to rapidly select from the whole-mount scanned slide among any areas of interest pertinent to the topic. Thus, the visual experience obtained by the audience simulated that of viewing a glass slide at a multi-headed microscope during a glass slide tutorial. Because this most closely approximates the experience of reviewing glass slides under the microscope for practicing pathologists, the educational experience of the presentation is greatly enhanced by the use of this technique. Also, this method permits making this type of presentation available to a much larger group of individuals in a live audience. Copyright 2003, Elsevier Science (USA). All rights reserved.

  11. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... with a commercial cell adhesive CellTakTM. The method was applied to four different bacterial strains, and single-cell adhesion was measured on three surfaces (fresh glass, hydrophilic glass, mica). Attachment to the cantilever was stable during the 2 h of AFM force measurements, and viability was confirmed by Live....../Dead fluorescence staining at the end of each experiment. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time of contact. The single-cell probe offers control of the cell immobilization, thus holds advantages over the commonly used multi-cell probes where...

  12. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging.

    Science.gov (United States)

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Holzinger, Andreas; Wasteneys, Geoffrey O

    2016-01-01

    Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography.

  13. A new image correction method for live cell atomic force microscopy

    International Nuclear Information System (INIS)

    Shen, Y; Sun, J L; Zhang, A; Hu, J; Xu, L X

    2007-01-01

    During live cell imaging via atomic force microscopy (AFM), the interactions between the AFM probe and the membrane yield distorted cell images. In this work, an image correction method was developed based on the force-distance curve and the modified Hertzian model. The normal loading and lateral forces exerted on the cell membrane by the AFM tip were both accounted for during the scanning. Two assumptions were made in modelling based on the experimental measurements: (1) the lateral force on the endothelial cells was linear to the height; (2) the cell membrane Young's modulus could be derived from the displacement measurement of a normal force curve. Results have shown that the model could be used to recover up to 30% of the actual cell height depending on the loading force. The accuracy of the model was also investigated with respect to the loading force and mechanical property of the cell membrane

  14. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  15. Local Delivery of Fluorescent Dye For Fiber-Optics Confocal Microscopy of the Living Heart

    Directory of Open Access Journals (Sweden)

    Chao eHuang

    2014-09-01

    Full Text Available Fiber-optics confocal microscopy (FCM is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release versus foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  16. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    Science.gov (United States)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  17. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges.

    Science.gov (United States)

    Bulat, Katarzyna; Rygula, Anna; Szafraniec, Ewelina; Ozaki, Yukihiro; Baranska, Malgorzata

    2017-06-01

    The scanning near-field optical microscopy (SNOM) shows a potential to study details of biological samples, since it provides the optical images of objects with nanometric spatial resolution (50-200 nm) and the topographic information at the same time. The goal of this work is to demonstrate the capabilities of SNOM in transmission configuration to study human endothelial cells and their morphological changes, sometimes very subtle, upon inflammation. Various sample preparations were tested for SNOM measurements and promising results are collected to show: 1) the influence of α tumor necrosis factor (TNF-α) on EA.hy 926 cells (measurements of the fixed cells); 2) high resolution images of various endothelial cell lines, i.e. EA.hy 926 and HLMVEC (investigations of the fixed cells in buffer environment); 3) imaging of live endothelial cells in physiological buffers. The study demonstrate complementarity of the SNOM measurements performed in air and in liquid environments, on fixed as well as on living cells. Furthermore, it is proved that the SNOM is a very useful method for analysis of cellular morphology and topography. Changes in the cell shape and nucleus size, which are the symptoms of inflammatory reaction, were noticed in TNF-α activated EA.hy 926 cells. The cellular structures of submicron size were observed in high resolution optical images of cells from EA.hy 926 and HLMVEC lines. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    Science.gov (United States)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial

  19. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  20. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy

    Science.gov (United States)

    Takahashi, Yasufumi; Shevchuk, Andrew I.; Novak, Pavel; Babakinejad, Babak; Macpherson, Julie; Unwin, Patrick R.; Shiku, Hitoshi; Gorelik, Julia; Klenerman, David; Korchev, Yuri E.; Matsue, Tomokazu

    2012-01-01

    We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5–100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5–3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences. PMID:22611191

  1. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    Science.gov (United States)

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent

  2. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  3. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    Science.gov (United States)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  4. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells

    NARCIS (Netherlands)

    Snippe, M.; Borst, J.W.; Goldbach, R.W.; Kormelink, R.J.M.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) were employed to study homotypic protein¿protein interactions in living cells. To this end, the nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) was expressed as a fusion protein with either

  5. TimeLapseAnalyzer: Multi-target analysis for live-cell imaging and time-lapse microscopy

    DEFF Research Database (Denmark)

    Huth, Johannes; Buchholz, Malte; Kraus, Johann M.

    2011-01-01

    The direct observation of cells over time using time-lapse microscopy can provide deep insights into many important biological processes. Reliable analyses of motility, proliferation, invasive potential or mortality of cells are essential to many studies involving live cell imaging and can aid...

  6. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  7. Methodological advances in imaging intravital axonal transport [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    James N. Sleigh

    2017-03-01

    Full Text Available Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.

  8. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  9. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins.

    Science.gov (United States)

    Wegner, Waja; Ilgen, Peter; Gregor, Carola; van Dort, Joris; Mott, Alexander C; Steffens, Heinz; Willig, Katrin I

    2017-09-18

    The study of proteins in dendritic processes within the living brain is mainly hampered by the diffraction limit of light. STED microscopy is so far the only far-field light microscopy technique to overcome the diffraction limit and resolve dendritic spine plasticity at superresolution (nanoscopy) in the living mouse. After having tested several far-red fluorescent proteins in cell culture we report here STED microscopy of the far-red fluorescent protein mNeptune2, which showed best results for our application to superresolve actin filaments at a resolution of ~80 nm, and to observe morphological changes of actin in the cortex of a living mouse. We illustrate in vivo far-red neuronal actin imaging in the living mouse brain with superresolution for time periods of up to one hour. Actin was visualized by fusing mNeptune2 to the actin labels Lifeact or Actin-Chromobody. We evaluated the concentration dependent influence of both actin labels on the appearance of dendritic spines; spine number was significantly reduced at high expression levels whereas spine morphology was normal at low expression.

  10. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    Science.gov (United States)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  11. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  12. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    Science.gov (United States)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  13. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  14. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  15. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy

    Directory of Open Access Journals (Sweden)

    Bjoern Traenkle

    2017-08-01

    Full Text Available Single-domain antibodies (sdAbs have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.

  16. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy.

    Science.gov (United States)

    Wakisaka, Yoshifumi; Suzuki, Yuta; Iwata, Osamu; Nakashima, Ayaka; Ito, Takuro; Hirose, Misa; Domon, Ryota; Sugawara, Mai; Tsumura, Norimichi; Watarai, Hiroshi; Shimobaba, Tomoyoshi; Suzuki, Kengo; Goda, Keisuke; Ozeki, Yasuyuki

    2016-08-01

    Understanding metabolism in live microalgae is crucial for efficient biomaterial engineering, but conventional methods fail to evaluate heterogeneous populations of motile microalgae due to the labelling requirements and limited imaging speeds. Here, we demonstrate label-free video-rate metabolite imaging of live Euglena gracilis and statistical analysis of intracellular metabolite distributions under different culture conditions. Our approach provides further insights into understanding microalgal heterogeneity, optimizing culture methods and screening mutant microalgae.

  17. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ford, T.W.; Cotton, R.A.; Page, A.M. [Univ. of London, Egham (United Kingdom). School of Biological Sciences; Tomie, T.; Majima, T.; Stead, A.D. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  18. Assessing Collagen and Elastin Pressure-Dependent Microarchitectures in Live, Human Resistance Arteries by Label-Free Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Thorsted, Bjarne; Brewer, Jonathan R.

    2017-01-01

    are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion....... In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species...

  19. Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells.

    Science.gov (United States)

    Schützhold, Vera; Fandrey, Joachim; Prost-Fingerle, Katrin

    2018-01-01

    Fluorescence resonance energy transfer (FRET) is widely used as a method to investigate protein-protein interactions in living cells. A FRET pair donor fluorophore in close proximity to an appropriate acceptor fluorophore transfers emission energy to the acceptor, resulting in a shorter lifetime of the donor fluorescence. When the respective FRET donor and acceptor are fused with two proteins of interest, a reduction in donor lifetime, as detected by fluorescence lifetime imaging microscopy (FLIM), can be taken as proof of close proximity between the fluorophores and therefore interaction between the proteins of interest. Here, we describe the usage of time-domain FLIM-FRET in hypoxia-related research when we record the interaction of the hypoxia-inducible factor-1 (HIF-1) subunits HIF-1α and HIF-1β in living cells in a temperature- and CO 2 -controlled environment under the microscope.

  20. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    Science.gov (United States)

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-03-04

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.

  1. Quantification of GPCR internalization by single-molecule microscopy in living cells.

    NARCIS (Netherlands)

    Serge, A.; Keijzer, S. de; Hemert, F. Van; Hickman, M.R.; Hereld, D.; Spaink, H.P.; Schmidt, T.; Snaar-Jagalska, B.E.

    2011-01-01

    Receptor internalization upon ligand stimulation is a key component of a cell's response and allows a cell to correctly sense its environment. Novel fluorescent methods have enabled the direct visualization of the agonist-stimulated G-protein-coupled receptors (GPCR) trafficking in living cells.

  2. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical

  3. Observation of live ticks (Haemaphysalis flava by scanning electron microscopy under high vacuum pressure.

    Directory of Open Access Journals (Sweden)

    Yasuhito Ishigaki

    Full Text Available Scanning electron microscopes (SEM, which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10(-3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2-5 kV, many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs, they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition.

  4. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    Science.gov (United States)

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  5. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    DEFF Research Database (Denmark)

    Almassalha, Luay M; Bauer, Greta M; Chandler, John E

    2016-01-01

    of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture...

  6. A Novel Model of Intravital Platelet Imaging Using CD41-ZsGreen1 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Makoto Mizuno

    Full Text Available Platelets play pivotal roles in both hemostasis and thrombosis. Although models of intravital platelet imaging are available for thrombosis studies in mice, few are available for rat studies. The present effort aimed to generate fluorescent platelets in rats and assess their dynamics in a rat model of arterial injury. We generated CD41-ZsGreen1 transgenic rats, in which green fluorescence protein ZsGreen1 was expressed specifically in megakaryocytes and thus platelets. The transgenic rats exhibited normal hematological and biochemical values with the exception of body weight and erythroid parameters, which were slightly lower than those of wild-type rats. Platelet aggregation, induced by 20 μM ADP and 10 μg/ml collagen, and blood clotting times were not significantly different between transgenic and wild-type rats. Saphenous arteries of transgenic rats were injured with 10% FeCl3, and the formation of fluorescent thrombi was evaluated using confocal microscopy. FeCl3 caused time-dependent increases in the mean fluorescence intensity of injured arteries of vehicle-treated rats. Prasugrel (3 mg/kg, p.o., administered 2 h before FeCl3, significantly inhibited fluorescence compared with vehicle-treated rats (4.5 ± 0.4 vs. 14.9 ± 2.4 arbitrary fluorescence units at 30 min, respectively, n = 8, P = 0.0037. These data indicate that CD41-ZsGreen1 transgenic rats represent a useful model for intravital imaging of platelet-mediated thrombus formation and the evaluation of antithrombotic agents.

  7. A software solution for recording circadian oscillator features in time-lapse live cell microscopy

    Directory of Open Access Journals (Sweden)

    Salmon Patrick

    2010-07-01

    Full Text Available Abstract Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE, is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and

  8. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    Science.gov (United States)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  9. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    Science.gov (United States)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  10. Label-free chemical imaging of live Euglena gracilis by high-speed SRS spectral microscopy (Conference Presentation)

    Science.gov (United States)

    Wakisaka, Yoshifumi; Suzuki, Yuta; Tokunaga, Kyoya; Hirose, Misa; Domon, Ryota; Akaho, Rina; Kuroshima, Mai; Tsumura, Norimichi; Shimobaba, Tomoyoshi; Iwata, Osamu; Suzuki, Kengo; Nakashima, Ayaka; Goda, Keisuke; Ozeki, Yasuyuki

    2016-03-01

    Microbes, especially microalgae, have recently been of great interest for developing novel biofuels, drugs, and biomaterials. Imaging-based screening of live cells can provide high selectivity and is attractive for efficient bio-production from microalgae. Although conventional cellular screening techniques use cell labeling, labeling of microbes is still under development and can interfere with their cellular functions. Furthermore, since live microbes move and change their shapes rapidly, a high-speed imaging technique is required to suppress motion artifacts. Stimulated Raman scattering (SRS) microscopy allows for label-free and high-speed spectral imaging, which helps us visualize chemical components inside biological cells and tissues. Here we demonstrate high-speed SRS imaging, with temporal resolution of 0.14 seconds, of intracellular distributions of lipid, polysaccharide, and chlorophyll concentrations in rapidly moving Euglena gracilis, a unicellular phytoflagellate. Furthermore, we show that our method allows us to analyze the amount of chemical components inside each living cell. Our results indicate that SRS imaging may be applied to label-free screening of living microbes based on chemical information.

  11. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  12. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  13. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    Science.gov (United States)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  14. [Frontiers in Live Bone Imaging Researches. Two-Photon Excitation Microscopy, principles and technologies].

    Science.gov (United States)

    Oikawa, Yoshiro

    2015-06-01

    The "two photon absorption" phenomenon had been predicted by the American Physicist, Maria Ghöppert-Mayer in 1931. Denk and Webb group had proved it in 1990 and the first product had been launched in the market in 1996. But ever since the product became available, the number of users are not increased. Moreover, the system had been too difficult to use and the system sometimes stay not working in labs. But recently, the new easier-to-use products are released and the ultra short pulse IR laser became stable. And its applications are extending from neuro-science to oncology or immunology fields. Due to these reasons, the shipment of multi-photon microscope in Japan in 2013 is approximately 40 units which is 3 times bigger than in 2010. In this paper, I would like to discuss the principles of two-photon microscopy and some of the new technologies for the higher signal capture efficiency.

  15. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    Science.gov (United States)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  16. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    Bacteria initiate attachment to the surfaces with the aid of different extracellular polymers. To quantitatively study how these polymers mediate bacterial adhesion and possibly their interactions, it is essential to go down to single cell level, with in mind that cell-to-cell variation should...... with a commercial cell adhesive CellTakTM. The method was applied to four different bacterial strains, and single-cell adhesion was measured on three surfaces (fresh glass, hydrophilic glass, mica). Attachment to the cantilever was stable during the 2 h of AFM force measurements, and viability was confirmed by Live...

  17. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    Science.gov (United States)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  18. Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2012-12-01

    To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.

  19. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants

    Science.gov (United States)

    Flint, Jeremy J.; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J.

    2015-12-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development.

  20. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  1. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that

  2. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  3. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  4. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    Science.gov (United States)

    Haas, Beth L.; Matson, Jyl S.; DiRita, Victor J.; Biteen, Julie S.

    2015-01-01

    Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane. PMID:25123183

  5. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    Science.gov (United States)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  6. Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein.

    Directory of Open Access Journals (Sweden)

    Devender Kumar

    2015-12-01

    Full Text Available Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration.

  7. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    Science.gov (United States)

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  8. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell

  9. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin...

  10. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical...

  11. Detection of living Sarcoptes scabiei larvae by reflectance mode confocal microscopy in the skin of a patient with crusted scabies

    Science.gov (United States)

    Levi, Assi; Mumcuoglu, Kosta Y.; Ingber, Arieh; Enk, Claes D.

    2012-06-01

    Scabies is an intensely pruritic disorder induced by a delayed type hypersensitivity reaction to infestation of the skin by the mite Sarcoptes scabiei. The diagnosis of scabies is established clinically and confirmed by identifying mites or eggs by microscopic examination of scrapings from the skin or by surface microscopy using a dermatoscope. Reflectance-mode confocal microscopy is a novel technique used for noninvasive imaging of skin structures and lesions at a resolution compatible to that of conventional histology. Recently, the technique was employed for the confirmation of the clinical diagnosis of scabies. We demonstrate the first ever documentation of a larva moving freely inside the skin of a patient infected with scabies.

  12. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain.

    Science.gov (United States)

    Coles, Jonathan A; Myburgh, Elmarie; Brewer, James M; McMenamin, Paul G

    2017-09-01

    Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Uptake and localization of fluorescent labelled gold nanoparticles in living zebrafish (Danio rerio) using Light Sheet Microscopy

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Asmonaite, G.; Jolk, R.

    2015-01-01

    Despite nanoparticles being used in many different products and applications, the effects and fate in the environment are still not well understood. Uptake of nanoparticles into cells has been shown in vitro and in vivo. However, it is challenging to find suitable methods to identify uptake...... and determine localization on a whole organism level. Furthermore, methods used to identify nanoparticle uptake have been associated with artefacts induced by sample preparation including staining methods for electron microscopy.  This study used Fluorescent Light Sheet Microscopy (FLSM) to determine uptake...... to the particles through the diet or the water phase in a series of separate experiments. In the dietary exposure experiments Artemia salina were exposed to 1 mg Au/L for 24h before being fed to D. rerio. For exposure through the water phase 1 mg Au/L was added directly to aquaria holding the fish and non...

  14. The use of high energy laser-plasma sources in soft X-ray contact microscopy of living biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Batani, D.; Botto, C.; Moret, M.; Milani, M.; Lucchini, G. [Universita degli Studi di Milano-Bicocca and INFM, Milano (Italy); Eidmann, K. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cotelli, F.; Lora Lamia Donin, C.; Poletti, G. [Universita di Milano (Italy); Ford, T.; Stead, A. [London Univ., Royal Holloway (United Kingdom)

    2002-11-01

    In this paper the results of an experiment on soft X-ray contact microscopy using a laser-plasma source are presented. A resolution of 50 nm has been achieved imaging pig sperm cells, while other specimens, such as algae and yeast cells, showed internal details, proving the technique to be a powerful tool for biological investigations. Original biological information has been obtained and the conditions for optimal image formation have been studied. (authors)

  15. Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy

    DEFF Research Database (Denmark)

    Clausen, M. P.; Colin-York, H.; Schneider, Falk

    2017-01-01

    and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between...

  16. Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell.

    Science.gov (United States)

    Agrawal, Lokesh; Sahu, Satyajit; Ghosh, Subrata; Shiga, Takashi; Fujita, Daisuke; Bandyopadhyay, Anirban

    2016-12-01

    A substantial ion flow in a normally wet protein masks any other forms of signal transmission. We use hysteresis and linear conduction (both are artifacts) as a marker to precisely wet a protein, which restricts the ionic conduction (hysteresis disappears), and at the same time, it is not denatured (quantized conductance and Raman spectra are intact). Pure electric visualization of proteins at work by eliminating the screening of ions, electrons, would change the way we study biology. Here we discuss the technical challenges resolved for imaging a protein or live cell using nonlinear dielectric response (spatial distribution of conductance, capacitance and phase, GCP trio). We electromagnetically triggered electrical, mechanical, thermal and ionic resonant vibrations in a protein. During resonant oscillations, we imaged the protein using resonant scanning tunneling microscopy of biomaterials (Brestum) and during ionic firing we imaged live what happens inside an axon core of a neuron by using our atomic scale scanning dielectric microscopy (Asadim). Both Asadim and Brestum are housed in a homebuilt scanning tunneling microscope (bio-STM) and a special micro-grid developed by us (patent JP-5187804) for fractal supercomputing. We found the trick to turn a membrane transparent and see inside without making any physical contact. We image live that a protein molecule adopts a unique configuration for each resonance frequency, - thus far unknown to biology. "Membrane alone fires" is found to be wrong after a century, micro-neuro-filaments communicate prior to firing to decide its necessity and then regulate it suitably. We introduce a series of technologies e.g., fractal grid, point contact, micro THz antenna, to discover that from atomic structure to a living cell, the biomaterials vibrate collectively.

  17. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model.

    Science.gov (United States)

    Sorokin, Dmitry V; Peterlik, Igor; Tektonidis, Marco; Rohr, Karl; Matula, Pavel

    2018-01-01

    The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.

  18. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy

    Science.gov (United States)

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Ma, Zhen; Ye, Tong; Borg, Tom; Gao, Bruce Z.

    2011-12-01

    We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG) imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we observed the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for investigation of dynamic myofibrillogenesis.

  19. Total internal reflection fluorescence anisotropy imaging microscopy: setup, calibration, and data processing for protein polymerization measurements in living cells

    Science.gov (United States)

    Ströhl, Florian; Wong, Hovy H. W.; Holt, Christine E.; Kaminski, Clemens F.

    2018-01-01

    Fluorescence anisotropy imaging microscopy (FAIM) measures the depolarization properties of fluorophores to deduce molecular changes in their environment. For successful FAIM, several design principles have to be considered and a thorough system-specific calibration protocol is paramount. One important calibration parameter is the G factor, which describes the system-induced errors for different polarization states of light. The determination and calibration of the G factor is discussed in detail in this article. We present a novel measurement strategy, which is particularly suitable for FAIM with high numerical aperture objectives operating in TIRF illumination mode. The method makes use of evanescent fields that excite the sample with a polarization direction perpendicular to the image plane. Furthermore, we have developed an ImageJ/Fiji plugin, AniCalc, for FAIM data processing. We demonstrate the capabilities of our TIRF-FAIM system by measuring β -actin polymerization in human embryonic kidney cells and in retinal neurons.

  20. Reduction of Tubular Flow Rate as a Mechanism of Oliguria in the Early Phase of Endotoxemia Revealed by Intravital Imaging.

    Science.gov (United States)

    Nakano, Daisuke; Doi, Kent; Kitamura, Hiroaki; Kuwabara, Takashige; Mori, Kiyoshi; Mukoyama, Masashi; Nishiyama, Akira

    2015-12-01

    Urine output is widely used as a criterion for the diagnosis of AKI. Although several potential mechanisms of septic AKI have been identified, regulation of urine flow after glomerular filtration has not been evaluated. This study evaluated changes in urine flow in mice with septic AKI. The intratubular urine flow rate was monitored in real time by intravital imaging using two-photon laser microscopy. The tubular flow rate, as measured by freely filtered dye (FITC-inulin or Lucifer yellow), time-dependently declined after LPS injection. At 2 hours, the tubular flow rate was slower in mice injected with LPS than in mice injected with saline, whereas BP and GFR were similar in the two groups. Importantly, fluorophore-conjugated LPS selectively accumulated in the proximal tubules that showed reduced tubular flow at 2 hours and luminal obstruction with cell swelling at 24 hours. Delipidation of LPS or deletion of Toll-like receptor 4 in mice abolished these effects, whereas neutralization of TNF-α had little effect on LPS-induced tubular flow retention. Rapid intravenous fluid resuscitation within 6 hours improved the tubular flow rate only when accompanied by the dilation of obstructed proximal tubules with accumulated LPS. These findings suggest that LPS reduces the intratubular urine flow rate during early phases of endotoxemia through a Toll-like receptor 4-dependent mechanism, and that the efficacy of fluid resuscitation may depend on the response of tubules with LPS accumulation. Copyright © 2015 by the American Society of Nephrology.

  1. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.

    Science.gov (United States)

    Cartagena, Alexander; Raman, Arvind

    2014-03-04

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range.

    Directory of Open Access Journals (Sweden)

    Delphine Débarre

    Full Text Available Light-induced toxicity is a fundamental bottleneck in microscopic imaging of live embryos. In this article, after a review of photodamage mechanisms in cells and tissues, we assess photo-perturbation under illumination conditions relevant for point-scanning multiphoton imaging of live Drosophila embryos. We use third-harmonic generation (THG imaging of developmental processes in embryos excited by pulsed near-infrared light in the 1.0-1.2 µm range. We study the influence of imaging rate, wavelength, and pulse duration on the short-term and long-term perturbation of development and define criteria for safe imaging. We show that under illumination conditions typical for multiphoton imaging, photodamage in this system arises through 2- and/or 3-photon absorption processes and in a cumulative manner. Based on this analysis, we derive general guidelines for improving the signal-to-damage ratio in two-photon (2PEF/SHG or THG imaging by adjusting the pulse duration and/or the imaging rate. Finally, we report label-free time-lapse 3D THG imaging of gastrulating Drosophila embryos with sampling appropriate for the visualisation of morphogenetic movements in wild-type and mutant embryos, and long-term multiharmonic (THG-SHG imaging of development until hatching.

  3. Adhesion strength of a living cell to various substrates measured using a cup-attached atomic force microscopy chip

    Science.gov (United States)

    Kim, Hyonchol; Ishibashi, Kenta; Matsuo, Kosuke; Kira, Atsushi; Onomura, Yui; Okada, Tomoko; Nakamura, Chikashi

    2018-03-01

    Cell adhesion strengths to various substrates were quantitatively measured using atomic force microscopy (AFM). A cup-shaped metal hemisphere was attached to the apex of the AFM cantilever, the “cup-chip” approached a cell (FP10SC2) to pick it up, the captured cell approached any one of six different substrates [gold (Au), nickel (Ni), bovine serum albumin (BSA), an amino group (NH2), poly(tetrafluoroethylene) (PTFE), and structured PTFE (sPTFE)], and the cell adhesion strength at the initial contact period was evaluated by detaching the cell from the substrate. The results obtained showed that the force needed to detach the cell from the NH2 substrate was more than 3-fold larger than that of metal substrates (Au and Ni), more than 15-fold larger than that of biochemically treated substrates (BSA), and more than 20-fold larger than that of hydrophobic substrates (PTFE and sPTFE). Using differences in adhesion strengths, a cell on a sPTFE substrate was picked up using a BSA-coated cup-chip, placed on a NH2 substrate, repeating this cell manipulation five times, and line patterning of cells was achieved. These results indicate that measurements of cell adhesion strength are fundamental to fabricate desired cell networks and the cup-chip is a useful tool for achieving easy cell manipulation.

  4. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy

    Science.gov (United States)

    Okada, Tomoko; Ogura, Toshihiko

    2017-02-01

    Nanometre-scale-resolution imaging technologies for liquid-phase specimens are indispensable tools in various scientific fields. In biology, observing untreated living cells in a medium is essential for analysing cellular functions. However, nanoparticles that bind living cells in a medium are hard to detect directly using traditional optical or electron microscopy. Therefore, we previously developed a novel scanning electron-assisted dielectric microscope (SE-ADM) capable of nanoscale observations. This method enables observation of intact cells in aqueous conditions. Here, we use this SE-ADM system to clearly observe antibody-binding nanobeads in liquid-phase. We also report the successful direct detection of streptavidin-conjugated nanobeads binding to untreated cells in a medium via a biotin-conjugated anti-CD44 antibody. Our system is capable of obtaining clear images of cellular organelles and beads on the cells at the same time. The direct observation of living cells with nanoparticles in a medium allowed by our system may contribute the development of carriers for drug delivery systems (DDS).

  5. Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

    Directory of Open Access Journals (Sweden)

    Nathalie Rouach

    2017-04-01

    Full Text Available The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED super-resolution imaging and atomic force microscopy (AFM to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis.

  6. Live-cell Microscopy and Fluorescence-based Measurement of Luminal pH in Intracellular Organelles

    Directory of Open Access Journals (Sweden)

    Li Ma

    2017-08-01

    Full Text Available Luminal pH is an important functional feature of intracellular organelles. Acidification of the lumen of organelles such as endosomes, lysosomes, and the Golgi apparatus plays a critical role in fundamental cellular processes. As such, measurement of the luminal pH of these organelles has relevance to both basic research and translational research. At the same time, accurate measurement of intraorganellar pH in living cells can be challenging and may be a limiting hurdle for research in some areas. Here, we describe three powerful methods to measure rigorously the luminal pH of different intracellular organelles, focusing on endosomes, lysosomes, and the Golgi apparatus. The described methods are based on live imaging of pH-sensitive fluorescent probes and include: (1 A protocol based on quantitative, ratiometric measurement of endocytosis of pH-sensitive and pH-insensitive fluorescent conjugates of transferrin; (2 A protocol for the use of proteins tagged with a ratiometric variant of the pH-sensitive intrinsically fluorescent protein pHluorin; and (3 A protocol using the fluorescent dye LysoSensor™. We describe necessary reagents, key procedures, and methods and equipment for data acquisition and analysis. Examples of implementation of the protocols are provided for cultured cells derived from a cancer cell line and for primary cultures of mouse hippocampal neurons. In addition, we present strengths and weaknesses of the different described intraorganellar pH measurement methods. These protocols are likely to be of benefit to many researchers, from basic scientists to those conducting translational research with a focus on diseases in patient-derived cells.

  7. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling

    Science.gov (United States)

    Missiroli, Sonia; Poletti, Federica; Ramirez, Fabian Galindo; Morciano, Giampaolo; Morganti, Claudia; Pandolfi, Pier Paolo; Mammano, Fabio; Pinton, Paolo

    2015-01-01

    One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway. PMID:25544762

  8. Imaging cytochrome C oxidase and FoF1-ATP synthase in mitochondrial cristae of living human cells by FLIM and superresolution microscopy

    Science.gov (United States)

    Foertsch, Franziska; Ilchenko, Mykhailo; Heitkamp, Thomas; Noßmann, Silke; Hoffmann, Birgit; Starke, Ilka; Mrowka, Ralf; Biskup, Christoph; Börsch, Michael

    2017-02-01

    Cytochrome C oxidase and FoF1-ATP synthase constitute complex IV and V, respectively, of the five membrane-bound enzymes in mitochondria comprising the respiratory chain. These enzymes are located in the inner mitochondrial membrane (IMM), which exhibits large invaginations called cristae. According to recent electron cryotomography, FoF1-ATP synthases are located predominantly at the rim of the cristae, while cytochrome C oxidases are likely distributed in planar membrane areas of the cristae. Previous FLIM measurements (K. Busch and coworkers) of complex II and III unravelled differences in the local environment of the membrane enzymes in the cristae. Here, we tagged complex IV and V with mNeonGreen and investigated their mitochondrial nano-environment by FLIM and superresolution microscopy in living human cells. Different lifetimes and anisotropy values were found and will be discussed.

  9. Retrospective detection by negative contrast electron microscopy of faecal viral particles in free-living wild red squirrels (Sciurus vulgaris) with suspected enteropathy in Great Britain.

    Science.gov (United States)

    Everest, D J; Stidworthy, M F; Milne, E M; Meredith, A L; Chantrey, J; Shuttleworth, C; Blackett, T; Butler, H; Wilkinson, M; Sainsbury, A W

    2010-12-25

    Transmission electron microscopy identified adenovirus particles in 10 of 70 (14.3 per cent) samples of large intestinal content collected at postmortem examination from free-living wild red squirrels (Sciurus vulgaris) across Great Britain between 2000 and 2009. Examination was limited to cases in which an enteropathy was suspected on the basis of predetermined macroscopic criteria such as semi-solid or diarrhoeic faeces, suspected enteritis or the presence of intussusception. In most cases, meaningful histological examination of enteric tissue was not possible due to pronounced autolysis. Two (2.9 per cent) of the samples were negative for adenovirus but were found to contain rotavirus particles, a novel finding in this species.

  10. High-power acoustic insult to living cultured cells as studied by high-frequency scanning acoustic microscopy

    Science.gov (United States)

    Miyasaka, Chiaki; Tittmann, Bernhard R.

    2002-06-01

    A plurality of articles discussing combined effects of acoustic high-pressure (mechanical factor) and heat (thermal factor) caused by acoustic vibration on biological tissues and cells has been published. Herein, we contribute the preliminary results describing the behavior of living human skin cells when separately applying shock waves and thermal insult to them. First, we gradually increased temperature of a culturing medium from 37.5 to 52 degree(s)C using the heat plate with temperature controller, and carried out in-situ observation of the cells grown on a substrate via the medium using a scanning acoustic microscope. Second, we provided the pressure using high power ultrasonic pulses generated by a laser induced ultrasonic shock wave system to the cells, wherein the pressure caused by the pulses was measured by a hydrophone, and wherein temperature was monitored by thermocouples. The cells were observed just after giving the impact. The difference between phenomena indicating cellular insult and injury (e.g., shrinkage or lift-off) were clearly visualized by the scanning acoustic microscope with frequency at 1.0 GHz.

  11. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  12. Analysis of intravital assessment results in purebred and crossbred boars

    Directory of Open Access Journals (Sweden)

    Wanda Milewska

    2005-01-01

    Full Text Available 1879 purebred boars: Duroc (D, Hampshire (H and Pietrain (Pn as well as their two-crossbreds (D x H, H x D, Pn x H, H x Pn, Pn x D, D x Pn were analysed after a living assessment completed between 1995–1998 within the area of activity of the Animal Breeding Station in Olsztyn. The standardi- zed daily gains in body weight ranged between 594 g (H and 628 g (Pn x D. The thinnest backfat layer was observed in Pietrain boars and their crossbred boars. The height of loin eye was the best for boars Pn and for all crossbred animals. The lean content in the body of the assessed boars ranged from 56.2% (H to 60.0% (Pn. The highest value of selection index was found for Pn boars (124 points and crossbred boars Pn x D and Pn x H, the lowest index value was observed for purebred H boars (109 points. The correlation coefficient between the index and daily gains range from 0.69 (P ≤ 0.01 (H to 0.91 (P ≤ 0.01 (H x D, between the index and the height of loin eye range from 0.57 (P ≤ 0.01 (H to 0.75 (P ≤ 0.01 (Pn and between the index and the lean content range from 0.13 (P ≤ 0.05 (H to 0.71 (P ≤ 0.01 (Pn.

  13. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    Science.gov (United States)

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  14. Live Cell Imaging Confocal Microscopy Analysis of HBV Myr-PreS1 Peptide Binding and Uptake in NTCP-GFP Expressing HepG2 Cells.

    Science.gov (United States)

    König, Alexander; Glebe, Dieter

    2017-01-01

    To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.

  15. Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3).

    Science.gov (United States)

    Hillebrand, Merle; Verrier, Sophie E; Ohlenbusch, Andreas; Schäfer, Annika; Söling, Hans-Dieter; Wouters, Fred S; Gärtner, Jutta

    2007-09-14

    The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.

  16. Role of ICAM-1 polymorphisms (G241R, K469E) in mediating its single-molecule binding ability: Atomic force microscopy measurements on living cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rui [Chinese (301) General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Yi, Shaoqiong [Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071 (China); Zhang, Xuejie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry Chinese Academy of Sciences, 2 Zhongguancun North 1st Street, Beijing 100190 (China); Liu, Huiliang, E-mail: lhl518@vip.sina.com [Department of Cardiology, The General Hospital of Chinese People’s Armed Police Forces, Beijing 100039 (China); Fang, Xiaohong, E-mail: xfang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry Chinese Academy of Sciences, 2 Zhongguancun North 1st Street, Beijing 100190 (China)

    2014-06-13

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.

  17. Intravital Microscopy in Evaluating Patients With Primary Peritoneal, Fallopian Tube, or Stage IA-IV Ovarian Cancer

    Science.gov (United States)

    2017-12-28

    Fallopian Tube Carcinoma; Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Ovarian Cancer; Stage IB Ovarian Cancer; Stage IC Ovarian Cancer; Stage II Ovarian Cancer; Stage IIA Ovarian Cancer; Stage IIB Ovarian Cancer; Stage IIC Ovarian Cancer; Stage III Ovarian Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Ovarian Cancer; Stage IV Ovarian Cancer

  18. Intravital Microscopy for Identifying Tumor Vessels in Patients With Stage IA-IV Melanoma That is Being Removed by Surgery

    Science.gov (United States)

    2017-06-05

    Recurrent Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  19. Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Claire Vennin

    2016-05-01

    Full Text Available Intravital imaging is providing new insights into the dynamics of tumor progression in native tissues and has started to reveal the layers of complexity found in cancer. Recent advances in intravital imaging have allowed us to look deeper into cancer behavior and to dissect the interactions between tumor cells and the ancillary host niche that promote cancer development. In this review, we provide an insight into the latest advances in cancer biology achieved by intravital imaging, focusing on recently discovered mechanisms by which tumor cells manipulate normal tissue to facilitate disease progression.

  20. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells

    Directory of Open Access Journals (Sweden)

    Federica eMoalli

    2015-03-01

    Full Text Available Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA induces a humoral immune response in tumor bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs from melanoma patients, we developed a premetastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer Tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM and whole mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs, which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.

  1. Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging.

    Science.gov (United States)

    Germain, Ronald N; Bajénoff, Marc; Castellino, Flora; Chieppa, Marcello; Egen, Jackson G; Huang, Alex Y C; Ishii, Masaru; Koo, Lily Y; Qi, Hai

    2008-02-01

    A central characteristic of the immune system is the constantly changing location of most of its constituent cells. Lymphoid and myeloid cells circulate in the blood, and subsets of these cells enter, move, and interact within, then leave organized lymphoid tissues. When inflammation is present, various hematopoietic cells also exit the vasculature and migrate within non-lymphoid tissues, where they carry out effector functions that support host defense or result in autoimmune pathology. Effective innate and adaptive immune responses involve not only the action of these individual cells but also productive communication among them, often requiring direct membrane contact between rare antigen-specific or antigen-bearing cells. Here, we describe our ongoing studies using two-photon intravital microscopy to probe the in situ behavior of the cells of the immune system and their interactions with non-hematopoietic stromal elements. We emphasize the importance of non-random cell migration within lymphoid tissues and detail newly established mechanisms of traffic control that operate at multiple organizational scales to facilitate critical cell contacts. We also describe how the methods we have developed for imaging within lymphoid sites are being applied to other tissues and organs, revealing dynamic details of host-pathogen interactions previously inaccessible to direct observation.

  2. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  3. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    Kuipers, Jeroen; van Ham, Tjakko J.; Kalicharan, Ruby D.; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Dijk, Freerk; Schnell, Ulrike; Giepmans, Ben N. G.

    Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely

  4. Intravital fiber-optic fluorescence imaging for monitoring ovarian carcinoma progression and treatment response

    Science.gov (United States)

    Spring, Bryan Q.; Celli, Jonathan P.; Evans, Conor L.; Zhong, Wei; Rizvi, Imran; Mai, Zhiming; Mertz, Jerome; Yun, Seok H.; Hasan, Tayyaba

    2009-06-01

    Our laboratory has constructed a custom fluorescence microendoscope for detecting and monitoring tumor nodules in a mouse model of metastatic ovarian carcinoma (OVCA). The microendoscope is being applied for tumor recognition and for quantifying tumor burden reduction following photodynamic therapy (PDT). Benzoporphyrin derivative monoacid ring A (BPD-MA), a photosensitizing agent for PDT, is administered to the mice and imaged with the microendoscope prior to PDT. BPD-MA fluorescence is a convenient means for locating tumor sites and quantifying tumor burden (despite the fact that BPD-MA is a non-targeted contrast agent). The miniature, flexible microendoscope probe is delivered via a 14-gauge catheter for imaging metastases along the outer surfaces of the internal organs and the inner walls of the peritoneal cavity. The minimal invasiveness of this approach facilitates frequent imaging of the mice in order to monitor cancer progression and treatment response. We present promising data for intravital imaging of treatment response following PDT and new developments in the microendoscope instrumentation for improved image quality.

  5. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination.

    Science.gov (United States)

    Pinner, Sophie; Jordan, Peter; Sharrock, Kirsty; Bazley, Laura; Collinson, Lucy; Marais, Richard; Bonvin, Elise; Goding, Colin; Sahai, Erik

    2009-10-15

    How melanoma acquire a metastatic phenotype is a key issue. One possible mechanism is that metastasis is driven by microenvironment-induced switching between noninvasive and invasive states. However, whether switching is a reversible or hierarchical process is not known and is difficult to assess by comparison of primary and metastatic tumors. We address this issue in a model of melanoma metastasis using a novel intravital imaging method for melanosomes combined with a reporter construct in which the Brn-2 promoter drives green fluorescent protein (GFP) expression. A subpopulation of cells containing little or no pigment and high levels of Brn2::GFP expression are motile in the primary tumor and enter the vasculature. Significantly, the less differentiated state of motile and intravasated cells is not maintained at secondary sites, implying switching between states as melanoma cells metastasize. We show that melanoma cells can switch in both directions between high- and low-pigment states. However, switching from Brn2::GFP high to low was greatly favored over the reverse direction. Microarray analysis of high- and low-pigment populations revealed that transforming growth factor (TGF)beta2 was up-regulated in the poorly pigmented cells. Furthermore, TGFbeta signaling induced hypopigmentation and increased cell motility. Thus, a subset of less differentiated cells exits the primary tumor but subsequently give rise to metastases that include a range of more differentiated and pigment-producing cells. These data show reversible phenotype switching during melanoma metastasis.

  6. Microscopy of femtoscale structures

    Indian Academy of Sciences (India)

    Microscopy of femtoscale structures. P CHOWDHURY. Department of Physics, University of Massachusetts Lowell, Lowell MA 01854, USA. Abstract. Advances in experimental techniques are discussed for the study of long-lived isomers using gammasphere. Spectroscopy of neutron-rich nuclei in the A. 180 region is made ...

  7. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  8. Noninvasive intravital cellular diagnosis of atopic dermatitis by using harmonic optical virtual biopsy

    Science.gov (United States)

    Chen, Szu-Yu; Lee, Jyh-Hong; Chiang, Bor-Luen; Sun, Chi-Kuang

    2007-02-01

    Atopic dermatitis (AD) is now very common in people who live in cities, especially for babies and children. Since the cause of AD is still not completely understood and each person may have his own mixed symptoms that can change over time, diagnosis of AD can not be done precisely. Unlike some skin diseases, physical biopsy is rarely used in diagnosing AD on account of its low urgency. Thus, only indirect diagnoses, like asking for a medical history to learn about the symptoms and to rule out other diseases can be carried out. To gain insight into cellular details of AD for long-term diagnosing without physical biopsy, a noninvasive in vivo tool with a sub-micron subsurface resolution and high penetrability has to be used. In this presentation, we show that harmonic optical virtual biopsy can provide the required noninvasive cellular imaging, and is ideal for future clinical diagnosis of AD. Harmonic optical microscopy has been demonstrated to have the capability to reveal cellular morphology of human skin from epidermis to dermis layer. Third harmonic generation (THG), which is sensitive to inhomogeneous interfaces, can show the structures of skins, and can be used to reveal the morphological changes, for example, the thicken cuticle which is a common symptom of AD. Second harmonic generation (SHG), which occurs in non-centrosymmetric structures, has excellent contrast in collagen fibers and can show the pathological changes of dermis layer. Utilizing both THG and SHG, useful information may be given to facilitate the diagnosis of AD.

  9. Confocal microscopy

    Indian Academy of Sciences (India)

    This is elucidated by time-resolved confocal microscopy. Keywords. Porphyrin; micro-rod; anisotropy; exciton coupling; confocal microscopy. 1. Introduction. Supra-molecular assemblies of porphyrin play a central role in light harvesting during photosynthesis.1 10 In such a system, the absorbed photon shuttles between dif-.

  10. Use Of Low Light Image Microscopy To Monitor Genetically Engineered Bacterial Luciferase Gene Expression In Living Cells And Gene Activation Throughout The Development Of A Transgenic Organism

    Science.gov (United States)

    Langridge, W. H.; Escher, Alan P.; Baga, M.; O'Kane, Dennis J.; Wampler, John E.; Koncz, C.; Schell, John D.; Szalay, A. A.

    1989-12-01

    Procaryotic and eucaryotic expression vectors which contain a marker gene for selection of transformants linked to genes encoding bacterial luciferase for detection of promoter activated gene expression in vivo were used to transform the appropriate host organisms and drug resistant colonies, cells, or calli were obtained. Bacterial luciferase expression was measured by a luminescence assay for quantitative determination of promoter activation. The cellular localization of bacteria inside the host plant cell cytoplasm was achieved in a single infected plant cell based on the light emitting ability of the genetically engineered bacteria. In addition, the bacterial luciferase marker gene fusions were used to monitor cell type, tissue, and organ specific gene expression in transgenic plants in vivo. To monitor physiological changes during ontogeny of a transformed plant, low light video microscopy, aided by real time image processing techniques developed specifically to enhance extreme low light images, was successfully applied.

  11. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension.

    Science.gov (United States)

    Endres, Bradley T; Sandoval, Ruben M; Rhodes, George J; Campos-Bilderback, Silvia B; Kamocka, Malgorzata M; McDermott-Roe, Christopher; Staruschenko, Alexander; Molitoris, Bruce A; Geurts, Aron M; Palygin, Oleg

    2017-08-01

    Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSC alb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension. Copyright © 2017 the American Physiological Society.

  12. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis.

    Science.gov (United States)

    Marshall, W F; Marko, J F; Agard, D A; Sedat, J W

    2001-04-17

    Mitosis involves the interaction of many different components, including chromatin, microtubules, and motor proteins. Dissecting the mechanics of mitosis requires methods of studying not just each component in isolation, but also the entire ensemble of components in its full complexity in genetically tractable model organisms. We have developed a mathematical framework for analyzing motion in four-dimensional microscopy data sets that allows us to measure elasticity, viscosity, and forces by tracking the conformational movements of mitotic chromosomes. We have used this approach to measure, for the first time, the basic biophysical parameters of mitosis in wild-type Drosophila melanogaster embryos. We found that Drosophila embryo chromosomes are significantly less rigid than the much larger chromosomes of vertebrates. Anaphase kinetochore force and nucleoplasmic viscosity were comparable with previous estimates in other species. Motion analysis also allowed us to measure the magnitude of the polar ejection force exerted on chromosome arms during metaphase by individual microtubules. We find the magnitude of this force to be approximately 1 pN, a number consistent with force generation either by collision of growing microtubules with chromosomes or by single kinesin motors. Motion analysis allows noninvasive mechanical measurements to be made in complex systems. This approach should allow the functional effects of Drosophila mitotic mutants on chromosome condensation, kinetochore forces, and the polar ejection force to be determined.

  13. Scanning x-ray microscopy of living and freeze-dried blood cells in two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea.

    Science.gov (United States)

    Ueki, Tatsuya; Takemoto, Kuniko; Fayard, Barbara; Salomé, Murielle; Yamamoto, Akitsugu; Kihara, Hiroshi; Susini, Jean; Scippa, Silvia; Uyama, Taro; Michibata, Hitoshi

    2002-01-01

    Some ascidians (sea squirts) accumulate the transitional metal vanadium in their blood cells at concentrations of up to 350 mM, about 10(7) times its concentration found in seawater. There are approximately 10 different types of blood cell in ascidians. The identity of the true vanadium-containing blood cell (vanadocyte) is controversial and little is known about the subcellular distribution of vanadium. A scanning x-ray microscope installed at the ID21 beamline of the European Synchroton Radiation Facility to visualize vanadium in ascidian blood cells. Without fixation, freezing or staining realized the visualization of vanadium localized in living signet ring cells and vacuolated amoebocytes of two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea. A combination of transmission and fluorescence images of signet ring cells suggested that in both species the vacuoles contain vanadium.

  14. iSBatch: a batch-processing platform for data analysis and exploration of live-cell single-molecule microscopy images and other hierarchical datasets.

    Science.gov (United States)

    Caldas, Victor E A; Punter, Christiaan M; Ghodke, Harshad; Robinson, Andrew; van Oijen, Antoine M

    2015-10-01

    Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules.

  15. Comparison of methodologies for enumerating and detecting the viability of Ascaris eggs in sewage sludge by standard incubation-microscopy, the BacLight Live/Dead viability assay and other vital dyes.

    Science.gov (United States)

    Karkashan, Alaa; Khallaf, Basma; Morris, Jacqueline; Thurbon, Nerida; Rouch, Duncan; Smith, Stephen R; Deighton, Margaret

    2015-01-01

    The aim of this study was to evaluate the Live/Dead BacLight viability kit as a method for enumerating viable eggs of Ascaris suum in sewage sludge as a surrogate for the human roundworm. The number and viability status of eggs of A. suum were accurately measured directly in sewage sludge samples by the BacLight method, compared to the conventional incubation-microscopy procedure. BacLight stains were not toxic to A. suum eggs, in contrast to some conventional vital dyes which disrupted viable eggs. The method was effective for the direct examination of eggs in heavily contaminated samples or seeded sludge containing ∼200 eggs/g DS in sludge with 5% DS content. However, a recovery method would be necessary to examine samples with small numbers of eggs, for instance in sludge from regions where the prevalence of infection with Ascaris lumbricoides is low. The BacLight technique may therefore be an effective alternative to conventional incubation-microscopy for enumerating Ascaris eggs in contaminated field samples or to validate sludge treatment processes by examining decay rates of inoculated A. suum eggs in laboratory simulations. Most field samples would require recovery from an appropriate number of composite samples prior to vital staining.

  16. Photoacoustic Microscopy

    OpenAIRE

    Yao, Junjie; Wang, Lihong V.

    2013-01-01

    Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (∼1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal...

  17. Endoscopic Microscopy

    Directory of Open Access Journals (Sweden)

    Konstantin Sokolov

    2002-01-01

    Full Text Available In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology with contrast and resolution similar to that provided by standard histopathology – without need for physical tissue removal. In this article, we focus on optical imaging technologies that have the potential to dramatically improve the detection, prevention, and therapy of epithelial cancers. Epithelial pre-cancers and cancers are associated with a variety of morphologic, architectural, and molecular changes, which currently can be assessed only through invasive, painful biopsy. Optical imaging is ideally suited to detecting cancer-related alterations because it can detect biochemical and morphologic alterations with sub-cellular resolution throughout the entire epithelial thickness. Optical techniques can be implemented non-invasively, in real time, and at low cost to survey the tissue surface at risk. Our manuscript focuses primarily on modalities that currently are the most developed: reflectance confocal microscopy (RCM and optical coherence tomography (OCT. However, recent advances in fluorescence-based endoscopic microscopy also are reviewed briefly. We discuss the basic principles of these emerging technologies and their current and potential applications in early cancer detection. We also present research activities focused on development of exogenous contrast agents that can enhance the morphological features important for cancer detection and that have the potential to allow vital molecular imaging of cancer-related biomarkers. In conclusion, we discuss future improvements to the technology needed to develop robust clinical devices.

  18. Cross-Sectional Shape of Rat Mesenteric Arterioles at Branching Studied by Confocal Laser Microscopy

    Science.gov (United States)

    Nakano, Atushi; Minamiyama, Motomu; Niimi, Hideyuki

    This study was aimed to investigate the cross-sectional shape of mesenteric arterioles at branching, using confocal laser microscopy. Wistar rats (8 weeks, male) were anesthetized with thiobutabarbital sodium. Blood flow and microvascular network in the mesentery were observed using video microscopy. The rat intestine with mesentery was extracted and the intestinal vasculature was perfused with Krebs-Ringer and then fixed with paraformaldehyde under a static pressure of 100mmHg. A section of mesentery was isolated from the intestine, and spread up to the in vivo geometry based on the intravital microscopic observation. The mesentery section was stained with tetramethyl rhodamine isothiocyanate (TRITC)-phalloidin. The samples were observed under a confocal laser microscope. The cross-sectional image was re-sliced to measure the cross-sectional area and major/minor axes of the best fitting ellipse. The aspect ratio was defined in terms of the minor/major diameter ratio. The extended focus image of mesenteric arterioles showed that the cross-sectional shape was not circular but elliptic-like. The cross-sectional area of the parent vessel decreased from proximal to distal positions. The mean aspect ratio of the parent vessel was approximately 0.5, while that of the branching vessel was approximately 0.8. The flattened shape and variation of the cross-sectional area of arterioles requires some correction of in vivo data of the two-dimensional mesenteric microvasculature obtained using intravital microscopy.

  19. Contribution of laser Doppler flowmetry with venoarteriolar reflex, cold, and rewarming testing, and intravital capillaroscopy to diagnose Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Zeman J

    2014-05-01

    Full Text Available Jan Zeman,1 Oksana Turyanytsya,1 Vojtĕch Kapsa,2 Mojmír Eliáš3 1Department of Clinical Cardiology and Angiology, Hospital Bulovka, 2Charles University in Prague, Faculty of Mathematics and Physics, 3Kooperativa a.s., Pobrezni, Prague, Czech Republic Background: The early differential diagnosis of Raynaud’s phenomenon (RP is crucial for the prognosis and therapy of these patients. In our microcirculatory laboratory, we use intravital capillaroscopy (IC, plethysmography (P, and laser Doppler flowmetry (LDF for examining acrosyndromes. We combine LDF with venoarteriolar reflex test, cold test, and rewarming test to achieve more reliable diagnoses of acrosyndromes. Patients and methods: We examined LDF and IC according to a strict protocol using a battery of tests (venoarteriolar reflex test, cold test, rewarming test applied to five different groups of people and compared their results: healthy controls, primary Raynaud’s phenomenon (PRP, systemic scleroderma, vibration white finger, and peripheral artery occlusive disease. Our tests included 340 individuals (72 patients plus 268 controls. Results: Although all tests provided some differences between controls and patients, only the rewarming test offered significant results for differential diagnoses. Conclusion: IC and LDF combined with the battery of tests (venoarteriolar reflex test, cold test, rewarming test under standard conditions can be used as reliable tools to distinguish between PRP and some types of secondary RP (especially in the case of systemic scleroderma, vibration white fingers, or peripheral artery occlusive disease; RPs with organic occlusions of the small arteries causing the diseases. Our methodology can help to distinguish between other types of RP, as well. Keywords: Raynaud’s phenomenon, acrosyndrome, laser Doppler flowmetry, intravital capillaroscopy, scleroderma, vibration white finger, peripheral artery occlusive disease

  20. Intravital Microscopic Evaluation of the Effects of a CXCR2 Antagonist in a Model of Liver Ischemia Reperfusion Injury in Mice.

    Science.gov (United States)

    de Oliveira, Thiago Henrique Caldeira; Marques, Pedro Elias; Poosti, Fariba; Ruytinx, Pieter; Amaral, Flávio Almeida; Brandolini, Laura; Allegretti, Marcello; Proost, Paul; Teixeira, Mauro Martins

    2017-01-01

    Ischemia-reperfusion (IR) is a major contributor to graft rejection after liver transplantation. During IR injury, an intense inflammatory process occurs in the liver. Neutrophils are considered central players in the events that lead to liver injury. CXC chemokines mediate hepatic inflammation following reperfusion. However, few studies have demonstrated in real-time the behavior of recruited neutrophils. We used confocal intravital microscopy (IVM) to image neutrophil migration in the liver and to analyze in real-time parameters of neutrophil recruitment in the inflamed tissue in animals treated or not with reparixin, an allosteric antagonist of CXCR1/2 receptors. WT and LysM-eGFP mice treated with reparixin or saline were subjected to 60 min of ischemia followed by different times of reperfusion. Mice received Sytox orange intravenously to show necrotic DNA in IVM. The effect of reparixin on parameters of local and systemic reperfusion-induced injury was also investigated. IR induced liver injury and inflammation, as evidenced by high levels of alanine aminotransferase and myeloperoxidase activity, chemokine and cytokine production, and histological outcome. Treatment with reparixin significantly decreased neutrophil influx. Moreover, reparixin effectively suppressed the increase in serum concentrations of TNF-α, IL-6, and CCL3, and the reperfusion-associated tissue damage. The number of neutrophils in the liver increased between 6 and 24 h of reperfusion, whereas the distance traveled, velocity, neutrophil size and shape, and cluster formation reached a maximum 6 h after reperfusion and then decreased gradually. In vivo imaging revealed that reparixin significantly decreased neutrophil infiltration and movement and displacement of recruited cells. Moreover, neutrophils had a smaller size and less elongated shape in treated mice. Imaging of the liver by confocal IVM was successfully implemented to describe neutrophil behavior in vivo during liver injury

  1. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...

  2. Transmission electron microscopy on live catalysts

    NARCIS (Netherlands)

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  3. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    is based on two-photon laser/UV laser induced ROS development in onion (Allium cepa) epidermis cells in combination with H2O2. We have used the ROS sensitive probe CM-H2DCFDA (Molecular Probes) to visualize the spread of ROS spatially and timely. The ROS signal is monitored over a period of time using two...

  4. Multimodal hyperspectral optical microscopy

    Science.gov (United States)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; Hu, Dehong; Hendricks, Leif; Evans, James E.; Bhattarai, Ashish; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-11-01

    We describe a unique approach to hyperspectral optical microscopy, herein achieved by coupling a hyperspectral imager to various optical microscopes. Hyperspectral fluorescence micrographs of isolated fluorescent beads are first employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements. Different science applications of our instrument are then described. Spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE) layer reveals that optical densities on the order of 10-3 can be resolved by spatially averaging the recorded optical signatures. This is followed by three applications in the general areas of plasmonics and bioimaging. Notably, we deploy hyperspectral absorption microscopy to identify and image pigments within a simple biological system, namely, a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal spectral imaging measurements spanning the realms of several scientific disciplines.

  5. Fluorescence live cell imaging.

    Science.gov (United States)

    Ettinger, Andreas; Wittmann, Torsten

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy. © 2014 Elsevier Inc. All rights reserved.

  6. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Jeshtadi, Ananya; Burgos, Pierre; Stubbs, Christopher D; Parker, Anthony W; King, Linda A; Skinner, Michael A; Botchway, Stanley W

    2010-12-01

    Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.

  7. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD.

    Science.gov (United States)

    Lin, Kaifeng Lisa; Fulton, LeShara M; Berginski, Matthew; West, Michelle L; Taylor, Nicholas A; Moran, Timothy P; Coghill, James M; Blazar, Bruce R; Bear, James E; Serody, Jonathan S

    2014-03-06

    Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.

  9. Introduction to Modern Methods in Light Microscopy.

    Science.gov (United States)

    Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S

    2017-01-01

    For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

  10. Structured illumination microscopy and its new developments

    Directory of Open Access Journals (Sweden)

    Jianling Chen

    2016-05-01

    Full Text Available Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM, a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.

  11. Advances in multiphoton microscopy technology

    Science.gov (United States)

    Hoover, Erich E.; Squier, Jeff A.

    2013-01-01

    Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

  12. CLAFEM: Correlative light atomic force electron microscopy.

    Science.gov (United States)

    Janel, Sébastien; Werkmeister, Elisabeth; Bongiovanni, Antonino; Lafont, Frank; Barois, Nicolas

    2017-01-01

    Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  14. Estimation of reactogenicity of preparations produced on the basis of photoinactivated live vaccines against brucellosis and tularaemia on the organismic level.2. Using the method of speckle-microscopy with high spatial resolution

    Science.gov (United States)

    Ulianova, O. V.; Uianov, S. S.; Li, Pengcheng; Luo, Qingming

    2011-04-01

    The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals.

  15. Estimation of reactogenicity of preparations produced on the basis of photoinactivated live vaccines against brucellosis and tularaemia on the organismic level. 2. Using the method of speckle-microscopy with high spatial resolution

    International Nuclear Information System (INIS)

    Ulianova, O V; Uianov, S S; Li Pengcheng; Luo Qingming

    2011-01-01

    The method of speckle microscopy was adapted to estimate the reactogenicity of the prototypes of vaccine preparations against extremely dangerous infections. The theory is proposed to describe the mechanism of formation of the output signal from the super-high spatial resolution speckle microscope. The experimental studies show that bacterial suspensions, irradiated in different regimes of inactivation, do not exert negative influence on the blood microcirculations in laboratory animals. (optical technologies in biophysics and medicine)

  16. Image scanning microscopy: an overview.

    Science.gov (United States)

    Ward, E N; Pal, R

    2017-05-01

    For almost a century, the resolution of optical microscopy was thought to be limited by Abbé's law describing the diffraction limit of light. At the turn of the millennium, aided by new technologies and fluorophores, the field of optical microscopy finally surpassed the diffraction barrier: a milestone achievement that has been recognized by the 2014 Nobel Prize in Chemistry. Many super-resolution methods rely on the unique photophysical properties of the fluorophores to improve resolution, posing significant limitations on biological imaging, such as multicoloured staining, live-cell imaging and imaging thick specimens. Structured Illumination Microscopy (SIM) is one branch of super-resolution microscopy that requires no such special properties of the applied fluorophores, making it more versatile than other techniques. Since its introduction in biological imaging, SIM has proven to be a popular tool in the biologist's arsenal for following biological interaction and probing structures of nanometre scale. SIM continues to see much advancement in design and implementation, including the development of Image Scanning Microscopy (ISM), which uses patterned excitation via either predefined arrays or raster-scanned single point-spread functions (PSF). This review aims to give a brief overview of the SIM and ISM processes and subsequent developments in the image reconstruction process. Drawing from this, and incorporating more recent achievements in light shaping (i.e. pattern scanning and super-resolution beam shaping), this study also intends to suggest potential future directions for this ever-expanding field. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  18. Concepts for nanoscale resolution in fluorescence microscopy.

    Science.gov (United States)

    Hell, Stefan W; Dyba, Marcus; Jakobs, Stefan

    2004-10-01

    Spatio-temporal visualization of cellular structures by fluorescence microscopy has become indispensable in biology. However, the resolution of conventional fluorescence microscopy is limited by diffraction to about 180 nm in the focal plane and to about 500 nm along the optic axis. Recently, concepts have emerged that overcome the diffraction resolution barrier fundamentally. Formed on the basis of reversible saturable optical transitions, these concepts might eventually allow us to investigate hitherto inaccessible details within live cells.

  19. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  20. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  1. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  2. Microscopy and the helminth parasite.

    Science.gov (United States)

    Halton, David W

    2004-01-01

    Microscopy has a long and distinguished history in the study of helminth parasites and has made a singularly outstanding contribution to understanding how these complex animals organise their lives and relate to their hosts. Increasingly, the microscope has been used as a powerful investigative tool in multidisciplinary approaches to parasitological problems, placing emphasis on functional correlates rather than anatomical detail. In doing so, microscopy has also uncovered a number of attributes of parasites that are of wider significance in the field of biology. Parasite surfaces have understandably demanded most of the attention of microscopists, largely as a result of the pioneering studies using transmission electron microscopy. Their findings focused the attention of physiologists and immunologists on the tegument and cuticle of helminths and in doing so helped unravel the complex molecular exchanges that are fundamental to understanding host-parasite interactions. Scanning electron microscopy succeeded in augmenting these data by revealing novel microtopographical features of the host-parasite relationship, as well as proving invaluable in helminth taxonomy and in assessing the efficacy of test substances in drug screens. Control of helminth parasites has never been more critical: problems of drug resistance demand urgent action to identify exploitable targets for new generation anthelmintics. In this regard, the neuropeptide signalling system of helminths is envisioned as central to nerve-muscle function, and thereby a crucial regulatory influence on their motility, alimentation and reproduction. The use of immunocytochemistry interfaced with confocal scanning laser microscopy has not only been instrumental in discovering the peptidergic system of helminths and its potential for chemotherapeutic exploitation, but through increasingly sophisticated bio-imaging technologies has continued to help dissect and analyse the molecular dynamics of this and other

  3. Scanning Electrochemical Microscopy in Neuroscience

    Science.gov (United States)

    Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang

    2010-07-01

    This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.

  4. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  5. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    Science.gov (United States)

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  6. The 2015 super-resolution microscopy roadmap

    International Nuclear Information System (INIS)

    Hell, Stefan W; Sahl, Steffen J; Bates, Mark; Jakobs, Stefan; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J; Eggeling, Christian; Klenerman, David; Willig, Katrin I

    2015-01-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  7. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  9. Microscopy with slow electrons

    International Nuclear Information System (INIS)

    Frank, L.; Muellerova, I.; Delong, A.

    1994-01-01

    Low energy microscopy is treated as the low energy limit of electron microscopy as a whole in all its basic branches, i.e., the emission, transmission and scanning microscopy. The instrumental and methodological aspects are briefly discussed. They include the interaction of electrons with a solid, the contrast formation mechanisms, the instrumentation problems, and actual progress achieved in all three types of microscopy from the point of view of lowering the energy of electrons, impacting or leaving the specimen, down to the low energy range below 5 keV and the very low energy range below 50 eV. (author) 62 refs., 27 figs., 3 tabs

  10. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  11. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  12. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  13. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...

  14. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  15. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  16. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  17. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Steffen Dietzel

    Full Text Available Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.

  18. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    Science.gov (United States)

    Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.

    2016-10-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.

  19. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  20. Jones phase microscopy of transparent and anisotropic samples.

    Science.gov (United States)

    Wang, Zhuo; Millet, Larry J; Gillette, Martha U; Popescu, Gabriel

    2008-06-01

    We developed an interferometric microscopy technique, referred to as Jones phase microscopy, capable of extracting the spatially resolved Jones polarization matrix associated with transparent and anisotropic samples. This is a generalization of quantitative phase imaging, which is recovered from one diagonal element of the measured matrix. The principle of the technique is demonstrated with measurements of a liquid crystal spatial light modulator and the potential for live cell imaging with experiments on live neurons in culture.

  1. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  2. Intravital Microscopic Evidence that Polylactide-Polyglycolide (PLGA) delays Neo-Osteogenesis and Neo-Angiogenesis in Healing Bone

    Science.gov (United States)

    1993-01-01

    rabbit ear chamber. It was developed by Branemark mer will induce no foreign-body reaction. (Brinemark et al., 1964) and refined by Albrektsson Aliphatic...circulatory pressure gradients in living canine tibia J. Orthop. Scand. 62(246): 36. Orthop. Res. 8: 119-126. BrAnemark P-I, U Breine, B Johansson, PJ

  3. French Society of Microscopies, 11. Colloquium. SFM Paris 2009. Compilation of summaries

    International Nuclear Information System (INIS)

    2009-06-01

    The 11. conference of the SFM (French Society of Microscopies), held in Paris in 2009, was divided into 14 symposiums, 4 GN-MEBA symposiums, and 10 workshops. The titles of the symposiums are: homage to Nicolas Boisset, advanced microscopies, alternative microscopies, new optical and plasmonic imaging microscopies, dynamic and quantitative microscopy of the living matter, photonic and correlative electronic microscopy, near field microscopy, molecular and cellular electronic cryo-microscopy, cellular compartmentation and dynamics (CFPU), microscopy and materials, dynamical microscopy in materials science, minerals/bio-minerals and environment, structure and properties of nano-materials, sub-eV and sub-nm chemical bonds imaging. The titles of the GN-MEBA symposiums are: microscopy and metals, microscopy and minerals, microscopy and living beings, microscopy and new materials. The titles of the workshops are: Correlative Light and Electron Microscopy (CLEM), Cryo and electronic tomography in cellular biology, Cryo electronic microscopy of vitreous sections (CEMOVIS), Atomic Force Microscopy (AFM), ULTRASTEM, Digital Micrograph programming, Cryo-Microscopy and molecular tomography, Cryo-ultra-microtomy and immuno-marking, FIB, ASTAR(EBSD-MET) - rapid mapping of crystalline orientations and phases

  4. Assisted Living

    Science.gov (United States)

    Assisted living is for adults who need help with everyday tasks. They may need help with dressing, bathing, ... don't need full-time nursing care. Some assisted living facilities are part of retirement communities. Others are ...

  5. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.

    Science.gov (United States)

    Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke

    2017-06-14

    Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.

  6. Cluster computing for digital microscopy.

    Science.gov (United States)

    Carrington, Walter A; Lisin, Dimitri

    2004-06-01

    Microscopy is becoming increasingly digital and dependent on computation. Some of the computational tasks in microscopy are computationally intense, such as image restoration (deconvolution), some optical calculations, image segmentation, and image analysis. Several modern microscope technologies enable the acquisition of very large data sets. 3D imaging of live cells over time, multispectral imaging, very large tiled 3D images of thick samples, or images from high throughput biology all can produce extremely large images. These large data sets place a very large burden on laboratory computer resources. This combination of computationally intensive tasks and larger data sizes can easily exceed the capability of single personal computers. The large multiprocessor computers that are the traditional technology for larger tasks are too expensive for most laboratories. An alternative approach is to use a number of inexpensive personal computers as a cluster; that is, use multiple networked computers programmed to run the problem in parallel on all the computers in the cluster. By the use of relatively inexpensive over-the-counter hardware and open source software, this approach can be much more cost effective for many tasks. We discuss the different computer architectures available, and their advantages and disadvantages. Copyright 2004 Wiley-Liss, Inc.

  7. Multifunctional scanning ion conductance microscopy.

    Science.gov (United States)

    Page, Ashley; Perry, David; Unwin, Patrick R

    2017-04-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.

  8. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  9. Assisted Living

    Science.gov (United States)

    ... it, too. Back to top What is the Cost for Assisted Living? Although assisted living costs less than nursing home ... Primarily, older persons or their families pay the cost of assisted living. Some health and long-term care insurance policies ...

  10. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies.

    Science.gov (United States)

    Grandjean, Capucine L; Montalvao, Fabricio; Celli, Susanna; Michonneau, David; Breart, Beatrice; Garcia, Zacarias; Perro, Mario; Freytag, Olivier; Gerdes, Christian A; Bousso, Philippe

    2016-10-04

    Anti-CD20 monoclonal antibodies (mAbs) represent an effective treatment for a number of B cell malignancies and autoimmune disorders. Glycoengineering of anti-CD20mAb may contribute to increased anti-tumor efficacy through enhanced antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP) as reported by in vitro studies. However, where and how glycoengineered Ab may potentiate therapeutic responses in vivo is yet to be elucidated. Here, we have performed mouse liver transplants to demonstrate that the liver is sufficient to mediate systemic B cells depletion after anti-CD20 treatment. Relying on intravital two-photon imaging of human CD20-expressing mice, we provide evidence that ADP by Kupffer cells (KC) is a major mechanism for rituximab-mediated B cell depletion. Notably, a glycoengineered anti-mouse CD20 Ab but not its wild-type counterpart triggered potent KC-mediated B cell depletion at low doses. Finally, distinct thresholds for KC phagocytosis were also observed for GA101 (obinutuzumab), a humanized glycoengineered type II anti-CD20 Ab and rituximab. Thus, we propose that enhanced phagocytosis of circulating B cells by KC represents an important in vivo mechanism underlying the improved activity of glycoengineered anti-CD20 mAbs.

  11. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  12. Controllable tomography phase microscopy

    Science.gov (United States)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-03-01

    Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample's refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.

  13. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...... indicating regions of much higher thermal stability. It is seen that the benefits of the structural and temporal information available from SHG microscopy reveals complementary information to a traditional DSC measurement and enables a more complete understanding of the thermal denaturation process....

  14. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  15. Basics of Digital Microscopy.

    Science.gov (United States)

    Wallace, Callen T; Jessup, Morgan; Bernas, Tytus; Peña, Karina A; Calderon, Michael J; Loughran, Patricia A

    2018-01-18

    Modern digital microscopy combines the equipment of classical light microscopy with a computerized imaging system. The technique comprises image formation by optics, image registration by a camera, and saving of image data in a computer file. This chapter describes limitations that are particular to each of these processes, including optical resolution, efficiency of image registration, characteristics of image file formats, and data management. Further suggestions are given which serve, in turn, to help construct a set of guidelines aimed at optimization of digital microscopic imaging. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  16. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  17. Molecular expressions: exploring the world of optics and microscopy. http://microscopy.fsu.edu.

    Science.gov (United States)

    Eliceiri, Kevin W

    2004-08-01

    Our knowledge of the structure, dynamics and physiology of a cell has increased significantly in the last ten years through the emergence of new optical imaging modalities such as optical sectioning microscopy, computer- enhanced video microscopy and laser-scanning microscopy. These techniques together with the use of genetically engineered fluorophores have helped scientists visualize the 3-dimensional dynamic processes of living cells. However as powerful as these imaging tools are, they can often be difficult to understand and fully utilize. Below I will discuss my favorite website: The Molecular Expressions Web Site that endeavors to present the power of microscopy to its visitors. The Molecular Expressions group does a remarkable job of not only clearly presenting the principles behind these techniques in a manner approachable by lay and scientific audiences alike but also provides representative data from each as well.

  18. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    Science.gov (United States)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  19. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  20. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  1. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  2. Photoacoustic computed microscopy

    Science.gov (United States)

    Yao, Lei; Xi, Lei; Jiang, Huabei

    2014-05-01

    Photoacoustic microscopy (PAM) is emerging as a powerful technique for imaging microvasculature at depths beyond the ~1 mm depth limit associated with confocal microscopy, two-photon microscopy and optical coherence tomography. PAM, however, is currently qualitative in nature and cannot quantitatively measure important functional parameters including oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), oxygen saturation (sO2), blood flow (BF) and rate of oxygen metabolism (MRO2). Here we describe a new photoacoustic microscopic method, termed photoacoustic computed microscopy (PACM) that combines current PAM technique with a model-based inverse reconstruction algorithm. We evaluate the PACM approach using tissue-mimicking phantoms and demonstrate its in vivo imaging ability of quantifying HbO2, HbR, sO2, cerebral BF and cerebral MRO2 at the small vessel level in a rodent model. This new technique provides a unique tool for neuroscience research and for visualizing microvasculature dynamics involved in tumor angiogenesis and in inflammatory joint diseases.

  3. Direct immunofluorescence microscopy

    NARCIS (Netherlands)

    Diercks, G.F.H.; Pas, Hendrikus; Jonkman, Marcel

    2016-01-01

    Direct immunofluorescence plays an important role in the diagnosis of autoimmune bullous diseases. The purpose of direct immunofluorescence microscopy is to detect in vivo antibodies in patient's skin or mucosa. Direct immunofluorescence of pemphigus shows depositions of immunoglobulins and/or

  4. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  5. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  6. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  7. Advanced microscopy of microbial cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  8. Live cardiomyocyte imaging via hybrid TPEF-SHG microscopy

    Science.gov (United States)

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Liu, Qiuying; Ma, Zhen; Borg, Thomas K.; Gao, Bruce Z.

    2012-03-01

    Utilizing a custom-built, on-stage incubator-combined, two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) imaging system, we observed new-sarcomere addition in rat neonatal cardiomyocytes during 10 hours of on-stage incubation. This addition occurred at one end of an existing myofibril, the sides of existing myofibrils, and at the interstice of several separated myofibrils; in the cases of the latter two, we observed mature myofibrils acting as templates. We found that during sarcomeric addition, myosin filaments are assembled onto the premyofibril laterally. This lateral addition, which proceeds stepwise along the axial direction, plays an important role in the accumulation of Z-bodies to form mature Z-disks and in the regulation of sarcomeric length during maturation.

  9. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  10. Healthy Living

    Science.gov (United States)

    ... Kids Health Kids Environment Kids Health Menu Topics Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works ... Scientist Coloring Science Experiments Stories Lessons Topics Expand Environment & Health Healthy Living Pollution Reduce, Reuse, Recycle Science – How It Works ...

  11. Assisted Living

    Science.gov (United States)

    ... may also be higher than in other supported-living environments. Adult Foster Care Foster care homes generally provide ... board, and some help with activities of daily living. This is provided by ... more home-like environment. Regulations for foster care vary by state, and ...

  12. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  13. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  14. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  15. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  16. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  17. Healthy living

    Science.gov (United States)

    ... the bones, heart, and lungs, tones muscles, improves vitality, relieves depression, and helps you sleep better. Talk ... has a problem with alcohol. Many people whose lives have been affected by alcohol get benefit from ...

  18. Bachelor Living

    Science.gov (United States)

    Germer, Sondra

    1974-01-01

    Male high school students in a Bachelor Living Class observed methods of child care including bottle feeding, spoon feeding, changing diapers, and method of holding. The purpose was for the students to grasp a better understanding of child development. (EK)

  19. Live Well

    Science.gov (United States)

    ... Syndicated Content Podcasts Slide Sets Act Against AIDS Live Well Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Being aware of your overall health beyond HIV can ...

  20. Living PSA

    International Nuclear Information System (INIS)

    Evans, M.G.K.

    1997-01-01

    The aim of this presentation is to gain an understanding of the requirements for a PSA to be considered a Living PSA. The presentation is divided into the following topics: Definition; Planning/Documentation; Task Performance; Maintenance; Management. 4 figs

  1. Applications of microscopy in Salmonella research.

    Science.gov (United States)

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  2. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  3. Deep Learning Microscopy

    OpenAIRE

    Rivenson, Yair; Gorocs, Zoltan; Gunaydin, Harun; Zhang, Yibo; Wang, Hongda; Ozcan, Aydogan

    2017-01-01

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with rem...

  4. Lived Lives: A Pavee Perspective

    Science.gov (United States)

    Malone, Kevin M; McGuinness, Seamus G; Cleary, Eimear; Jefferies, Janis; Owens, Christabel; Kelleher, Cecily C

    2017-04-13

    Background: Suicide is a significant public health concern, which impacts on health outcomes. Few suicide research studies have been interdisciplinary. We combined a psychobiographical autopsy with a visual arts autopsy, in which families donated stories, images and objects associated with the lived life of a loved one lost to suicide. From this interdisciplinary research platform, a mediated exhibition was created ( Lived Lives ) with artist, scientist and families, co-curated by communities, facilitating dialogue, response and public action around suicide prevention. Indigenous ethnic minorities (IEMs) bear a significant increased risk for suicide. Irish Travellers are an IEM with social and cultural parallels with IEMs internationally, experiencing racism, discrimination, and poor health outcomes including elevated suicide rates (SMR 6.6). Methods: An adjusted Lived Lives exhibition, Lived Lives: A Pavee Perspective manifested in Pavee Point, the national Traveller and Roma Centre. The project was evaluated by the Travelling Community as to how it related to suicide in their community, how it has shaped their understanding of suicide and its impacts, and its relevance to other socio-cultural contexts, nationally and internationally. The project also obtained feedback from all relevant stakeholders. Evaluation was carried out by an international visual arts research advisor and an independent observer from the field of suicide research. Results: Outputs included an arts-science mediated exhibition with reference to elevated Irish Traveller suicide rates. Digital online learning materials about suicide and its aftermath among Irish Travellers were also produced. The project reached its target audience, with a high level of engagement from members of the Travelling Community. Discussion: The Lived Lives methodology navigated the societal barriers of stigma and silence to foster communication and engagement, working with cultural values, consistent with an adapted

  5. Physical foundations of electron microscopy

    International Nuclear Information System (INIS)

    Alexander, H.

    1997-01-01

    The following topics were dealt with: Physical foundations, dynamic theory of diffraction contrasts, dynamic theory of electron diffraction, electron diffraction on crystals with defects, high-resolution electron microscopy, analytical electron microscopy

  6. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectrosc......Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...... spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can...... be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  7. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  8. Aberrations and adaptive optics in super-resolution microscopy.

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy.

  9. Analytics on Transmission Electron Microscopy

    International Nuclear Information System (INIS)

    Keum, Dong Hwa; Kim, Geung Ho; Lee, Hwak Ju and others

    1996-06-01

    This book gives descriptions of transmission electron microscopy, which deals with electron microscopy and materials science, history of electron microscopy, application of analytics on transmission electron microscopy, machine requirement of transmission electron microscopy like electron gun and TEM image and function, crystal diffraction, electron diffraction, Kikuchi's diffraction figure, analysis of diffraction figure, contrast of TEM image like absorption contrast, and phase contrast, Fresnel's diffraction and TEM contrast, thickness fringe, column approximation, analysis of diffraction contrast, image simulation, and electron energy loss spectrometry.

  10. Waveguide optical microscopy

    Science.gov (United States)

    Egorov, Alexandre A.

    1997-08-01

    The theoretical aspects of the light scattering on the statistical irregularities of the planar optical waveguide are described. The analysis of direct and inverse light scattering problems is accomplished. The theoretical investigation predicts: the lateral resolution can attain approximately 20 nm and the vertical resolution (in rms height) can attain approximately 1 angstrom. The limiting lateral resolution is a approximately 15-times less than Abbe's diffraction limit. Thus the superresolution may be accomplished by the waveguide optical microscopy (WOM). The increasing of WOM's resolution depends on a-priori information of the irregularities and on a sufficiently high signal-to-noise ratio. A possible using of WOM for bioecological researchers has been mentioned.

  11. Radioactive ion microscopy

    International Nuclear Information System (INIS)

    Johnson, S.A.

    1980-01-01

    A novel approach has been studied for the characterization of specimens with a spatial resolution at the micron level. The technique dubbed Radioactive Ion Microscopy, (RIM) uses a beam of radioactive ions, specifically tritium ions, of sufficient energy to pass through a thick specimen (e.g. greater than or equal to 10 μm). After passage through the object, the ions are implanted in a stack of thin mylar sheets (1.5 microns thick). Their rest position is proportional to the thickness and the density of the sample transversed. The location of the radioactive species can be pinpointed by autoradiographing the successive mylar foils. The radiographs are photographed and converted into digital data which is used to generate a density map of the object. From these plots, physical and chemical features may be deduced. The feasibility of RIM has been demonstrated with specimen images obtained from different objects exposed to a 3 MeV 3 H + beam. The specimens used included metal grids to examine spatial resolution and a series of biological samples (cork, wood, mosquito wing) to explore the performance and applicability of RIM. On these samples, which were 10 to 30 microns thick with surface areas of up to 1 cm 2 , a lateral resolution of approx. 1.5 microns was achieved. A depth resolution or sensitivity to density gradients of 0.2 mg/cm 2 was obtained. These detailed specimen images can be obtained with low beam exposures, e.g., in the case of tritium approx. 6 x 10 10 ions/cm 2 must be implanted, which corresponds to an irradiation of approx. 10 pA/cm 2 for 1000 s. The corresponding low radiation doses and minimal heat dissipation render RIM well suited for biological specimens. In comparison to light microscopy, RIM features enhanced microscopic capabilities as it can handle objects that are at the same time opaque to light, thick (up to tens of microns), and fragile

  12. Extraterrestrial optical microscopy.

    Science.gov (United States)

    Soffen, G A

    1969-07-01

    An examination of the literature concerned with the use of microscopy for planetary investigation reveals a serious deficiency of current efforts. Many scientists have recommended the use of a microscope for planetary investigation [Biology and the Exploration of Mars, C. S. Pittendrigh, W. Vishniac, and J. P. T. Pearman, Eds. (National Academy of Science-National Research Council, Washington, D. C., 1966), (a) D. Mazia, p. 31; (b) J. Lederberg, p. 137; (c) S. Fox, pp. 219, 226; (d) D. Glaser, p. 326; (e) D. Glaser, J. McCarthy, and M. Minsky, pp. 333, 341; (f) D. G. Rea, pp. 347-426; (g) P. G. Conger, pp. 409-414; (h) M. H. Fernandez, pp. 414-425; (i) D. Schwartz, pp.425-426 . H. P. Klein, Some Biological Problems in the Search for Extraterrestrial Life (American Astronautical Society, Washington, D. C., 1968).] but few are involved in developing the experiment. Since this is a particularly timely period for the preparation of planetary lander experiments, the reasons for this lack of effort would appear to be limited resources or an unclear course of action, rather than lack of interest. Microscopy used for planetary investigation is chiefly the interest of the biologist and the mineralogist. In both cases the desire to use magnifying optics in order to observe objects of submillimeter size is based upon the rich body of knowledge we have acquired from observing the terrestrial microcosm. In addition to purely imaging, certain special optical techniques, e.g., polarimetry, colorimetry, phase contrast, etc., can be used to enhance the interpretation of microscopic imaging data. This interaction of the optical with the chemical or structural aspects of nature can be used to great advantage in the exploration of extraterrestrial biology and mineralogy.

  13. Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy.

    Science.gov (United States)

    Williams, Rebecca M; Flesken-Nikitin, Andrea; Ellenson, Lora Hedrick; Connolly, Denise C; Hamilton, Thomas C; Nikitin, Alexander Yu; Zipfel, Warren R

    2010-06-01

    Ovarian cancer remains the most frequently lethal of the gynecologic cancers owing to the late detection of this disease. Here, by using human specimens and three mouse models of ovarian cancer, we tested the feasibility of nonlinear imaging approaches, the multiphoton microscopy (MPM) and second harmonic generation (SHG) to serve as complementary tools for ovarian cancer diagnosis. We demonstrate that MPM/SHG of intrinsic tissue emissions allows visualization of unfixed, unsectioned, and unstained tissues at a resolution comparable to that of routinely processed histologic sections. In addition to permitting discrimination between normal and neoplastic tissues according to pathological criteria, the method facilitates morphometric assessment of specimens and detection of very early cellular changes in the ovarian surface epithelium. A red shift in cellular intrinsic fluorescence and collagen structural alterations have been identified as additional cancer-associated changes that are indiscernible by conventional pathologic techniques. Importantly, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated by using a "stick" objective lens. Intravital detection of neoplastic lesions has been further facilitated by low-magnification identification of an indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken together, these results demonstrate that MPM may be translatable to clinical settings as an endoscopic approach suitable for high-resolution optical biopsies as well as a pathology tool for rapid initial assessment of ovarian cancer samples.

  14. Strategies for High-Resolution Imaging of Epithelial Ovarian Cancer by Laparoscopic Nonlinear Microscopy1

    Science.gov (United States)

    Williams, Rebecca M; Flesken-Nikitin, Andrea; Ellenson, Lora Hedrick; Connolly, Denise C; Hamilton, Thomas C; Nikitin, Alexander Yu; Zipfel, Warren R

    2010-01-01

    Ovarian cancer remains the most frequently lethal of the gynecologic cancers owing to the late detection of this disease. Here, by using human specimens and three mouse models of ovarian cancer, we tested the feasibility of nonlinear imaging approaches, the multiphoton microscopy (MPM) and second harmonic generation (SHG) to serve as complementary tools for ovarian cancer diagnosis. We demonstrate that MPM/SHG of intrinsic tissue emissions allows visualization of unfixed, unsectioned, and unstained tissues at a resolution comparable to that of routinely processed histologic sections. In addition to permitting discrimination between normal and neoplastic tissues according to pathological criteria, the method facilitates morphometric assessment of specimens and detection of very early cellular changes in the ovarian surface epithelium. A red shift in cellular intrinsic fluorescence and collagen structural alterations have been identified as additional cancer-associated changes that are indiscernible by conventional pathologic techniques. Importantly, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated by using a “stick” objective lens. Intravital detection of neoplastic lesions has been further facilitated by low-magnification identification of an indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken together, these results demonstrate that MPM may be translatable to clinical settings as an endoscopic approach suitable for high-resolution optical biopsies as well as a pathology tool for rapid initial assessment of ovarian cancer samples. PMID:20563260

  15. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens....... Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  16. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  17. Virtual microscopy in pathology education.

    Science.gov (United States)

    Dee, Fred R

    2009-08-01

    Technology for acquisition of virtual slides was developed in 1985; however, it was not until the late 1990s that desktop computers had enough processing speed to commercialize virtual microscopy and apply the technology to education. By 2000, the progressive decrease in use of traditional microscopy in medical student education had set the stage for the entry of virtual microscopy into medical schools. Since that time, it has been successfully implemented into many pathology courses in the United States and around the world, with surveys indicating that about 50% of pathology courses already have or expect to implement virtual microscopy. Over the last decade, in addition to an increasing ability to emulate traditional microscopy, virtual microscopy has allowed educators to take advantage of the accessibility, efficiency, and pedagogic versatility of the computer and the Internet. The cost of virtual microscopy in education is now quite reasonable after taking into account replacement cost for microscopes, maintenance of glass slides, and the fact that 1-dimensional microscope space can be converted to multiuse computer laboratories or research. Although the current technology for implementation of virtual microscopy in histopathology education is very good, it could be further improved upon by better low-power screen resolution and depth of field. Nevertheless, virtual microscopy is beginning to play an increasing role in continuing education, house staff education, and evaluation of competency in histopathology. As Z-axis viewing (focusing) becomes more efficient, virtual microscopy will also become integrated into education in cytology, hematology, microbiology, and urinalysis.

  18. Recent applications of superresolution microscopy in neurobiology.

    Science.gov (United States)

    Willig, Katrin I; Barrantes, Francisco J

    2014-06-01

    Chemical synapses in brain are structural differentiations where excitatory or inhibitory signals are vectorially transmitted between two neurons. Excitatory synapses occur mostly on dendritic spines, submicron sized protrusions of the neuronal dendritic arborizations. Axons establish contacts with these tiny specializations purported to be the smallest functional processing units in the central nervous system. The minute size of synapses and their macromolecular constituents creates an inherent difficulty for imaging but makes them an ideal object for superresolution microscopy. Here we discuss some representative examples of nanoscopy studies, ranging from quantification of receptors and scaffolding proteins in postsynaptic densities and their dynamic behavior, to imaging of synaptic vesicle proteins and dendritic spines in living neurons or even live animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydrodynamic force microscopy

    Science.gov (United States)

    Ulrich, Elaine Schmid

    Microfluidic networks and microporous materials have long been of interest in areas such as hydrology, petroleum engineering, chemical and electrochemical engineering, medicine and biochemical engineering. With the emergence of new processes in gas separation, cell sorting, ultrafiltration, and advanced materials synthesis, the importance of building a better qualitative and quantitative understanding of these key technologies has become apparent. However, microfluidic measurement and theory is still relatively underdeveloped, presenting a significant obstacle to the systematic design of microfluidic devices and materials. Theoretical challenges arise from the breakdown of classical viscous flow models as the flow dimensions approach the mean free path of individual molecules. Experimental challenges arise from the lack of flow profilometry techniques at sub-micron length scales. Here we present an extension of scanning probe microscopy techniques, which we have termed Hydrodynamic Force Microscopy (HFM). HFM exploits fluid drag to profile microflows and to map the permeability of microporous materials. In this technique, an atomic force microscope (AFM) cantilever is scanned close to a microporous sample surface. The hydrodynamic interactions arising from a pressure-driven flow through the sample are then detected by mapping the deflection of an AFM cantilever. For gas flows at atmospheric pressure, HFM has been shown to achieve a velocity sensitivity of 1 cm/s with a spatial resolution of ˜ 10 nm. This compares very favorably to established techniques such as hot-wire and laser Doppler anemometry, whose spatial resolutions typically exceed 1 mum and which may rely on the use of tracer particles or flow markers1. We demonstrate that HFM can successfully profile Poiseuille flows inside pores as small as 100 nm and can distinguish Poiseuille flow from uniform flow for short entry lengths. HFM detection of fluid jets escaping from porous samples can also reveal a

  20. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  1. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  2. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  3. Real-time visualization of intracellular hydrodynamics in single living cells

    NARCIS (Netherlands)

    Potma, Eric O.; Boeij, Wim P. de; Haastert, Peter J.M. van; Wiersma, Douwe A.

    2001-01-01

    Intracellular water concentrations in single living cells were visualized by nonlinear coherent anti-Stokes Raman scattering (CARS) microscopy. In combination with isotopic exchange measurements, CARS microscopy allowed the real-time observation of transient intracellular hydrodynamics at a high

  4. Calibration of a DG–model for fluorescence microscopy

    DEFF Research Database (Denmark)

    Hansen, Christian Valdemar

    ) is an impor- tant and widely used microscopy method for visualization of molecular transport processes in living cells. Thus, the motivation for making an automated reliable analysis of the image data is high. In this contribution, we present and comment on the calibration of a Discontinuous...

  5. Ultraviolet microscopy aids in cytological and biomedical research

    Science.gov (United States)

    Schlenk, F.; Svihla, B.

    1967-01-01

    Ultraviolet microscopy is used by cytologists and biochemists to study the morphological and physiological changes in the living cell under varied culture conditions. The yeast cell is used because of its content of ultraviolet absorbing materials and its lack of motility.

  6. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  7. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    Science.gov (United States)

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  8. Lively package

    International Nuclear Information System (INIS)

    Jaremko, G.

    1997-01-01

    Progress on the Lloydminster Heavy Oil Interpretive Centre, sponsored by the Lloydminster Oilfield Technical Society and expected to open in late 1998, was discussed. Some $150,000 of the $750,000 budget is already in the bank, and another $150,000 is in the pipeline. The Centre will be added to an existing and well-established visitor's site. It is reported to contain a lively and imaginatively-designed exhibit package, and promises to become a combination of educational tool and tourist attraction for the town of Lloydminster, Saskatchewan, in the heart of heavy oil country

  9. Vibrational phase contrast CARS microscopy

    NARCIS (Netherlands)

    Jurna, M.

    2010-01-01

    This thesis describes a new technique that improves specificity, selectivity and sensitivity in coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy is a nonlinear optical technique that utilizes specific bonds of molecules, sometimes referred to as the `fingerprint' of a

  10. Advanced computing in electron microscopy

    CERN Document Server

    Kirkland, Earl J

    2010-01-01

    This book features numerical computation of electron microscopy images as well as multislice methods High resolution CTEM and STEM image interpretation are included in the text This newly updated second edition will bring the reader up to date on new developments in the field since the 1990's The only book that specifically addresses computer simulation methods in electron microscopy

  11. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  12. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  13. Living Lands

    DEFF Research Database (Denmark)

    Christensen, Suna Møller

    2015-01-01

    in West Greenland were carried out when it was hunting season for mux ox and caribou, exploring relations between education and perception of environment. All these trips have called for attention to the relation between actual engagement with ‘nature’ and experienced human-nature relations. Based on my......, hunters attended to questions like safe-journeying on ice or the role of natural surroundings in children’s education, in ways revealing a relational perception of ‘nature’ and dissolving culture-nature dualisms. Hunters’ experiences in living the land afforded children a dwelling position from which...... to grow with the features of the land. Framed this way, ‘nature’ was regarded as part of the social world. I suggest that learning among Arctic hunters is social and twofold. First, we can learn how human-environment relations influence individual life trajectories. Secondly, ‘nature’ as part...

  14. Insufficient Living

    DEFF Research Database (Denmark)

    Rasmussen, Trine Bernholdt; Zwisler, Ann-Dorthe; Moons, Philip

    2015-01-01

    BACKGROUND:: Infective endocarditis (IE) is a traumatic health event, and recovery is often associated with massive physical deconditioning and reduced quality of life. Patients also report reduced cognitive functioning and are at risk of developing anxiety and depression as well as posttraumatic...... stress disorder. Although studies have found that survivors of IE have impaired physical functioning and mental health, little is known about patient experiences contributing to these findings. OBJECTIVE:: The aim of this study was to describe patient experiences of recovery after IE. SUBJECTS...... interpretation and discussion. FINDINGS:: The overall concept that emerged was "Insufficient Living." Patients all experienced a life after illness, which was perceived as insufficient. The overall concept can be interpreted in terms of the following 3 themes. The first was "an altered life," where participants...

  15. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... is a collection of material from the case study of an ongoing PhD study titled: LIVING EDGE - The Architectural and Urban Prospect of Domestic Borders. The paper includes a description of the problem analysis, research question, method, discussion and conclusion.......“What is an edge? We can think about an edge as having been of two sorts. In one, it is a border. In the other, it is a boundary. A border is a zone of interaction where things meet and intersect. A boundary is a place where something ends” Architects and planners normally approach domestic borders...

  16. Color-coded intravital imaging demonstrates a transforming growth factor-β (TGF-β) antagonist selectively targets stromal cells in a human pancreatic-cancer orthotopic mouse model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Miyake, Kentaro; Hwang, Ho Kyoung; Kiyuna, Tasuku; DeLong, Jonathan C; Lwin, Thinzar M; Matsuyama, Ryusei; Mori, Ryutaro; Kumamoto, Takafumi; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2017-05-19

    Pancreatic cancer is a recalcitrant malignancy, partly due to desmoplastic stroma which stimulates tumor growth, invasion, and metastasis, and inhibits chemotherapeutic drug delivery. Transforming growth factor-β (TGF-β) has an important role in the formation of stromal desmoplasia. The present study describes the ability of color-coded intravital imaging to demonstrate the efficacy of a TGF-β inhibitor to target stroma in an orthotopic mouse model of pancreatic cancer. The BxPC-3 human pancreatic adenocarcinoma cell line expressing green fluorescent protein (GFP), which also has a high TGF-β expression level, was used in an orthotopic model in transgenic nude mice ubiquitously expressing red fluorescent protein (RFP). Fourteen mice were randomized into a control group (n = 7, vehicle, i.p., weekly, for 3 weeks) and a treated group (n = 7, SB431542 [TGF-β receptor type I inhibitor] 0.3 mg, i.p., weekly, for 3 weeks). Stromal cells expressing RFP and cancer cells expressing GFP were observed weekly for 3 weeks by real-time color-coded intravital imaging. The RFP fluorescence area from the stromal cells, relative to the GFP fluorescence area of the cancer cells, was significantly decreased in the TGF-β-inhibitor-treatment group compared to the control group. The present study demonstrated color-coded imaging in an orthotopic pancreatic-cancer cell-line mouse model can readily detect the selective anti-stromal-cell targeting of a TGF-β inhibitor.

  17. Angiographic examinations of the circulatory development of living chick embryos

    International Nuclear Information System (INIS)

    Stoeter, P.; Buchhoecker, M.; Bruzek, W.; Drews, U.; Schulze, K.; Tuebingen Univ.; Tuebingen Univ.

    1980-01-01

    In chick embryos of an age of incubation of 5-14 days, the physiological development of the circulation and the morphological differentation of the arterical system were studied by intravital and postmortal angiography. For the examinations of the living embryos, a special radiographic and injection technique had to be developed. The contrast medium was injected into the umbilical veins and transported by the actions of the embryonic heart. Continuous ECG recordings showed no marked interference of the injections with the cardiac activity. According to the angiographic findings, the circulation is relatively fast within the main arteries, but the capillary perfusion is prolonged and lasts up to several minutes. The average circulatory velocity of the blood stream within the carotid artery increases parallel to the arterial enlargement, whereas the circulatory time decreases and the number of heart beats during the period of carotid opacification does not change to a great extent. By this, a steady transport of gas and nutritional material may be achieved in the growing arterial system. (orig.) [de

  18. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  19. ISS Live!

    Science.gov (United States)

    Price, Jennifer; Harris, Philip; Hochstetler, Bruce; Guerra, Mark; Mendez, Israel; Healy, Matthew; Khan, Ahmed

    2013-01-01

    International Space Station Live! (ISSLive!) is a Web application that uses a proprietary commercial technology called Lightstreamer to push data across the Internet using the standard http port (port 80). ISSLive! uses the push technology to display real-time telemetry and mission timeline data from the space station in any common Web browser or Internet- enabled mobile device. ISSLive! is designed to fill a unique niche in the education and outreach areas by providing access to real-time space station data without a physical presence in the mission control center. The technology conforms to Internet standards, supports the throughput needed for real-time space station data, and is flexible enough to work on a large number of Internet-enabled devices. ISSLive! consists of two custom components: (1) a series of data adapters that resides server-side in the mission control center at Johnson Space Center, and (2) a set of public html that renders the data pushed from the data adapters. A third component, the Lightstreamer server, is commercially available from a third party and acts as an intermediary between custom components (1) and (2). Lightstreamer also provides proprietary software libraries that are required to use the custom components. At the time of this reporting, this is the first usage of Web-based, push streaming technology in the aerospace industry.

  20. Shape Descriptors for Scanning Probe Recognition Microscopy

    Science.gov (United States)

    Chen, Qian; Ayres, Virginia; Udpa, Lalita

    2003-03-01

    Direct investigation of, and interaction with, biological objects at the macromolecular level will provide insight into multiple physical regulatory processes. Scanning probe microscopy (SPM) techniques have the potential to provide a direct interaction with living specimens at the macromolecular scale. A key enabling capability is to replace the current x-y raster scan with site-specific direct investigation. In the present research we will discuss the site-specific recognition techniques that are appropriate for tubular and globular biological features. The SPM image will be input to an image segmentation and boundary detection algorithm to extract closed boundaries of features in the image. The boundary information will be parameterized using Fourier descriptors, which are rotation invariant descriptors to be used for recognizing the segmented shape.

  1. Live cell refractometry using microfluidic devices.

    Science.gov (United States)

    Lue, Niyom; Popescu, Gabriel; Ikeda, Takahiro; Dasari, Ramachandra R; Badizadegan, Kamran; Feld, Michael S

    2006-09-15

    Using Hilbert phase microscopy for extracting quantitative phase images, we measured the average refractive index associated with live cells in culture. To decouple the contributions to the phase signal from the cell refractive index and thickness, we confined the cells in microchannels. The results are confirmed by comparison with measurements of spherical cells in suspension.

  2. Contributed Review: Review of integrated correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy

  3. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  4. Use of astronomy filters in fluorescence microscopy.

    Science.gov (United States)

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  5. Living with Parkinson's

    Science.gov (United States)

    ... are here Home › Living With Parkinson's Living With Parkinson's While living with Parkinson's can be challenging, there ... life and live well with Parkinson's disease. Managing Parkinson's Read More In Your Area Read More Resources & ...

  6. Living Nanomachines

    Science.gov (United States)

    Carlier, M.-F.; Helfer, E.; Wade, R.; Haraux, F.

    The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein-microtubule system, responsible for flagellar motility, and the kinesin-microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid-protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis

  7. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  8. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  9. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  10. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.

    OpenAIRE

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W.; Jakobs, Stefan

    2016-01-01

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In t...

  11. Multiphoton multifocal microscopy exploiting a diffractive optical element

    Science.gov (United States)

    Sacconi, L.; Froner, E.; Antolini, R.; Taghizadeh, M. R.; Choudhury, A.; Pavone, F. S.

    2003-10-01

    Multiphoton multifocal microscopy (MMM) usually has been achieved through a combination of galvo scanners with microlens arrays, with rotating disks of microlens arrays, and cascaded beam splitters with asynchronous rastering of scanning mirrors. Here we describe the achievement of a neat and compact MMM by use of a high-diffraction-efficiency diffractive-optic element that generates a multiple-spot grid of uniform intensity to achieve higher fidelity in imaging of live cells at adequate speeds.

  12. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy

    Directory of Open Access Journals (Sweden)

    Segall Jeffrey E

    2005-05-01

    Full Text Available Abstract Background The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy. Results Here we describe a method for the simultaneous imaging, by multiphoton microscopy, of Green Fluorescent Protein, Cyan Fluorescent Protein and collagen in vivo in living tumors. This novel method enables: 1 the simultaneous visualization of overall cell shape and sub-cellular structures such as the plasma membrane or proteins of interest in cells inside living animals, 2 direct comparison of the behavior of single cells from different cell lines in the same microenvironment in vivo. Conclusion Using this multi-fluor, multiphoton technique, we demonstrate that motility and metastatic differences between carcinoma cells of differing metastatic potential can be imaged in the same animal simultaneously at sub-cellular resolution.

  13. Four-dimensional electron microscopy.

    Science.gov (United States)

    Zewail, Ahmed H

    2010-04-09

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  14. Light Microscopy at Maximal Precision

    Science.gov (United States)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  15. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different

  16. Four-Dimensional Electron Microscopy

    Science.gov (United States)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  17. Near-field Optical Microscopy

    NARCIS (Netherlands)

    Ruiter, A.G.T.

    1997-01-01

    Near-field scanning optical microscopy (NSOM) is one of the most recent scanning probe techniques. In this technique, an optical probe is brought in the vicinity of the sample surface, in the near-field zone. The microscope can either work in illumination mode, in which the probe consists of a

  18. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  19. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  20. Filter-Dense Multicolor Microscopy.

    Directory of Open Access Journals (Sweden)

    Siavash Kijani

    Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.

  1. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research [1]. By means of transmission electron microscopy (TEM) it is possible to obtain deep insight in the structure, composition and reactivity of photocatalysts for their further optimization [2]. We have constructed a novel...

  2. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly...

  4. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting...

  5. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... for visualization of variation between cells in phenotypic traits such as gene expression....

  6. PHYSICS OF MICROWAVES IN MICROSCOPY

    NARCIS (Netherlands)

    KOK, LP

    1990-01-01

    Microwave technology can help in the preparation of samples for microscopy in many different ways. This paper discusses the physics of microwaves. It gives the theoretical background to understand the practical procedures. Some peculiarities in the optics of microwaves are pointed out. Diffusion

  7. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  8. Boundary segmentation for fluorescence microscopy using steerable filters

    Science.gov (United States)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  9. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  10. Activities of Daily Living

    Science.gov (United States)

    ... With Parkinson's › Managing Parkinson's › Activities of Daily Living Activities of Daily Living Sometimes Parkinson’s disease (PD) can complicate the basic daily activities a person with living with Parkinson’s once did ...

  11. Selective sensitivity in Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  12. All-optical photoacoustic microscopy

    Directory of Open Access Journals (Sweden)

    Sung-Liang Chen

    2015-12-01

    Full Text Available Three-dimensional photoacoustic microscopy (PAM has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM, which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.

  13. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  14. Contact microscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  15. Selective sensitivity in Kerr microscopy.

    Science.gov (United States)

    Soldatov, I V; Schäfer, R

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  16. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi......Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure....... The holder is implemented with a laser diode and an optical system that guides the light onto the sample surface with maximum power transmission. The source can be changed and tuned according to the needs, in principle spanning the whole visible and UV light spectrum. It is possible to use the device inside...

  17. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos.

    Science.gov (United States)

    Chetty, S Shashank; Praneetha, S; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A Vadivel

    2016-05-18

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale "sustainable" MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  18. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    Science.gov (United States)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  19. Multifunctional scanning ion conductance microscopy

    OpenAIRE

    Page, Ashley; Perry, David; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional...

  20. CNNs for electron microscopy segmentation

    OpenAIRE

    García-Amorena García, Pablo

    2013-01-01

    In the framework of Biomedicine, mitochondria are known to play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function, and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. Electron microscopy (EM), with its very high resolution in all three directions, is one of the key tools to look more closely into these tissues, but the huge amounts of data it produces m...

  1. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  2. Multi-photon excitation microscopy

    Directory of Open Access Journals (Sweden)

    Faretta Mario

    2006-06-01

    Full Text Available Abstract Multi-photon excitation (MPE microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments.

  3. Comparative study of electron microscopy and scanning probe microscopy in photosynthetic research

    OpenAIRE

    MATĚNOVÁ, Martina

    2009-01-01

    The aim of this study is to compare the ability of transmission electron microscopy, scanning electron microscopy and atomic force microscopy to visualize individual protein complexes. The principle of electron microscopy and atomic force microscopy is explained. For comparision of these methods well characterized photosynthetic complexes LH1, LH2, PSI and PSII were selected.

  4. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  5. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  6. Bright-field quantitative phase microscopy (BFQPM) for accurate phase imaging using conventional microscopy hardware

    Science.gov (United States)

    Jenkins, Micah; Gaylord, Thomas K.

    2015-03-01

    Most quantitative phase microscopy methods require the use of custom-built or modified microscopic configurations which are not typically available to most bio/pathologists. There are, however, phase retrieval algorithms which utilize defocused bright-field images as input data and are therefore implementable in existing laboratory environments. Among these, deterministic methods such as those based on inverting the transport-of-intensity equation (TIE) or a phase contrast transfer function (PCTF) are particularly attractive due to their compatibility with Köhler illuminated systems and numerical simplicity. Recently, a new method has been proposed, called multi-filter phase imaging with partially coherent light (MFPI-PC), which alleviates the inherent noise/resolution trade-off in solving the TIE by utilizing a large number of defocused bright-field images spaced equally about the focal plane. Despite greatly improving the state-ofthe- art, the method has many shortcomings including the impracticality of high-speed acquisition, inefficient sampling, and attenuated response at high frequencies due to aperture effects. In this report, we present a new method, called bright-field quantitative phase microscopy (BFQPM), which efficiently utilizes a small number of defocused bright-field images and recovers frequencies out to the partially coherent diffraction limit. The method is based on a noiseminimized inversion of a PCTF derived for each finite defocus distance. We present simulation results which indicate nanoscale optical path length sensitivity and improved performance over MFPI-PC. We also provide experimental results imaging live bovine mesenchymal stem cells at sub-second temporal resolution. In all, BFQPM enables fast and accurate phase imaging with unprecedented spatial resolution using widely available bright-field microscopy hardware.

  7. Preliminary Study of In Vivo Formed Dental Plaque Using Confocal Microscopy and Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    KA. Al-Salihi

    2009-12-01

    Full Text Available Objective: Confocal laser scanning microscopy (CLSM is relatively a new light microscopical imaging technique with a wide range of applications in biological sciences. The primary value of CLSM for the biologist is its ability to provide optical sections from athree-dimensional specimen. The present study was designed to assess the thickness and content of in vivo accumulated dental plaque using CLSM and scanning electron microscopy (SEM.Materials and Methods: Acroflat lower arch splints (acrylic appliance were worn by five participants for three days without any disturbance. The formed plaques were assessed using CLSM combined with vital fluorescence technique and SEM.Results: In this study accumulated dental plaque revealed varied plaque microflora vitality and thickness according to participant’s oral hygiene. The thickness of plaque smears ranged from 40.32 to 140.72 μm and 65.00 to 128.88 μm for live (vital and dead accumulated microorganisms, respectively. Meanwhile, the thickness of plaque on the appliance ranged from 101 μm to 653 μm. CLSM revealed both dead and vital bacteria on the surface of the dental plaque. In addition, SEM revealed layers of various bacterial aggregations in all dental plaques.Conclusion: This study offers a potent non-invasive tool to evaluate and assess the dental plaque biofilm, which is a very important factor in the development of dental caries.

  8. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Moghimi, Seyed Moien

    2012-01-01

    fluorescence (TIRF) microscopy allows for real-time monitoring of nanoparticle-membrane interaction events, which can provide vital information in relation to design and surface engineering of therapeutic nanoparticles for cell-specific targeting. In contrast to other microscopy techniques, the bleaching...... effect by lasers in TIRF microscopy is considerably less when using fluorescent nanoparticles and it reduces photo-induced cytotoxicity during visualization of live-cell events since it only illuminates the specific area near or at the plasma membrane....

  9. Fast intracellular motion (FIM) as revealed by the reflection mode of video rate confocal laser scanning microscopy

    Czech Academy of Sciences Publication Activity Database

    Veselý, Pavel

    2005-01-01

    Roč. 40, č. 1 (2005), s. 34 ISSN 0035-9017. [Cytokinematics 2004. International Symposium on Microscopy of Live Cells in the Post Genomics Era /8./. 05.09.2004-07.09.2004, Hradec Králové] Institutional research plan: CEZ:AV0Z5052915 Keywords : FIM * video rate confocal laser scanning microscopy Subject RIV: EB - Genetics ; Molecular Biology

  10. Allergy, living and learning

    DEFF Research Database (Denmark)

    Chivato, T; Valovirta, E; Dahl, R

    2012-01-01

    Allergy Living and Learning (ALL) is a European initiative designed to increase knowledge and understanding of people living with allergies in order to improve respiratory allergy care.......Allergy Living and Learning (ALL) is a European initiative designed to increase knowledge and understanding of people living with allergies in order to improve respiratory allergy care....

  11. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  12. Automated single particle detection and tracking for large microscopy datasets.

    Science.gov (United States)

    Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping

    2016-05-01

    Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

  13. Atomic and Molecular Photodetachment Microscopy

    Science.gov (United States)

    Blondel, Christophe

    2004-05-01

    Detachment from a negative ion leads to the emission of a nearly unperturbed free electron wave. Detachment in the presence of an electric field thus gives a unique opportunity to study the propagation of a matter wave submitted to uniform acceleration from a pointlike source. As the expression of the corresponding Green function shows, spatially resolved detection of the detached electron should reveal the existence of interference fringes, which can be interpreted as the interference between the well-known pairs of parabolic trajectories of elementary ballistics. Whereas no real free-fall experiment has been able yet to materialize those fringes, photodetachment microscopy experiments carried out since 1996 have now produced electron interference patterns from five different atomic anions. The orders of magnitude of the fringe interval and the spatial resolution of electron detectors are such that these interference patterns can be observed only in relatively weak electric fields and at low energies above the detachment thresholds. The sensitivity of the pattern with respect to the ejection energy of the electron is an interferometric way for measuring the energy brought in excess by the detaching photon, and the electron affinity of the parent neutral itself. The free-electron approximation used to analyze photodetachment microscopy images can be questioned when one deals with a big atom or a molecular anion. The first molecular photodetachment microscopy experiments were carried out recently on OH^-. They still show an observable electron interference pattern, even though OH can be left in a high angular momentum state. On a quantitative basis, the electron interferograms still appear very robust with respect to either internal or external perturbations, which should make it possible to compress the error bars on electron affinities well below 1 μeV, even in the molecular case.

  14. Microscopy using randomized speckle illumination

    Science.gov (United States)

    Perinchery, Sandeep M.; Shinde, Anant; Murukeshan, V. M.

    2017-06-01

    It is well known for structured illumination microscopy (SIM) that the lateral resolution by a factor of two beyond the classical diffraction limit is achieved using spatially structured illumination in wide-field fluorescence microscope. In the state of art SIM systems, grating patterns are generally generated by physical gratings or by spatial light modulators such as digital micro mirrors (DMD), liquid crystal displays (LCD). In this study, using a combination of LCD and ground glasses, size controlled randomized speckle patterns are generated as an illumination source for the microscope. Proof of concept of using speckle illumination in SIM configuration is tested by imaging fixed BPAE cells.

  15. Polyethyleneimine as tracer for electron microscopy

    NARCIS (Netherlands)

    Schurer, Jacob Willem

    1980-01-01

    In this thesis the development of a tracer particle for use in electron microscopy is described. Attempts were made to use this tracer particle in immuno-electron microscopy and to trace negatively charged tissue components. ... Zie: Summary

  16. NICHD Microscopy and Imaging Core (MIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Microscopy and Imaging Core (MIC) is designed as a multi-user research facility providing training and instrumentation for high resolution microscopy and...

  17. First-Glance Diagnosis of Strongyloides stercoralis Autoinfection by Stool Microscopy

    OpenAIRE

    Sing, Andreas; Leitritz, Lorenz; Bogner, Johannes R.; Heesemann, Jürgen

    1999-01-01

    We report a case of autoinfection due to Strongyloides stercoralis in a 27-year-old Ethiopian AIDS patient living in Germany for nearly 3 years. This case was diagnosed on the basis of a single-view field in microscopy of a freshly obtained formalin-fixed stool specimen showing both rhabditiform and filariform larvae. The diagnosis of autoinfection by microscopy is discussed in detail.

  18. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  19. Electron Microscopy Society of Southern Africa : proceedings

    International Nuclear Information System (INIS)

    Snyman, H.C.; Coetzee, J.; Coubrough, R.I.

    1987-01-01

    The proceedings of the 26th annual conference of the Electron Microscopy Society of Southern Africa are presented. Papers were presented on the following topics: techniques and instrumentation used in electron microscopy, and applications of electron microscopy in the life sciences, including applications in medicine, zoology, botany and microbiology. The use of electron microscopy in the physical sciences was also discussed. Separate abstracts were prepared for seven of the papers presented. The remaining papers were considered outside the subject scope of INIS

  20. eduSPIM: Light Sheet Microscopy in the Museum.

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.

  1. Alignment and calibration of total internal reflection fluorescence microscopy systems.

    Science.gov (United States)

    Toomre, Derek

    2012-04-01

    Live cell fluorescent microscopy is important in elucidating dynamic cellular processes such as cell signaling, membrane trafficking, and cytoskeleton remodeling. Often, transient intermediate states are revealed only when imaged and quantitated at the single-molecule, vesicle, or organelle level. Such insight depends on the spatiotemporal resolution and sensitivity of a given microscopy method. Confocal microscopes optically section the cell and improve image contrast and axial resolution (>600 nm) compared with conventional epifluorescence microscopes. Another approach, which can selectively excite fluorophores in an even thinner optical plane (microscopy (TIRFM). The key principle of TIRFM is that a thin, exponentially decaying, evanescent field of excitation can be generated at the interface of two mediums of different refractive index (RI) (e.g., the glass coverslip and the biological specimen); as such, TIRFM is ill-suited to deep imaging of cells or tissue. However, for processes near the lower cell cortex, the sensitivity of TIRFM is exquisite. The recent availability of a very high numerical-aperture (NA) objective lens (>1.45) and turnkey TIRFM systems by all the major microscopy manufacturers has made TIRFM increasingly accessible and attractive to biologists, especially when performed in a quantitative manner and complemented with orthogonal genetic and molecular manipulations. This protocol describes the procedure for alignment and calibration of TIRFM systems using standard cellular samples. The goal is to correctly collimate and align the TIRF illuminator vis-à-vis the downstream optics. For illustration, a 488-nm laser and green fluorescent protein (GFP) filter cube are used.

  2. Agreement between direct fluorescent microscopy and Ziehl ...

    African Journals Online (AJOL)

    Background: The sensitivity of smear microscopy for diagnosis of tuberculosis might be improved through treatment of sputum with sodium hypochlorite and application of fluorescent microscopy. This study aimed to determine the agreement between direct Fluorescent Microscopy and Ziehl-Neelsen concentration technique ...

  3. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  4. Light Sheet Fluorescence Microscopy (LSFM).

    Science.gov (United States)

    Adams, Michael W; Loftus, Andrew F; Dunn, Sarah E; Joens, Matthew S; Fitzpatrick, James A J

    2015-01-05

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light sheet fluorescent microscopy (LSFM), a century-old idea made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light-sheet-based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM) while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. Copyright © 2015 John Wiley & Sons, Inc.

  5. Lensfree optofluidic microscopy and tomography.

    Science.gov (United States)

    Bishara, Waheb; Isikman, Serhan O; Ozcan, Aydogan

    2012-02-01

    Microfluidic devices aim at miniaturizing, automating, and lowering the cost of chemical and biological sample manipulation and detection, hence creating new opportunities for lab-on-a-chip platforms. Recently, optofluidic devices have also emerged where optics is used to enhance the functionality and the performance of microfluidic components in general. Lensfree imaging within microfluidic channels is one such optofluidic platform, and in this article, we focus on the holographic implementation of lensfree optofluidic microscopy and tomography, which might provide a simpler and more powerful solution for three-dimensional (3D) on-chip imaging. This lensfree optofluidic imaging platform utilizes partially coherent digital in-line holography to allow phase and amplitude imaging of specimens flowing through micro-channels, and takes advantage of the fluidic flow to achieve higher spatial resolution imaging compared to a stationary specimen on the same chip. In addition to this, 3D tomographic images of the same samples can also be reconstructed by capturing lensfree projection images of the samples at various illumination angles as a function of the fluidic flow. Based on lensfree digital holographic imaging, this optofluidic microscopy and tomography concept could be valuable especially for providing a compact, yet powerful toolset for lab-on-a-chip devices.

  6. Fluorescence microscopy gets faster and clearer: roles of photochemistry and selective illumination.

    Science.gov (United States)

    Wolenski, Joseph S; Julich, Doerthe

    2014-03-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.

  7. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  8. Kelvin probe force microscopy in liquid using electrochemical force microscopy.

    Science.gov (United States)

    Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I; Tselev, Alexander; Okatan, M Baris; Kalinin, Sergei V; Rodriguez, Brian J

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid-liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid-liquid interface.

  9. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  10. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  11. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.

    Science.gov (United States)

    Klar, T A; Jakobs, S; Dyba, M; Egner, A; Hell, S W

    2000-07-18

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 90-110 nm. The spot volume of down to 0.67 attoliters is 18 times smaller than that of confocal microscopy, thus making our results also relevant to three-dimensional photochemistry and single molecule spectroscopy. Images of live cells reveal greater details.

  12. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Directory of Open Access Journals (Sweden)

    Christoph eCremer

    2016-04-01

    Full Text Available The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light, which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  13. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  14. Viruses: are they living entities?

    Science.gov (United States)

    Pennazio, Sergio

    2011-01-01

    The essence (living or nonliving entities) of viruses has today become an aporia, i.e. a difficulty inherent in reasoning because they shared four fundamental characteristics with livings (multiplication, genetic information, mutation and evolution) without having the capacity to have an independent life. For much time, however, they were considered minuscule pathogenetic micro-organisms in observance of Koch and Pasteur's 'germ theory' albeit no microbiologist could show their existence except their filterability and pathogenetic action. Only some voices based on experimental results raised against this dogmatic view, in particular those of Beijerinck, Baur and Mrowka, without dipping effectively into the dominant theory. The discovery relative to their nucleoprotein nature made between 1934 and 1936 (Schlesinger as for the phage, and Bawden and co-operators as for Tobacco mosaic virus; TMV), together with the first demonstrations of their structures thanks to electron microscopy (from 1939 onwards) started on casting a new light on their true identity, which could be more clearly identified when, from 1955 onwards, phage and TMV proved to be decisive factors to understand the strategies of replication of the genetic material. Following the new knowledge, the theoretical view relative to viruses changed rather radically and the current view looks on these pathogenetic agents as nonliving aggregates of macromolecules provided with biological properties. There is, however, a current of thought, made explicitly by Lwoff that places viruses as compromise between living and non living and, perhaps, as primitive forms of life which have had great importance for the evolution of cellular life. At any rate, viruses are peculiar entities whose importance cannot be unacknowledged.

  15. Turning Microscopy in the Medical Curriculum Digital

    DEFF Research Database (Denmark)

    Vainer, Ben; Mortensen, Niels Werner; Poulsen, Steen Seier

    2017-01-01

    of Copenhagen. Students had to learn how to use a microscope and envisage three-dimensional processes that occur in the body from two-dimensional glass slides. Here, we describe how a PathXL virtual microscopy system for teaching pathology and histology at the Faculty has recently been implemented, from...... an administrative, an economic, and a teaching perspective. This fully automatic digital microscopy system has been received positively by both teachers and students, and a decision was made to convert all courses involving microscopy to the virtual microscopy format. As a result, conventional analog microscopy...

  16. Coherent laser scanning diffraction microscopy

    International Nuclear Information System (INIS)

    Dierolf, Martin; Thibault, Pierre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; Pfeiffer, Franz

    2009-01-01

    Coherent diffractive imaging (CDI) is a promising approach to high-resolution x-ray microscopy. While CDI typically has a rather limited field of view, this problem can be solved by ptychography, a technique for which an extended object is raster scanned by a compact coherent illumination probe. Significant overlap of illumination for adjacent scan points allows then a self-consistent reconstruction from the entirety of collected coherent diffraction patterns. However, current reconstruction schemes require accurate a priori knowledge of the probe. Our recently developed new algorithm for ptychographic data sets allows us to simultaneously reconstruct both object and illuminating probe. We demonstrate the application of the new method in a test experiment with visible laser light showing that intricate illumination functions can be retrieved reliably.

  17. Magnetic microscopy of layered structures

    CERN Document Server

    Kuch, Wolfgang; Fischer, Peter; Hillebrecht, Franz Ulrich

    2015-01-01

    This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.

  18. Differential Multiphoton Laser Scanning Microscopy.

    Science.gov (United States)

    Field, Jeffrey J; Sheetz, Kraig E; Chandler, Eric V; Hoover, Erich E; Young, Michael D; Ding, Shi-You; Sylvester, Anne W; Kleinfeld, David; Squier, Jeff A

    2012-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot.

  19. Electron holography for polymer microscopy

    International Nuclear Information System (INIS)

    Joy, D.C.

    1992-01-01

    Electron holography provides a radically new approach to the problem of imaging objects such as macromolecules, which exhibit little or no contrast when viewed in the conventional transmission electron microscope (TEM). This is overcome in electron holography by using the macromolecule as a phase object. Computer reconstruction of the hologram then allows the phase to be viewed as an image, and amplified. Holography requires a TEM with a field emission gun, and with an electro-static biprism to produce the interference pattern. The hologram requires a similar radiation dose to conventional microscopy but many different images (e.g. a through focal series) can be extracted from the same hologram. Further developments of the technique promise to combine high contrast imaging of the bulk of the macromolecule together with high spatial resolution imaging of surface detail

  20. Epoxy Resins in Electron Microscopy

    Science.gov (United States)

    Finck, Henry

    1960-01-01

    A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825

  1. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; McMullan, G

    2011-08-01

    Electron microscopy (EM) is an important tool for high-resolution structure determination in applications ranging from condensed matter to biology. Electronic detectors are now used in most applications in EM as they offer convenience and immediate feedback that is not possible with film or image plates. The earliest forms of electronic detector used routinely in transmission electron microscopy (TEM) were charge coupled devices (CCDs) and for many applications these remain perfectly adequate. There are however applications, such as the study of radiation-sensitive biological samples, where film is still used and improved detectors would be of great value. The emphasis in this review is therefore on detectors for use in such applications. Two of the most promising candidates for improved detection are: monolithic active pixel sensors (MAPS) and hybrid pixel detectors (of which Medipix2 was chosen for this study). From the studies described in this review, a back-thinned MAPS detector appears well suited to replace film in for the study of radiation-sensitive samples at 300 keV, while Medipix2 is suited to use at lower energies and especially in situations with very low count rates. The performance of a detector depends on the energy of electrons to be recorded, which in turn is dependent on the application it is being used for; results are described for a wide range of electron energies ranging from 40 to 300 keV. The basic properties of detectors are discussed in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE) as a function of spatial frequency.

  2. Resolution enhancement techniques in microscopy

    Science.gov (United States)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  3. Mathematical framework for traction force microscopy

    Directory of Open Access Journals (Sweden)

    Michel R.

    2013-12-01

    Full Text Available This paper deals with the Traction Force Microscopy (TFM problem. It consists in obtaining stresses by solving an inverse problem in an elastic medium, from known experimentally measured displacements. In this article, the application is the determination of the stresses exerted by a living cell at the surface of an elastic gel. We propose an abstract framework which formulates this inverse problem as a constrained minimization one. The mathematical constraints express the biomechanical conditions that the stress field must satisfy. From this framework, two methods currently used can be derived, the adjoint method (AM and the Fourier Transform Traction Cytometry (FTTC method. An improvement of the FTTC method is also derived using this framework. The numerical results are compared and show the advantage of the AM, in particular its ability to capture details more accurately. Cet article est consacré au problème de la Microscopie à Force de Traction (TFM. Ce problème consiste à déterminer les contraintes exercées par une cellule lors de sa migration sur un substrat élastique à partir d’une mesure expérimentale des déplacements induits dans ce substrat. Mathématiquement, il s’agit de résoudre un problème inverse pour lequel nous proposons une formulation abstraite de type optimisation sous contraintes. Les contraintes mathématiques expriment les constraintes biomécaniques que doit satisfaire le champ de contraintes exercé par la cellule. Ce cadre abstrait permet de retrouver deux des méthodes de résolution utilisées en pratique, à savoir la méthode adjointe (AM et la méthode de Cytométrie de Traction par Transformée de Fourier (FTTC. Il permet aussi d’ameliorer la méthode FTTC. Les résultats numériques obtenus sont ensuite comparés et démontrent l’avantage de la méthode adjointe, en particulier par sa capacité à capturer des détails avec une meilleure précision.

  4. Administration for Community Living

    Science.gov (United States)

    ... Public Input Working Together, in Our Communities The Administration for Community Living was created around the fundamental ... Meals on Wheels America - November 16, 2017 The Administration for Community Living recently awarded a three-year ...

  5. Ex vivo laser confocal microscopy findings of cultured Acanthamoeba trophozoites

    Directory of Open Access Journals (Sweden)

    Yamazaki N

    2012-08-01

    Full Text Available Natsuko Yamazaki,1 Akira Kobayashi,1 Hideaki Yokogawa,1 Yasuhisa Ishibashi,2 Yosaburo Oikawa,3 Masaharu Tokoro,4 Kazuhisa Sugiyama11Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; 2Department of Ophthalmology, East Washinomiya Hospital, Kuki, Japan; 3Department of Medical Zoology, Kanazawa Medical University, Kahoku, Japan; 4Department of Parasitology, Kanazawa University Graduate School of Medical Science, Kanazawa, JapanPurpose: The purpose of the current study was to investigate ex vivo laser confocal microscopic findings of cultured Acanthamoeba trophozoites obtained from Acanthamoeba keratitis patients.Methods: Eight cultured samples of Acanthamoeba trophozoites from eight eyes of seven patients (mean age, 26.9 years; age range, 18–52 years were used. Seven samples were from corneal scrapings of Acanthamoeba keratitis patients and one sample was from the solution in a soft contact lens case. Ex vivo laser confocal microscopy was performed to qualitatively evaluate the shape and degree of light reflection of the living Acanthamoeba trophozoites.Results: Ex vivo laser confocal microscopy demonstrated highly reflective, high-contrast Acanthamoeba trophozoites with no walls (mean size, 25.4 µm; range, 17.1–58.5 µm. The shapes of the trophozoites were highly pleomorphic, and some showed characteristic acanthopodia by laser confocal microscopy.Conclusion: Ex vivo laser confocal microscopy was effective in demonstrating cultured Acanthamoeba trophozoites of various shapes and sizes. The observations of the current study may be helpful when similar structures are identified under in vivo conditions.Keywords: Acanthamoeba, trophozoite, laser confocal microscopy

  6. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.

    Science.gov (United States)

    Pedrazzani, Mélanie; Loriette, Vincent; Tchenio, Paul; Benrezzak, Sakina; Nutarelli, Daniele; Fragola, Alexandra

    2016-03-01

    We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain. We present a detailed characterization of the system performances. We prove that the gain brought to optical sectioning by realizing structured illumination microscopy with adaptive optics down to 50 μm deep inside living Drosophila brain.

  7. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster.

    Science.gov (United States)

    Schnorrenberg, Sebastian; Grotjohann, Tim; Vorbrüggen, Gerd; Herzig, Alf; Hell, Stefan W; Jakobs, Stefan

    2016-06-29

    Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of.

  8. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  9. Electron microscopy and forensic practice

    Science.gov (United States)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  10. Disposable optics for microscopy diagnostics.

    Science.gov (United States)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-20

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  11. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  12. Experiments in electron microscopy: from metals to nerves

    International Nuclear Information System (INIS)

    Unwin, Nigel

    2015-01-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse. (invited comment)

  13. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Live your questions now

    OpenAIRE

    Brownrigg, Jenny

    2016-01-01

    'Live Your Questions Now' is a case study for Cubitt Education's publication 'Aging in Public: creative practice in ageing and the public realm from across the UK', edited by Daniel Baker and published by Cubitt Gallery, Studios and Education, London in 2016. The publication was linked to Cubitt's programme 'Public Wisdom' (2011-2015). My case study is about 'Live your questions now', a group exhibition I curated in 2011 for Mackintosh Museum, The Glasgow School of Art. 'Live your questions n...

  15. Tracking of chromosome dynamics in live Streptococcus pneumoniae reveals that transcription promotes chromosome segregation

    NARCIS (Netherlands)

    Kjos, Morten; Veening, Jan-Willem

    Chromosome segregation is an essential part of the bacterial cell cycle but is poorly characterized in oval-shaped streptococci. Using time-lapse fluorescence microscopy and total internal reflection fluorescence microscopy, we have tracked the dynamics of chromosome segregation in live cells of the

  16. Analysis of ancient pigments by Raman microscopy

    International Nuclear Information System (INIS)

    Zuo Jian; Xu Cunyi

    1999-01-01

    Raman microscopy can be applied for the spatial resolution, and non-destructive in situ analysis of inorganic pigments in pottery, manuscripts and paintings. Compared with other techniques, it is the best single technique for this purpose. An overview is presented of the applications of Raman microscopy in the analysis of ancient pigments

  17. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  18. Magnetic force microscopy : Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  19. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  20. Writing lives in sport

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh

    Writing lives in sport is a book of stories about sports-persons. The people concerned include sports stars, sports people who are not quite so famous, and relatively unknown physical education teachers and sports scientists.Writing lives in sport raises questions about writing biographies...... in the academis world of sport studies. It does not set out to be a methodological treatise but through the writing of lives in sports does raise questions of method. Each essay in this collection deals with problems of writing sports-people's lives. These essays could be said to fall along a spectrum from those...

  1. Comparative morphology of zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel sperm: Light and electron microscopy

    Science.gov (United States)

    Walker, G.K.; Black, M.G.; Edwards, C.A.

    1996-01-01

    Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.

  2. In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy

    Science.gov (United States)

    Liao, Chien-Sheng; Cheng, Ji-Xin

    2016-06-01

    Coherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed.

  3. Multimodal label-free microscopy

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    2014-09-01

    Full Text Available This paper reviews the different multimodal applications based on a large extent of label-free imaging modalities, ranging from linear to nonlinear optics, while also including spectroscopic measurements. We put specific emphasis on multimodal measurements going across the usual boundaries between imaging modalities, whereas most multimodal platforms combine techniques based on similar light interactions or similar hardware implementations. In this review, we limit the scope to focus on applications for biology such as live cells or tissues, since by their nature of being alive or fragile, we are often not free to take liberties with the image acquisition times and are forced to gather the maximum amount of information possible at one time. For such samples, imaging by a given label-free method usually presents a challenge in obtaining sufficient optical signal or is limited in terms of the types of observable targets. Multimodal imaging is then particularly attractive for these samples in order to maximize the amount of measured information. While multimodal imaging is always useful in the sense of acquiring additional information from additional modes, at times it is possible to attain information that could not be discovered using any single mode alone, which is the essence of the progress that is possible using a multimodal approach.

  4. On slit-lamp microscopy.

    Science.gov (United States)

    Schmidt, T A

    1975-11-21

    examination of the vitreous good brightness of the slit image is required for stereoscopic examination with as large an angle as possible between microscope and illumination. The lateral parts of the most peripheral fundus cannot be examined with the vertical slit in connection with the three-mirror lens. However, this is possible with the horizontal and tilted position of the slit and intermediate positions with an oblique slit. The slit must form an angle with the microscope in order to examine vitreous and fundus in optical section. With the indentation contact lenses ciliary processes and pars plana are now accessible to slit-lamp microscopy.

  5. Families and Assisted Living

    Science.gov (United States)

    Gaugler, Joseph E.; Kane, Robert L.

    2007-01-01

    Purpose: Despite growing research on assisted living (AL) as a residential care option for older adults, the social ramifications of residents' transitions to AL are relatively unexplored. This article examines family involvement in AL, including family structures of residents, types of involvement from family members living outside the AL…

  6. Living the Utopia

    DEFF Research Database (Denmark)

    Davis, John; Warring, Anette Elisabeth

    2011-01-01

    This article examines experiments in communal living in Britain and Denmark in the early 1970s, using life-story interviews from seventeen members of two British and two Danish communes. It examines communal living as a fusion of radical political principles with the practice of experimental coll...

  7. Interventions in everyday lives

    DEFF Research Database (Denmark)

    Dreier, Ole

    2015-01-01

    The purpose of psychotherapy is to help clients address and overcome problems troubling them in their everyday lives. Therapy can therefore only work if clients include it in their ongoing lives to deal with their problems. Detailed, systematic research is needed on how clients do so in their eve...

  8. Optical magnetic imaging of living cells

    Science.gov (United States)

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  9. Evaluating Living Standard Indicators

    Directory of Open Access Journals (Sweden)

    Birčiaková Naďa

    2015-09-01

    Full Text Available This paper deals with the evaluation of selected available indicators of living standards, divided into three groups, namely economic, environmental, and social. We have selected six countries of the European Union for analysis: Bulgaria, the Czech Republic, Hungary, Luxembourg, France, and Great Britain. The aim of this paper is to evaluate indicators measuring living standards and suggest the most important factors which should be included in the final measurement. We have tried to determine what factors influence each indicator and what factors affect living standards. We have chosen regression analysis as our main method. From the study of factors, we can deduce their impact on living standards, and thus the value of indicators of living standards. Indicators with a high degree of reliability include the following factors: size and density of population, health care and spending on education. Emissions of carbon dioxide in the atmosphere also have a certain lower degree of reliability.

  10. Overview of optical microscopy and optical microspectroscopy

    Science.gov (United States)

    Ager, Joel W.

    1998-11-01

    Optical microscopy has historically been a major tool for semiconductor inspection. As the ULSI design rule continues to decline to 0.25 μm and below, standard optical microscopy methods will arrive at their resolution limit. In the first part of this paper an overview of currently used optical microscopy techniques will be given. The resolution limit for optical imaging will be discussed, and novel methods for increasing resolution, including deep UV microscopy and confocal laser microscopy, will be presented. The second part of the paper will discuss an emerging technology for contamination analysis in semiconductor processing, microspectroscopy. Three topics in this area will be discussed with an emphasis on applications to off-line defect identification in process development: (1) micro-Raman spectroscopy, (2) micro-fluorescence or micro-photoluminescence spectroscopy, and (3) micro-reflectivity. It will be shown that these microspectroscopy methods can provide composition information for defects down to 1 μm in size that is not accessible through the more commonly used methods such as scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and scanning Auger microscopy. Classes of defects where optical micro-spectroscopy methods are useful include ceramic particles, thin films of organic material, and dielectric films.

  11. Effects of microwave radiation on living tissues

    Energy Technology Data Exchange (ETDEWEB)

    Surrell, J.A.; Alexander, R.C.; Cohle, S.D.; Lovell, F.R. Jr.; Wehrenberg, R.A.

    1987-08-01

    Prompted by an alleged case of child abuse resulting from microwave oven burns and the discovery of one other case, an animal model was chosen to explore microwave burn characteristics upon living, perfusing tissue. Anesthetized piglets were exposed to radiation from a standard household microwave oven for varying lengths of time, sufficient to result in full-thickness skin and visceral burns. Characteristic burn patterns were grossly identified. Biopsies studied with both light and electron microscopy demonstrated a pattern of relative layered tissue sparing. Layered tissue sparing is characterized by burned skin and muscle, with relatively unburned subcutaneous fat between these two layers. These findings have important forensic and patient care implications.

  12. On measuring cell confluence in phase contrast microscopy

    Science.gov (United States)

    Dempsey, K. P.; Richardson, J. B.; Lam, K. P.

    2014-03-01

    A principal focus highlighting recent advances in cell based therapies concerns the development of effective treatments for osteoarthritis. Earlier clinicaltrials have shown that 80% of patients receiving mesenchymal stem cell(MSC) based treatment have improved their quality of life by alleviating pain whilst extending the life of their natural joints. The current challenge facing researchers is to identify the biological differences between the treatments that have worked and those which have shown little improvement. One possible candidate for the difference in treatment prognosis is an examination of the proliferation of the ( type) cells as they grow. To further understanding of the proliferation and differentiation of MSC, non-invasive live cell imaging techniques have been developed which capture important cell events and dynamics in cell divisions over an extended period of time. An automated image analysis procedure capable of tracking cell confluence over time has also been implemented, providing an objective and realistic estimation of cell growth within continuous live cell cultures. The proposed algorithm accounts for the halo artefacts that occur in phase microscopy. In addition to a favourable run-time performance, the method was also validated using continuous live MSC cultures, with consistent and meaningful results.

  13. Microscopy of the hair and trichogram

    Directory of Open Access Journals (Sweden)

    Özlem Dicle

    2014-06-01

    Full Text Available Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair microscopy including hair abnormalities as a part of genodermatosis and, infections and infestations affecting the hair are highlighted.

  14. New methodologies for living material imaging. Compilation of summaries

    International Nuclear Information System (INIS)

    Barabino, Gabriele; Beaurepaire, Emmanuel; Betrouni, Nacim; Montagnat, Johan; Moonen, Chrit; Olivo-Marin, Jean-Christophe; Paul-Gilloteaux, Perrine; Tillement, Olivier; Barbier, Emmanuel; Beuf, Olivier; Chamot, Christophe; Clarysse, Patrick; Coll, Jean-Luc; Dojat, Michel; Lartizien, Carole; Peyrin, Francoise; Ratiney, Helene; Texier-Nogues, Isabelle; Usson, Yves; Vial, Jean-Claude; Gaillard, Sophie; Aubry, Jean-Francois; Barillot, Christian; Betrouni, Nacim; Beloeil, Jean-Claude; Bernard, Monique; Bridal, Lori; Coll, Jean-Luc; Cozzone, Patrick; Cuenod, Charles-Andre; Darrasse, Luc; Franconi, Jean-Michel; Frapart, Yves-Michel; Grenier, Nicolas; Guilloteau, Denis; Laniece, Philippe; Guilloteau, Denis; Laniece, Philippe; Lethimonnier, Franck; Moonen, Chrit; Pain, Frederic; Patat, Frederic; Tanter, Mickael; Trebossen, Regine; Van Beers, Bernard; Visvikis, Dimitris; Buvat, Irene; Carrault, Guy; Frouin, Frederique; Kouame, Denis; Meste, Olivier; Peyrin, Francoise; Brasse, David; Buvat, Irene; Dauvergne, Denis; Haddad, Ferid; Menard, Laurent; Ouadi, Ali; Olivo-Marin, Jean-Christophe; Pansu, Robert; Peyrieras, Nadine; Salamero, Jean; Usson, Yves; Werts, Martin; Beaurepaire, Emmanuel; Blanchoin, Laurent; Boltze, Frederic; Cavalli, Giacomo; Choquet, Daniel; Coppey, Maite; Dahan, Maxime; Dieterlen, Alain; Ducommun, Bernard; Favard, Cyril; Fort, Emmanuel; Gadal, Olivier; Heliot, Laurent; Hofflack, Bernard; Kervrann, Charles; Langowski, Jorg; LeBivic, Andre; Leveque-Fort, Sandrine; Matthews, Cedric; Monneret, Serge; Mordon, Serge; Mely, Yves

    2012-12-01

    Living material imaging, which is essential to medical diagnosis and therapy methods as well as fundamental and applied biology, is necessarily pluri-disciplinary, at the intersection of physics, (bio)chemistry and pharmacy, and requests mathematical and computer processing of signals and images. Image processing techniques may be applied at different levels (molecular, cellular or tissue level) or using various modes (optics, X rays, NMR, PET, US). This conference therefore presents recent methodological developments addressing the study of living material. The program of the conference started with a plenary session (multimode non linear microscopy of tissues and embryonary morphogenesis) followed by 6 sessions which titles are: (1) new microscopies applied to living materials), (2) agents for molecular and functional imaging), (3) recent developments in methodologies and instrumentations, (4) image processing methods and techniques, (5) image aided diagnosis, therapy and medical surveillance, (6) heterogenous data bases and distributed computations

  15. Digital Living at Home

    DEFF Research Database (Denmark)

    Andersen, Pernille Viktoria Kathja; Christiansen, Ellen Tove

    2013-01-01

    of these user voices has directed us towards a ‘home-keeping’ design discourse, which opens new horizons for design of digital home control systems by allowing users to perform as self-determined controllers and groomers of their habitat. The paper concludes by outlining the implications of a ‘home......Does living with digital technology inevitably lead to digital living? Users talking about a digital home control system, they have had in their homes for eight years, indicate that there is more to living with digital technology than a functional-operational grip on regulation. Our analysis...

  16. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  17. Multiphoton microscopy in defining liver function

    Science.gov (United States)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  18. Physicists bag Chemistry Nobel for microscopy method

    Science.gov (United States)

    Johnston, Hamish

    2017-11-01

    The 2017 Nobel Prize for Chemistry has been given to Jacques Dubochet, Joachim Frank and Richard Henderson “for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”.

  19. Sample preparation method for scanning force microscopy

    CERN Document Server

    Jankov, I R; Szente, R N; Carreno, M N P; Swart, J W; Landers, R

    2001-01-01

    We present a method of sample preparation for studies of ion implantation on metal surfaces. The method, employing a mechanical mask, is specially adapted for samples analysed by Scanning Force Microscopy. It was successfully tested on polycrystalline copper substrates implanted with phosphorus ions at an acceleration voltage of 39 keV. The changes of the electrical properties of the surface were measured by Kelvin Probe Force Microscopy and the surface composition was analysed by Auger Electron Spectroscopy.

  20. Dinosaur eggshell study using scanning electron microscopy.

    Science.gov (United States)

    Jackson, Frankie D; Schweitzer, Mary H; Schmitt, James G

    2002-01-01

    Visualization and analysis of structural features in fossil dinosaur eggs by scanning electron microscopy augment information from traditional petrographic light microscopy. Comparison of characteristics in fossil and modern eggshells allows inferences to be made regarding dinosaur reproductive biology, physiology, and evolutionary relationships. Assessment of diagenetic alteration of primary eggshell calcite structure that occurs during fossilization provides important information necessary for taxonomic identification and paleoenvironmental interpretations.

  1. Scanning Electron Microscopy in modern dentistry research

    OpenAIRE

    Paradella, Thaís Cachuté; Unesp-FOSJC; Bottino, Marco Antonio; Unesp-FOSJC

    2012-01-01

    The purpose of this article was to review the usage of Scanning Electron Microscopy (SEM) in dentistry research nowadays, through a careful and updated literature review. By using the key-words Scanning Electron Microscopy and one of the following areas of research in dentistry (Endodontics, Periodontics and Implant), in international database (PubMed), in the year of 2012 (from January to September), a total of 112 articles were found. This data was tabled and the articles were classified ac...

  2. A high throughput spectral image microscopy system

    Science.gov (United States)

    Gesley, M.; Puri, R.

    2018-01-01

    A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.

  3. Confocal microscopy findings of Acanthamoeba keratitis.

    Science.gov (United States)

    Pfister, D R; Cameron, J D; Krachmer, J H; Holland, E J

    1996-02-01

    Tandem scanning confocal microscopy was performed on two patients with Acanthamoeba keratitis to provide images detailing characteristic findings of the disease. Although tandem scanning confocal microscopy of Acanthamoeba has been described in previous reports, Acanthamoeba keratitis has not been fully characterized with this instrument. In vivo confocal micrographs showed the double-walled structure of the Acanthamoeba cyst and associated radial keratoneuritis (perineuritis). We reviewed the records of two patients with a clinical diagnosis of Acanthamoeba keratitis, one with culture-proven Acanthamoeba and the other with a suspected Acanthamoeba infection. Slit-lamp biomicroscopy and in vivo tandem scanning confocal microscopy were performed. The images obtained were compared with images from patients without corneal disease. High-contrast round bodies suggestive of Acanthamoeba cysts, as previously described, and irregular forms suggestive of Acanthamoeba trophozoites were found by tandem scanning confocal microscopy. Additionally, we showed conclusively that under certain circumstances (that is, corneal scarring) tandem scanning confocal microscopy can resolve the double-walled structure of the Acanthamoeba ectocyst surrounding the endocyst. Furthermore, radial keratoneuritis was demonstrated, consisting of an irregularly swollen nerve fiber with probable amoebic infiltration. Confocal microscopy can be a useful, noninvasive imaging technique helpful in the study, diagnosis, and treatment of Acanthamoeba keratitis.

  4. Unique Family Living Situations

    Science.gov (United States)

    ... of neglect, or because the parents are in prison. Others live with their grandparents (and one or ... Injury Prevention Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and ...

  5. Living with Paralysis

    Science.gov (United States)

    ... Events Blog & Forum About Us Donate Living with Paralysis You have questions. We have answers. Whether you ... caregivers > About the Paralysis Resource Center Explore our paralysis resources > Health > Causes of paralysis > Secondary conditions > Costs ...

  6. Living with Tuberculosis

    Science.gov (United States)

    ... Diseases > Lung Disease Lookup > Tuberculosis (TB) Living With Tuberculosis What to Expect You will need regular checkups ... XML file."); } }); } } --> Blank Section Header Lung Disease Lookup Tuberculosis (TB) Learn About Tuberculosis Tuberculosis Symptoms, Causes & Risk ...

  7. Living With Diabetes

    Science.gov (United States)

    ... Problems Diabetes & Sexual & Urologic Problems Clinical Trials Managing Diabetes You can manage your diabetes and live a ... you have diabetes. How can I manage my diabetes? With the help of your health care team, ...

  8. Living with Hearing Loss

    Science.gov (United States)

    ... the lives of people with communication disorders. "Human communication research now has more possibilities for productive exploration than at any other time in history," says James F. Battey, Jr., M.D., Ph. ...

  9. Pathways to Assisted Living

    Science.gov (United States)

    Ball, Mary M.; Perkins, Molly M.; Hollingsworth, Carole; Whittington, Frank J.; King, Sharon V.

    2009-01-01

    This article examines how race and class influence decisions to move to assisted living facilities. Qualitative methods were used to study moving decisions of residents in 10 assisted living facilities varying in size and location, as well as race and socioeconomic status of residents. Data were derived from in-depth interviews with 60 residents, 43 family members and friends, and 12 administrators. Grounded theory analysis identified three types of residents based on their decision-making control: proactive, compliant, and passive/resistant. Only proactive residents (less than a quarter of residents) had primary control. Findings show that control of decision making for elders who are moving to assisted living is influenced by class, though not directly by race. The impact of class primarily related to assisted-living placement options and strategies available to forestall moves. Factors influencing the decision-making process were similar for Black and White elders of comparable socioeconomic status. PMID:19756172

  10. [Promoting Living Kidney Transplantation].

    Science.gov (United States)

    Lin, Chiu-Chu

    2016-04-01

    Kidney transplantation is the best approach for treating patients with end stage renal disease, offering patients the best chance of returning to normal health. While the techniques used in kidney transplantation surgery are mature and highly successful, there is a severe shortage of donor organs. Statistics show a serious imbalance between organ donations and patients on the waiting list for organ transplantation. Moreover, evidence from empirical studies has shown a better transplantation outcome for patients who receive living donor transplantation than for those who receive organs from cadavers. Although using relatives as donors offers an effective way to reduce the problem of organ shortage, this strategy faces many challenges and many other factors affect the promotion of living donor transplantation. This article elaborates how cultural and psychological factors, kidney transplantation awareness, and ethics and laws impact upon living kidney donations and then proposes coping strategies for promoting living kidney transplantation.

  11. Living with Low Vision

    Science.gov (United States)

    ... Life TIPS To Its Fullest LIVING WITH LOW VISION Savings Medical Bills A VARIETY OF EYE CONDITIONS, ... which occupational therapy practitioners help people with low vision to function at the highest possible level. • Prevent ...

  12. Old men living alone

    DEFF Research Database (Denmark)

    Hansen, Kristian Frausing; Munk, Karen Pallesgaard

    Background: Even in the Danish welfare state inequality in health proves hard to overcome. According to the literature elderly men living alone seem to be a vulnerable group in several respects: they lead shorter lives; are at increased risk of committing suicide; and some are found to have....... 1. An electronic survey is distributed nationwide to municipal preventive home visitors in order to obtain information about their views on the men’s particular needs and the suitability of current health care services. 2. A group of elderly men living alone is interviewed about their own opinions...... and views on the matters. Results: It is expected that the study will contribute to a nuanced basis of knowledge for the public health care services for elderly men living alone. Also importantly, we wish to focus health care professionals’ attention to the question of realistic and meaningful goals...

  13. Living with Stepparents

    Science.gov (United States)

    ... Sometimes spouses die and husbands or wives are forced to start over. Despite all the pain of ... on this topic for: Kids Kids Talk About: Marriage and Divorce (Video) Living With a Single Parent ...

  14. Thalassemia: Healthy Living

    Science.gov (United States)

    ... Thalassemia” More What can a person living with thalassemia do to stay healthy? A healthy lifestyle is ... disorder”, as well as making healthy choices. Managing Thalassemia Thalassemia is a treatable disorder that can be ...

  15. Our Urban Living Room

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus

    2016-01-01

    Our Urban Living Room is an exhibition and a book, created by Cobe. The theme is based on Cobe’s ten years of practice, grounded in social livability and urban democracy, and our aim to create buildings and spaces that invite Copenhageners to use and define them; as an extended living room, where...... the boundaries between private and public space become fluid. Based on specific Cobe projects, Our Urban Living Room tells stories about the architectural development of Copenhagen, while exploring the progression of the Danish Capital - from an industrial city into an urban living room, known as one...... of the world’s most livable places. Photography by Rasmus Hjortshøj....

  16. Healthy Living after Stroke

    Science.gov (United States)

    ... Stories Stroke Heroes Among Us Healthy Living After Stroke Nutrition Good nutrition is one way to reduce ... the hospital. Thank goodness, she did. Subscribe to Stroke Connection Get quarterly digital issues plus our monthly ...

  17. Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Mingshu Zhang

    2016-05-01

    Full Text Available In the past two decades, various super-resolution (SR microscopy techniques have been developed to break the diffraction limit using subdiffraction excitation to spatially modulate the fluorescence emission. Photomodulatable fluorescent proteins (FPs can be activated by light of specific wavelengths to produce either stochastic or patterned subdiffraction excitation, resulting in improved optical resolution. In this review, we focus on the recently developed photomodulatable FPs or commonly used SR microscopies and discuss the concepts and strategies for optimizing and selecting the biochemical and photophysical properties of PMFPs to improve the spatiotemporal resolution of SR techniques, especially time-lapse live-cell SR techniques.

  18. Consultation on urological specimens from referred cancer patients using real-time digital microscopy

    DEFF Research Database (Denmark)

    Holten-Rossing, Henrik; Larsen, Lise Grupe; Toft, Birgitte Grønkaer

    2016-01-01

    requirements. The aim was to evaluate whether real-time digital microscopy for urological cancer specimens during the primary diagnostic process can replace subsequent physical slide referral and reassessment without compromising diagnostic safety. METHODS: From May to October 2014, tissue specimens from 130...... Finetek) was employed. The Pathology Department at Næstved Hospital was equipped with a digital microscope and three consultant pathologists were stationed at Rigshospitalet with workstations optimized for digital microscopy. Representative slides for each case were selected for consultation and live...

  19. All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide

    Science.gov (United States)

    Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle

    2017-01-01

    While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab. PMID:28186188

  20. All-in-one 3D printed microscopy chamber for multidimensional imaging, the UniverSlide

    Science.gov (United States)

    Alessandri, Kevin; Andrique, Laetitia; Feyeux, Maxime; Bikfalvi, Andreas; Nassoy, Pierre; Recher, Gaëlle

    2017-02-01

    While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.

  1. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  2. Atomic force microscopy for the examination of single cell rheology.

    Science.gov (United States)

    Okajima, Takaharu

    2012-11-01

    Rheological properties of living cells play important roles in regulating their various biological functions. Therefore, measuring cell rheology is crucial for not only elucidating the relationship between the cell mechanics and functions, but also mechanical diagnosis of single cells. Atomic force microscopy (AFM) is becoming a useful technique for single cell diagnosis because it allows us to measure the rheological properties of adherent cells at any region on the surface without any modifications. In this review, we summarize AFM techniques for examining single cell rheology in frequency and time domains. Recent applications of AFM for investigating the statistical analysis of single cell rheology in comparison to other micro-rheological techniques are reviewed, and we discuss what specificity and universality of cell rheology are extracted using AFM.

  3. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  4. Diffraction phase microscopy realized with an automatic digital pinhole

    Science.gov (United States)

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu

    2017-12-01

    We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.

  5. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  6. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    thesis, Atomic Force Microscopy (AFM) and electrochemistry have been applied to investigate three pathogenic medically important bacterial biofilms, i.e. Pseudomonas aeruginosa (cystic fibrosis pneumonia), Staphylococcus epidermidis (contamination of surgical catheters and indwelling equipment......) and Streptococcus mutans (dental caries). AFM was used to investigate the adhesion force on single live cell surfaces. Four different strains of Staphylococcus epidermidis in liquid aqueous environments were adressed. These strains were selected because of their special surface proteins related with the initial...... pattern of Streptococcus mutans biofilms. Five redox probes were chosen for cyclic voltammetry, i.e. positively, [Ru(NH3)6]3+/2+, [Co(phen)3]3+/2+ and [Co(terpy)2]3+/2+ (phen = 1,10-phenanthroline; terpy = 2,2’,2”-terpyridine) and negatively charged, [Fe(CN)6]3-/4-. [IrCl6]3-/4-. The inhibition...

  7. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations.

    Science.gov (United States)

    Baroux, Célia; Schubert, Veit

    2018-01-01

    In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.

  8. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms.

    Science.gov (United States)

    Bouchard, Matthew B; Voleti, Venkatakaushik; Mendes, César S; Lacefield, Clay; Grueber, Wesley B; Mann, Richard S; Bruno, Randy M; Hillman, Elizabeth M C

    2015-02-01

    We report a new 3D microscopy technique that allows volumetric imaging of living samples at ultra-high speeds: Swept, confocally-aligned planar excitation (SCAPE) microscopy. While confocal and two-photon microscopy have revolutionized biomedical research, current implementations are costly, complex and limited in their ability to image 3D volumes at high speeds. Light-sheet microscopy techniques using two-objective, orthogonal illumination and detection require a highly constrained sample geometry, and either physical sample translation or complex synchronization of illumination and detection planes. In contrast, SCAPE microscopy acquires images using an angled, swept light-sheet in a single-objective, en-face geometry. Unique confocal descanning and image rotation optics map this moving plane onto a stationary high-speed camera, permitting completely translationless 3D imaging of intact samples at rates exceeding 20 volumes per second. We demonstrate SCAPE microscopy by imaging spontaneous neuronal firing in the intact brain of awake behaving mice, as well as freely moving transgenic Drosophila larvae.

  9. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  10. X-ray microscopy of living multicellular organisms with the Prague Asterix Iodine Laser System

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernadinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Juha, Libor; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2003-01-01

    Roč. 21, č. 4 (2003), s. 511-516 ISSN 0263-0346 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : atomic force miscroscopy, laser-produced plasmas, multicellular microorganisms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.646, year: 2003

  11. Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy

    NARCIS (Netherlands)

    Jong, Imke G. de; Beilharz, Katrin; Kuipers, Oscar P.; Veening, Jan-Willem

    2011-01-01

    During the last few years scientists became increasingly aware that average data obtained from microbial population based experiments are not representative of the behavior, status or phenotype of single cells. Due to this new insight the number of single cell studies rises continuously. However,

  12. Micro patterned surfaces allow long-term digital holographic microscopy live cell imaging

    Science.gov (United States)

    Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen

    2017-07-01

    During long-term imaging, cells move out of the field of view. We have generated functionalized substrates containing rectangular areas, which were capable in keeping cells over the whole observation period.

  13. Ecological and agricultural applications of synchrotron IR microscopy

    Science.gov (United States)

    Raab, T. K.; Vogel, J. P.

    2004-10-01

    The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.

  14. Direct and dynamic detection of HIV-1 in living cells.

    Directory of Open Access Journals (Sweden)

    Jonas Helma

    Full Text Available In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research.

  15. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  16. Nano-contact microscopy of supracrystals

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2015-05-01

    Full Text Available Background: Highly ordered three-dimensional colloidal crystals (supracrystals comprised of 7.4 nm diameter Au nanocrystals (with a 5% size dispersion have been imaged and analysed using a combination of scanning tunnelling microscopy and dynamic force microscopy.Results: By exploring the evolution of both the force and tunnel current with respect to tip–sample separation, we arrive at the surprising finding that single nanocrystal resolution is readily obtained in tunnelling microscopy images acquired more than 1 nm into the repulsive (i.e., positive force regime of the probe–nanocrystal interaction potential. Constant height force microscopy has been used to map tip–sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand distribution at the nanocrystal surface.Conclusion: Our combined STM–AFM measurements show that the contrast mechanism underpinning high resolution imaging of nanoparticle supracrystals involves a form of nanoscale contact imaging, rather than the through-vacuum tunnelling which underpins traditional tunnelling microscopy and spectroscopy.

  17. X-ray microscopy of human malaria

    International Nuclear Information System (INIS)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-01-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease

  18. CARS microscopy of Alzheimer's diseased brain tissue

    Science.gov (United States)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  19. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  20. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  1. The governmentalization of living

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rose, Nikolas

    2015-01-01

    of the twentieth century. As is well known, the compilation and tabulation of vital statistics – death-rates, birth-rates, morbidity rates – contributed to the birth of the ‘population’ in the eighteenth and nineteenth centuries. The population is reformatted from the middle of the twentieth century by ‘modified...... life tables’ made up of disability weightings, health state valuations, quality of life scores, disease burden estimates, etc. The problem of morbid death gives way to that of morbid living, made calculable through a metrics of ‘severity’, ‘disability’ and ‘impairment’. A series of new indices...... and scales (e.g. the QALY and DALY) has contributed to a governmentalization of living, in the course of which the social and personal consequences of living with disease come to be an object of political concern, and made knowable, calculable and thereby amenable to various strategies of intervention. We...

  2. Psychoanalysis and creative living.

    Science.gov (United States)

    Rubin, Jeffrey B

    2003-01-01

    Psychoanalysis is ambivalent about creativity and its own creative potential. On the one hand, psychoanalysis offers enormous resources for elucidating obstacles to creativity, that way of living, making and relating to self and others that is fresh, vital, unpredictable and open to feedback and evolution. On the other hand, when we analysts know too much beforehand about what a work of art really means or the fundamental and singular motives of creativity, then psychoanalysis unconsciously partakes of a perverse scenario in which the work of art serves as merely a means to the author's ends and is psychologically colonized. When psychoanalysis is The Discipline That Knows, then art has nothing new to teach psychoanalysts and our field is impoverished. "Psychoanalysis and Creative Living" attempts to elucidate how psychoanalysis could work through this tension between its creative and perverse possibilities and foster creative living.

  3. Laser scanning laser diode photoacoustic microscopy system.

    Science.gov (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing

    2018-03-01

    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  4. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  5. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  6. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  8. Transmission-type angle deviation microscopy

    International Nuclear Information System (INIS)

    Chiu, M.-H.; Lai, C.-W.; Tan, C.-T.; Lai, C.-F.

    2008-01-01

    We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (∼32 nm), nondestructive and noncontact measurement, and larger measurement ranges (± 80 μm) for a numerical aperture of 0.21in a transparent measurement medium. The technique can be used without conductivity and pretreatment

  9. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  10. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan

    2012-01-01

    Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy. The supercont......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy....... The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution....

  11. Chiral discrimination by chemical force microscopy

    Science.gov (United States)

    McKendry, Rachel; Theoclitou, Maria-Elena; Rayment, Trevor; Abell, Chris

    1998-02-01

    Chirality is a fundamental aspect of chemical biology, and is of central importance in pharmacology. Consequently there is great interest in techniques for distinguishing between different chiral forms of a compound. Chemical force microscopy is a technique that combines chemical discrimination with atomic force microscopy by chemical derivatization of the scanning probe tip. It has been applied to the study of hydrophobic and hydrophilic interactions, the binding between biotin and streptavidin, and between DNA bases. Here we report on the use of chemical force microscopy to discriminate between chiral molecules. Using chiral molecules attached to the probe tip, we can distinguish the two enantiomers of mandelic acid arrayed on a surface, through differences in both the adhesion forces and the frictional forces measured by the probe.

  12. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. More Years Better Lives

    DEFF Research Database (Denmark)

    Fristrup, Tine

    2014-01-01

    Europe and the rest of the world, which may help offset the effects of ageing in some counties or regions, but which brings its own challenges. Alongside this change in the structure of the population, we are seeing a reshaping of the lifecourse, from a fairly simple one with three stages – childhood...... and assistive technologies are enabling people to live longer and healthier lives, but sometimes at a substantial cost. Communication technologies are transforming how people interact, how business is done and how public services are delivered. These changes have positive and negative dimensions and can present...

  14. Cryopreservation of Living Organs

    Science.gov (United States)

    Tanasawa, Ichiro; Nagata, Shinichi; Kimura, Naohiro

    Cryopreservation is considered to be the most promising way of preserving living organs or tissues for a long period of time without casuing any damage to their biological functions. However, cryopreservation has been succeeded only for simple and small-size tissues such as spermatozoon, ovum, erythrocyte, bone marrow and cornea. Cryopreservation of more complex and large-scale organs are not yet succssful. The authors have attempted to establish a technique for cryopreservation of larger living organs. An experiment was carried out using daphnia (water flea). The optimum rates of freezing and thawing were determined together with the optimum selection of cryoprotectant. High recovery rate was achieved under these conditions.

  15. Living with Light

    DEFF Research Database (Denmark)

    Nielsen, Stine Maria Louring; Mullins, Michael Finbarr

    2018-01-01

    in their daily lives. It is argued that these patterns are largely shaped by the elderly’s bodily, social and cultural experiences and contexts, so a framework encompassing four major themes is proposed: 1. Traditions, Economy and Environment; 2. Quality of Life and Independence; 3. Health; and 4. Security...... seeks new insight into and an in-depth understanding of how older people experience light in their everyday lives. The paper introduces the results of a qualitative analysis of the collected data and presents some observations on the values and meanings the elderly attach to light and lighting...

  16. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Science.gov (United States)

    Takehara, Hiroaki; Kazutaka, Osawa; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2017-09-01

    Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules) in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  17. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis.

    Science.gov (United States)

    Supatto, Willy; McMahon, Amy; Fraser, Scott E; Stathopoulos, Angelike

    2009-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five-step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multi-photon microscopy, to 3D cell tracking using image processing, registration of tracking data and their quantitative analysis using computational tools. It uses commercially available equipment and requires expertise in microscopy and programming that is appropriate for a biology laboratory. Custom-made scripts are provided, as well as sample datasets to permit readers without experimental data to carry out the analysis. The protocol has offered new insights into the genetic control of cell migration during Drosophila gastrulation. With simple modifications, this systematic analysis could be applied to any developing system to define cell positions in accordance with the body plan, to decompose complex 3D movements and to quantify the collective nature of cell migration.

  18. Noninvasive multiphoton imaging of cardiovascular structures using NIR femtosecond laser scanning microscopy

    Science.gov (United States)

    Schenke-Layland, Katja; Riemann, Iris; Stock, Ulrich A.; Konig, Karsten

    2004-07-01

    Near infrared (NIR) femtosecond laser scanning microscopy represents a novel and very promising medical diagnostic imaging technology for non-invasive cross-sectional analysis of living biological tissues. In this study multiphoton imaging has been performed to analyze the structural features of extracellular matrix (ECM) components, e.g. collagen and elastin, of living pulmonary and aortic heart valves. High-resolution autofluorescence and second harmonic generation (SHG) images of collagenous and elastic fibers were demonstrated using multifluorophore, multiphoton excitation at two different wavelengths and non-invasive optical sectioning, without the need of embedding or staining. The quality of the resulting three-dimensional images allowed exact differentiation of the ECM components. These experimental results indicated that NIR femtosecond laser scanning microscopy may prove to be a useful tool for the non-destructive monitoring and characterization of cardiovascular structures.

  19. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  20. Electron Microscopy of Natural and Epitaxial Diamond

    Science.gov (United States)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.