WorldWideScience

Sample records for intravenous gas exchange

  1. Imaging regional PAO2 and gas exchange.

    Science.gov (United States)

    Petersson, Johan; Glenny, Robb W

    2012-07-01

    Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.

  2. Give or take? Intravenous immunoglobulin or plasma exchange for Guillain-Barré syndrome.

    Science.gov (United States)

    Hughes, Richard A C

    2011-07-28

    A new randomised controlled trial suggested that plasma exchange hastened removal from the ventilator in mechanically ventilated children with Guillain-Barré syndrome compared with intravenous immunoglobulin. Two larger trials in adults showed the opposite result.

  3. SAFE gas turbine cycle primary heat exchangers

    Science.gov (United States)

    Reid, Robert S.; Kapernick, Richard J.

    2002-01-01

    Los Alamos National Laboratory and Marshall Space Flight Center are jointly developing two modular heat pipe heat exchangers, collectively named FIGMENT (Fission Inert Gas Metal Exchanger for Non-nuclear Testing). The FIGMENT heat exchangers are designed to transfer power from the SAFE nuclear reactor cores to gas turbine energy converters. A stainless steel prototype heat exchanger will be built during 2002 in preparation for the construction of a larger refractory metal version. Two promising FIGMENT stainless steel heat exchanger concepts are reviewed here. .

  4. Gas exchange measurements in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  5. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. High temperature heat exchanger studies for applications to gas turbines

    Science.gov (United States)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  7. Trace Gas Exchange of Biofuel Crops

    Science.gov (United States)

    Graus, M.; Warneke, C.; Williams, E. J.; Lerner, B. M.; Gilman, J. B.; Li, R.; Eller, A. S.; Gray, C.; Fierer, N.; Fall, R.; Harley, P. C.; Roberts, J. M.; Yuan, B.; Qian, Y.; Westra, P.; Fryrear, C.; Collins, M.; Whitman, K.; De Gouw, J. A.

    2011-12-01

    In 2010 leaf level gas exchange and VOC fluxes from switchgrass and corn grown at the CSU horticultural farm in Ft Collins (CO) were measured using a PTR-MS coupled to a modified Li6400 cuvette system. Both species are C4 plants with corn currently being the dominant biofuel crop in the USA whilst switchgrass being a promising candidate for cellulosic fuel ethanol production. Amongst the strongest VOC emissions from both plants were methanol, acetic acid, acetaldehyde, acetone and toluene. The switchgrass VOC emissions compare reasonably well with the only published data measured from potted plants in a whole plant enclosure (Eller et al. 2011). VOC emission studies on corn are almost as scarce as those of switchgrass. Considering the acreage of corn grown in the USA every year, VOC flux measurements of this plant species are largely under-represented in the literature. The emission rates that do exist in the literature do not compare well with the numbers found in this study (e.g. Das et al. 2003; 35μg methanol per hour per gram biomass). To investigate the biosphere atmosphere exchange of corn fields in more detail the field campaign BioCORN 2011 was initiated. In summer 2011 an eddy covariance system was set up in a corn field at ARDEC (CSU, Ft Collins, CO) to investigate the energy flux and the trace gas exchange of the US' dominant biofuel crop. Besides energy flux, evapotranspiration and CO2 flux a comprehensive suite of volatile organic compounds and inorganic species (O3, NO, NO2, CO) are measured for virtual disjunct eddy covariance (vDEC) analysis and true eddy covariance (EC) fluxes, respectively. VOCs are monitored by PTR-MS and, for the first time, fluxes of formic acid are measured utilizing NI-CIMS data for vDEC analysis. Besides the EC approach leaf level flux measurements and soil flux measurements are performed using a GC-MS system (TACOH) coupled to a modified Li6400 system and to soil chambers, respectively. Ethanol and methanol are amongst the

  8. LES of Gas Exchange in IC Engines

    Directory of Open Access Journals (Sweden)

    Mittal V.

    2013-10-01

    Full Text Available As engine technologies become increasingly complex and engines are driven to new operating points, understanding transient phenomena is important to ensure reliable engine operation. Unlike Reynolds Averaged Navier-Stokes (RANS studies that only provide cycle-averaged information, Large Eddy Simulation (LES studies are capable of simulating cycle-to-cycle dynamics. In this work, a finite difference based structured methodology for LES of IC engines is presented. This structured approach allows for an efficient mesh generation process and provides potential for higher order numerical accuracy. An efficient parallel scalable block decomposition is done to overcome the challenges associated with the low ratio of fluid elements to overall mesh elements. The motion of the valves and piston is handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eulerian (ALE method, respectively. Modified three-dimensional Navier-Stokes Characteristic Boundary Conditions (NSCBC are used in the simulation to prescribe conditions in the manifolds. The accuracy of the simulation framework is validated using various canonical configurations. Flow bench simulations of an axisymmetric configuration and an actual engine geometry are done with the LES methodology. Simulations of the gas exchange in an engine under motored conditions are also performed. Overall, good agreement is obtained with experiments for all the cases. Therefore, this framework can be used for LES of engine simulations. In the future, reactive LES simulations will be performed using this framework.

  9. Exchange effects in a quasi-one-dimensional electron gas

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1990-04-01

    We calculate the electron exchange of a quasi-one-dimensional electron gas in a quantum-well wire of radius R0. A two-subband model is considered and the exchange self-energy for the first and second subband is calculated under the assumption that only the lowest subband is partially filled with electrons. Band-bending effects are also discussed. Results for the total energy per electron including kinetic and exchange energy are presented.

  10. Reversible brain inactivation induces discontinuous gas exchange in cockroaches.

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2013-06-01

    Many insects at rest breathe discontinuously, alternating between brief bouts of gas exchange and extended periods of breath-holding. The association between discontinuous gas exchange cycles (DGCs) and inactivity has long been recognised, leading to speculation that DGCs lie at one end of a continuum of gas exchange patterns, from continuous to discontinuous, linked to metabolic rate (MR). However, the neural hypothesis posits that it is the downregulation of brain activity and a change in the neural control of gas exchange, rather than low MR per se, which is responsible for the emergence of DGCs during inactivity. To test this, Nauphoeta cinerea cockroaches had their brains inactivated by applying a Peltier-chilled cold probe to the head. Once brain temperature fell to 8°C, cockroaches switched from a continuous to a discontinuous breathing pattern. Re-warming the brain abolished the DGC and re-established a continuous breathing pattern. Chilling the brain did not significantly reduce the cockroaches' MR and there was no association between the gas exchange pattern displayed by the insect and its MR. This demonstrates that DGCs can arise due to a decrease in brain activity and a change in the underlying regulation of gas exchange, and are not necessarily a simple consequence of low respiratory demand.

  11. Lung Structure and the Intrinsic Challenges of Gas Exchange.

    Science.gov (United States)

    Hsia, Connie C W; Hyde, Dallas M; Weibel, Ewald R

    2016-03-15

    Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints.

  12. Scaling leaf measurements to estimate cotton canopy gas exchange

    Science.gov (United States)

    Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...

  13. Gas exchange under water : acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little atten

  14. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, G.G.; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents

  15. Toxicodynamics of rigid polystyrene microparticles on pulmonary gas exchange in mice: Implications for microemboli-based drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, H.L. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Gao, D.; Li, S. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Massa, C.B.; Cervelli, J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Deshmukh, M. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Joseph, L.B.; Laskin, D.L. [UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Sinko, P.J., E-mail: sinko@rci.rutgers.edu [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); UMDNJ-Rutgers CounterACT Research Center of Excellence, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-01-15

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange were investigated. CD-1 male mice (6–8 weeks) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO{sub 2}) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (F{sub I}O{sub 2}). The resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation–perfusion ratio (V{sub A}/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized V{sub A}/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized V{sub A}/Q one day post-treatment were 4000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated V{sub A}/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO{sub 2} alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived V{sub A}/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. -- Highlights: ► Murine pulmonary gas exchange after microembolization was non-invasively studied. ► A physiologically based model quantified impairment of pulmonary gas exchange.

  16. [Immunomodulation in severe leptospirosis with multiple organ failure: plasma exchange, intravenous immunoglobulin or corticosteroids?].

    Science.gov (United States)

    Meaudre, E; Asencio, Y; Montcriol, A; Martinaud, C; Graffin, B; Palmier, B; Goutorbe, P

    2008-02-01

    We report a case of severe leptospirosis complicated with a multiple organ failure syndrome. A 62-year-old patient presented a picture associating fever, asthenia and myalgias, particularly intense on the calves. The assessment showed acute renal failure, hyperbilirubinemia, severe rhabdomyolysis and thrombocytopenia. Although initial management associating amoxicilline and continuous veino-venous hemodiafiltration, evolution was unfavourable, with SDRA and increase of hyperbilirubinemia. Administration of a bolus of 500 mg of methylprednisolone, associated with intravenous immunoglobulin (0,4 g/kg per day during five days), led to a rapid clinical and biological improvement. Immunomodulation aspects during leptospirosis are discussed.

  17. A continuum model for metabolic gas exchange in pear fruit.

    Directory of Open Access Journals (Sweden)

    Q Tri Ho

    2008-03-01

    Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.

  18. False-positive serology following intravenous immunoglobulin and plasma exchange through transfusion of fresh frozen plasma in a patient with pemphigus vulgaris.

    Science.gov (United States)

    Nomura, Hisashi; Honda, Haruki; Egami, Shohei; Yokoyama, Tomoaki; Fujimoto, Atsushi; Ishikawa, Makiko; Sugiura, Makoto

    2015-04-01

    Intravenous immunoglobulin therapy and plasma exchange through transfusion of fresh frozen plasma are therapeutic options for patients with refractory pemphigus vulgaris. Passive acquisition of various clinically important antibodies through these therapies can occur, leading to false serology and negatively affecting patients' clinical care. It is recommended that dermatologists recognize the possibility of these phenomena and interpret them appropriately. Here, we report false-positive serology following intravenous immunoglobulin therapy and plasma exchange through transfusion of fresh frozen plasma in a patient with refractory pemphigus vulgaris. We also discuss the measure for misinterpretation and unnecessary clinical intervention.

  19. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  20. Finned tubes in purified gas heat exchangers of flue gas desulfurization plant

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J. Jr.; Meyer, T.H.

    1985-01-01

    The use of helical rolled, corrosion resistant finned tubes in the purified gas heat exchangers of flue gas desulfurization plant has considerable economic advantages over conventional heat exchangers with smooth tubes. As a result of a threefold larger external surface and hence improved heat transfer properties, heat exchangers with finned tubes can be made considerably smaller. The weight and space requirements are reduced and the pressure drop also falls owing to the smaller diameter. Thus piping, pumps, and fittings can all be made smaller. Moreover, deposition on the finned tubes is considerably lower. It is found that finned tubes can be recommended in all cases where the difference in heat transfer coefficients between the inside and the outside of the tube is considerable. (orig.).

  1. Gas exchange abnormalities in patients listed for liver transplantation.

    Science.gov (United States)

    Przybyłowski, T; Krenke, R; Fangrat, A; Nasilowski, J; Grabczak, E M; Styczynski, G; Pruszczyk, P; Krawczyk, M; Chazan, R

    2006-09-01

    Abnormalities of pulmonary gas exchange are common in patients with advanced liver disease. Since arterial blood hypoxemia is an important issue in the preoperative evaluation of liver transplant candidates, the study was undertaken to determine the incidence and severity of lung function impairment with a special emphasis on pulmonary gas exchange abnormalities in this group of patients. 104 consecutive patients (47 F and 57 M, mean age 46 +/-11 yr) listed for orthotopic liver transplantation participated in this prospective study. All patients underwent evaluation including: clinical assessment (Child-Pough and MELD classification), chest X-ray, chest sonography, lung function tests, arterial blood gases measurement, and transthoracic contrast enhanced echocardiography. There were 2 patients with acute hepatic failure, 6 patients with primary or metastatic liver carcinoma, and 96 patients with chronic liver disease. The mean PaO(2) and lung function parameters for the entire group were within normal limits. There were 29 hypoxemic patients (PaO(2)20 mmHg) P(A-a)O(2). DL(CO) was significantly lower in cirrhotic vs. non-cirrhotic patients (76.5 +/-19.3 vs. 92.4 +/-19.0% predicted; P<0.001). Hepatopulmonary syndrome (HPS) was recognized in 23 (24%) patients. 91% of patients with HPS showed mild to moderate stage of disease. There were significant difference between differences HPS patients and non-HPS patients in DL(CO) (69.0 +/-14.5 vs. 83.5 +/-20.7, P<0.01). In conclusion, all patients referred for OLT should be screened for gas exchange abnormalities. Such a workup should include not only PAO(2) but also DL(CO) and P(A-a)O(2) measurement together with contrast enhanced echocardiography.

  2. Effect of cage vs. floor litter environments on the pulmonary hypertensive response to intravenous endotoxin and on blood-gas values in broilers.

    Science.gov (United States)

    Wang, W; Erf, G F; Wideman, R F

    2002-11-01

    Intravenous endotoxin has been shown to trigger a delayed pulmonary hypertensive response that varies widely in magnitude and duration among individual broilers. It was proposed that this individual variability may reflect immunological differences acquired during previous respiratory challenges that might have subsequently altered the endotoxin-initiated biochemical cascade. In Experiment 1, we tested the hypothesis that, when compared with broilers reared in clean stainless steel cages (Cage group), broilers reared on floor litter (Floor group) should experience a greater respiratory challenge and therefore may consistently exhibit a more enhanced pulmonary hypertensive response to intravenous endotoxin. Birds in the Cage group were grown in stainless steel cages at a low density (72 birds/8 m2 chamber), and fecal and dander materials were removed daily. Birds in the Floor group were reared on wood-shavings litter at a higher density (110 birds/8 m2 chamber). Pulmonary and systemic mean arterial pressures and blood-gas values were evaluated prior to and following the intravenous administration of 1 mg Salmonella typhimurium endotoxin. Broilers in the Floor and Cage groups exhibited pulmonary hypertensive responses to endotoxin that were very similar in terms of time of onset, duration, and magnitude, as well as variability in the response among individuals. Systemic hypotension also developed similarly in both groups following endotoxin injection. Blood-gas values indicated that the partial pressure of CO2 and the HCO3- concentration in arterial blood were higher (P Floor group than in the Cage group prior to and subsequent to the endotoxin injection. In Experiment 2, we reevaluated the effect of a dirty vs. a clean environment on blood-gas values using a different strain of broilers, and confirmed the negative impact of floor rearing on blood-gas values. We conclude that broilers reared on the floor inhaled litter dust and noxious fumes, which impaired pulmonary

  3. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  4. Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse

    Directory of Open Access Journals (Sweden)

    Morgan Karin

    2009-05-01

    Full Text Available Abstract Background Sedation with α2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET, during sedation with the α2-agonist detomidine alone and in combination with the opioid butorphanol. Methods Seven Standardbred trotter horses aged 3–7 years and weighing 380–520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg and after subsequent butorphanol administration (0.025 mg/kg. Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q was estimated with MIGET. Results During detomidine sedation, arterial oxygen tension (PaO2 decreased (12.8 ± 0.7 to 10.8 ± 1.2 kPa and arterial carbon dioxide tension (PaCO2 increased (5.9 ± 0.3 to 6.1 ± 0.2 kPa compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-aO2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident. Conclusion The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.

  5. Gas exchanges in soybean as affected by landfill biogas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Zerbi, G. (Univ. di Udine (Italy). Dipt. di Produzione Vegetale e Tecnologie Agrarie); Mori, A.; Leita, L. (Ist. Sperimentale per la Nutrizione delle Piante-Sezione di Gorizia (Italy))

    A problem in the ecological restoration of closed landfills is the production of potentially toxic gases by decomposition of refuse that affects the root system and physiology of plants growing on these sites. The aim of the present study was to assess the effects induced by landfill biogas contamination on gas-exchanges of soybean [Glycine max (L.) Merr.]. Simulated landfill and control gases were supplied to soybean plants under laboratory conditions for 10 d. The composition of the simulated landfill gas used was: 16% O[sub 2], 8% CO[sub 2], 3% CH[sub 4], and 73% N[sub 2]; a control gas was also tested. Photosynthesis and stomatal conductance were significantly affected by the gas treatment after 3 d; in the course of the experiment, biogas treatment progressively reduced A[sub max] in light-saturation curves. The fresh and dry weight, leaf area and leaf chlorophyll content were not affected by the treatment. A metabolic adaptation to the biogas in the roots of treated plants was related to the disappearance of a fraction of the protein pool.

  6. Assimilate transport in phloem sets conditions for leaf gas exchange.

    Science.gov (United States)

    Nikinmaa, Eero; Hölttä, Teemu; Hari, Pertti; Kolari, Pasi; Mäkelä, Annikki; Sevanto, Sanna; Vesala, Timo

    2013-03-01

    Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build-up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.

  7. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  8. GAS EXCHANGE AND CARBOHYDRATE PARTITIONING IN COFFEE SEEDLINGS UNDER WATERLOGGING

    Directory of Open Access Journals (Sweden)

    Helbert Rezende de Oliveira Silveira

    2015-04-01

    Full Text Available Irrigation has enhanced coffee production in several regions of Brazil. However, with the increase in irrigated crop areas, problems related to the frequent and poorly planned usage of irrigation may arise. Since there are few studies related to the physiological alterations in coffee plants exposed to water excess, we evaluated the effects of waterlogging on metabolism and partitioning of carbohydrates, levels of photosynthetic pigments and gas exchange in seedlings of two commercial coffee cultivars (Mundo Novo and Catuaí. After acclimation, seedlings with eight pairs of fully expanded leaves were cultivated under three water availability conditions: field capacity, intermittent waterlogging and continuous waterlogging. Gas exchange and the levels of chlorophyll, carotenoids and carbohydrates were evaluated during the five months after the beginning of the treatments. Waterlogging reduced the rates of photosynthesis and transpiration, leading to lower activity of the carboxylative step of photosynthesis and culminating in the reduction of carbohydrate partitioning in coffee seedlings. Although many physiological parameters were affected by waterlogging, the cultivars in our study survived for five months under stressful conditions.

  9. Direct Energy Exchange Enhancement in Distributed Injection Light Gas Launchers

    Energy Technology Data Exchange (ETDEWEB)

    Alger, T W; Finucane, R G; Hall, J P; Penetrante, B M; Uphaus, T M

    2000-04-06

    initially contained in the reservoir. This results deserves emphasis: whereas conventional guns apply a few percent of the reservoir pressure to a fast moving projectile, our design is paradoxically capable of applying nearly double the contained pressure. We later confirmed this experimental result analytically and related it to a type of direct energy exchange between unsteady fluid flows. This physical approach was the basis for the German V-1 ''buzz bomb'' of World War II; it has been applied to a limited number of commercial applications. (This work should not be confused with the German WWII distributed injection missile launchers.) Direct fluid-energy exchange has not previously been applied to any gas-launcher technology. As a result of these discoveries, we estimate that a practical, 15 km/s, high-velocity launcher could be built using our direct-energy-exchange, distributed-injection approach. However, the radical nature of the results, the lack of confirming or allied work being carried out anywhere else, and the fact that it would take extensive time and resources to demonstrate targeted performance precluded further development. We plan to submit the results to a refereed journal to ensure that the work will not be lost to the launcher community.

  10. Toxicodynamics of Rigid Polystyrene Microparticles on Pulmonary Gas Exchange in Mice: Implications for Microemboli-based Drug Delivery Systems

    Science.gov (United States)

    Kutscher, HL.; Gao, D.; Li, S.; Massa, CB.; Cervelli, J.; Deshmukh, M.; Joseph, LB.; Laskin, DL.; Sinko, PJ.

    2013-01-01

    The toxicodynamic relationship between the number and size of pulmonary microemboli resulting from uniformly sized, rigid polystyrene microparticles (MPs) administered intravenously and their potential effects on pulmonary gas exchange was investigated. CD-1 male mice (6–8 wk) were intravenously administered 10, 25 and 45 μm diameter MPs. Oxygen hemoglobin saturation in the blood (SpO2) was measured non-invasively using a pulse oximeter while varying inhaled oxygen concentration (FIO2). Resulting data were fit to a physiologically based non-linear mathematical model that estimates 2 parameters: ventilation-perfusion ratio (VA/Q) and shunt (percentage of deoxygenated blood returning to systemic circulation). The number of MPs administered prior to a statistically significant reduction in normalized VA/Q was dependent on particle size. MP doses that resulted in a significant reduction in normalized VA/Q one day post-treatment were 4,000, 40,000 and 550,000 MPs/g for 45, 25 and 10 μm MPs, respectively. The model estimated VA/Q and shunt returned to baseline levels 7 days post-treatment. Measuring SpO2 alone was not sufficient to observe changes in gas exchange; however, when combined with model-derived VA/Q and shunt early reversible toxicity from pulmonary microemboli was detected suggesting that the model and physical measurements are both required for assessing toxicity. Moreover, it appears that the MP load required to alter gas exchange in a mouse prior to lethality is significantly higher than the anticipated required MP dose for effective drug delivery. Overall, the current results indicate that the microemboli-based approach for targeted pulmonary drug delivery is potentially safe and should be further explored. PMID:23142466

  11. Thermal Efficiency in a Direct Contact Heat Exchanger of Gas and Liquid

    Science.gov (United States)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Co-generation systems have many practical applications for energy-saving, utilization of various energy resources and energy recovery of waste gas. However, it is pointed out that heat exchangers of co-generation system involve some problems which are corrosion of heat surface, decrease of heat transfer rate due to accumulation of soot and NOx in waste gas. Then. the heat exchange which contacts waste gas with liquid are studied to solve the above problems. The contacting state of gas and liquid has not been researched on the direct contact heat exchanger of gas and liquid. For it is considered that the contacting state has direct effects on a thermal efficiency and gas absorption. Then, we try to investigate the contacting state of gas and liquid by experiments of heating and image processing on the direct contact heat exchanger. From the results, the contacting state of gas and liquid can be evaluate by a gas-liquid contacting area.

  12. On the use of Rotary Gas/gas Heat Exchangers as a Novel Integration Option for Heat and Water Management in Exhaust Gas Recycling Gas Turbine Plants

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2014-01-01

    This work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to t...

  13. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-02-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  14. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-07-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air–water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  15. Pulmonary and Cutaneous O[subscript 2] Gas Exchange: A Student Laboratory Exercise in the Frog

    Science.gov (United States)

    Tattersall, Glenn J.; Currie, Suzanne; LeBlanc, Danielle M.

    2013-01-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O[subscript 2] uptake and CO[subscript 2] excretion between respiratory organs with different efficiencies. For example, due to…

  16. Minimal model quantification of pulmonary gas exchange in intensive care patients

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Hans Steen

    2011-01-01

    Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange ...

  17. Pulmonary and Cutaneous O[subscript 2] Gas Exchange: A Student Laboratory Exercise in the Frog

    Science.gov (United States)

    Tattersall, Glenn J.; Currie, Suzanne; LeBlanc, Danielle M.

    2013-01-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O[subscript 2] uptake and CO[subscript 2] excretion between respiratory organs with different efficiencies. For example, due to…

  18. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    Science.gov (United States)

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  19. Risk factors for transient dysfunction of gas exchange after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Cristiane Delgado Alves Rodrigues

    2015-02-01

    Full Text Available Objective: A retrospective cohort study was preformed aiming to verify the presence of transient dysfunction of gas exchange in the postoperative period of cardiac surgery and determine if this disorder is linked to cardiorespiratory events. Methods: We included 942 consecutive patients undergoing cardiac surgery and cardiac procedures who were referred to the Intensive Care Unit between June 2007 and November 2011. Results: Fifteen patients had acute respiratory distress syndrome (2%, 199 (27.75% had mild transient dysfunction of gas exchange, 402 (56.1% had moderate transient dysfunction of gas exchange, and 39 (5.4% had severe transient dysfunction of gas exchange. Hypertension and cardiogenic shock were associated with the emergence of moderate transient dysfunction of gas exchange postoperatively (P=0.02 and P=0.019, respectively and were risk factors for this dysfunction (P=0.0023 and P=0.0017, respectively. Diabetes mellitus was also a risk factor for transient dysfunction of gas exchange (P=0.03. Pneumonia was present in 8.9% of cases and correlated with the presence of moderate transient dysfunction of gas exchange (P=0.001. Severe transient dysfunction of gas exchange was associated with patients who had renal replacement therapy (P=0.0005, hemotherapy (P=0.0001, enteral nutrition (P=0.0012, or cardiac arrhythmia (P=0.0451. Conclusion: Preoperative hypertension and cardiogenic shock were associated with the occurrence of postoperative transient dysfunction of gas exchange. The preoperative risk factors included hypertension, cardiogenic shock, and diabetes. Postoperatively, pneumonia, ventilator-associated pneumonia, renal replacement therapy, hemotherapy, and cardiac arrhythmia were associated with the appearance of some degree of transient dysfunction of gas exchange, which was a risk factor for reintubation, pneumonia, ventilator-associated pneumonia, and renal replacement therapy in the postoperative period of cardiac surgery and

  20. A stability dependent theory for air-sea gas exchange

    Science.gov (United States)

    Erickson, David J.

    1993-05-01

    The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel "whitecap" model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent "whitecap" model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h-1 for a

  1. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    Science.gov (United States)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  2. The effect of wind and currents on gas exchange in an estuarine system

    Science.gov (United States)

    Broecker, W. S.; Ledwell, J. R.; Bopp, R.

    1987-01-01

    The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF6, was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF6, Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF6 and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer.

  3. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    Science.gov (United States)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  4. Minimal model quantification of pulmonary gas exchange in intensive care patients

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Steen

    2011-01-01

    of both oxygen and carbon dioxide. Three models of varying complexity were compared for their ability to fit measured data from intensive care patients and to provide adequate description of patients' gas exchange abnormalities. Pairwise F-tests showed that a two parameter model provided superior fit......Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange...... to patient data compared to a shunt only model (p...

  5. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  6. Pulmonary and cutaneous O₂gas exchange: a student laboratory exercise in the frog.

    Science.gov (United States)

    Tattersall, Glenn J; Currie, Suzanne; LeBlanc, Danielle M

    2013-03-01

    Gas exchange in animals is ultimately diffusion based, generally occurring across dedicated respiratory organs. In many aquatic amphibians, however, multiple modes of gas exchange exist, allowing for the partitioning of O2 uptake and CO2 excretion between respiratory organs with different efficiencies. For example, due to the physical properties of O2 being vastly different between air and water phases, the lung and skin play disproportionately important roles in O2 uptake. Many aquatic frogs are renowned for their cutaneous gas exchange capacity, where often the majority of CO2 is excreted across the skin. Furthermore, the roles of these gas exchange organs change with the animal's behavior. Under diving conditions, most of the frog's gas exchange needs must be met by the skin. In this article, we describe an interactive undergraduate laboratory that allows a class of students to share equipment while assessing pulmonary and cutaneous respiration in frogs provided with an air/water choice and under enforced dive conditions. Concepts explored in this laboratory exercise include animal energetics, diving reflex, pulmonary and cutaneous gas exchange processes, diffusion-based gas flux, and O2 debt.

  7. [Prone position: effect on gas exchange and functional capacity for exercise in patients with pulmonary hypertension].

    Science.gov (United States)

    Bastidas-L, Andrea Carolina; Colina-Chourio, José A; Guevara, Jesnel M; Nunez, Alexis

    2015-03-01

    The objective of this investigation was to evaluate gas exchange and cardiopulmonary functional behavior in patients with pulmonary hypertension (PH) before, during and after the change to a prone position. Thirty patients with PH and alterations in gas exchange were included in the study. Gas exchange measurements were performed in four stages: at the baseline supine position and after 30, 120 and 240 minutes in prone position. Also, the patients were evaluated by the six minutes walking test (6MWT) after 30 days in prone position during night's sleep. After four hours in prone position, all patients showed an increase of PaO2 and arterial saturation of oxygen (SaO2), with a decrease of intrapulmonary shunts, improving the gas exchange and therefore the physiological demand imposed by exercise in patients with PH.

  8. Reducing water usage with rotary regenerative gas/gas heat exchangers in natural gas-fired power plants with post-combustion carbon capture

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2015-01-01

    It is possible to greatly mitigate the increase of water usage associated with the addition of carbon capture to fossil fuel power generation. This article presents a first-of-a-kind feasibility study of a series of technology options with rotary regenerative gas/gas heat exchangers for the management of the water balance around post-combustion carbon capture process integrated with Combined Cycle Gas Turbine (CCGT) plants with and without exhaust gas recirculation (EGR). Hybrid cooling confi...

  9. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    Directory of Open Access Journals (Sweden)

    V. A. Lapin

    2009-09-01

    Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.

  10. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  11. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    Science.gov (United States)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  12. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    Science.gov (United States)

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  13. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  14. Study of gas exchange in insects by sensitive laser photoacoustic spectroscopy

    NARCIS (Netherlands)

    Persijn, S.T.; Harren, F.J.M.; Wijkamp, I.; Mitrayana, L.

    2006-01-01

    Although quantifying gas exchange in small insect species is of great biological interest, the progress in this field of research is hampered by the inability of most gas detectors to monitor the low emission rates from these insects. Recently, laser based photoacoustic spectroscopy (LPAS) has emerg

  15. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  16. Study of gas exchange in insects by sensitive laser photoacoustic spectroscopy

    NARCIS (Netherlands)

    Persijn, S.T.; Harren, F.J.M.; Wijkamp, I.; Mitrayana, L.

    2006-01-01

    Although quantifying gas exchange in small insect species is of great biological interest, the progress in this field of research is hampered by the inability of most gas detectors to monitor the low emission rates from these insects. Recently, laser based photoacoustic spectroscopy (LPAS) has

  17. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (≈ 100-300 μm dia.) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  18. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane

    Science.gov (United States)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A.

    2010-04-01

    Variations of free volume and gas permeability of the Nafion® membrane upon ion-exchange of H+ with Cs+ or Pt2+ was studied as a function of temperature. Free volume was quantified using the positron annihilation lifetime technique. Our results showed that the free volume (VFV,Ps) of the dried membrane is enlarged by thermal expansion. It was found that the ion-exchange significantly expands the free volume and at the same time decreases the permeabilities of O2 and H2. Good linear correlations between the logarithm of permeabilities of O2 and H2 at different temperatures and 1/VFV,Ps for the ion-exchanged forms of Nafion® in the dried state suggest an important role played by the free volume in gas permeation. Considerable downward deviation of the correlations for the ion-exchanged ionomers from the H+-form suggested the importance of polymer stiffening in gas permeation.

  19. High effectiveness liquid droplet/gas heat exchanger for space power applications

    Science.gov (United States)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  20. Design optimization of heat exchangers in topside systems for offshore oil and gas processing

    OpenAIRE

    Bandopadhyay, Mayukh

    2014-01-01

    On a typical oil and gas platform, mechanical equipment units are integral parts of the topside processing system. Heat exchangers, separators, scrubbers, compressors and other equipment units are critical for the proper operation of the processing plant. The hydrocarbon stream received at the first production separator is a mixed stream comprising oil, water and gas phase. This mixed stream is processed in order to separate the oil dominated, water dominated and gas phase. The processing sys...

  1. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...... such as stirring of solutions. In some species, pressurized gas flows develop in shoots and rhizomes, and their contribution to gas fluxes can be assessed with pressure transducers and flow meters. Other gases produced in wetlands (e.g., CO2, CH4, and N2O) are also transported in aerenchyma. Their fluxes...

  2. The role of bubbles during air-sea gas exchange

    Science.gov (United States)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  3. Long-term outcome of lung transplantation in previous intravenous drug users with talc lung granulomatosis.

    Science.gov (United States)

    Weinkauf, J G; Puttagunta, L; Nador, R; Jackson, K; LaBranche, K; Kapasi, A; Mullen, J; Modry, D L; Stewart, K C; Thakrar, M; Doucette, K; Lien, D C

    2013-01-01

    Talc lung granulomatosis results from the intravenous use of medication intended for oral use. Talc (magnesium silicate) acts as filler in some oral medications; when injected intravenously, it deposits in the lungs leading to airflow obstruction and impaired gas exchange. Allocation of donor lungs to previous intravenous drug users is controversial. After a careful selection process, 19 patients with talc lung granulomatosis have received lung allografts in our program. Long-term survival for these patients is excellent and our results suggest the previous use of intravenous drugs should not necessarily preclude lung transplantation.

  4. A method for the simultaneous measurement of gas exchange and diffusion resistance of fruits and vegetables under various gas conditions

    NARCIS (Netherlands)

    Peppelenbos, H.W.; Jeksrud, W.K.

    1998-01-01

    To measure the relationship between gas exchange rates and diffusion resistance, and their changes in time, both should be measured on the same fruit or vegetable, because diffusion resistance shows large variations between individuals of the same species and cultivar. The method described enables

  5. Gas exchange measurement during pediatric mechanical ventilation--agreement between gas sampling at the airway and the ventilator exhaust.

    Science.gov (United States)

    Smallwood, Craig D; Mehta, Nilesh M

    2013-12-01

    A variety of indirect calorimetry (IC) devices are used for gas exchange measurement and calculation of resting energy expenditure (REE) in the pediatric intensive care unit. The aim of this investigation was to compare oxygen consumption (VO2), carbon dioxide elimination (VCO2), REE and respiratory quotient (RQ) in mechanically ventilated children, obtained by 2 devices using distinct gas sampling methods. Mechanically ventilated children were targeted for IC and gas exchange measurements were recorded for a 30 min period, simultaneously using the E-COVX(®) (gas sampling at the airway) and the Vmax(®) (gas sampling at the humidifier and ventilator exhaust). Steady state gas exchange measurements by the 2 devices were tested for agreement using Spearman correlation and Bland-Altman analysis. Steady state data from both devices were available in 19 tests and were included in the analysis. The correlations coefficients for measurements by the 2 devices were r = 0.903(P < 0.001), 0.955(P < 0.001), 0.944(P < 0.001) and 0.484(P < 0.05) for VO2, VCO2, REE and RQ, respectively. The mean percentage bias (limits of agreement) for VO2, VCO2, REE and RQ values between the two methods (Vmax-E-COVX) was 0.2 (-41.8-42.3), -0.8 (-21.8-20.1), -2.2 (-33.9-29.6) and 1.9 (-21-24.9) respectively. Despite strong correlations and small mean biases for VO2, VCO2 and REE obtained by the Vmax(®) and E-COVX(®), the limits of agreement were beyond the clinically acceptable range. These devices should not be used interchangeably for gas exchange measurements in mechanically ventilated children. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

    Science.gov (United States)

    Zappa, Christopher J.; McGillis, Wade R.; Raymond, Peter A.; Edson, James B.; Hintsa, Eric J.; Zemmelink, Hendrik J.; Dacey, John W. H.; Ho, David T.

    2007-05-01

    Air-water gas transfer influences CO2 and other climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer is not well known. Widely used models of gas exchange rates are based on empirical relationships linked to wind speed, even though physical processes other than wind are known to play important roles. Here the first field investigations are described supporting a new mechanistic model based on surface water turbulence that predicts gas exchange for a range of aquatic and marine processes. Findings indicate that the gas transfer rate varies linearly with the turbulent dissipation rate to the ${^1}\\!/{_4 power in a range of systems with different types of forcing - in the coastal ocean, in a macro-tidal river estuary, in a large tidal freshwater river, and in a model (i.e., artificial) ocean. These results have important implications for understanding carbon cycling.

  7. A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs.

    Science.gov (United States)

    Potkay, Joseph A

    2013-06-01

    Microfabrication techniques are attractive for constructing artificial lungs due to the ability to create features similar in size to those in the natural lung. However, a simple and intuitive mathematical model capable of accurately predicting the gas exchange performance of microchannel artificial lungs does not currently exist. Such a model is critical to understanding and optimizing these devices. Here, we describe a simple, closed-form mathematical model for gas exchange in microchannel artificial lungs and qualify it through application to experimental data from several research groups. We utilize lumped parameters and several assumptions to obtain a closed-form set of equations that describe gas exchange. This work is intended to augment computational models by providing a more intuitive, albeit potentially less accurate, understanding of the operation and trade-offs inherent in microchannel artificial lung devices.

  8. Effect of nitric oxide inhalation on gas exchange in acute severe pneumonia.

    Science.gov (United States)

    Gómez, Federico P; Amado, Veronica M; Roca, Josep; Torres, Antoni; Nicolas, Josep M; Rodriguez-Roisin, Robert; Barberà, Joan A

    2013-06-15

    Inhaled nitric oxide (NO) causes selective pulmonary vasodilatation and may improve gas exchange. The study was aimed to evaluate the acute effects of inhaled NO on pulmonary gas exchange in severe unilateral pneumonia, where hypoxemia results from increased intrapulmonary shunt. We studied 8 patients without preexisting lung disease (59±18 yr; 4M/4F) with early unilateral severe pneumonia and respiratory failure. Pulmonary and systemic hemodynamics and gas exchange, including ventilation-perfusion (V;A/Q;) distributions, were measured at baseline and while breathing 5 and 40 parts per million (ppm) of NO. Inhaled NO caused a dose-dependent fall in pulmonary vascular resistance (by 12% and 21%, with 5 and 40ppm, respectively; ppneumonia.

  9. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Greenhouse gas exchange in tropical mountain ecosystems in Tanzania

    Science.gov (United States)

    Gerschlauer, Friederike; Kikoti, Imani; Kiese, Ralf

    2014-05-01

    Tropical mountain ecosystems with their mostly immense biodiversity are important regions for natural resources but also for agricultural production. Their supportive ecosystem processes are particularly vulnerable to the combined impacts of global warming and the conversion of natural to human-modified landscapes. Data of impacts of climate and land use change on soil-atmosphere interactions due to GHG (CO2, CH4, and N2O) exchange from these ecosystems are still scarce, in particular for Africa. Tropical forest soils are underestimated as sinks for atmospheric CH4 with regard to worldwide GHG budgets (Werner et al. 2007, J GEOPHYS RES Vol. 112). Even though these soils are an important source for the atmospheric N2O budget, N2O emissions from tropical forest ecosystems are still poorly characterized (Castaldi et al. 2013, Biogeosciences 10). To obtain an insight of GHG balances of selected ecosystems soil-atmosphere exchange of N2O, CH4 and CO2 was investigated along the southern slope of Mt. Kilimanjaro, Tanzania. We will present results for tropical forests in three different altitudes (lower montane, Ocotea, and Podocarpus forest), home garden (extensive agro-forestry), and coffee plantation (intensive agro-forestry). Therefore we used a combined approach consisting of a laboratory parameterization experiment (3 temperature and 2 moisture levels) and in situ static chamber measurements for GHG exchange. Field measurements were conducted during different hygric seasons throughout two years. Seasonal variation of temperature and especially of soil moisture across the different ecosystems resulted in distinct differences in GHG exchange. In addition environmental parameters like soil bulk density and substrate availability varying in space strongly influenced the GHG fluxes within sites. The results from parameterization experiments and in situ measurements show that natural forest ecosystems and extensive land use had higher uptakes of CH4. For the investigated

  13. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.

    Science.gov (United States)

    Grieshaber, Beverley J; Terblanche, John S

    2015-06-07

    The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor

  14. Impact of Detoxification Techniques on Pulmonary Gas Exchange Function in Patients with Generalized Peritonitis

    Directory of Open Access Journals (Sweden)

    R. A. Mlinnik

    2012-01-01

    Full Text Available Objective: to analyze the impact of different detoxification techniques on pulmonary gas exchange function in patients with generalized peritonitis complicated by multiple organ failure. Subjects and methods. One hundred and thirty patients with generalized peritonitis were examined. According to the used detoxification techniques, the patients were divided into 5 groups. All the patients underwent a comprehensive examination, the key element of which was the evaluation of gas exchange parameters. Results. Membrane plasmapheresis and plasmapheresis with sodium hypochlorite infusion to the plasma filter in patients with peritonitis are shown to improve pulmonary blood oxygenation.

  15. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  16. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  17. Effects of Anti-G Measures on Gas Exchange.

    Science.gov (United States)

    1981-05-01

    position (+lGz), and the endotracheal tube was connected to a Rudolf valve arranged so that expired gas passed through a heated pneumotachograph and a... Steiner , 1960; Peterson, Bishop and Erickson, 1977). Data presented in Table 111-I suggest that application of the G-sult abdominal bladder tended to...accelerations. Aerospace Med. 31: 213-219, 1960. 18. Hershgold, E.J. and S.H. Steiner . Cardiovascular changes during acceleration stress in dogs. J

  18. Perfusion and diffusion limitations in middle ear gas exchange: the exchange of CO2 as a test case.

    Science.gov (United States)

    Marcusohn, Yael; Ar, Amos; Dirckx, Joris J J

    2010-06-14

    A long standing debate on perfusion/diffusion limitations in the context of middle ear (ME) gas exchange was revisited using data obtained from previous iso-pressure gas-exchange measurements in different mammals. We tried to determine whether the exchange of CO(2) in the ME is limited by perfusion or by diffusion by comparing the mass specific cardiac output (msQ) and the mass specific initial CO(2) flow rate into air-washed MEs (msV(i) CO(2)) of rabbits and rats. Based on previously published allometry at rest, the msQ was 0.154 mL/(min g) in rabbits (mean body weight: 2800 g) and 0.259 mL/(min g) in rats (mean body weight: 179.1 g); msV(i) CO(2) (Delta t=0) was 0.109+/-0.047 microL/(h g) in rabbits (n=16) and 0.170+/-0.094 microL/(h g) in rats (n=9). Similar ratios were found when an allometric comparison was made between the ratio of msV(i) CO(2) (Delta t=0) (approximately 0.64), and the ratio of msQs (approximately 0.59) in rabbits and rats. If the active mucosal surface areas of MEs of rabbits and rats are directly proportional to their masses as are the masses of their hearts and if their msQs are proportional to the rates of blood flows in the ME mucosa, these results support the assumption that the exchange of CO(2) in the ME of mammals is mainly perfusion (and not diffusion) dependent.

  19. Features of gas exchange of healthy people of working age

    Directory of Open Access Journals (Sweden)

    Noreiko S.B.

    2011-12-01

    Full Text Available The purpose of this study was to improve the accuracy of determining the basal metabolism of healthy people. Comparative studies of basal metabolism of healthy men and women on probation and respiratory physical factors are considered. Surveyed 30 healthy men and women aged 21-56 years. Determination of the volume of absorbed oxygen and produces carbon dioxide carried by the gas analyzer "Spirolit-2" were defined. Calculate the actual respiratory rate. It is established that the actual value of basal metabolism is characterized by low dispersion and higher accuracy.

  20. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real‐time human respiration process analysis method using a high‐time‐sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC‐MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas‐mask‐ type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high‐speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  1. New gas-gas heat exchanger in silicon carbide for heat recovery from high temperature gases (1200/sup 0/C)

    Energy Technology Data Exchange (ETDEWEB)

    Galant, S.; Grouset, D.; Martinez, G.; Mulet, J.; Rebuffat, D. (Societe Bertin, 78 - Plaisir (France)); Minjolle, L. (Societe Ceraver, 75 - Paris (France))

    1984-06-01

    A study of a novel gas-gas ceramic heat exchanger is presented with main industrial end uses as a heat recovery systems on exhaust combustion gases to preheat the combustion air to furnace burners. Large overall heat transfer coefficients are obtained by using both radiative and jet impingement convective heat transfer. A silicium carbide plate design is chosen on the basis of existing large scale production capabilities. A 100 hour experimental test program is carried out successfully, which confirms thermodynamic calculations and good overall design: 4 year payback times are expected for a standard industrial case examined. Further optimization studies will aim at further reducing such preliminary values.

  2. Stomatal behaviour and gas exchange of Sedges ( Carex spp.) under different soil moisture regimes

    Science.gov (United States)

    Busch, J.; Lösch, R.

    Sedges ( Carex spec., Cyperaceae) are important members of different vegetation types in temperate zones nearly all over the world. For this, knowledge of gas exchange and stomata behaviour of sedges is significant for understanding the exchange of water vapour and carbon dioxide between such vegetation types and the atmosphere. The gas exchange of several Carex species was studied in an experimental site of the Botanical Garden Düsseldorf (Germany). Transpiration and netassimilation rates (A), leaf conductances (g) and microclimatic parameters were measured porometrically during two vegetation periods. Patterns of dependence of leaf gas exchange on microclimatic conditions were worked out for different species and culture regimes. The sedges differ in stomatal sensitivity to changing air humidity. Water loss through transpiration is therefore decoupled from evaporation in a species-specific degree. Resulting mathematical models of g and A are presented and the importance of these species-specific differences in modelling and upscaling water vapour, carbon dioxide and trace gas fluxes are pointed out.

  3. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  4. Flooding tolerance of Carex species. II. Root gas-exchange capacity

    NARCIS (Netherlands)

    Moog, PR; Bruggemann, W

    1998-01-01

    Root CO2 and O-2 gas exchange were measured in young Carer extensa Good. (flooding sensitive), C. remota L. and C. pseudocyperus L. (both flooding tolerant) plants, precultured either aerobically or anaerobically. Temperature changes form 21 to II degrees C had small effects on root CO2 release from

  5. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    Science.gov (United States)

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.

  6. Oxygen-induced plasticity in tracheal morphology and discontinuous gas exchange cycles in cockroaches Nauphoeta cinerea.

    Science.gov (United States)

    Bartrim, Hamish; Matthews, Philip G D; Lemon, Sussan; White, Craig R

    2014-12-01

    The function and mechanism underlying discontinuous gas exchange in terrestrial arthropods continues to be debated. Three adaptive hypotheses have been proposed to explain the evolutionary origin or maintenance of discontinuous gas exchange cycles (DGCs), which may have evolved to reduce respiratory water loss, facilitate gas exchange in high CO2 and low O2 micro-environments, or to ameliorate potential damage as a result of oversupply of O2. None of these hypotheses have unequivocal support, and several non-adaptive hypotheses have also been proposed. In the present study, we reared cockroaches Nauphoeta cinerea in selected levels of O2 throughout development, and examined how this affected growth rate, tracheal morphology and patterns of gas exchange. O2 level in the rearing environment caused significant changes in tracheal morphology and the exhibition of DGCs, but the direction of these effects was inconsistent with all three adaptive hypotheses: water loss was not associated with DGC length, cockroaches grew fastest in hyperoxia, and DGCs exhibited by cockroaches reared in normoxia were shorter than those exhibited by cockroaches reared in hypoxia or hyperoxia.

  7. Discontinuous gas exchange exhibition is a heritable trait in speckled cockroaches Nauphoeta cinerea.

    Science.gov (United States)

    Schimpf, N G; Matthews, P G D; White, C R

    2013-07-01

    The regulation of insect respiratory gas exchange has long been an area of interest. In particular, the reason why insects from at least five orders exhibit patterns of gas exchange that include regular periods of spiracular closure has been the source of much controversy. Three adaptive hypotheses propose that these discontinuous gas-exchange cycles (DGCs) evolved to either limit water loss across respiratory surfaces, facilitate gas exchange in underground environments or to limit oxidative damage. It is possible that DGCs evolved independently multiple times and for different reasons, but for DGCs to be a plausible target for natural selection, they must be heritable and confer a fitness benefit. In a previous study of cockroaches Nauphoeta cinerea, we demonstrated that DGCs are repeatable and extend survival under food and water restriction. Here, we show for the first time that DGCs are heritable, suggesting that they are a plausible target for natural selection. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  8. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants maint

  9. Emphysema following vitrectomy with fluid–gas exchange: description of a rare complication

    Directory of Open Access Journals (Sweden)

    Damasceno EF

    2014-02-01

    Full Text Available Eduardo F Damasceno,1 Nadyr Damasceno,2 Soraya Horowitz,2 Marcio Mortera Rodrigues3 1Universidade Federal Fluminense, Niterói, Brazil; 2Hospital Naval Marcílio Dias, Rio de Janeiro, Brazil; 3Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Purpose: To report a case of subcutaneous emphysema involving the orbit, mediastinum, and face after pars plana vitrectomy with fluid–gas exchange. Methods: Case report of a 55-year-old man who presented with bilateral eyelid and face edema and dysphagia in the immediate postoperative period after pars plana vitrectomy. Orbital and chest computed tomographies were performed, revealing emphysema of the orbit and soft tissue of the face, extending from the neck to the upper chest. Results: The patient with a retinal detachment in the right eye underwent 23-gauge vitrectomy surgery with fluid–gas exchange and an implantation of silicone oil. The patient had a previous history of facial trauma for more than 20 years with an orbital fracture. After surgery, the patient developed emphysema of the orbit, soft tissue of the face and upper chest. Systemic prophylactic antibiotics associated with antibiotics and steroid drops performed a satisfactory evolution. Conclusion: The fluid–gas exchange during pars plana vitrectomy in patients with orbital fracture can lead to emphysema of the face, chest, and soft tissue. Keywords: vitrectomy complications, fluid–gas exchange, orbital emphysema, mediastinal emphysema, face emphysema, orbit fracture

  10. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  11. Xenon Anesthesia Improves Respiratory Gas Exchanges in Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    Antonio Abramo

    2010-01-01

    Full Text Available Background. Xenon-in-oxygen is a high density gas mixture and may improve PaO2/FiO2 ratio in morbidly obese patients uniforming distribution of ventilation during anesthesia. Methods. We compared xenon versus sevoflurane anesthesia in twenty adult morbidly obese patients (BMI>35 candidate for roux-en-Y laparoscopic gastric bypass and assessed PaO2/FiO2 ratio at baseline, at 15 min from induction of anaesthesia and every 60 min during surgery. Differences in intraoperative and postoperative data including heart rate, systolic and diastolic pressure, oxygen saturation, plateau pressure, eyes opening and extubation time, Aldrete score on arrival to the PACU were compared by the Mann-Whitney test and were considered as secondary aims. Moreover the occurrence of side effects and postoperative analgesic demand were assessed. Results. In xenon group PaO2-FiO2 ratio was significantly higher after 60 min and 120 min from induction of anesthesia; heart rate and overall remifentanil consumption were lower; the eyes opening time and the extubation time were shorter; morphine consumption at 72 hours was lower; postoperative nausea was more common. Conclusions. Xenon anesthesia improved PaO2/FiO2 ratio and maintained its distinctive rapid recovery times and cardiovascular stability. A reduction of opioid consumption during and after surgery and an increased incidence of PONV were also observed in xenon group.

  12. Gas separation by the molecular exchange flow through micropores of the membrane

    Science.gov (United States)

    Matsumoto, Michiaki; Nakaye, Shoeji; Sugimoto, Hiroshi

    2016-11-01

    A model gas separator that makes use of the molecular exchange flow through porous membrane of 18 cm2 area is fabricated. The gas separator performance is tested for helium-neon mixture. The separator divides a continuous flow of gas mixture into two flows of different gases. The difference of mole percentage is around 8 % at the volumetric feed flow rate of 1 sccm. In the present system, the molecular exchange flow is induced in two Knudsen pumps, where the mixed cellulose ester membrane is used as the thermal transpiration material. The experiment demonstrates the capability of these pumps to increase the concentration of heavy and light molecules, respectively, from the feed mixture.

  13. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  14. Organic iodine removal from simulated dissolver off-gas streams using partially exchanged silver mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1982-01-01

    The removal of methyl iodide by adsorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The methyl iodide adsorption of partially exchanged silver mordenite was examined for the effects of NO/sub x/, humidity, filter temperature, and degree of silver exchange. Partially exchanged silver mordenite, in general, achieved significantly higher silver utilizations than the fully exchanged material. Silver utilizations of > 95% were achieved, assuming the formation of AgI. The experimental results indicate that CH/sub 3/I loadings increase proportionally with silver loading up to 5 wt % silver and then appear to level off. Tests conducted to determine the effect of temperature on the loading showed higher loadings at 200/sup 0/C than at either 150 or 250/sup 0/C. The presence of NO, NO/sub 2/, and H/sub 2/O vapor showed negligible effects on the loading of CH/sub 3/I. In contrast to iodine loaded onto fully exchanged silver mordenite, the iodine loaded onto the partially exchanged silver mordenite could not be stripped by either 4.5% hydrogen or 100% hydrogen at temperatures up to 500/sup 0/C. A study of the regeneration characteristics of fully exchanged silver mordenite indicates a decreased adsorbent capacity after complete removal of the iodine with 4.5% hydrogen in the regeneration gas stream at 500/sup 0/C. The loss of adsorbent capacity was much higher for silver mordenite regenerated in a stainless steel filter housing than in a glass filter housing. A cost evaluation for the use of the partially exchanged silver mordenite shows that the cost of the silver mordenite on a once-through basis is < $10/h of operation for a 0.5-t/d reprocessing plant.

  15. Currents and convection cause enhanced gas exchange in the ice–water boundary layer

    Directory of Open Access Journals (Sweden)

    Brice Loose

    2016-12-01

    Full Text Available The presence of sea ice acts as a physical barrier for air–sea exchange. On the other hand it creates additional turbulence due to current shear and convection during ice formation. We present results from a laboratory study that demonstrate how shear and convection in the ice–ocean boundary layer can lead to significant gas exchange. In the absence of wind, water currents beneath the ice of 0.23 m s−1 produced a gas transfer velocity (k of 2.8 m d−1, equivalent to k produced by a wind speed of 7 m s−1 over the open ocean. Convection caused by air–sea heat exchange also increased k of as much as 131 % compared to k produced by current shear alone. When wind and currents were combined, k increased, up to 7.6 m d−1, greater than k produced by wind or currents alone, but gas exchange forcing by wind produced mixed results in these experiments. As an aggregate, these experiments indicate that using a wind speed parametrisation to estimate k in the sea ice zone may underestimate k by ca. 50 % for wind speeds <8 m s−1.

  16. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  17. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-01-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas–water interface...... to promote O2 uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O2 from floodwaters when in darkness and CO2 entry when in light. O2 microprofiles showed...... that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water–gas interface (cf. aquatic insects). When gas films were removed artificially...

  18. Virus reduction in an intravenous immunoglobulin by solvent/detergent treatment, ion-exchange chromatography and terminal low pH incubation.

    Science.gov (United States)

    Roberts, Peter L; Dunkerley, Christopher; Walker, Christopher

    2012-09-01

    Virus reduction by several steps in the manufacturing process for the intravenous immunoglobulin Vigam(®), has been investigated. The solvent/detergent step based on treatment with 0.3% tri-n-butyl phosphate and 1% polysorbate 80 at 37 °C, was confirmed to be effective for a range of enveloped viruses. Virus infectivity was undetectable i.e. >6 log inactivation within 30 min of the standard 6 h process. This was consistent over the range of conditions tested i.e. solvent/detergent and protein concentration, temperature and pH. The ion-exchange chromatography step in the process was also able to remove some viruses. Virus spiked followed by blank column runs confirmed the effectiveness of the sanitisation step for ensuring there was no virus cross contamination between column runs. The terminal low pH incubation step was also able to inactivate enveloped viruses, as well as some non-enveloped viruses. The combination of these three steps ensures a high margin of virus safety for this product.

  19. Development of the gas trade from the viewpoint of the energy exchange; Entwicklung des Gashandels aus Sicht der Energieboerse

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Christoph [COO EEX AG, Leipzig (Germany)

    2009-12-15

    The development of the European natural gas market hinges crucially on the existence of centrally located trading centres organised in the manner of stock exchanges. Examples are the natural gas spot and futures markets operated by the European Energy Exchange (EEX). Such markets attract liquidity, enhance market transparency, eliminate barriers to market entry and stimulate competition. An analysis shows what potential the natural gas trade in Germany has and what measures are needed to develop it.

  20. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  1. Cryogenic Heat-Exchanger Design for Freeze-out Removal of Carbon Dioxide from Landfill Gas

    Science.gov (United States)

    Chang, Ho-Myung; Chung, Myung Jin; Park, Seong Bum

    A cryogenic heat exchanger to remove carbon dioxide from landfill gas (LFG) is proposed and designed for applications to LNG production in distributed-scale. Since the major components of LFG are methane and carbon dioxide, CO2 removal is a significant pre-process in the liquefaction systems. A new and simple approach is proposed to directly remove carbon dioxide as frost on the surface wall along the cooling passage in a liquefying heat exchanger and to install two identical heat exchangers in parallel for alternative switching. As a first step of feasibility study, combined heat and mass transfer analysis is performed on the freeze-out process of CO2 in a counterflow heat exchanger, where CH4-CO2 mixture is cooled below its frost temperature in thermal contact with cold refrigerant. Engineering correlations for the analogy of heat and mass transfer are incorporated into numerical heat exchanger analysis with detailed fluid properties. The developed analytical model is used to estimate the distribution of CO2 accumulation and the required heat exchanger size with latent thermal load for the cryogenic CO2 removal in various operating conditions.

  2. Gas exchange and hatchability of chicken eggs incubated at simulated high altitude.

    Science.gov (United States)

    Visschedijk, A H

    1985-02-01

    Chicken eggs laid at sea level were incubated at sea level (control conditions), at a simulated altitude of 5.5 km without any further measures (natural conditions), and at a simulated altitude of 5.7 km at optimal incubator gas composition (optimal conditions). Under optimal conditions the incubator relative humidity was 70% throughout incubation, the gas mixture supplied to the incubator contained 45% O2-55% N2, and the ventilation rate was reduced to 6% of control in order to maintain the normal air-space gas tensions and to compensate for the increased eggshell conductance at altitude. The embryos that developed under control conditions showed a normal CO2 production with 94% hatchability of fertile eggs. Under natural conditions at altitude all embryos died within a few days. Optimal conditions resulted in an almost normal gas exchange and in an improvement of hatchability from 0 to 81% of fertile eggs.

  3. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Science.gov (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  4. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects......In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball......, Woodrow, Berry, 1987. In: Nijhoff, M. (Eds.), Progress in Photosynthesis Research, vol. 4. Dordrecht, The Netherlands, pp. 5.221-5.224]. To overcome the limitations of previous models in simulating stomatal conductance when plants are exposed to drought stress, we proposed a down-regulating factor...

  5. Exchange-correlation energy of a hole gas including valence band coupling

    Science.gov (United States)

    Bobbert, P. A.; Wieldraaijer, H.; van der Weide, R.; Kemerink, M.; Koenraad, P. M.; Wolter, J. H.

    1997-08-01

    We have calculated an accurate exchange-correlation energy of a hole gas, including the complexities related to the valence band coupling as occurring in semiconductors like GaAs, but excluding the band warping. A parametrization for the dependence on the density and the ratio between light- and heavy-hole masses is given. We apply our results to a hole gas in an AlxGa1-xAs/GaAs/AlxGa1-xAs quantum well and calculate the two-dimensional band structure and the band-gap renormalization. The inclusion of the valence band coupling in the calculation of the exchange-correlation potentials for holes and electrons leads to a much better agreement between theoretical and experimental data than when it is omitted.

  6. Diurnal change of gas exchange of Rhodiola sachalinensis transplanted from different habitats in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    阎秀峰; 李晶; 王玉杰; 祖元刚

    2000-01-01

    Rhodiola sachalinensis growing in the different habitats, such as Xiaotianchi plot (altitude 1800 m), Tree line plot (altitude 2000 m) and Tianwenfeng plot (altitude 2325 m) of Changbai Mountain (northern slop) were transplanted to Harbin Experimental Farm for determining its gas exchange. The study results indicated that the diurnal changes of gas exchange of Rh. sachalinensis transplanted from different habitats were still different though the morphological appearance of the newly sprouted above-ground part had become more similar. For net photosynthesis rate (Pn), stomatal conductance (Gs) and apparent quantum yield (AQY), the diurnal change curves of Rh. sachalinensis transplanted from the three plots were similar, but the data value were different. For the dark respiration rate (Rd), transpiration rate (Tr) and water use efficiency (WUE), diurnal change curves of the three plots were obviously different.

  7. Gas exchange of Rhodiola sachalinensis transplanted from different habitats in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Rhodiola sachalinensis growing in the different habitats, Xiaotianchi plot (altitude 1 800 m), Tree line plot (altitude 2 000 m) and Tianwenfeng plot (altitude 2 325 m), of Changbai Mountain (northern slop) were transplanted to Harbin Experimental Forest Farm for measuring its characteristic of gas exchange. The study results indicated that the growth state and gas exchange characteristics of Rh. sachalinensis growing in different habitats varied markedly. The plants transplanted from Tianwenfeng plot had the highest values in net photosynthesis rate(Pn) and transpiration rate (Tr), those transplanted from Tree line plot shows the second, and those transplanted rom Xiaotianchi plot had the lowest values. The variance existed in transplanted plants was the same as shown in the field. From the result it can be extrapolated that the difference of Pn and Tr existed in Rh. sachalinensis transplanted from different habitats is depend not only on the environmental factors, but on the variance of physiological characteristic of plant itself.

  8. Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank

    Science.gov (United States)

    Pereira, R.; Schneider-Zapp, K.; Upstill-Goddard, R. C.

    2016-07-01

    Understanding the physical and biogeochemical controls of air-sea gas exchange is necessary for establishing biogeochemical models for predicting regional- and global-scale trace gas fluxes and feedbacks. To this end we report the results of experiments designed to constrain the effect of surfactants in the sea surface microlayer (SML) on the gas transfer velocity (kw; cm h-1), seasonally (2012-2013) along a 20 km coastal transect (North East UK). We measured total surfactant activity (SA), chromophoric dissolved organic matter (CDOM) and chlorophyll a (Chl a) in the SML and in sub-surface water (SSW) and we evaluated corresponding kw values using a custom-designed air-sea gas exchange tank. Temporal SA variability exceeded its spatial variability. Overall, SA varied 5-fold between all samples (0.08 to 0.38 mg L-1 T-X-100), being highest in the SML during summer. SML SA enrichment factors (EFs) relative to SSW were ˜ 1.0 to 1.9, except for two values (0.75; 0.89: February 2013). The range in corresponding k660 (kw for CO2 in seawater at 20 °C) was 6.8 to 22.0 cm h-1. The film factor R660 (the ratio of k660 for seawater to k660 for "clean", i.e. surfactant-free, laboratory water) was strongly correlated with SML SA (r ≥ 0.70, p ≤ 0.002, each n = 16). High SML SA typically corresponded to k660 suppressions ˜ 14 to 51 % relative to clean laboratory water, highlighting strong spatiotemporal gradients in gas exchange due to varying surfactant in these coastal waters. Such variability should be taken account of when evaluating marine trace gas sources and sinks. Total CDOM absorbance (250 to 450 nm), the CDOM spectral slope ratio (SR = S275 - 295/S350 - 400), the 250 : 365 nm CDOM absorption ratio (E2 : E3), and Chl a all indicated spatial and temporal signals in the quantity and composition of organic matter in the SML and SSW. This prompts us to hypothesise that spatiotemporal variation in R660 and its relationship with SA is a consequence of compositional

  9. Total Heat Exchange Factor Based on Non-Gray Radiation Properties of Gas in Reheating Furnace

    Institute of Scientific and Technical Information of China (English)

    CUI Miao; CHEN Hai-geng; XU Li; WU Bin

    2009-01-01

    Modified mathematical models based on imaginary plane zone method in reheating furnace were developed in which non-gray radiation properties of gas were considered,and the Newton's method and the finite difference method were adopted.Effects of productivity,fuel consumption,fuel-air ratio,calorific value of fuel and inserting depth of thermocouple on total heat exchange factor along the length of reheating furnace were investigated.The resuits show that total heat exchange factor increases with productivity or inserting depth of thermocouple,and it decreases when fuel consumption,fuel-air ratio or calorific value of fuel increases.The results are valuable for dynamical compensation of total heat exchange factor for online control mathematical models in reheating furnace.

  10. Critical appraisal of some factors pertinent to the functional designs of the gas exchangers.

    Science.gov (United States)

    Maina, John N

    2017-03-01

    Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.

  11. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    OpenAIRE

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation an...

  12. The effects of oxygen induced pulmonary vasoconstriction on bedside measurement of pulmonary gas exchange.

    Science.gov (United States)

    Weinreich, Ulla M; Thomsen, Lars P; Rees, Stephen E; Rasmussen, Bodil S

    2016-04-01

    In patients with respiratory failure measurements of pulmonary gas exchange are of importance. The bedside automatic lung parameter estimator (ALPE) of pulmonary gas exchange is based on changes in inspired oxygen (FiO2) assuming that these changes do not affect pulmonary circulation. This assumption is investigated in this study. Forty-two out of 65 patients undergoing coronary artery bypass grafting (CABG) had measurements of mean pulmonary arterial pressure (MPAP), cardiac output and pulmonary capillary wedge pressure thus enabling the calculation of pulmonary vascular resistance (PVR) at each FiO2 level. The research version of ALPE was used and FiO2 was step-wise reduced a median of 0.20 and ultimately returned towards baseline values, allowing 6-8 min' steady state period at each of 4-6 levels before recording the oxygen saturation (SpO2). FiO2 reduction led to median decrease in SpO2 from 99 to 92 %, an increase in MPAP of 4 mmHg and an increase in PVR of 36 dyn s cm(-5). Changes were immediately reversed on returning FiO2 towards baseline. In this study changes in MPAP and PVR are small and immediately reversible consistent with small changes in pulmonary gas exchange. This indicates that mild deoxygenation induced pulmonary vasoconstriction does not have significant influences on the ALPE parameters in patients after CABG.

  13. Gas exchange pattern transitions in the workers of the harvester termite.

    Science.gov (United States)

    Inder, Isabelle M; Duncan, Frances D

    2015-04-01

    The evolutionary genesis and the current adaptive significance of the use of the discontinuous gas exchange cycle (DGC) for respiration by insects is the subject of intense debate. Years of research have resulted in several leading hypotheses, one of which is the emergent-property hypothesis. This hypothesis states that DGC is an emergent property or consequence of interactions between the O2 and CO2 set points that regulate spiracular function, i.e. opening and closing. Workers of the harvester termite, Hodotermes mossambicus were selected as a model to test this hypothesis. The respiratory patterns of major workers, investigated using flow-through respirometry, were obtained at 100% relative humidity (RH) under varying temperature to evaluate the assumptions of the emergent-property hypothesis. Metabolic rate, measured as VCO2 increased significantly after 15 °C. As VCO2 increased in response to increasing temperature and activity, the gas exchange pattern displayed by workers transitioned to a continuous gas exchange. A true DGC, defined as showing all three phases and a coefficient of variation value close to 2, was not expressed under the experimental conditions. The conclusion drawn from this study of termite workers is that changes in respiratory patterns are most likely an emergent property of the insects' nervous and respiratory system.

  14. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  15. Response time of indirectly accessed gas exchange depends on measurement method.

    Science.gov (United States)

    Rafl, Jakub; Kulhanek, Filip; Kudrna, Petr; Ort, Vaclav; Roubik, Karel

    2017-08-12

    Noninvasive techniques are routinely used for assessment of tissue effects of lung ventilation. However, comprehensive studies of the response time of the methods are scarce. The aim of this study was to compare the response time of noninvasive methods for monitoring of gas exchange to sudden changes in the composition of the inspired gas. A prospective experimental study with 16 healthy volunteers was conducted. A ventilation circuit was designed that enabled a fast change in the composition of the inspiratory gas mixture while allowing spontaneous breathing. The volunteers inhaled a hypoxic mixture, then a hypercapnic mixture, a hyperoxic mixture and finally a 0.3% CO mixture. The parameters with the fastest response to the sudden change of O2 in inhaled gas were peripheral capillary oxygen saturation (SpO2) and regional tissue oxygenation (rSO2). Transcutaneous oxygen partial pressure (tcpO2) had almost the same time of reaction, but its time of relaxation was 2-3 times longer. End-tidal carbon dioxide (EtCO2) response time to change of CO2 concentration in inhaled gas was less than half in comparison with transcutaneous carbon dioxide partial pressure (tcpCO2). All the examined parameters and devices reacted adequately to changes in gas concentration in the inspiratory gas mixture.

  16. Accuracy of gas exchange monitoring during noninvasive ventilation: an in vitro metabolic simulation.

    Science.gov (United States)

    Smallwood, Craig D; Mehta, Nilesh M

    2014-01-01

    Gas exchange monitoring by indirect calorimetry (IC) during noninvasive ventilation (NIV) is desirable but currently not available. Leaks around the mask preclude reliable measurements of carbon dioxide production (VCO2) and oxygen consumption (VO2) in this population. We aimed to examine the impact of system leaks and gas flows on the accuracy of gas exchange measurements during NIV using an in vitro metabolic simulation. We examined the agreement between VCO2 and VO2 measurements by IC (using a novel canopy device) and reference values generated during an in vitro metabolic simulation of NIV at room air. The flow rate of gas sampled by the IC device (VIC) was set relative to the output flow of the ventilator (VVENT) to obtain a range of sample factors (SF = VIC/VVENT). Linear regression was used to determine the effect of SF on the accuracy of the system. An acceptable agreement between measured and reference values was observed, with mean bias (limits of agreement) of -3.3% (-6.9% to 0.3%) and -10.6% (-14.9% to -6.4%) for VCO2 and VO2, respectively. An SF of 1.25 was associated with the highest accuracy of measurement. VO2 measurement accuracy deteriorated with system leak and at SF >1.25 and was linearly related to sample dilution by ambient air entrainment. A novel canopy device with titration of IC sample flow in relation to the ventilator flow allowed in vitro gas exchange measurements during simulated NIV with acceptable accuracy. This model needs to be tested in clinical settings.

  17. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    Science.gov (United States)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-11-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  18. Stomatal design principles for gas exchange in synthetic and real leaves

    Science.gov (United States)

    Jensen, Kaare H.; Haaning, Katrine; Boyce, C. Kevin; Zwieniecki, Maciej

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water, and CO2 availability and on geometric properties of the stomata pores. The link between stomata geometry and environmental factors have informed a wide range of scientific fields - from agriculture to climate science, where observed variations in stomata size and density is used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning, are not well understood. Here we use a combination of biomimetic experiments and theory to rationalize the observed changes in stomatal geometry. We show that the observed correlations between stomatal size and density are consistent with the hypothesis that plants favor efficient use of space and maximum control of dynamic gas conductivity, and - surprisingly - that the capacity for gas exchange in plants has remained constant over at least the last 325 million years. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics. Supported by the Carlsberg Foundation (2013-01-0449), VILLUM FONDEN (13166) and the National Science Foundation (EAR-1024041).

  19. Stock exchange trading of natural gas in Germany. Measures to promote natural gas trade; Status quo des boerslichen Erdgashandels in Deutschland. Massnahmen zur Erdgashandelsentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Paulun, Tobias; Beidatsch, Sirko [European Energy Exchange AG, Leipzig (Germany). Dept. of Business Development

    2010-07-01

    2010 brought about significant changes in the boundary conditions of natural gas trading in Germany. The amended GasNZV (Ordinance on Access to the Public Gas Grids) changed the conditions of access to transport capacities. At the same time, the global price trends in the natural gas sector provided a strong impetus for new acquisition strategies that may significantly enhance the trading interest of the marketeers. The contribution takes a look at the current status of the natural gas trade in Germany and especially the stock exchange for natural gas, which may soon have a decisive role in the new acquisition strategies. (orig.)

  20. EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, J.C. (ed.)

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  1. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma – gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

    Key words. Interplanetary physics (heliopause and solar wind termination; interstellar gas – Ionosphere (plasma temperature and density

  2. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    Science.gov (United States)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  3. A parameter model of gas exchange for the seasonal sea ice zone

    Directory of Open Access Journals (Sweden)

    B. Loose

    2013-07-01

    Full Text Available Carbon budgets for the polar oceans require better constraint on air-sea gas exchange in the sea ice zone (SIZ. Here, we utilize recent advances in the theory of turbulence, mixing and air-sea flux in the ice-ocean boundary layer (IOBL to formulate a simple model for gas exchange when the surface ocean is partially covered by sea ice. The gas transfer velocity (k is related to shear-driven and convection-driven turbulence in the aqueous mass boundary layer, and to the mean-squared wave slope at the air–sea interface. We use the model to estimate k along the drift track of Ice-Tethered Profilers (ITPs in the Arctic. Individual estimates of daily-averaged k from ITP drifts ranged between 1.1 and 22 m d−1, and the fraction of open water (f ranged from 0 to 0.83. Converted to area-weighted effective transfer velocities (keff, the minimum value of keff was 10−5 m d−1 near f = 0 with values exceeding keff = 5 m d−1 at f = 0.4. The largest values of k occurred during the periods when ice cover around the ITP was changing rapidly; either in advance or retreat. The model indicates that effects from shear and convection in the sea ice zone contribute an additional 40% to the magnitude of keff, beyond what would be predicted from an estimate of keff based solely upon a windspeed parameterization. Although the ultimate scaling relationship for gas exchange in the sea ice zone will require validation in laboratory and field studies, the basic parameter model described here demonstrates that it is feasible to formulate estimates of k based upon properties of the IOBL using data sources that presently exist.

  4. Experimental Investigation of Gas-Side Performance of a Compact Finned-Tube Heat Exchanger

    Science.gov (United States)

    Gedeon, Louis

    1959-01-01

    Heat-transfer and pressure-drop data were obtained experimentally for the gas side of a liquid-metal to air, compact finned-tube heat exchanger. The heat exchanger was fabricated from 0.185-inch Inconel tubing in an inline array. The fins were made of 310 stainless-steel- clad copper with a total thickness of 0.010 inch, and the fin pitch was 15.3 fins per inch. The liquid used as the heating medium was sodium. The heat-exchanger inlet gas temperature was varied from 5100 to 1260 R by burning JP fuel for airflow rates of 0.4 to 10.5 pounds per second corresponding to an approximate Reynolds number range of 300 to 9000. The sodium inlet temperature was held at 1400 R with the exception of a few runs taken at 1700 and 1960 R. The maximum ratio of surface temperature to air bulk temperature was 1.45. Friction-factor data with heat transfer were best represented by a single line when the density and viscosity of Reynolds number were evaluated at the average film temperature. At the lower Reynolds numbers reported, the friction data with heat transfer plotted slightly above the friction data without heat transfer. The density of the friction factor was calculated at the average bulk temperature. Heat-transfer results of this investigation were correlated by evaluating the physical properties of air (specific heat, viscosity, and thermal conductivity) at the film temperature.

  5. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

    Science.gov (United States)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-01-01

    In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

  6. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    Science.gov (United States)

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  7. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress.

  8. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger.

    Science.gov (United States)

    O'Donnell, Martha E; Chen, Yi-Je; Lam, Tina I; Taylor, Kelleen C; Walton, Jeffrey H; Anderson, Steven E

    2013-02-01

    Cerebral edema forms in the early hours of ischemic stroke by processes involving increased transport of Na and Cl from blood into brain across an intact blood-brain barrier (BBB). Our previous studies provided evidence that the BBB Na-K-Cl cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema and infarct in rats subjected to permanent middle cerebral artery occlusion (pMCAO). More recently, we showed that BBB Na/H exchanger activity is also stimulated by hypoxia, aglycemia, and AVP. The present study was conducted to further investigate the possibility that a BBB Na/H exchanger also participates in edema formation during ischemic stroke. Sprague-Dawley rats were subjected to pMCAO and then brain edema and Na content assessed by magnetic resonance imaging diffusion-weighed imaging and magnetic resonance spectroscopy Na spectroscopy, respectively, for up to 210 minutes. We found that intravenous administration of the specific Na/H exchange inhibitor HOE-642 significantly decreased brain Na uptake and reduced cerebral edema, brain swelling, and infarct volume. These findings support the hypothesis that edema formation and brain Na uptake during the early hours of cerebral ischemia involve BBB Na/H exchanger activity as well as Na-K-Cl cotransporter activity.

  9. Long-term gas exchange characteristics as markers of deterioration in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Pramana Isabelle

    2009-11-01

    Full Text Available Abstract Background and Aim In patients with cystic fibrosis (CF the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth, lung clearance index (LCI, trapped gas (VTG, airway resistance (sReff, and forced expiratory indices (FEV1, FEF50, were collected in 178 children (88 males; 90 females with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p 1 (p 50 (p p 2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.

  10. Significant enhancement of the charging efficiency in the cavities of ferroelectrets through gas exchange during charging

    Science.gov (United States)

    Qiu, Xunlin

    2016-11-01

    Ferroelectrets are non-polar polymer foams or polymer systems with internally charged cavities. They are charged through a series of dielectric barrier discharges (DBDs) that are caused by the electrical breakdown of the gas inside the cavities. Thus, the breakdown strength of the gas strongly influences the charging process of ferroelectrets. A gas with a lower breakdown strength has a lower threshold voltage, thus decreasing the onset voltage for DBD charging. However, a lower threshold voltage also leads to a lower value for the remanent polarization, as back discharges that are caused by the electric field of the internally deposited charges can take place already at lower charge levels. On this basis, a charging strategy is proposed where the DBDs start in a gas with a lower breakdown strength (in the present example, helium) and are completed at a higher breakdown strength (e.g., nitrogen or atmospheric air). Thus, the exchange of the gas in the cavities during charging can significantly enhance the charging efficiency, i.e., yield much higher piezoelectric coefficients in ferroelectrets at significantly lower charging voltages.

  11. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    Science.gov (United States)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  12. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension.

    Science.gov (United States)

    Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D

    2015-08-01

    We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Operation of an ADR using helium exchange gas as a substitute for a failed heat switch

    Science.gov (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.

    2014-11-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 × 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  14. Operation of an ADR Using Helium Exchange Gas as a Substitute for a Failed Heat Switch

    Science.gov (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  15. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  16. Accurate exchange-correlation energies for the warm dense electron gas

    OpenAIRE

    Malone, FD; Blunt, NS; Brown, EW; Lee, DKK; Spencer, JS; Foulkes, WMC; Shepherd, JJ

    2016-01-01

    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the $k$-space configurati...

  17. Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Du, Chunyu; Wang, Baorong; Cheng, Xinqun

    This communication described the fabrication of a hierarchy carbon paper, and its application to the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells. The carbon paper was fabricated by growing carbon nanotubes (CNTs) on carbon fibers via covalently assembling metal nanocatalysts. Surface morphology observation revealed a highly uniform distribution of hydrophobic materials within the carbon paper. The contact angle to water of this carbon paper was not only very large but also particularly even. Polarization measurements verified that the hierarchy carbon paper facilitated the self-humidifying of PEM fuel cells, which could be mainly attributed to its higher hydrophobic property as diagnosed by electrochemical impedance spectroscopy (EIS).

  18. Stomatal control of gas-exchange is related to assimilate transport from leaves

    Science.gov (United States)

    Nikinmaa, E.; Holtta, T.; Sevanto, S.; Makela, A.; Hari, P.; Vesala, T.

    2009-04-01

    In land plants, the carbon fluxes are closely associated with those of water. The loss of water from leaves pulls water from soil in plants. High transpiration relative to compensating water flux from soil increases the tension of water column that may lead to its rupture and catastrophic dysfunction of the xylem if the transpiration rate is not regulated. Modification of the size of stomatal openings in leaves regulates the interconnected fluxes of water and carbon. Stomatal regulation of transpiration has direct influence also on the carbon transport from source leaves to sinks. Under given conditions, the water tension of xylem in leaves is linearly related to stomatal conductance while the assimilation rate, which is linked to the loading capacity, has saturating relationship with stomatal conductance. High sugar loading at source could compensate for the high water tension in xylem resulting from eg. high transpiration. However, excessive loading rate of the most commonly transported sugar, sucrose, causes rapid viscosity build up that effectively blocks the phloem transport. Assimilate transport from the shoot is a clear requirement for continuous photosynthetic production in leaves. Without transport the storage capacity of the leaves would be rapidly exhausted and accumulation of excess sugars in leaves lead to downregulation of photosynthesis. In this presentation we study the stomatal response to environment and its linkage to xylem and phloem tranport with dynamic model. We hypothesize that stomatal reaction to environment would maintain maximal assimilate transport in phloem under those conditions. We added to the xylem phloem transport model stomatal control of leaf gas-exchange, light and CO2 concentration dependent photosynthesis rate and carbon storage in leaf. For each time step we varied the stomatal conductance and selected the sollution that maximised the transport of assimilates in phloem. Our hypothesis reproduced realistically stomatal

  19. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    . The present study demonstrates that the internal oxygen pressure in the petioles of Rumex palustris plants under water is indeed well above the critical oxygen pressure for aerobic respiration, provided that the air-saturated water is not completely stagnant. The beneficial effect of shoot acclimation...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...

  20. Gas exchange and heart rate in the harbour porpoise, Phocoena phocoena

    DEFF Research Database (Denmark)

    Reed, J.Z.; Chambers, C.; Hunter, C.J.

    2000-01-01

    The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 +/- 0.3 s, mean +/- SEM) were shorter than...... a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 +/- 13.8 ml O-2. min(-1)) was 1.9- fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min....... The peak end-tidal O-2 values were related to the length of the previous breath- hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 +/- 1.0 ml.100 ml(-1), and the oxygen affinity was high, enabling rapid oxygen loading during ventilation....

  1. Intensification of heat exchange in a device for gas-dynamic energy separation

    Science.gov (United States)

    Leontiev, A. I.; Burtsev, S. A.

    2016-11-01

    The operating efficiency of a gas-dynamic energy-separation device is analyzed, and it is shown that it can be improved if we deposit a regular relief on the wall separating the supersonic and subsonic channels. To decrease the total pressure losses on the side of the supersonic channel, shallow spherical dimples (stampings) are deposited, creating spherical ledges in the subsonic channel because of the small thickness of the wall. The calculation technique is modernized, and modeling is carried out, which shows that by introducing intensified heat exchange, it is possible to improve the efficiency of this device by 1.2-1.4 times in air and in natural gas with a simultaneous decrease in the device size by 20-25%.

  2. Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury.

    Science.gov (United States)

    Dembinski, Rolf; Kopp, Rüdger; Henzler, Dietrich; Hochhausen, Nadine; Oslender, Nicole; Max, Martin; Rossaint, Rolf; Kuhlen, Ralf

    2003-06-01

    In most severe cases of the acute respiratory distress syndrome, veno-venous extracorporeal membrane oxygenation (ECMO) can be used to facilitate gas exchange. However, the clinical use is limited due to the size and the concomitant risk of severe adverse events of conventionally-used centrifugal blood pumps with high extracorporeal blood volumes. The DeltaStream blood pump is a small-sized rotary blood pump that may reduce extracorporeal blood volume, foreign surfaces, contact activation of the coagulation system, and blood trauma. The aim of the present study was to test the safety and efficacy of the DeltaStream pump for ECMO in animals with normal lung function and experimental acute lung injury (ALI). Therefore, veno-venous ECMO was performed for 6 hours in mechanically ventilated pigs with normal lung function (n=6) and with ALI induced by repeated lung lavage (n=6) with a blood flow of 30% of the cardiac output. Gas flow with a FiO2 of 1.0 was set to equal blood flow. With a mean activated clotting time of 121 +/- 22 s, no circulatory impairment or thrombus formation was revealed during ECMO. Furthermore, free plasma Hb did not increase. In controls, hemodynamics and gas exchange remained unchanged. In animals with ALI, hemodynamics remained stable and gas transfer across the extracorporeal oxygenators was optimal, but only in 2 animals was a marked increase in PaO2 observed. CO2 removal was efficacious in all animals. We concluded that the DeltaStream blood pump may be used for veno-venous ECMO without major blood damage or hemodynamic impairment.

  3. Heat exchange effects on the performance of a clearance-sealed piston prover for gas flow measurements

    Science.gov (United States)

    Kutin, J.; Bobovnik, G.; Bajsić, I.

    2015-12-01

    This paper deals with heat exchange effects in a compact, high-speed, clearance-sealed version of a piston prover for gas flow measurements that has the temperature measurements limited to the time-averaged temperature of the gas flow. A lumped-element mathematical model is used to study the physical background of the heat exchange effects. Experimental testing is performed to validate the theoretical results, estimate the required temperature homogeneity in the piston prover and propose a modified measurement model that considers the heat exchange effects. These effects are almost linearly related to the temperature difference between the gas flow into the piston prover and the cylinder wall, with the sensitivity coefficient being dependent on the measured flow rate. The piston-prover configuration with the gas temperature sensor in the mixed inlet /outlet flow is found to be advantageous in comparison to a measurement of the inlet temperature.

  4. Excretion-retention diagram to evaluate gas exchange properties of vertebrate respiratory systems.

    Science.gov (United States)

    Zwart, A; Luijendijk, S C

    1982-09-01

    Excretion [E = (PE - PI)/(PV - PI)] and retention [R = (Pa - PI)/(PV -PI)]are completely model-free defined variables which describe the dual input-output black-box representation of vertebrate respiratory systems under steady-state conditions. In the excretion-retention diagram (E-R diagram), E is plotted as a function of R. The application of the principle of mass conservation confines the possible combinations of E and R for a gas with a blood-gas partition coefficient, lambda, in a respiratory system with an overall ventilation, VT, and an overall perfusion, QT, to E = (lambda QT/VT) (1 - R). In general, E can be described as a continuous function of R. The mathematical formulation of this function depends on the configuration of the respiratory system. Easily recognizable curvatures are obtained for counter-cross, and cocurrent systems with and without parallel inhomogeneities. Visual inspection of actual E and R data displayed in an E-R diagram therefore allows the correct choice of the configuration of the respiratory system to be eventually used for further parameter estimation schemes. The E-R diagram is also a powerful tutorial tool for visualizing the complex relationships between the gas exchange of agents with different physical properties and the consequences of changes in ventilation and perfusion distribution within the respiratory system on gas transport.

  5. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  6. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    Science.gov (United States)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  7. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s(-1)) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO2) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t1/2) for oxygen uptake (V˙O2pulm), carbon dioxide output (V˙CO2pulm), and ventilation (V˙E). Significant differences of the t1/2 values were identified between 60 and 150deg∙s(-1). Significant differences in the t1/2 values were observed between V˙O2pulm and V˙CO2pulm and between V˙CO2pulm and V˙E. The time to attain the first avDO2-peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O2pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O2pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  9. Iloprost improves gas exchange in patients with pulmonary hypertension and ARDS.

    Science.gov (United States)

    Sawheny, Eva; Ellis, Ashley L; Kinasewitz, Gary T

    2013-07-01

    We hypothesized that nebulized iloprost would improve ventilation-perfusion matching in patients with pulmonary hypertension and ARDS as reflected by an improved Pao2/Fio2 ratio and Pao2 without adversely affecting lung mechanics or systemic hemodynamics. Patients with ARDS and pulmonary hypertension were enrolled. With constant ventilator settings, hemodynamics, airway pressures, and gas exchange measured at baseline were compared with values 30 min after administration of 10 μg nebulized iloprost, and again 30 min after a second, larger, 20 μg dose of iloprost, and then a final measurement 2 h after the second dose. The primary outcome variable was Pao2; secondary outcomes were Pao2/Fio2 ratio, mean arterial BP, and lung-compliance ventilatory equivalents for oxygen and CO2. After informed consent was obtained, 20 patients (nine men, 11 women; median age, 59 years [interquartile range, 44-66 years]) with ARDS were enrolled. Baseline PaO2 improved from a mean (±SD) of 82 (13) mm Hg to 100 (25) mm Hg after both the first and second doses of iloprost, and the baseline mean (±SD) PaO2/FIO2 ratio of 177 (60) improved to 213 (67) and 212 (70) (all Piloprost. The improvement in gas exchange without any detrimental effects on pulmonary mechanics or systemic hemodynamics suggests nebulized iloprost may be a useful therapeutic agent to improve oxygenation in patients with ARDS. ClinicalTrials.gov; No.: NCT01274481; URL: www.clinicaltrials.gov.

  10. Effects of phosphine on the neural regulation of gas exchange in Periplaneta americana.

    Science.gov (United States)

    Woodman, James D; Haritos, Victoria S; Cooper, Paul D

    2008-04-01

    Phosphine is used for fumigating stored commodities, however an understanding of the physiological response to phosphine in insects is limited. Here we show how the central pattern generator for ventilation in the central nervous system (CNS) responds to phosphine and influences normal resting gas exchange. Using the American cockroach, Periplaneta americana, that perform discontinuous gas exchange (DGE) at rest, we simultaneously measure ventilatory nervous output from the intact CNS, VCO(2) and water loss from live specimens. Exposure to 800 ppm phosphine at 25 degrees C for 2 h (n=13) during recording did not cause any mortality or obvious sub-lethal effects. Within 60 s of introducing phosphine into the air flow, all animals showed a distinct CNS response accompanied by a burst release of CO(2). The initial ventilatory response to phosphine displaced DGE and was typically followed by low, stable and continuous CO(2) output. CNS output was highest and most orderly under normoxic conditions during DGE. Phosphine caused a series of ventilatory CNS spikes preceding almost complete cessation of CNS output. Minimal CNS output was maintained during the 2 h normoxic recovery period and DGE was not reinstated. VCO(2) was slightly reduced and water loss significantly lower during the recovery period compared with those rates prior to phosphine exposure. A phosphine narcosis effect is rejected based on animals remaining alert at all times during exposure.

  11. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress

    Institute of Scientific and Technical Information of China (English)

    Miguel Garriga; Jorge B. Retamales; Sebastin Romero-Bravo; Peter DS Caligari; Gustavo A. Lobos

    2014-01-01

    Chlorophyl and anthocyanin contents provide a valuable indicator of the status of a plant’s physiology, but to be more widely utilized it needs to be assessed easily and non-destructively. This is particularly evident in terms of assessing and exploiting germplasm for plant-breeding programs. We report, for the first time, experiments with Fragaria chiloensis (L.) Duch. and the estimation of the effects of response to salinity stress (0, 30, and 60 mmol NaCl/L) in terms of these pigments content and gas exchange. It is shown that both pigments (which interestingly, themselves show a high correlation) give a good indication of stress response. Both pigments can be accurately predicted using spectral reflectance indices (SRI);however, the accuracy of the predictions was slightly improved using multilinear regression analysis models and genetic algorithm analysis. Specifical y for chlorophyl content, unlike other species, the use of published SRI gave better indications of stress response than Normalized Difference Vegetation Index. The effect of salt on gas exchange is only evident at the highest concentration and some SRI gave better prediction perfor-mance than the known Photochemical Reflectance Index. This information wil therefore be useful for identifying tolerant genotypes to salt stress for incorporation in breeding programs.

  12. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  13. Gas exchange and photosynthetic pigments in bell pepper irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Hidelblandi F. de Melo

    Full Text Available ABSTRACT The tools that evaluate the salinity effects on plants have great relevance as they contribute to understanding of the mechanisms of tolerance. This study aimed to evaluate gas exchanges and the contents of photosynthetic pigments in bell peppers cultivated with saline solutions (0, 1, 3, 5, 7 and 9 dS m-1 prepared using two sources: NaCl and a mixture of Ca, Mg, K, Na and Cl salts, in randomized blocks with a 6 x 2 factorial scheme and 4 replicates, totaling 48 experimental plots. The net photosynthesis (A, stomatal conductance (gs, transpiration (E, internal CO2 concentration (Ci, instantaneous carboxylation efficiency (A/Ci and water use efficiency (WUE, besides chlorophyll a, b and carotenoids were evaluated. The gas exchange parameters were efficient to indicate the effects of salinity. All photosynthetic pigments decreased with increased electrical conductivity, and the chlorophyll a is the most sensitive to salinity, while the water use efficiency increased with the increment of electrical conductivity.

  14. Differential leaf gas exchange performance of mango cultivars infected by different isolates of Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Wilka Messner da Silva Bispo

    2016-04-01

    Full Text Available ABSTRACT Caused by the vascular fungus Ceratocystis fimbriata, mango wilt is considered to be one of the most serious threats in mango-producing regions worldwide. However, changes in leaf gas exchange level and the mechanisms underlying host responses to this fungal infection remain poorly described. This study aimed to evaluate potential changes in the leaf gas exchange of different mango cultivars (Ubá, Espada, Haden and Tommy Atkins in response to two Brazilian isolates of C. fimbriata (CEBS15 and MSAK16 to non-invasively assess cultivar variability in relation to the basal level of resistance to mango wilt. Both isolates, regardless of the cultivar, caused reductions in stomatal conductance and, thus, a reduction in CO2 assimilation via diffusive limitations. Taking into account the full length of the internal lesion and the radial colonization of the stem tissues, both isolates showed equivalent aggressiveness when inoculated into the Haden and Tommy Atkins cultivars. Conversely, when compared to the CEBS15 isolate of C. fimbriata, the MSAK16 isolate was more aggressive in cv. Espada and less aggressive in cv. Ubá.

  15. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    Science.gov (United States)

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  16. GROWTH, GAS EXCHANGE AND YIELD OF CORN WHEN FERTIGATED WITH BOVINE BIOFERTILIZER

    Directory of Open Access Journals (Sweden)

    THALES VINÍCIUS DE ARAÚJO VIANA

    2014-01-01

    Full Text Available The bovine biofertilizer applied through irrigation water in the soil (bio fertigation, can be a viable organic source to maintain fertility levels in agricultural production systems. So, this work was aimed at evaluating the effects of different concentrations of bovine biofertilizer applied by fertigation on corn growth, gas exchange and yield. The experiment was conducted under full sun exposure, in Fortaleza, Ceara, in 100 liter (100 L vessels. The experimental design was that of randomized blocks with five treatments and five repetitions. Treatments consisted of 0.5 L doses (per plant of a fertigating solution (biofertilizer + water weekly applied, with a different biofertilizer concentration to each treatment, as follows: C0 = 0% biofertilizer (control, C1 = 12.5%, C2 = 25% biofertilizer, C3=50% biofertilizer, C4 = 100% biofertilizer. We analyzed the effects on the following variables: plant height, stem diameter, leaf number, shoot dry weight, photosynthesis, stomatal conductance, transpiration and yield. The biofertilizer was the most efficient considering the initial growth and gas exchange. Also, the bovine biofertilizer treatments (as a whole favored the increase in the weight of 1000 seeds and grain yield.

  17. Gas exchange during exercise in different evolutional stages of chronic Chagas' heart disease

    Directory of Open Access Journals (Sweden)

    Fátima Palha de Oliveira

    2000-12-01

    Full Text Available OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram, 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram, 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure, and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure. The following variables were analyzed: oxygen consumption (V O2, carbon dioxide production (V CO2, gas exchange rate (R, inspiratory current volume (V IC, expiratory current volume (V EC, respiratory frequency, minute volume (V E, heart rate (HR, maximum load, O2 pulse, and ventilatory anaerobic threshold (AT. RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.

  18. Do We Need Exercise Tests to Detect Gas Exchange Impairment in Fibrotic Idiopathic Interstitial Pneumonias?

    Directory of Open Access Journals (Sweden)

    Benoit Wallaert

    2012-01-01

    Full Text Available In patients with fibrotic idiopathic interstitial pneumonia (f-IIP, the diffusing capacity for carbon monoxide (DLCO has been used to predict abnormal gas exchange in the lung. However, abnormal values for arterial blood gases during exercise are likely to be the most sensitive manifestations of lung disease. The aim of this study was to compare DLCO, resting PaO2, P(A-aO2 at cardiopulmonary exercise testing peak, and oxygen desaturation during a 6-min walk test (6MWT. Results were obtained in 121 patients with idiopathic pulmonary fibrosis (IPF, n=88 and fibrotic nonspecific interstitial pneumonias (NSIP, n=33. All but 3 patients (97.5% had low DLCO values (35 mmHg and 100 (83% demonstrated significant oxygen desaturation during 6MWT (>4%. Interestingly 27 patients had low DLCO and normal P(A-aO2, peak and/or no desaturation during the 6MWT. The 3 patients with normal DLCO also had normal PaO2, normal P(A-aO2, peak, and normal oxygen saturation during 6MWT. Our results demonstrate that in fibrotic IIP, DLCO better defines impairment of pulmonary gas exchange than resting PaO2, exercise P(A-aO2, peak, or 6MWT SpO2.

  19. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    Science.gov (United States)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  20. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  1. Lake-Atmosphere Greenhouse Gas Exchange in Relation to Atmospheric Forcing and Water Clarity

    Science.gov (United States)

    Heiskanen, J. J.; Ojala, A.; Mammarella, I.; Vesala, T.

    2015-12-01

    Even though lakes cover only 2 % of the world's land surface, it has been estimated that lakes release about 10 % of the carbon fixed annually by the terrestrial ecosystems back to the atmosphere. A critical parameter in the gas exchange estimates is the gas transfer velocity (k), which is governed by turbulence. The aim of our study was to assess the current global CO2 evasion estimates from lakes to the atmosphere by comparing parameterizations for kand the significance of wind and heat flux to the gas transfer in small lakes. To improve future predictions of gas evasion from lakes, we focused on the changes in water clarity and how they affect water column physics and processes in the air-water interface. We studied a small boreal lake and used the eddy covariance (EC) method for the high precision data needed, and therefore also aimed to improve the EC methodology on lakes. The air-water gas transfer was related to both wind and heat loss during times of seasonal stratification, but only to wind during autumn overturn. When wind-induced thermocline tilting and resulting spatial variability in surface water CO2 concentrations was accounted for, average k derived from the measurements dropped from 6.0 cm h-1 to 5.2 cm h-1. This was still over twice the estimate (2.2 cm h-1) calculated with a widely used model for kin lakes suggesting that the global estimates of gas evasion from lakes might be underestimations. Water clarity was a significant parameter defining the thermal stratification of the lake: a change from clear to dark water would lead to shorter stratification period and lower water column temperatures in small lakes and therefore have significant impact on the lake-atmosphere exchange processes. Figure 1. The isotherms of Lake Kuivajärvi throughout the open-water period 2013. The top left are the measured temperatures and the others are modeled with LAKE model using fixed light extinction coefficient, Kd. The horizontal dashed black line represents

  2. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Banchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including (14)C, (60)Co, (90)Sr, (129)I, and (137)Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power

  3. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    Science.gov (United States)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  4. The creation of regional stock exchanges contributes to the gradual emancipation of gas prices; La bourse participe de l'emancipation du prix du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Pauron, M

    2008-09-15

    The French gas stock exchanges should be launched by mid-November 2008 by Powernext. In this interview, J.F. Conil-Lacoste, head of Powernext, details its characteristics, how long Powernext has been preparing the launch of this new exchange market, what a gas exchange in France entails, how trading will be carried out, what he expects from it, what this exchange will bring to the current gas market, how the French gas exchange will differ from the other European exchanges, how Powernext will ensure that the exchange will attract enough players, how it will emancipate the gas prices with respect to oil and how he feels the new market opening. (J.S.)

  5. Capture of elemental and organic iodine from dilute gas streams by silver-exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S.H.; Jubin, R.T.; Jordan, J.A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2016-07-01

    The treatment of off-gas streams arising from reprocessing of used nuclear fuel (UNF) is an area of active study by the U.S. Department of Energy. Such off-gas streams contain volatile fission products, including long-lived {sup 129}I. Although {sup 129}I is released into the off-gas at multiple points within the chemical reprocessing flowsheet, previous research has focused on removal from the dissolver off-gas stream (DOG). The DOG is expected to contain up to 98% of iodine in UNF at ppm levels within the stream. Other off-gas streams will also contain iodine but at substantially lower concentrations. Recent work has shown that compliance with U.S. regulations will likely require capture of iodine from these dilute streams in addition to capture from DOG. In particular, the vessel off-gas (VOG) stream is expected to contain 1-3% of the total iodine inventory at ppb concentrations. A review of literature also indicates that the speciation of iodine in the VOG stream will differ from that of the DOG, with the DOG containing primarily I{sub 2} and the VOG containing a mixture of I{sub 2} and organic iodine species. Silver-exchanged mordenite (AgZ) has been identified for use in the removal of iodine from off-gas streams. It is an effective capture material for I{sub 2} at the concentrations expected in the DOG, but little is known about its performance in gas streams that may contain both I{sub 2} and organic iodides at very dilute concentrations. The experiments to be described were designed to separately characterize the adsorption of I{sub 2} and methyl iodide on AgZ through extended duration testing. Simulated vessel off-gases containing low levels of either I{sub 2} or methyl iodide were contacted with AgZ sorbent beds for up to four months. Through the use of sorbent beds in series and varied sampling times, key parameters such as adsorption rate, decontamination factor, and performance over time could be determined for the capture of each species by AgZ. This

  6. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  7. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    Science.gov (United States)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  8. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes.

    Science.gov (United States)

    McDowell, Nate G; Adams, Henry D; Bailey, John D; Hess, Marcey; Kolb, Thomas E

    2006-06-01

    Homeostatic maintenance of gas exchange optimizes carbon gain per water loss. Homeostasis is regulated by short-term physiological and long-term structural mechanisms, both of which may respond to changes in resource availability associated with competition. Therefore, stand density regulation via silvicultural manipulations may facilitate growth and survival through mechanisms operating at both short and long timescales. We investigated the responses of ponderosa pine (Pinus ponderosa) to stand basal area manipulations in Arizona, USA. Stand basal area was manipulated to seven replicated levels in 1962 and was maintained for four decades by decadal thinning. We measured basal area increment (BAI) to assess the response and sustainability of wood growth, carbon isotope discrimination (A) inferred from annual rings to assess the response of crown gas exchange, and ratios of leaf area to sapwood area (A(l):A(s)) to assess longer term structural acclimation. Basal area treatments increased soil water potential (r2 = 0.99) but did not affect photosynthetic capacity. BAI increased within two years of thinning, and the 40-year mean BAI was negatively correlated with stand basal area (r2 = 0.98). delta was negatively correlated with stand basal area for years 5 through 12 after thinning (r2 = 0.90). However, delta was relatively invariant with basal area for the period 13-40 years after initial thinning despite maintenance of treatment basal areas via repeated decadal thinnings. Independent gas exchange measurements verified that the ratio of photosynthesis to stomatal conductance was invariant with basal area, but absolute values of both were elevated at lower basal areas. A(l):A(s) was negatively correlated with basal area (r2 = 0.93). We hypothesize that increased A(l):A(s) is a homeostatic response to increased water availability that maximizes water-use efficiency and whole-tree carbon uptake. Elevated A(l):A(s) of trees at low basal areas was associated with greater

  9. Serum electrolyte and blood gas changes after intrathecal and intravenous bolus injections of magnesium sulphate. An experimental study in a rat model.

    Science.gov (United States)

    Bahar, M; Cohen, M L; Grinshpun, Y; Datski, R; Kaufman, J; Zaidman, J L; Nissenbaum, H; Chanimov, M

    1997-11-01

    The effect of intrathecally administered magnesium sulphate on serum levels of magnesium, sodium, potassium, calcium and blood gas variables was studied in a rat model. Magnesium sulphate given intrathecally has previously been shown to produce segmental spinal blockade with no permanent neurological damage. The previous studies, however, had not investigated the possible systemic effects of the magnesium sulphate. The serum magnesium level increased significantly at 1 and 2 h after the intrathecal injection of both 6.3% and 12.6% magnesium sulphate (6.3%: 28% at 1 h, 24% at 2 h; 12.6%: 22% at 1 h, 16% at 2 h). These changes were not as great as occurred when the same dose of magnesium sulphate was administered intravenously. In all cases, the serum magnesium had returned to normal by 24 h. There were no significant changes in calcium, sodium or potassium levels, nor in arterial blood gas variables. These results show that intrathecally administered magnesium sulphate has little effect on electrolyte homeostasis.

  10. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    Science.gov (United States)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  11. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    Science.gov (United States)

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS.

  12. Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles

    DEFF Research Database (Denmark)

    Wang, Tobias; Hicks, James W.

    2008-01-01

    with characteristic increases in pulmonary blood flow and tachycardia. In animals with central vascular shunts, the rise in pulmonary blood flow during ventilation is associated with the development of left-to-right (L-R) cardiac shunt (pulmonary recirculation of oxygenated blood returning from the lungs......The breathing pattern of many different air-breathing vertebrates, including lungfish, anuran amphibians, turtles, crocodiles and snakes, is characterized by brief periods of lung ventilation interspersed among apnoeas of variable duration. These intermittent ventilatory cycles are associated...... experimentally. The present study measured pulmonary gas exchange in fully recovered, freely diving turtles, where changes in pulmonary blood flow were prevented by partial occlusion of the pulmonary artery. Prevention of L-R shunt during ventilation did not impair CO2 excretion and overall, oxygen uptake and CO...

  13. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    Science.gov (United States)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  14. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    Science.gov (United States)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  15. Hemodynamics and Gas Exchange Effects of Inhaled Nitrous Oxide in Patients with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2006-01-01

    Full Text Available Inhaled nitrous oxide (iNO therapy aimed at improving pulmonary oxygenizing function and at decreasing artificial ventilation (AV load has been used in foreign clinical practice in the past decade. The study was undertaken to evaluate the hemodynamic and gas exchange effects of iNO in acute respiratory distress syndrome (ARDS that developed after car-diosurgical operations. Fifty-eight (43 males and 15 females patients aged 21 to 76 (55.2±2.4 years were examined. The study has demonstrated that in 48.3% of cases, the early stage of ARDS is attended by the increased tone pulmonary vessels due to impaired NO-dependent vasodilatation. In these patients, iNO therapy is an effective therapeutic method for correcting hemodynamic disorders and lung oxygenizing function.

  16. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  17. Persistent improvement of gas exchange and lung mechanics by aerosolized perfluorocarbon.

    Science.gov (United States)

    Kandler, M A; von der Hardt, K; Schoof, E; Dötsch, J; Rascher, W

    2001-07-01

    The effect of aerosolized perfluorocarbon (PFC) (FC77) on pulmonary gas exchange and lung mechanics was studied in a surfactant depleted piglet model. Sixty minutes after induction of lung injury by bronchoalveolar lavage, 20 piglets were randomized to receive aerosolized PFC (Aerosol-PFC, 10 ml/kg/h, n = 5), partial liquid ventilation (PLV) at FRC capacity volume (FRC-PLV, 30 ml/kg, n = 5) or low volume (LV-PLV, 10 ml/kg/h, n = 5), or intermittent mandatory ventilation (IMV) (Control, n = 5). After 2 h, perfluorocarbon application was stopped and IMV was continued for 6 h. Sixty minutes after the onset of therapy, PaO2 was significantly higher and PaCO2 was significantly lower in the Aerosol-PFC and the FRC-PLV groups than in the LV-PLV and the Control groups; p Aerosol-PFC group: 406.4 +/- 26.9 mm Hg, FRC-PLV: 217.3 +/- 50.5 mm Hg, LV-PLV: 96.3 +/- 18.9 mm Hg, Control: 67.6 +/- 8.4 mm Hg; p Aerosol-PFC group: 24.2 +/- 1.7 mm Hg, FRC-PLV: 35.9 +/- 2.8 mm Hg, LV-PLV: 56.7 +/- 12.4 mm Hg, Control: 60.6 +/- 5.1 mm Hg; p Aerosol-PFC group; p Aerosolized perfluorocarbon improved pulmonary gas exchange and lung mechanics as effectively as PLV did in surfactant-depleted piglets, and the improvement was sustained longer.

  18. Leaf Chlorophyll Fluorescence and Gas Exchange Response to Different Light Levels in Platycerium bifurcatum

    Directory of Open Access Journals (Sweden)

    Ruzana-Adibah M. Sanusi

    2011-01-01

    Full Text Available Problem statement: Platycerium bifurcatum (Cav. C. Chr. is epiphytes which lives in forest canopy and commonly used for its ornamental value. In these environments, they were always exposed to many types of stresses such as high light intensity. Light intensity plays an important role in affecting plants physiological performance. Therefore, the purpose of this study was to investigate physiological responses of P. bifurcatum to light stress. Approach: In this study, P. bifurcatum were grown under four different Photosynthetic Active Radiation (PAR levels which were 20 µmol m-2 s-1 (T1, 70 µmol m-2 s-1 (T2, 200 µmol m-2 s-1 (T3 and 1500 µmol m-2 s-1 (T4. Leaf gas exchange and chlorophyll fluorescence were used to evaluate the stress response of various levels of light intensity. All measurements were carried out on weekly basis for twelve weeks. Results: Results showed that Anet value of T1, T2 and T3 in the range near to the average Anet value for most epiphytes. Conversely, T4 showed lower value in Anet with 1.797 µmol CO2 m-2 s-1. Fv/Fm ratio in T3 and T4 were below 0.8 indicates that there was a sign of stress occurred in these treatments. However Anet of T3 was not affected although there have been event of photoinhibition observed in the treatment. On the contrary, T4 was fully affected by high light intensity as there was a reduction of Fv/Fm ratio and also Anet. T1 and T2 of Anet and Fv/Fm ratio values ranged of unstressed plants after subjected to light treatment. Conclusion: Measurement of leaf chlorophyll fluorescence and gas exchange are useful to detection of light stress in P. bifurcatum. Different levels of light intensity were significantly affecting physiological attributes of P. bifurcatum.

  19. Ventilation, gas exchange and blood gases in the snake, Pituophis melanoleucus.

    Science.gov (United States)

    Stinner, J N

    1982-03-01

    Oxygen consumption of Pituophis melanoleucus was about 30-50% of values predicted for snakes of similar body mass. Following a rise in body temperature there were transient increases in CO2 elimination and the respiratory exchange ratio for about 6 hours. Lowering body temperature produced transient decreases in CO2 elimination and the respiratory exchange ratio for about 24 hours. Respiratory exchange ratios measured up to 6 days following these transients were found to be significantly higher at higher temperatures. From 20 to 30 degrees C arterial pH declined 0.157 unit, and there was a significant decline in blood CO2 of 1.3 mM which is consistent with the direction of the transients in CO2 elimination. This fall in CO2 at higher temperatures probably results from increased levels of plasma fixed acid (e.g., lactate). Minute ventilation and breathing frequency increased with body temperature while tidal volume remained nearly constant at 29 ml/kg. Breathing was regular, with each breath followed by an inspiratory pause. Air convection requirement declined from about 61 ml air/ml O2 at 15 degrees C to 36 ml air/ml O2 at 30 degrees C. Blood convection requirement remained constant at about 44.6 ml blood/ml O2 at 20 degrees C and 30 degrees C with the result that ventilation/perfusion declined from approximately 1.13 to 0.76. In Pituophis, mechanisms of acid-base regulation and adjustments in gas transfer with temperature do not differ fundamentally from those of other air-breathing ectotherms. However, snakes utilize tidal volumes which are 2 to 2.5 times larger than other reptiles and have air convection requirements which exceed other reptiles by about 50%.

  20. Theoretical and experimental insights into effects of wind on leaf heat and gas exchange

    Science.gov (United States)

    Schymanski, Stanislaus J.; Or, Dani

    2014-05-01

    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant importance for surface-climate interactions and ecohydrology. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In contrast, explicit consideration of stomatal and leaf boundary layer resistances in series and the leaf energy balance in a physically-based model led to some surprising results, such as suppressed transpiration rates for increasing wind speed at constant stomatal conductance. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. This presentation reports the results of a systematic study of the effect of wind speed on leaf heat and gas exchange rates and introduces a novel experimental design to verify the modelling results using an insulated wind tunnel and artificial leaves with defined pore geometries, allowing to measure leaf-scale latent and sensible heat fluxes independently. First experimental results and new insights will be highlighted.

  1. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange.

    Science.gov (United States)

    Stimler, Keren; Montzka, Stephen A; Berry, Joseph A; Rudich, Yinon; Yakir, Dan

    2010-06-01

    *Carbonyl sulfide (COS) exchange in C(3) leaves is linked to that of CO(2), providing a basis for the use of COS as a powerful tracer of gross CO(2) fluxes between plants and the atmosphere, a critical element in understanding the response of the land biosphere to global change. *Here, we carried out controlled leaf-scale gas-exchange measurements of COS and CO(2) in representative C(3) plants under a range of light intensities, relative humidities and temperatures, CO(2) and COS concentrations, and following abscisic acid treatments. *No 'respiration-like' emission of COS or detectable compensation point, and no cross-inhibition effects between COS and CO(2) were observed. The mean ratio of COS to CO(2) assimilation flux rates, A(s)/A(c), was c. 1.4 pmol micromol(-1) and the leaf relative uptake (assimilation normalized to ambient concentrations, (A(s)/A(c))(C(a)(c)/C(a)(s))) was 1.6-1.7 across species and conditions, with significant deviations under certain conditions. Stomatal conductance was enhanced by increasing COS, which was possibly mediated by hydrogen sulfide (H(2)S) produced from COS hydrolysis, and a correlation was observed between A(s) and leaf discrimination against C(18)OO. *The results provide systematic and quantitative information necessary for the use of COS in photosynthesis and carbon-cycle research on the physiological to global scales.

  2. Gas dispersion and bubble-to-emulsion phase mass exchange in a gas-solid bubbling fluidized bed: a computational and experimental study

    NARCIS (Netherlands)

    Patil, Dhaneshwar J.; Sint Annaland, van Martin; Kuipers, J.A.M.

    2003-01-01

    Knowledge of gas dispersion and mass exchange between the bubble and the emulsion phases is essential for a correct prediction of the performance of fluidized beds, particularly when catalytic reactions take place. Test cases of single rising bubble and a bubbling fluidized bed operated with a jet w

  3. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  4. A simple method for air/sea gas exchange measurement in mesocosms and its application in carbon budgeting

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2012-09-01

    Full Text Available Mesocosms as large experimental vessels principally provide the opportunity of performing elemental budget calculations e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases can exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Nevertheless, net primary production rates derived from these budget calculations were, despite large uncertainties in air/sea gas exchange, often more reasonable than cumulative extrapolations of bioassays. While bioassays have limitations representing the full spectrum of trophic levels and abiotic conditions inside the mesocosms, calculating dissolved inorganic carbon uptake inside the mesocosms has the potential to deliver net community production rates representative of the enclosed system. Here, we present a simple method for precise determination of air/sea gas exchange velocities in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, exchange velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic (Kiel Off Shore Mesocosms for future Ocean Simulation mesocosm experiment as an exemplary dataset, it is shown that application of the presented method largely improves accuracy of carbon budget estimates. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.

  5. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    OpenAIRE

    K. S. Adegbie; F. I. Alao

    2012-01-01

    A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i) ignition of reacting gas, (ii) accumulation of heat by the solid particles during combustion process (iii) evapor...

  6. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    Science.gov (United States)

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  7. Lack of Agreement Between Gas Exchange Variables Measured by Two Metabolic Systems

    Science.gov (United States)

    Jakovljevic, Djordje G.; Nunan, David; Donovan, Gay; Hodges, Lynette D.; Sandercock, Gavin R. H.; Brodie, David A.

    2008-01-01

    The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark) and CardiO2 (Medical Graphics, USA) systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05) between the two systems in estimation of oxygen consumption (VO2) and in minute ventilation (VE). Mean Cronbach’s alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min-1 for VO2, and -8.74 to 10.66 l.min-1 for VE. Carbon dioxide production (VCO2) and consequently respiratory exchange ratio (RER) measured by the Innocor were significantly lower (p < 0.05) through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2) significantly higher (p < 0.05). The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems. Key pointsThere is general concern regarding the limited knowledge available about the accuracy of a number of commercially available systems.Demonstrated limits of agreement between key gas exchange variables (oxygen consumption and minute ventilation) as measured by the two metabolic systems were wide and unacceptable

  8. Lack of agreement between gas exchange variables measured by two metabolic systems.

    Science.gov (United States)

    Jakovljevic, Djordje G; Nunan, David; Donovan, Gay; Hodges, Lynette D; Sandercock, Gavin R H; Brodie, David A

    2008-01-01

    The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark) and CardiO2 (Medical Graphics, USA) systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05) between the two systems in estimation of oxygen consumption (VO2) and in minute ventilation (VE). Mean Cronbach's alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min(-1) for VO2, and -8.74 to 10.66 l.min(-1) for VE. Carbon dioxide production (VCO2) and consequently respiratory exchange ratio (RER) measured by the Innocor were significantly lower (p < 0.05) through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2) significantly higher (p < 0.05). The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems. Key pointsThere is general concern regarding the limited knowledge available about the accuracy of a number of commercially available systems.Demonstrated limits of agreement between key gas exchange variables (oxygen consumption and minute ventilation) as measured by the two metabolic systems were wide and unacceptable

  9. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Salahuddin, Mohammad; Hwang, Gisuk; Asmatulu, Ramazan

    2016-04-01

    Proton exchange membrane (PEM) fuel cells are considered to be the promising alternatives of natural resources for generating electricity and power. An optimal water management in the gas diffusion layers (GDL) is critical to high fuel cell performance. Its basic functions include transportation of the reactant gas from flow channels to catalyst effectively, draining out the liquid water from catalyst layer to flow channels, and conducting electrons with low humidity. In this study, polyacrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to the stabilization at 280 °C for 1 hour in the atmospheric pressure and carbonization at 850 °C for 1 hour. The surface hydrophobicity values of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs depicted much better results compared to the conventionally used ones. The water condensation tests on the surfaces (superhydrophobic and hydrophilic) of the GDL showed a crucial step towards improved water managements in the fuel cell. This study may open up new possibilities for developing high- performing GDL materials for future PEM fuel cell applications.

  10. Highly efficient single-layer gas diffusion layers for the proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hung, T.F.; Bai, S.H.; Lai, Y.J.; Chen-Yang, Y.W. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd., Taichung 40768 (China); Chuang, H.J. [Materials and Electro-Optics Research Division, Electric Energy Section, Chung Shan Institute of Science and Technology, Lung-Tan 32544 (China)

    2008-09-15

    In the present study, a series of highly efficient single-layer gas diffusion layers (SL-GDLs) was successfully prepared by the addition of a vapor grown carbon nanofiber (VGCF) in the carbon black/poly(tetrafluoroethylene) composite-based SL-GDL through a simple and inexpensive process. The scanning electron micrographs of the as-prepared VGCF-containing SL-GDLs (SL-GDL-CFs) showed that the GDLs had a microporous layer (MPL)-like structure, while the wire-like VGCFs were well dispersed and crossed among the carbon black particles in the SL-GDL matrix. Utilization of the SL-GDL-CFs for MEA fabrication was also done by direct coating with the catalyst layer. Due to the presence of VGCFs, the properties of the SL-GDL-CFs, including electronic resistivity, mechanical characteristic, gas permeability, and water repellency, varied with the VGCF content, with the overall effect beneficial to the performance of the proton exchange membrane fuel cell (PEMFC). The best performances obtained from the PEMFC with VGCFs at 15 wt.% was approximately 63% higher than those without VGCFs, and about 85% as efficient as ELAT GDL, a commercial dual-layer GDL, for both the H{sub 2}/O{sub 2} and H{sub 2}/air systems. (author)

  11. DOGEE-SOLAS: The Role of Surfactants in Air-Sea Gas Exchange

    Science.gov (United States)

    Salter, M. E.; Upstill-Goddard, R. C.; Nightingale, P.

    2008-12-01

    One of the major aims of DOGEE-SOLAS was to improve our understanding of the role of surfactants in air- sea gas exchange. With this in mind we carried out a number of artificial surfactant releases on a research cruise in the North Atlantic (D320), during June-July of 2007. We used oleyl alcohol, a surrogate for natural surfactants which is relatively cheap and easy to obtain (it is used in the manufacture of cosmetics). The main release overlaid a dual tracer "patch" of SF6 and 3He; our aim was to directly compare values of the gas transfer velocity, kw, estimated within the surfactant covered patch with those estimated quasi- simultaneously in a second, surfactant-free patch about 20km away. A second release in conjunction with colleagues from the University of Hawaii had the aim of measuring DMS fluxes by eddy correlation both inside and outside a surfactant slick, and a third was undertaken in the path of one of two 14m ASIS (Air-Sea Interaction Spar) buoys operated by the University of Miami for direct comparison of surfactant effects on the fluxes of CO2, H2O, heat and momentum (eddy correlation) etc. We present here some preliminary findings from the work.

  12. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    Science.gov (United States)

    Lee, Wai Tung; Tong, Xin; Rich, Dennis; Liu, Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-09-01

    In recent years, polarized 3He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3He gas using the SEOP method.

  13. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  14. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  15. Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-03-01

    Full Text Available Mesocosms as large experimental units provide the opportunity to perform elemental mass balance calculations, e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases exchange with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the exchange of CO2 with the atmosphere. Here, we present a simple method for precise determination of air–sea gas exchange in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, transfer velocities can be used to calculate exchange rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic KOSMOS (Kiel Off Shore Mesocosms for future Ocean Simulation experiment as an exemplary dataset, it is shown that the presented method improves accuracy of carbon budget estimates substantially. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas exchange measurements provides a guideline for the applicability of the method under various experimental conditions.

  16. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone depositio

  17. Heat recovery by flue gas heat exchangers in ceramic kilns; Waermerueckgewinnung mit Rauchgas-Waermetauschern an keramischen Oefen

    Energy Technology Data Exchange (ETDEWEB)

    Strohmenger, Patrick [Keramische und Waermetechnische Anlagen Strohmenger GmbH (KWS), Neunkirchen (Germany)

    2009-07-15

    The energy costs are on the rise, so it is becoming increasingly important to prevent energy losses and practice sustainability. Numerous ceramic kilns still have such high levels of flue gas heat losses, that it would be a thoroughly worthwhile investment to fit them out with heat exchangers. This contribution presents several completed projects as examples. (orig.)

  18. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.

    Science.gov (United States)

    Gortan, Emmanuelle; Nardini, Andrea; Gascó, Antonio; Salleo, Sebastiano

    2009-04-01

    Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.

  19. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone

  20. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  1. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  2. Post-operative substrate utilisation and gas exchange using two different TPN-systems: glucose versus fat

    DEFF Research Database (Denmark)

    Henneberg, S; Eklund, A; Stjernström, H

    1985-01-01

    ). Amino acids corresponding to 12 g of nitrogen were given in both groups. Gas exchange, nitrogen balance, phosphate balance, vanillylmandelic acid (VMA) excretion, 1- and 3-methylhistidine in urine, acute phase proteins, immunoglobulins and albumin were followed. Substrate utilisation was calculated from...

  3. Weak coordination among petiole, leaf, vein, and gas-exchange traits across 41 Australian angiosperm species and its possible implications

    Science.gov (United States)

    Background and Aims Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life-forms. However, recent reports suggest that this relationship may become weak or break down completely within the angiosperms. Methods To examine this possi...

  4. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip.

  5. High temperature heat exchangers for gas turbines and future hypersonic air breathing propulsion

    Science.gov (United States)

    Avran, Patrick; Bernard, Pierre

    After surveying the results of ONERA's investigations to date of metallic and ceramic heat exchangers applicable to automotive and aircraft powerplants, which are primarily of finned-tube counterflow configuration, attention is given to the influence of heat-exchanger effectiveness on fuel consumption and exchanger dimensions and weight. Emphasis is placed on the results of studies of cryogenic heat exchangers used by airbreathing hypersonic propulsion systems. The numerical codes developed by ONERA for the modeling of heat exchanger thermodynamics are evaluated.

  6. Bubble Clouds in Coastal Waters and Their Role in Air-Water Gas Exchange of CO2

    Directory of Open Access Journals (Sweden)

    Joseph R. Crosswell

    2015-08-01

    Full Text Available Bubbles generated by breaking waves can drive significant gas exchange between the ocean and atmosphere, but the role of bubble-mediated gas transfer in estuaries is unknown. Here, backscatter data from 41 acoustic Doppler current profiler stations was analyzed to assess subsurface bubble distributions in nine estuaries along the U.S. East and Gulf Coast. Wind speed, wind direction, and current velocity were the dominant controls on bubble entrainment, but the relative importance of these physical drivers depended on local geomorphology. Bubble entrainment in high-current or shallow, long-fetch estuaries began at wind speeds <5 m s−1. In deep or fetch-limited estuaries, bubble entrainment was less frequent and generally began at higher wind speeds. Data observed during several storms suggests that episodic bubble-driven gas exchange may be an important component of annual CO2 fluxes in large, shallow estuaries but would be less significant in other coastal systems.

  7. Performance analysis of three nanofluids in liquid to gas and liquid to liquid heat exchangers

    Science.gov (United States)

    Ray, Dustin R.

    One purpose of this research was to analyze the thermal and fluid dynamic performance of nanofluids in an automotive radiator (liquid to gas). Detailed computations were performed on an automotive radiator using three different nanofluids containing aluminum oxide, copper oxide and silicon dioxide nanoparticles dispersed in the base fluid, 60:40 ethylene glycol and water (EG/W) by mass. The computational scheme adopted was the effectiveness-Number of Transfer Unit (epsilon-NTU) method encoded in Matlab. The computational scheme was validated by comparing the predicted results with that of the base fluid reported by other researchers. Then, the scheme was adapted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles can have substantial savings in the pumping power or surface area of the heat exchanger, while transferring the same amount of heat as the base fluid. The second purpose of this research was to carry out experimental and theoretical studies for a plate heat exchanger (PHE). A benchmark test was performed with the minichannel PHE to validate the test apparatus with water. Next, using a 0.5% aluminum oxide nanoparticle concentration dispersed in EG/W preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE were derived. Then, a theoretical study was conducted to compare the performance of three nanofluids comprised of aluminum oxide, copper oxide and silicon dioxide nanoparticles in EG/W. This theoretical analysis was conducted using the epsilon-NTU method. The operational parameters were set by the active thermal control system currently under design by NASA. The analysis showed that for a dilute particle volumetric concentration of 1%, all the nanofluids showed improvements in their performance over the base fluid by reducing the pumping power and surface area of the PHE.

  8. LACK OF AGREEMENT BETWEEN GAS EXCHANGE VARIABLES MEASURED BY TWO METABOLIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    DjordjeG. Jakovljevic

    2008-03-01

    Full Text Available The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark and CardiO2 (Medical Graphics, USA systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05 between the two systems in estimation of oxygen consumption (VO2 and in minute ventilation (VE. Mean Cronbach's alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min-1 for VO2, and -8.74 to 10.66 l.min-1 for VE. Carbon dioxide production (VCO2 and consequently respiratory exchange ratio (RER measured by the Innocor were significantly lower (p < 0.05 through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2 significantly higher (p < 0.05. The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems.

  9. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    Grasslands occupy some 40% of the terrestrial land surface. They are generally categorised as natural (occurring mainly in those regions where the rainfall is too low to support forest ecosystems), semi-natural (where management, mainly by grazing, has changed the vegetation composition), and artificial (where forests have been cleared to create new pasture land). The soils of the natural and semi-natural grasslands constitute a large reservoir of carbon, and make a substantial contribution to the soil sink for atmospheric CH_4. The conversion of much of the natural temperate grassland to arable agriculture, e.g. in North America and Europe, resulted in a considerable decrease in soil organic carbon, and its release to the atmosphere as CO_2 has made a substantial contribution to the total atmospheric concentration of this gas. The associated increase in cycling of soil N (released from the organic matter) will have contributed to N_2O emissions, and land disturbance and fertilisation has resulted in a depletion of the soil CH_4 sink. Conversion of tropical forests to pastures has also been a major source of CO_2, and these pastures show elevated emissions of N_2O for some years after conversion. Seasonally flooded tropical grasslands are a significant source of CH_4 emissions. Consideration of grassland ecosystems in their entirety, in relation to GHG exchange, necessitates the inclusion of CH_4 production by fauna - domesticated livestock and wild herbivores, as well as some species of termites - in the overall assessment. Stocking rates on pasture land have increased, and the total CH_4 emissions likewise. The relationship between animal production and CH_4 emissions is dependent on the nutritional quality of the vegetation, as well as on animal numbers. In both temperate and tropical regions, increased N inputs as synthetic fertilisers and manures (and increased N deposition) are producing possibly a more-than-linear response in terms of emissions of N_2O. In

  10. Allometric scaling of discontinuous gas exchange patterns in the locust Locusta migratoria throughout ontogeny.

    Science.gov (United States)

    Snelling, Edward P; Matthews, Philip G D; Seymour, Roger S

    2012-10-01

    The discontinuous gas exchange cycle (DGC) is a three-phase breathing pattern displayed by many insects at rest. The pattern consists of an extended breath-hold period (closed phase), followed by a sequence of rapid gas exchange pulses (flutter phase), and then a period in which respiratory gases move freely between insect and environment (open phase). This study measured CO(2) emission in resting locusts Locusta migratoria throughout ontogeny, in normoxia (21 kPa P(O2)), hypoxia (7 kPa P(O2)) and hyperoxia (40 kPa P(O2)), to determine whether body mass and ambient O(2) affect DGC phase duration. In normoxia, mean CO(2) production rate scales with body mass (M(b); g) according to the allometric power equation , closed phase duration (C; min) scales with body mass according to the equation C=8.0M(b)(0.38±0.29), closed+flutter period (C+F; min) scales with body mass according to the equation C+F=26.6M (0.20±0.25)(b) and open phase duration (O; min) scales with body mass according to the equation O=13.3M(b) (0.23±0.18). Hypoxia results in a shorter C phase and longer O phase across all life stages, whereas hyperoxia elicits shorter C, C+F and O phases across all life stages. The tendency for larger locusts to exhibit longer C and C+F phases might arise if the positive allometric scaling of locust tracheal volume prolongs the time taken to reach the minimum O(2) and maximum CO(2) set-points that determine the duration of these respective periods, whereas an increasingly protracted O phase could reflect the additional time required for larger locusts to expel CO(2) through a relatively longer tracheal pathway. Observed changes in phase duration under hypoxia possibly serve to maximise O(2) uptake from the environment, whereas the response of the DGC to hyperoxia is difficult to explain, but could be affected by elevated levels of reactive oxygen species.

  11. The Impact of a Lower Sea Ice Extent on Arctic Greenhouse Gas Exchange

    Science.gov (United States)

    Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.

    2013-04-01

    Arctic sea ice extent hit a new record low in September 2012, when it fell to a level about two times lower than the 1979-2000 average. Record low sea ice extents such as these are often hailed as an obvious example of the impact of climate change on the Arctic. Less obvious, however, are the further implications of a lower sea ice extent on Arctic greenhouse gas exchange. For example, a reduction in sea ice, in consort with a lower snow cover, has been connected to higher surface temperatures in the terrestrial part of the Arctic (Screen et al., 2012). These higher temperatures and longer growing seasons have the potential to alter the CO2 balance of Arctic tundra through enhanced photosynthesis and respiration, as well as the magnitude of methane emissions. In fact, large changes are already observed in terrestrial ecosystems (Post et al., 2009), and concerns have been raised of large releases of carbon through permafrost thaw (Schuur et al., 2011). While these changes in the greenhouse gas balance of the terrestrial Arctic are described in numerous studies, a connection with a decline in sea ice extent is nonetheless seldom made. In addition to these changes on land, a lower sea ice extent also has a direct effect on the exchange of greenhouse gases between the ocean and the atmosphere. For example, due to sea ice retreat, more ocean surface remains in contact with the atmosphere, and this has been suggested to increase the oceanic uptake of CO2 (Bates et al., 2006). However, the sustainability of this increased uptake is uncertain (Cai et al., 2010), and carbon fluxes related directly to the sea ice itself add much uncertainty to the oceanic uptake of CO2 (Nomura et al., 2006; Rysgaard et al., 2007). Furthermore, significant emissions of methane from the Arctic Ocean have been observed (Kort et al., 2012; Shakhova et al., 2010), but the consequence of a lower sea ice extent thereon is still unclear. Overall, the decline in sea ice that has been seen in recent

  12. Blood lactate concentrations are mildly affected by mobile gas exchange measurements.

    Science.gov (United States)

    Scharhag-Rosenberger, F; Wochatz, M; Otto, C; Cassel, M; Mayer, F; Scharhag, J

    2014-06-01

    We sought to investigate the effects of wearing a mobile respiratory gas analysis system during a treadmill test on blood lactate (bLa) concentrations and commonly applied bLa thresholds. A total of 16 recreational athletes (31±3 years, VO2max: 58±6 ml · min(-1) · kg(-1)) performed one multistage treadmill test with and one without gas exchange measurements (GEM and noGEM). The whole bLa curve, the lactate threshold (LT), the individual anaerobic thresholds according to Stegmann (IATSt) and Dickhuth (IATDi), and a fixed bLa concentration of 4 mmol ∙ l(-1) (OBLA) were evaluated. The bLa curve was shifted slightly leftward in GEM compared to noGEM (Prate response was not different between conditions (P=0.89). There was no difference between GEM and noGEM for LT (2.61±0.34 vs. 2.64±0.39 m · s(-1), P=0.49) and IATSt (3.47±0.42 vs. 3.55±0.47 m · s(-1), P=0.12). However, IATDi (3.57±0.39 vs. 3.66±0.44 m · s(-1), Psystem. This also applies to bLa thresholds located at higher exercise intensities. While the magnitude of the effects is of little importance for recreational athletes, it might be relevant for elite athletes and scientific studies.

  13. Effects of nitric oxide inhalation on pulmonary gas exchange during exercise in highly trained athletes.

    Science.gov (United States)

    Durand, F; Mucci, P; Safont, L; Prefaut, C

    1999-02-01

    The pathophysiology of exercise-induced hypoxaemia in elite athletes is still unclear but several studies indicate that a diffusion limitation, which could be explained by an interstitial pulmonary oedema, is a major contributing factor. Stress failure would induce a haemodynamical interstitial oedema with inflammatory reaction and release of mediators like histamine. Histamine release was found to be correlated with the hypoxaemia in elite athletes. If stress failure is involved, inhalation of pulmonary vasodilatators such as nitric oxide during exercise in athletes should induce an inhibition of the histamine release and a reversal of the hypoxaemia. Nine male endurance-trained young athletes performed two randomized exercise tests: one without and the other with 15 p.p.m. of inhaled NO. Measurements of histamine release and arterial blood gas analysis were performed at rest and at 50, 75 and 100% VO2max. At rest, inhaled NO induced a decrease in PaO2 and an increase in (Ai-a)DO2 suggesting increased perfusion of units with low V(A)/Q. During exercise, NO inhalation suppressed the histamine release observed without NO and induced a moderation in the decrease in PaO2 and the increase in (Ai-a)DO2 observed between 75 and 100% of VO2max (P < 0.005). In conclusion, this study showed that NO inhalation inhibited exercise-induced histamine release in highly trained athletes, but we were unable to confirm the suppression of exercise-induced hypoxaemia (EIH). An unexpected result was that inhaled NO seemed to have a marked effect on arterial oxygenation in highly trained-athletes, by disturbing gas exchanges.

  14. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  15. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.

    Science.gov (United States)

    Robinson, Errol W; Williams, Evan R

    2005-09-01

    Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.

  16. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    Science.gov (United States)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  17. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  18. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  19. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  20. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey.

    Science.gov (United States)

    Kaiser, H; Kappen, L

    2000-10-01

    Observations of stomata in situ while simultaneously measuring CO(2) gas exchange and transpiration were made in field experiments with Aegopodium podagraria in a highly variable light climate in the understorey of trees. The low background photosynthetic photon flux density (PPFD) caused a slight opening of the stomata and no visible response to sporadic lightflecks. However, if lightflecks were frequent and brighter, slow opening movements were observed. Small apertures were sufficient to allow maximal photosynthetic rates. Therefore, the small apertures observed in low light usually only caused minor stomatal limitations of lightfleck photosynthesis. The response of stomata to step-wise changes in PPFD under different levels of leaf to air vapour pressure difference (Delta(W)) was observed under controlled conditions. High Delta(W) influenced the stomatal response only slightly by reducing stomatal aperture in low light and causing a slight reduction in the initial capacity to utilize high PPFD levels. Under continuous high PPFD, however, stomata opened to the same degree irrespective of Delta(W). Under high Delta(W), opening and closing responses to PPFD-changes were faster, which enabled a rapid removal of the small stomatal limitations of photosynthesis initially present in high Delta(W) after longer periods in low light. It is concluded that A. podagraria maintains a superoptimal aperture in low light which leads to a low instantaneous water use efficiency, but allows an efficient utilization of randomly occurring lightflecks.

  1. Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.

    Science.gov (United States)

    Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J

    2016-09-09

    The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

  2. Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2013-09-01

    Full Text Available The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant and Inqlab-91 (salt-tolerant cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls and evaluated under saline (15 dS m-1 and nonsaline (2.84 dS m-1 conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

  3. LEAF GAS EXCHANGE CHARACTERISTICS OF FOUR PAPAYA GENOTYPES DURING DIFFERENT STAGES OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CAMPOSTRINI ELIEMAR

    2001-01-01

    Full Text Available In this research, was used four papaya (Carica papaya L. genotypes: three from the 'Solo ( Sunrise Solo TJ, Sunrise Solo 72/12 and Baixinho de Santa Amália group and one from the 'Formosa' group (Know-You 01. They were grown in plastic pots containing a sandy-clay-loam soil subjected to pH correction and fertilization, under greenhouse conditions. Throughout the experimental period plants were subjected to periodic irrigation to maintain the soil humitidy around field capacity. The experiment was conducted 73 days after sowing. In all genotypes, leaf gas exchange characteristics were determined. The net photosynthetic rate (A, mumol m-2 s-1 , stomatal conductance (g s mol m-2 s-1, leaf temperature (T I, 0C and intercellular carbon dioxide concentration (ci, muL L-1 on the 4th, 5th, 6th, 7th, 8th and 9th leaves from the plant apex were determined. No significant differences were observed for A, g s, c i, or Tl either among the leaves sampled from any of the genotypes. A was positively correlated with g s and in the other hand T I and g s were negatively correlated. The results suggest that, for 73 DAP, all the sampled papaya leaves functioned as sources of organs.

  4. Light acclimation of leaf gas exchange in two Tunisian cork oak populations from contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Rzigui T

    2015-10-01

    Full Text Available Due to diverse environmental conditions, Mediterranean plant populations are exposed to a range of selective pressures that may lead to phenotypic plasticity and local adaptation. We examined the effect of light acclimation on photosynthetic capacity in two Quercus suber (L. populations that are native to different ecological conditions. Low-light adapted seedlings from both populations were exposed to three light treatments: full sunlight (HL, medium light (ML, 43% sunlight and low light (LL, 15% sunlight for one month. Photosynthetic performance was monitored by measuring leaf gas exchange and chlorophyll fluorescence parameters. The light environment influences light-saturated carbon assimilation (Amax in the leaves of the population inhabiting the hot and dry region (from Gaafour. In contrast, there was no significant difference in Amax between leaves grown in high light and low light from Feija (the population native to a cold and humid climate, which suggests an inability of the Feija population to adjust its photosynthesis to respond to higher irradiance. The inability of the Feija population to adjust its photosynthesis did not result from a light acclimation failure in terms of chlorophyll content and ratio compared with the Gaafour population. Instead, it seems to be the consequence of lower stomatal conductance in the Feija population at HL compared to Gaafour.

  5. Effects of elastic loading and exercise on pulmonary gas exchange in dogs.

    Science.gov (United States)

    Chonan, T; Hida, W; Kikuchi, Y; Shindoh, C; Taguchi, O; Miki, H; Takishima, T

    1991-06-01

    We assessed the effects of negative intrathoracic pressure induced by inspiratory elastic loading on pulmonary, gas exchange with and without electrically induced hindlimb exercise in 8 normal, anesthetized dogs. Two elastic loads (EL) were used; one of 81 and one of 140 cmH2O/liter. These are equivalent to doubling and tripling the normal elastance of the dog's respiratory system, respectively. Elastic loading decreased ventilation and caused hypoxemia and hypercapnia, but it did not affect systemic arterial pressure or heart rate. During exercise, increase in ventilation was limited, whereas increase in cardiac output was not affected by elastic loading. Alveolar-arterial O2 tension difference (A-aDO2) was not changed significantly by exercise alone. However, elastic loading accompanied by exercise increased A-aDO2. Although comparable end-inspiratory pleural pressure was achieved with large EL (-29 +/- 2 cmH2O, mean +/- SE) and small EL with exercise (-30 +/- 2 cmH2O), the latter increased A-aDO2 whereas the former did not. Large negative intrapleural pressure combined with increased cardiac output may have caused transient interstitial edema.

  6. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Institute of Scientific and Technical Information of China (English)

    Zaisong; Ding; Tao; Li; Xianguo; Zhu; Xuefang; Sun; Suhua; Huang; Baoyuan; Zhou; Ming; Zhao

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates(Pn). According to differences in stomatal conductance(gs) and carboxylation efficiency(CE), each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs(r = 0.810) and CE(r = 0.531). Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern(0.905 and 0.957) and lowest in the carboxylation pattern(0.825 and 0.859). Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis. ? 2013 Production and hosting by Elsevier B.V. on behalf of Crop Science Society of China

  7. Initial development and gas exchange of Talisia subalbens (Mart. Radlk. under different shading conditions

    Directory of Open Access Journals (Sweden)

    Fernanda Carlota Nery

    2011-02-01

    Full Text Available Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%. Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.

  8. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Directory of Open Access Journals (Sweden)

    Zaisong Ding

    2014-02-01

    Full Text Available Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates (Pn. According to differences in stomatal conductance (gs and carboxylation efficiency (CE, each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs (r = 0.810 and CE (r = 0.531. Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern (0.905 and 0.957 and lowest in the carboxylation pattern (0.825 and 0.859. Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis.

  9. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.

    Science.gov (United States)

    Tatagiba, Sandro Dan; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2015-02-01

    This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.

  10. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    Science.gov (United States)

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  11. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds.

    Science.gov (United States)

    Cunha, F A; Montenegro, R A; Midgley, A W; Vasconcellos, F; Soares, P P; Farinatti, P

    2014-08-01

    The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%VO2 R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and VO2 at GET and HRVT were 16 bpm (P0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and % VO2 R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and % VO2 R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.

  12. Can Heart Rate Variability be used to Estimate Gas Exchange Threshold in Obese Adolescents?

    Science.gov (United States)

    Vasconcellos, F; Seabra, A; Montenegro, R; Cunha, F; Bouskela, E; Farinatti, P

    2015-07-01

    This study investigated the agreement and reliability of oxygen uptake (V̇O2), V̇O2 reserve (V̇O2 R), heart rate (HR) and power output at intensities corresponding to the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) in obese and eutrophic adolescents. A further aim was to establish whether the HRVT was able to detect changes in cardio-respiratory fitness in obese adolescents after 3 months of recreational soccer practice. First, 25 obese and 10 eutrophic adolescents (ages 12-17) visited the laboratory twice to perform cycling CPET to test the reliability of CPET outcomes at GET and HRVT. Furthermore, the level of agreement between GET and HRVT was determined for a subgroup of 10 obese adolescents after performing a 3-month recreational soccer program. No significant difference was found for V̇O2, %V̇O2 R, HR and power output at the GET and HRVT (P>0.05), which were equally able to detect improvements in aerobic fitness after the soccer intervention. Correlations between GET and HRVT for V̇O2 and %V̇O2 R ranged from 0.89 to 0.95 (P<0.001) and test-retest reliability ranged from 0.59 to 0.82 (P<0.006). Overall, HRVT seems to be a reliable alternative for prescribing aerobic exercise intensity in obese adolescents.

  13. Gas exchange in Paulownia species growing under different soil moisture conditions in the field.

    Science.gov (United States)

    Llano-Sotelo, J M; Alcaraz-Melendez, L; Castellanos Villegas, A E

    2010-07-01

    In order to evaluate their responses to drought, we determined the photosynthetic activity water potential, stomatal conductance, transpiration, water use efficiency photosynthetic photon flux density and leaf temperature of Paulownia imperialis, P. fortunei and P. elongata in three different soil moisture conditions in the field. Our results showed that P. imperialis had greater photosynthesis (8.86 micromol CO2 m(-2) s(-1)) and instantaneous water use efficiency (0.79 micromol CO2 mmol H2O(-1)) than either P. elongata (8.20 micromol CO2 m(-2) s(-1) and 0.71 micromol CO2 mmol H2O(-1)) or P. fortunei (3.26 micromol CO2 m(-2) s(-1) and 0.07 micromol CO2 mmol H2O(-1)). The rapid growth of Paulownia did not appear to be correlated with photosynthetic rates. Paulownia fortunei showed more transpiration (48.78 mmol H2O m(-2) s(-1)) and stomatal conductance (840 mmol m(-2) s(-1)) than P. imperialis (20 mmol H2O m(-2) s(-1) and 540 mmol m(-2) s(-1)) and P. elongata (20 mmol H2O m(-2) s(-1) and 410 mmol m(-2) s(-1)), which allowed these two Paulownia species to increase their tolerance to low soil moisture, and maintain higher water use efficiency under these conditions. According to our physiological gas exchange field tests, Paulownia imperialis does appear to be capable of successful growth in semiarid zones.

  14. UV-B impairs growth and gas exchange in grapevines grown in high altitude.

    Science.gov (United States)

    Berli, Federico J; Alonso, Rodrigo; Bressan-Smith, Ricardo; Bottini, Rubén

    2013-09-01

    We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.

  15. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought.

  16. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; Burrell, Nia; Lalani, Falak; Leebens-Mack, Jim

    2016-03-01

    While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Extracorporeal gas exchange in acute lung injury: step by step towards expanded indications?

    Science.gov (United States)

    Dembinski, Rolf; Kuhlen, Ralf

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is widely accepted as a rescue therapy in patients with acute life-threatening hypoxemia in the course of severe acute respiratory distress syndrome (ARDS). However, possible side effects and complications are considered to limit beneficial outcome effects. Therefore, widening indications with the aim of reducing ventilator induced lung injury (VILI) is still controversial. Consequently, technological progress is an important strategy. Miniaturized ECMO systems are believed to simplify handling and reduce side effects and complications. Mueller and co-workers evaluated such a small-sized device in 60 patients with severe ARDS. They accomplished both the treatment of severe hypoxemia and reduction of VILI, demonstrating feasibility, a moderate rate of severe complications, and a 45% intensive care survival rate. Although neither randomized nor controlled, this study should encourage others to implement such systems in clinical practice. From a strategic perspective, this is another small but useful step towards implementing extracorporeal gas exchange for the prevention of VILI. It is already common sense that the prevention of acute life-threatening hypoxemia usually outweighs the risks of this technique. The next step should be to prove that prevention of life-threatening VILI balances the risks too.

  18. A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria.

    Science.gov (United States)

    Matthews, Philip G D; Snelling, Edward P; Seymour, Roger S; White, Craig R

    2012-08-23

    The discontinuous gas exchange cycle (DGC) is a breathing pattern displayed by many insects, characterized by periodic breath-holding and intermittently low tracheal O(2) levels. It has been hypothesized that the adaptive value of DGCs is to reduce oxidative damage, with low tracheal O(2) partial pressures (PO(2) ≈ 2-5 kPa) occurring to reduce the production of oxygen free radicals. If this is so, insects displaying DGCs should continue to actively defend a low tracheal PO(2) even when breathing higher than atmospheric levels of oxygen (hyperoxia). This behaviour has been observed in moth pupae exposed to ambient PO(2) up to 50 kPa. To test this observation in adult insects, we implanted fibre-optic oxygen optodes within the tracheal systems of adult migratory locusts Locusta migratoria exposed to normoxia, hypoxia and hyperoxia. In normoxic and hypoxic atmospheres, the minimum tracheal PO(2) that occurred during DGCs varied between 3.4 and 1.2 kPa. In hyperoxia up to 40.5 kPa, the minimum tracheal PO(2) achieved during a DGC exceeded 30 kPa, increasing with ambient levels. These results are consistent with a respiratory control mechanism that functions to satisfy O(2) requirements by maintaining PO(2) above a critical level, not defend against high levels of O(2).

  19. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange.

    Science.gov (United States)

    García-Mata, Carlos; Lamattina, Lorenzo

    2013-03-01

    Specialized guard cells modulate plant gas exchange through the regulation of stomatal aperture. The size of the stomatal pore is a direct function of the volume of the guard cells. The transport of solutes across channels in plasma membrane is a crucial process in the maintenance of guard cell water status. The fine tuned regulation of that transport requires an integrated convergence of multiple endogenous and exogenous signals perceived at both the cellular and the whole plant level. Gasotransmitters are novel signaling molecules with key functions in guard cell physiology. Three gasotransmitters, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S) are involved in guard cell regulatory processes. These molecules are endogenously produced by plant cells and are part of the guard cells responses to drought stress conditions through ABA-dependent pathways. In this review, we summarize the current knowledge of gasotransmitters as versatile molecules interacting with different components of guard cell signaling network and propose them as players in new paradigms to study ABA-independent guard cell responses to water deficit.

  20. Effect of heat and moisture exchanger (HME positioning on inspiratory gas humidification

    Directory of Open Access Journals (Sweden)

    Nishimura Masaji

    2006-08-01

    Full Text Available Abstract Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH and temperature (TEMP at the proximal end of endotracheal tube (ETT were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1 or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm (Figure. 1. Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan. Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation.

  1. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  2. A STUDY ON MARKET OPPORTUNITIES IN NATURAL GAS IN MULTI COMMODITY EXCHANGE

    National Research Council Canada - National Science Library

    S Saranya; K Kumutha Devi

    2016-01-01

      Commodity markets are where raw or primary products are exchanged. These raw commodities are traded on regulated commodities exchanges, in which they are bought and sold in standardized contracts...

  3. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Science.gov (United States)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  4. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.C.; Yan, W.M. [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, C.Y. [Department of Aerospace and Systems Engineering, Feng Chia University, Seatwen, Taichung 407, Taiwan (ROC); Chen, Falin [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (ROC); Chu, H.S. [Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (ROC)

    2006-07-14

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages. (author)

  5. Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design

    Science.gov (United States)

    Liu, H. C.; Yan, W. M.; Soong, C. Y.; Chen, Falin; Chu, H. S.

    The objective of this work is to examine the reactant gas transport and the cell performance of a proton exchange membrane fuel cell (PEMFC) with a tapered flow channel design. It is expected that, with the reduction in the channel depth along the streamwise direction, the reactant fuel gas in the tapered channel can be accelerated as well as forced into the gas diffuser layer to enhance the electrochemical reaction and thus augment the cell performance. The effects of liquid water formation on the reactant gas transport are taken into account in the present study. Numerical predictions show that the cell performance can be enhanced with the fuel channel tapered, and the enhancement is more noticeable at a lower voltage. The results also reveal that the liquid water effect in general influences the cell performance and the effect becomes significant at lower voltages.

  6. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...... the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA...... the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation...

  7. Dynamics of Gas Exchange through the Fractal Architecture of the Human Lung, Modeled as an Exactly Solvable Hierarchical Tree

    Science.gov (United States)

    Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan

    2008-03-01

    The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.

  8. Alveolar recruiting maneuver in dogs under general anesthesia: effects on alveolar ventilation, gas exchange, and respiratory mechanics.

    Science.gov (United States)

    Staffieri, F; De Monte, V; De Marzo, C; Scrascia, F; Crovace, A

    2010-06-01

    The aim of this study was to evaluate the effects of a recruiting maneuver (RM) on lung aeration, gas exchange, and respiratory mechanics during general anesthesia in mechanically ventilated dogs. A thoracic computed tomography (CT) scan, an arterial blood sample, and measurement of respiratory mechanics were performed 10 min before (baseline) and both 5 and 30 min after a vital capacity RM in 10 dogs under general anesthesia. The RM was performed by inflating the lung at 40 cm H(2)O for 20 s. Lung aeration was estimated by analyzing the radiographic attenuation of the CT images. Lung aeration and gas exchange improved significantly 5 min after the RM compared to baseline and returned to values similar to baseline by 30 min. Static lung compliance was not significantly affected by the RM. An RM induces a temporary improvement in lung function in healthy dogs under general anesthesia.

  9. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed

    Background and aim of study We hypothesized that continuous high airway pressure without ventilatory movements (apneic oxygenation), using an open lung approach, combined with extracorporeal, pumpless, arterio-venous, carbon dioxide (CO2) removal would provide adequate gas exchange in acute lung...... injury was induced by repeated lung lavage. Thereafter the tracheal tube was, after a lung recruitment maneuver, connected to 20 cmH2O continuous positive airway pressure (FiO2 = 1.0) for oxygenation of the blood. A pumpless membrane lung (Interventional Lung Assist, NovaLung, Germany) was connected...... In this porcine lung injury model, apneic oxygenation with arteriovenous CO2 removal provided sufficient gas exchange and stable hemodynamics, indicating that the method might have a potential in the treatment of severe ARDS.   Acknowledgements The membrane lungs were kindly provided by Novalung GmbH, Germany....

  10. The Effect of Water Stress on the Gas Exchange Parameters, Productivity and Seed Health of Buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Agnieszka Pszczółkowska

    2012-12-01

    Full Text Available The present pot experiment studied the effect of different soil moisture contents (60 - 70% CWC (capillary water capacity - control; 30 - 35% CWC - water stress on buckwheat productivity, the gas exchange parameters and health of buckwheat nuts. It was found that water deficit affected adversely certain biometric features investigated (plant height, number of nuts per cluster and caused a decrease in seed weight per plant. It was also shown that water stress reduced the values of the investigated gas exchange parameters (photosynthesis rate, transpiration rate, intercellular-space CO2 concentration, and stomatal conductance relative to the control treatment. Different soil moisture contents did not have a clear effect on fungal colonization of seeds. The multiplex PCR assays did not enable the detection of the genes responsible for mycotoxin synthesis. Under water deficit conditions, an increase was found in the content of albumin and globulin fractions as well as of glutelin fractions.

  11. Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank

    OpenAIRE

    E. Mesarchaki; C. Kräuter; K. E. Krall; Bopp, M; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface...

  12. Comparison of gas-phase acidities of some carbon acids with their rates of hydron exchange in methanolic methoxide

    NARCIS (Netherlands)

    DeTuri, V.F.; Koch, H.F.; Koch, J.G.; Lodder, G.; Mishima, M.; Zuilhof, H.; Abrams, N.M.; Anders, C.E.; Biffinger, J.C.; Han, P.; Kurland, A.R.; Nichols, J.M.; Ruminski, A.M.; Smith, P.R.; Vasey, K.D.J.

    2006-01-01

    Hydron exchange reaction rates, k(exch)M(-1) s(-1), using methanolic sodium methoxide are compared with gas-phase acidities, Delta G(Acid)(0) kcal/mol, for four 9-YPhenylfluorenes-9-H-i, seven (YC6H4CH)-H-i(CF3)(2), seven YC6H4-(CHClCF3)-H-i, and (C6F5H)-H-i. Fourteen of the fluorinated benzylic com

  13. Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome: An Alternative to Mechanical Ventilation?

    Science.gov (United States)

    2014-03-01

    and the artificial lung (extracorporeal gas exchange) in this setting. Design: Laboratory investigation. Setting: Animal ICU of a governmental...Finally, in this sce- nario, a somewhat new player, namely spontaneous breathing, would enter in the arena of the ICUs . This study sheds light on some... rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplan- tation. Respir Care 2013; 58:1291–1298 12. Turner DA, Cheifetz IM

  14. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O2 carrying capacity

    Directory of Open Access Journals (Sweden)

    Antti-Pekka E. Rissanen

    2012-07-01

    Full Text Available The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O2 carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O2 carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS was used to monitor relative concentration changes in oxy- (Δ[O2Hb], deoxy- (Δ[HHb] and total hemoglobin (Δ[tHb], and tissue saturation index (TSI. NIRS inflection points (NIP, reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds (anaerobic threshold (AT, respiratory compensation point (RC; V-slope method was examined. Blood O2 carrying capacity (total hemoglobin mass (tHb-mass was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p < 0.01, but not with arm muscle- or cerebral deoxygenation. In conclusion, regional tissue oxygenation was characterized by inflection points, and tissue oxygenation in relation to alveolar gas exchange during incremental treadmill exercise resembled previous findings made during incremental cycling. It was also found out, that O2 delivery to less active m. biceps brachii may be limited by an accelerated increase in ventilation at high running intensities. In addition, high capacity for blood O2 carrying was associated with a high level of m. vastus lateralis deoxygenation at peak

  15. Effective gas exchange in paralyzed juvenile rabbits using simple, inexpensive respiratory support devices.

    Science.gov (United States)

    Diblasi, Robert M; Zignego, Jay C; Smith, Charles V; Hansen, Thomas N; Richardson, C Peter

    2010-12-01

    We have developed two devices: a high-amplitude bubble continuous positive airway pressure (HAB-CPAP) and an inexpensive bubble intermittent mandatory ventilator (B-IMV) to test the hypotheses that simple, inexpensive devices can provide gas exchange similar to that of bubble CPAP (B-CPAP) and conventional mechanical ventilation (CMV). Twelve paralyzed juvenile rabbits were intubated, stabilized on CMV, and then switched to CPAP. On identical mean airway pressures (MAPs), animals were unable to maintain pulse oximeter oxygen saturation (SpO2) >80% on conventional B-CPAP, but all animals oxygenated well (97.3 ± 2.1%) on HAB-CPAP. In fact, arterial partial pressures of O2 (Pao2) were higher during HAB-CPAP than during CMV (p = 0.01). After repeated lung lavages, arterial partial pressures of CO2 (Paco2) were lower with B-IMV than with CMV (p < 0.0001), despite identical ventilator settings. In lavaged animals, when HAB-CPAP was compared with CMV at the same MAP and 100% O2, no differences were observed in Pao2, but Paco2 levels were higher with HAB-CPAP (70 ± 7 versus 50 ± 5 mm Hg; p < 0.05). Arterial blood pressures were not impaired by HAB-CPAP or B-IMV. The results confirm that simple inexpensive devices can provide respiratory support in the face of severe lung disease and could extend the use of respiratory support for preterm infants into severely resource-limited settings.

  16. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    Science.gov (United States)

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  17. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.

    Science.gov (United States)

    Mitchell, Patrick J; McAdam, Scott A M; Pinkard, Elizabeth A; Brodribb, Timothy J

    2017-02-01

    The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Biogenic emissions and CO 2 gas exchange investigated on four Mediterranean shrubs

    Science.gov (United States)

    Hansen, U.; van Eijk, J.; Bertin, N.; Staudt, M.; Kotzias, D.; Seufert, G.; Fugit, J.-L.; Torres, L.; Cecinato, A.; Brancaleoni, E.; Ciccioli, P.; Bomboi, T.

    In order to investigate the impact of plant physiology on emissions of biogenic volatile organic compounds monoterpene emission rates from Rosmarinus officinalis (L.) and Pistacia lentiscus (L.) and isoprene emission rates from Erica arborea (L.) and Myrtus communis (L.) were determined. The study, an activity in the framework of BEMA (Biogenic Emissions in the Mediterranean Area), was carried out in May 1994 at Castelporziano near Rome in Italy, using a dynamic enclosure technique combined with recording CO 2 gas exchange, temperature and irradiance data. The monoterpenes dominating the emission pattern were 1,8-cineol, α-pinene and β-pinene for rosemary and α-pinene, linalool and β-pinene + sabinene for pistachio. Total monoterpene emission rates standardized to 30°C of 1.84 ± 0.24 and 0.35 ± 0.04 μg Cg -1 dw h -1 were found for rosemary and pistachio, respectively (on a leaf dry weight basis). Myrtle emitted 22.2 ± 4.9 μg C g -1 dw h -1 at standard conditions (30°C, PAR 1000 μmol photons m -2 s -1 as isoprene and erica 5.61 μg C g -1 dw h -1 The carbon loss due to terpenoid emissions per photosynthetically carbon uptake was about 0.01-0.1% for the monoterpene emitters. The isoprene emitting shrubs lost 0-0.9% of the assimilated carbon. The rapid induction of emissions in the sun after temporary shading indicates that isoprene emissions were closely linked to photosynthesis. A higher proportion of the assimilated carbon was lost as isoprene under conditions of high light and temperature compared to the morning and evening hours.

  19. Prediction of normal values for lactate threshold estimated by gas exchange in men and women.

    Science.gov (United States)

    Davis, J A; Storer, T W; Caiozzo, V J

    1997-01-01

    Lactate threshold (LT) is an index of exercise capacity and can be estimated from the gas exchange consequences of a metabolic acidosis (LT(GE)). In recent years, it has emerged as a diagnostic tool in the evaluation of subjects with exercise limitation. The purpose of this study was to develop LT(GE) prediction equations on a relatively large sample of adults and to cross-validate each equation. A total of 204 healthy, sedentary, nonsmoking subjects (103 men and 101 women), aged 20-70 years, underwent graded exercise testing on a cycle ergometer. The V-slope technique was used to detect LTGE as the oxygen uptake (VO2) at the breakpoint of the carbon dioxide output versus VO2 relationship. Multiple linear regression was used to develop 12 equations with combinations of the following predictor variables: age, height, body mass, and fat-free mass. Eight of the equations are gender-specific and four are generalized with gender as a dummy variable. The equations were cross-validated using the predicted residual sum of squares (PRESS) method. The results demonstrate that the equations had relatively high multiple correlations (0.577-0.863) and low standard errors of the estimate (0.123-0.228 1 x min(-1)). The PRESS method demonstrated that the equations are generalizable, i.e., can be used in future studies without a significant loss of accuracy. Since we tested only healthy, sedentary subjects, our equations can be used to predict the lower limit of normal for a given subject. Using individual data for healthy and diseased subjects from the literature, we found that our gender-specific equations rarely miscategorized subjects unless they were obese and mass was a predictor variable. We conclude that our equations provide accurate predictions of normal values for LT(GE) and that they are generalizable to other subject populations.

  20. CO 2 and H 2O gas exchange of a triticale field: I. Leaf level porometry and upscaling to canopy level

    Science.gov (United States)

    Busch, J.; Lösch, R.; Meixner, F. X.; Ammann, C.

    1996-05-01

    Within the frame of an extended field experiment the CO 2 and H 2O gas exchange between a triticale field and the atmosphere was measured during the period between heading and harvest in the summer of 1995. Diurnal courses of H 2O loss, CO 2 gain and leaf conductance were obtained together with microclimatic parameters for leaves of different insertion levels. Patterns of dependence of leaf gas exchange on microclimatic conditions were determined. Based on the results of porometric measurements and crop structural parameters (LAI) gas exchange was scaled up to canopy level.

  1. Effect of a long chain aliphatic alkohols on growth. gas exchange and assimilate parlitioning in radish plant

    Directory of Open Access Journals (Sweden)

    Zbyszek K. Blamowski

    2013-12-01

    Full Text Available In pot experiments the influence of long chain aliphatic alcohols (hexacosanol - HEXA, octacosanol - OCTA and triacontanol - TRIA, which were used in concentration O.00l mg·dm3 , on growth, assimilate partitioning and gas exchange of radish plants cv. "Krakowianka" and "Sopel lodu" were studied. The received results showed that triacontanol was characterized by higher physiological activity than remaining alcohols. TRIA significantly increased yield of mass, as well as it changed the pattern of distribution of assimilates in plants. Under its influence the rate of mass of leaves to mass of storage organs decreased as well as the share of mass of leaves in the total mass of both plant cultivars. TRIA stimulated the rate of net photosynthesis (Pn, howewer, it did not influence the other detennined gas exchange parameters: substomatal concentration of CO2 (ci, stomatal conductance for water vapour (gs and rate of transpiration (Tr. Remaining alcohols (HEXA and OCFA did not any influence on growth of plants and their gas exchange but only on distribution of biomass.

  2. Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig

    Science.gov (United States)

    Ebiana, Asuquo B.; Gidugu, Praveen

    2008-01-01

    This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.

  3. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd.

  4. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O(2) carrying capacity.

    Science.gov (United States)

    Rissanen, Antti-Pekka E; Tikkanen, Heikki O; Koponen, Anne S; Aho, Jyrki M; Hägglund, Harriet; Lindholm, Harri; Peltonen, Juha E

    2012-01-01

    The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O(2) carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex) oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O(2) carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS) was used to monitor relative concentration changes in oxy- (Δ[O(2)Hb]), deoxy- (Δ[HHb]) and total hemoglobin (Δ[tHb]), and tissue saturation index (TSI). NIRS inflection points (NIP), reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds [anaerobic threshold (AT), respiratory compensation point (RC); V-slope method] was examined. Blood O(2) carrying capacity [total hemoglobin mass (tHb-mass)] was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p capacity for blood O(2) carrying was associated with a high level of m. vastus lateralis deoxygenation at peak exercise.

  5. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.

  6. Gas-phase hydrogen/deuterium exchange in a traveling wave ion guide for the examination of protein conformations.

    Science.gov (United States)

    Rand, Kasper D; Pringle, Steven D; Murphy, James P; Fadgen, Keith E; Brown, Jeff; Engen, John R

    2009-12-15

    Accumulating evidence suggests that solution-phase conformations of small globular proteins and large molecular protein assemblies can be preserved for milliseconds after electrospray ionization. Thus, the study of proteins in the gas phase on this time scale is highly desirable. Here we demonstrate that a traveling wave ion guide (TWIG) of a Synapt mass spectrometer offers a highly suitable environment for rapid and efficient gas-phase hydrogen/deuterium exchange (HDX). Gaseous ND(3) was introduced into either the source TWIG or the TWIG located just after the ion mobility cell, such that ions underwent HDX as they passed through the ND(3) on the way to the time-of-flight analyzer. The extent of deuterium labeling could be controlled by varying the quantity of ND(3) or the speed of the traveling wave. The gas-phase HDX of model peptides corresponded to labeling of primarily fast exchanging sites due to the short labeling times (ranging from 0.1 to 10 ms). In addition to peptides, gas-phase HDX of ubiquitin, cytochrome c, lysozyme, and apomyoglobin were examined. We conclude that HDX of protein ions in a TWIG is highly sensitive to protein conformation, enables the detection of conformers present on submilliseconds time scales, and can readily be combined with ion mobility spectrometry.

  7. The new devices of gas-turbine engines of ground transport on the basis cascade pressure exchanger of Krajniuk

    Directory of Open Access Journals (Sweden)

    Aleksander KRAJNIUK

    2011-01-01

    Full Text Available Main trends of perfection of gas-turbine engines (GTE of transport plants by application of principles of the cascade pressure exchange (CPE for air compression in the working cycle of gas-turbine plant have been analyzed. The principle of action and performances of work of heat compressor CPE realizing compression of working body on the whole at the expense straight convert inputting heat in disposing work of torrent with insignificant distraction mechanics work from shaft selection of power has been described. The results of computational investigation of four variants of the GTE working process organization on the basis of the two-staged compression assembly with intermediate cooling and heating of air-gas medium have been adduced. Application of units CPE in the capacity of compressing stage GTE opens the prospect of adaptations GTE performance by conditions of work in the capacity of forcing units of overland transport.

  8. Gas exchanges in the United States - a model for Europe?; Gasboersen in den USA - Uebertragung auf Europa?

    Energy Technology Data Exchange (ETDEWEB)

    Hensing, I.

    1994-12-31

    When on 31 May 1991 the European Union - at the time still under the name of EC - specified its plans for restructuring competition in the European gas markets by issuing a Directive on the Transit of Natural Gas Via Large Networks it met with vehement opposition from the gas industry, especially in Germany. These plans have ever since been a focal topic of intense scientific and politics-economic discussions. Some of the changes demanded by the EU have already become practice in the US gas trade, where they lend themselves to an assessment for their transferability to the situation in Europe. The following paper deals with the specifics of natural gas and the question whether the US can serve as a model for Euorpe. Regarding its mode of operation and significance, the New York Mercantile Exchange (NYMEX) forms the hub of American gas price formation. (orig./UA) [Deutsch] Als die europaeische Union am 31. Mai 1991 - damals noch als EG - ihre Vorstellungen ueber eine Neustrukturierung des Wettbewerbs auf den europaeischen Gasmaerkten in Form der `Richtlinie ueber den Transit von Erdgas ueber grosse Netze` praezisierte, stiess sie auf starken Widerstand der Gasindustrie, speziell in Deutschland. Dieses Vorhaben ist seitdem Gegenstand sowohl einer intensiven wissenschaftlichen als auch wirtschaftspolitischen Diskussion gewesen. Einige der von der EU geforderten Veraenderungen sind schon im Gashandel der USA zu beobachten. Sie koennen daher bezueglich einer moeglichen Uebertragbarkeit auf die europaeischen Verhaeltnisse bewertet werden. Der folgende Vortrag setzt sich zunaechst mit den Spezifika von Erdgas und der moeglichen `Vorbildfunktion USA` auseinander. Danach steht die New York Mercantile Exchange (NYMEX) in ihrer Funktionsweise und Bedeutung fuer die amerikanische Gaspreisbildung im Mittelpunkt. Die Frage nach den Perspektiven einer europaeischen Gasboerse und eine diesbezuegliche Wertung runden das Referat ab. (orig./UA)

  9. The greenhouse gas exchange responses of methane and nitrous oxide to forest change in Europe

    Directory of Open Access Journals (Sweden)

    P. Gundersen

    2012-05-01

    Full Text Available Climate change and air pollution, interact with altering forest management and land-use change to produce short and long-term changes to forest in Europe. The impact of these changes on the forest greenhouse gas (GHG balance is currently difficult to predict. To improve the mechanistic understanding of the ongoing changes, we studied the response of GHG (N2O, CH4 exchange from forest soils at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations one or more per site included nitrogen (N addition (4 sites, changes of climate (temperature, 1 site; precipitation, 2 sites, soil hydrology (3 sites, harvest intensity (1 site, wood ash fertilization (1 site, pH gradient in peat (1 site and afforestation of cropland (1 site.

    In most of the investigated treatments N2O emissions increased by 7 ± 3 (range 0–30 μg N2O-N m−2 h−1 across all treatments on mineral soils, but by up to 10 times the mineral soil maximum on an acidic organic soil. Soil moisture together with mineral soil C/N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions increased with N availability and decreased with soil C/N ratio, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions.

    Oxidation (uptake of CH4 was reduced from 16 ± 2 to 4 ± 6 μg CH4-C m−2 h−1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C/N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions.

    For most of the investigated forest manipulations or natural gradients, the response of both N2O and CH4

  10. Effect of frequency on pressure cost of ventilation and gas exchange in newborns receiving high-frequency oscillatory ventilation.

    Science.gov (United States)

    Zannin, Emanuela; Dellaca', Raffaele L; Dognini, Giulia; Marconi, Lara; Perego, Martina; Pillow, Jane J; Tagliabue, Paolo E; Ventura, Maria Luisa

    2017-07-26

    BackgroundWe hypothesized that ventilating at the resonant frequency of the respiratory system optimizes gas exchange while limiting the mechanical stress to the lung in newborns receiving high-frequency oscillatory ventilation (HFOV). We characterized the frequency dependence of oscillatory mechanics, gas exchange, and pressure transmission during HFOV.MethodsWe studied 13 newborn infants with a median (interquartile range) gestational age of 29.3 (26.4-30.4) weeks and body weight of 1.00 (0.84-1.43) kg. Different frequencies (5, 8, 10, 12, and 15 Hz) were tested, keeping carbon dioxide diffusion coefficient (DCO2) constant. Oscillatory mechanics and transcutaneous blood gas were measured at each frequency. The attenuation of pressure swings (ΔP) from the airways opening to the distal end of the tracheal tube (TT) and to the alveolar compartment was mathematically estimated.ResultsBlood gases were unaffected by frequency. The mean (SD) resonant frequency was 16.6 (3.5) Hz. Damping of ΔP increased with frequency and with lung compliance. ΔP at the distal end of the TT was insensitive to frequency, whereas ΔP at the peripheral level decreased with frequency.ConclusionThere is no optimal frequency for gas exchange when DCO2 is held constant. Greater attenuation of oscillatory pressure at higher frequencies offers more protection from barotrauma, especially in patients with poor compliance.Pediatric Research advance online publication, 26 July 2017; doi:10.1038/pr.2017.151.

  11. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    Science.gov (United States)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  12. Differential leaf gas exchange responses to salinity and drought in the mangrove tree Avicecennia germinans (Avicenniaceae

    Directory of Open Access Journals (Sweden)

    M.A Sobrado

    2006-06-01

    Full Text Available Leaf gas exchange was assessed in Avicennia germinans L. grown under different NaCl concentrations (0-40‰, after salt-relief, and then during drought. Stomatal conductance (g s and net photosynthetic rate (Pn decreased with increasing NaCl concentration, and intrinsic water use efficiency (Pn / g s increased. Under desalinization Pn / g s declined. Thus, g s did not change in plants grown at low NaCl concentration (10‰, but increased up to 30-32% at higher NaCl concentration (20 - 40‰. However, Pn was only slightly enhanced (10- 15%. Under drought, Pn decreased by as much as 46% in plants grown at low NaCl concentration (10‰ and by 22% at high NaCl concentration (40‰. Thus, Pn / g s decreased and water use efficiency was lower during drought compared to estimates prior to salt-relief. Rev. Biol. Trop. 54(2: 371-375. Epub 2006 Jun 01.Se estudió el intercambio de gases en las hojas de Avicennia germinans L. en varias concentraciones de NaCl (0-40‰, después de la desalinización y durante la desecación. La conductancia de los estomas (g s y la tasa de fotosíntesis (Pn decrecieron con el incremento en la concentración de NaCl, y se incrementó la eficiencia en el uso intrínseco de agua (Pn / g s. Bajo desalinización Pn / g s declinó. Así, g s no cambia en el crecimiento de las plantas a bajas concentraciones de NaCl (10‰, pero se incrementó hasta 30-32% a las concentraciones de NaCl más altas (20 - 40‰. Sin embargo, Pn aumentó ligeramente (10-15%. En desecación Pn fue reducido hasta un 46% a bajas concentaciones (10‰ de NaCl, y a un 22% a altas concentraciones (40‰ de NaCl. Así, Pn / g s decrecieron y la eficiencia en el uso de agua fue menor durante desecación en comparación con los evalolres stimados previos a la desalinización.

  13. Soil-atmosphere trace gas exchange from tropical oil palm plantations on peat

    Science.gov (United States)

    Arn Teh, Yit; Manning, Frances; Zin Zawawi, Norliyana; Hill, Timothy; Chocholek, Melanie; Khoon Kho, Lip

    2015-04-01

    Oil palm is the largest agricultural crop in the tropics, accounting for 13 % of all tropical land cover. Due to its large areal extent, oil palm cultivation may have important implications not only for terrestrial stores of C and N, but may also impact regional and global exchanges of material and energy, including fluxes of trace gases and water vapor. In particular, recent expansion of oil palm into tropical peatlands has raised concerns over enhanced soil C emissions from degradation of peat, and elevated N-gas fluxes linked to N fertilizer application. Here we report our preliminary findings on soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from a long-term, multi-scale project investigating the C, N and greenhouse gas (GHG) dynamics of oil palm ecosystems established on peat soils in Sarawak, Malaysian Borneo. Flux chamber measurements indicate that soil CO2, CH4 and N2O fluxes averaged 20.0 ± 16.0 Mg CO2-C ha-1 yr-1, 37.4 ± 29.9 kg CH4-C ha-1 yr-1 and 4.7 ± 4.2 g N2O-N ha-1 yr-1, respectively. Soil CO2 fluxes were on par with other drained tropical peatlands; whereas CH4 fluxes exceeded observations from similar study sites elsewhere. Nitrous oxide fluxes were in a similar range to fluxes from other drained tropical peatlands, but lower than emissions from mineral-soil plantations by up to three orders of magnitude. Fluxes of soil CO2 and N2O were spatially stratified, and contingent upon the distribution of plants, deposited harvest residues, and soil moisture. Soil CO2 fluxes were most heavily influenced by the distribution of palms and their roots. On average, autotrophic (root) respiration accounted for approximately 78 % of total soil CO2 flux, and total soil respiration declined steeply away from palms; e.g. soil CO2 fluxes in the immediate 1 m radius around palms were up to 6 times greater than fluxes in inter-palm spaces due to higher densities of roots. Placement of harvest residues played an important - but secondary

  14. Analysis of a liquid/gas direct contact heat exchanger concept

    Science.gov (United States)

    Warrington, R. O.; Mussulman, R. L.

    1983-12-01

    The performance of spray heat exchangers employing uniform drop generators is analyzed using a computer simulation of the air/water counterflow direct contact heat exchanger for the cases of heat transfer from water to air, and from air to water. The effect of air temperature and humidity on water cooling is demonstrated. For the case of air cooling, the dry bulb temperature reduction achieved in the chiller is insensitive to humidity. The effects of heat exchanger size and droplet size are also considered.

  15. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in a heterogenous peatland

    Science.gov (United States)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2014-11-01

    Drainage and cultivation of fen peatlands creates complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater-level (GWL). To date, it remains unclear if such sites are sources or sinks for greenhouse gases like CO2 and CH4, especially if used for cropland. As individual control factors like GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of plant- and microbially mediated C gas fluxes of these soils. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP, ecosystem respiration - Reco, net ecosystem exchange - NEE, CH4) of maize using manual chambers for four years. The study sites were located near Paulinenaue, Germany. Here we selected three soils, which represent the full gradient in pedogenesis, GWL and SOC stocks (0-1 m) of the fen peatland: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data was used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 a-1 at AR to -305 ± 123 g C m-2 a-1 at GL and -127 ± 212 g C m-2 a-1 at HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP:Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and

  16. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    Directory of Open Access Journals (Sweden)

    K. S. Adegbie

    2012-01-01

    Full Text Available A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i ignition of reacting gas, (ii accumulation of heat by the solid particles during combustion process (iii evaporation of the liquid fuel droplets, and (iv consumption of reacting gas concentration. The equations governing the physical model with realistic assumptions are stated and nondimensionalised leading to an intractable system of first-order coupled nonlinear differential equations, which is not amenable to exact methods of solution. Therefore, we present numerical solutions as well as different qualitative effects of varying interphase heat exchange parameter. Graphs and Table feature prominently to explain the results obtained.

  17. Effect of N-acetylcysteine on gas exchange after methacholine challenge and isoprenaline inhalation in the dog.

    Science.gov (United States)

    Ueno, O; Lee, L N; Wagner, P D

    1989-03-01

    N-acetylcysteine (NAC) has antioxidant and possibly mucolytic properties. To determine whether NAC could be of benefit in acute bronchoconstriction induced by methacholine, 12 of 24 anaesthetized dogs (group 1) received NAC i.v. (loading dose 150 mg.kg-1, then 20 mg.kg-1.hr-1). The other 12 (group 2) received diluent. Nebulized methacholine (1%) was then inhaled until arterial oxygen tension (PaO2) fell to a mean of 5.5 kPa, after which isoprenaline 0.5% was inhaled in six dogs of each group to reverse bronchoconstriction. Over the next 3 h we measured total lung resistance, functional residual capacity (FRC), haemodynamic variables, and pulmonary gas exchange for respiratory and inert gases. After methacholine challenge, lung resistance increased and then fell similarly for both groups, but PaO2 was higher in the NAC group (by 0.6-1.9 kPa) throughout the observation period. The ventilation-perfusion distribution measured by inert gas elimination also showed less abnormality in the NAC treated dogs over this time. Mucus was visible during post-mortem in the large airways in about half of the dogs in both groups, with no significant differences between them. These results show that NAC produces a measurable improvement in gas exchange following methacholine challenge (both with and without subsequent isoprenaline therapy) by mechanisms that remain to be determined.

  18. Intercambio gaseoso en el síndrome de dificultad respiratoria aguda Gas exchange in acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    G. A. Raimondi

    2003-04-01

    efecto beneficioso de todas estas técnicas en la mejoría del IG en el ARDS, no se ha demostrado efecto beneficioso en la sobrevida.The hypoxemia of acute respiratory distress syndrome (ARDS depends chiefly upon shunt and ventilation-perfusion (V A/Q inequality produced by fluid located in the interstitial space, alveolar collapse and flooding. Variables other than inspired oxygen fraction and the underlying physiological abnormality can influence arterial oxygen partial pressure (PaO2. Changes in cardiac output, hemoglobin concentration, oxygen consumption and alcalosis can cause changes in PaO2 through their influence on mixed venous PO2. Gas exchange (GE in ARDS may be studied using the inert gas elimination technique (MIGET which enables to define the distribution of ventilation and perfusion without necessarily altering the FIO2 differentiating shunt from lung units with low V A/Q ratios and dead space from lung units with high V A/Q ratios. Different ventilatory strategies that increase mean airway pressure (positive end-expiratory pressure, high tidal volumes, inverse inspiratory-expiratory ratio, etc improve PaO2 through increasing lung volume by recruiting new open alveoli and spreading the intra-alveolar fluid over a large surface area. Also prone-position ventilation would result in a marked improvement in GE enhancing dorsal lung ventilation by the effects on the gravitional distribution of pleural pressure and the reduction in the positive pleural pressure that develops in dorsal regions in ARDS. Inhaled nitric oxide (NO has been shown to increase PaO2 in ARDS patients by inducing vasodilation predominantly in ventilated areas redistributing pulmonary blood flow away from nonventilated toward ventilated areas of the lung thus resulting in a shunt reduction. On the same way inhaled prostaglandins (PGI2 or PGE1 causes selective pulmonary vasodilation improving pulmonary GE. Intravenous almitrine, a selective pulmonary vasoconstrictor, has been shown to

  19. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  20. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland

    Science.gov (United States)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2015-05-01

    The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - Reco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 yr-1 in AR to -305 ± 123 g C m-2 yr-1 in GL and -127 ± 212 g C m-2 yr-1 in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the

  1. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects

    Science.gov (United States)

    Smith, Nicholas G.; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S.

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  2. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects.

    Science.gov (United States)

    Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  3. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  4. Effect of saline infusion for the maintenance of blood volume on pulmonary gas exchange during temporary abdominal aortic occlusion

    Directory of Open Access Journals (Sweden)

    F.F. Amorim

    2007-03-01

    Full Text Available We analyzed the effects of saline infusion for the maintenance of blood volume on pulmonary gas exchange in ischemia-reperfusion syndrome during temporary abdominal aortic occlusion in dogs. We studied 20 adult mongrel dogs weighing 12 to 23 kg divided into two groups: ischemia-reperfusion group (IRG, N = 10 and IRG submitted to saline infusion for the maintenance of mean pulmonary arterial wedge pressure between 10 and 20 mmHg (IRG-SS, N = 10. All animals were anesthetized and maintained on spontaneous ventilation. After obtaining baseline measurements, occlusion of the supraceliac aorta was performed by the inflation of a Fogarty catheter. After 60 min of ischemia, the balloon was deflated and the animals were observed for another 60 min of reperfusion. The measurements were made at 10 and 45 min of ischemia, and 5, 30, and 60 min of reperfusion. Pulmonary gas exchange was impaired in the IRG-SS group as demonstrated by the increase of the alveolar-arterial oxygen difference (21 ± 14 in IRG-SS vs 11 ± 8 in IRG after 60 min of reperfusion, P = 0.004 in IRG-SS in relation to baseline values and the decrease of oxygen partial pressure in arterial blood (58 ± 15 in IRG-SS vs 76 ± 15 in IRG after 60 min of reperfusion, P = 0.001 in IRG-SS in relation to baseline values, which was correlated with the highest degree of pulmonary edema in morphometric analysis (0.16 ± 0.06 in IRG-SS vs 0.09 ± 0.04 in IRG, P = 0.03 between groups. There was also a smaller ventilatory compensation of metabolic acidosis after the reperfusion. We conclude that infusion of normal saline worsened the gas exchange induced by pulmonary reperfusion injury in this experimental model.

  5. Influence of variable valve timings on the gas exchange process in a controlled auto-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Milovanovic, N.; Chen, R. [Loughborough University (United Kingdom). Aeronautical and Autumotive Dept.; Turner, J. [Lotus Engineering (United Kingdom). Powertrain Research Dept.

    2004-05-01

    The controlled auto-ignition (CAI) engine concept has the potential to be highly efficient and to produce low NO{sub x} and particulate matter emissions. However, the problem of controlling the combustion over the entire load/speed range limits its practical application. The CAI combustion is controlled by the chemical kinetics of the charge mixture, with no influence of the flame diffusion or turbulent propagation. Therefore, to achieve successful control of the CAI process, the composition, temperature and pressure of the charge mixture at the inlet valve closure (IC) point has to be controlled. The use of the variable valve timing strategy, which enables quick changes in the amount of trapped hot exhaust gases, shows the potential for control of CAI combustion. The aim of this paper is to analyse the influence of the variable valve timing strategy on the gas exchange process, the process between the first valve open event (EO) and the last valve closing event (IC), in a CAI engine fuelled with standard gasoline fuel (95RON). The gas exchange process affects the engine parameters and charge properties and therefore plays a crucial role in determining the control of the CAI process. Analysis is performed by experimental and modelling approaches. A single-cylinder research engine equipped with a fully variable valvetrain (FVVT ) system was used for the experimental study. A combined code consisting of a detailed chemical kinetics code and one-dimensional fluid dynamics code was used for the modelling study. The results obtained indicate that the variable valve timing strategy has a strong influence on the gas exchange process, which in turn influences the engine parameters and the cylinder charge properties, and hence the control of the CAI process. The EC timing has the strongest effect, followed by the 10 timing, while the EO and IC timings have minor effects. (author)

  6. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  7. Feasibility of Furnace H-701 Energy Recovery in Sarkhoun and Qeshm Gas Refinery Using the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    J. Khorshidi

    2013-12-01

    Full Text Available The aim of this study is the investigation and thermal analysis relating to emissions of the flue-furnace H-701 of Sarkhoun and Qeshm Gas Refinery in Bandarabbas (IRAN and thermal load has been calculated. Then Study of the combustion process and calculation of required combustion air and the heating of air In order to increase its enthalpy using energy combustion gases is done by designing Heat Exchanger. This method helps to optimization of energy consumption and reduction of energy losses and prevents the increase in environment air and will help to cleanliness of the environment. Using this method efficiency of furnace will be increased by 8.63%.

  8. Three-dimensional transient numerical simulation for gas exchange process in a four-stroke motorcycle engine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an important tool for resolving the complex aerodynamic behavior in motorcycle engines.

  9. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth

    Science.gov (United States)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-11-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  10. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger

    Science.gov (United States)

    Verberk, Wilco C. E. P.; Bilton, David T.

    2015-01-01

    ABSTRACT Thermal tolerance has been hypothesized to result from a mismatch between oxygen supply and demand. However, the generality of this hypothesis has been challenged by studies on various animal groups, including air-breathing adult insects. Recently, comparisons across taxa have suggested that differences in gas exchange mechanisms could reconcile the discrepancies found in previous studies. Here, we test this suggestion by comparing the behaviour of related insect taxa with different gas exchange mechanisms, with and without access to air. We demonstrate oxygen-limited thermal tolerance in air-breathing adults of the plastron-exchanging water bug Aphelocheirus aestivalis. Ilyocoris cimicoides, a related, bimodal gas exchanger, did not exhibit such oxygen-limited thermal tolerance and relied increasingly on aerial gas exchange with warming. Intriguingly, however, when denied access to air, oxygen-limited thermal tolerance could also be induced in this species. Patterns in oxygen-limited thermal tolerance were found to be consistent across life-history stages in these insects, with nymphs employing the same gas exchange mechanisms as adults. These results advance our understanding of oxygen limitation at high temperatures; differences in the degree of respiratory control appear to modulate the importance of oxygen in setting tolerance limits. PMID:25964420

  11. Soil-atmosphere greenhouse-gas exchange in a bioretention system

    Science.gov (United States)

    Daly, E.; Chan, H.; Beringer, J.; Livesley, S. J.

    2011-12-01

    Bioretention systems are a popular green-technology for the management of urban stormwater runoff in many countries. They typically consist of a trench filled with a highly permeable soil medium that supports vegetation; runoff is diverted to bioretention systems and, by percolating through the filter medium, is subjected to a number of treatment processes. Nitrogen (N) is one of the key pollutants targeted by bioretention systems, which are able to reduce N concentrations considerably from inflow to outflow. To increase N removal, a saturated zone at the bottom of the filter medium is often artificially generated, to both enhance the denitrification process and increase the water available to the vegetation between inflow events. Although studies on the N-removal performance of bioretention systems are widely available in the literature, less is known about the exchange of greenhouse gases (GHG), especially nitrous oxide (N2O), between the bioretention systems and the atmosphere. Here, we present an experimental pilot study to measure N2O and CO2 soil emissions in a bioretention system installed on the Clayton Campus of Monash University in Melbourne, Australia. The bioretention system is divided into three cells, each 15 m2; the system as a whole receives water run-off from 4500 m2 of impervious car park. We monitored two cells with mostly sandy-loam vegetated with native sedges (mainly Carex Appressa and Lomandra Longifolia), one with and one without a saturated zone. Three manual flux chambers were installed in both cells. Gas flux samples were taken twice a week at about 11 am between the 2nd of March and the 18th of May 2011 (late summer and fall). Since October 2010, air-phase soil CO2 concentration profiles were measured continuously using solid-state infrared CO2 transmitters (GMT-221 model, Vaisala, Finland), along with soil moisture and soil temperature. Preliminary analysis of the chamber data (March only) showed that N2O fluxes were in general below 50

  12. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Yang, Y.W.; Hung, T.F.; Yang, F.L. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd, Taichung 40768 (China)

    2007-11-08

    A series of poly(tetrafluoroethylene)/carbon black composite-based single-layer gas diffusion layers (PTFE/CB-GDLs) for proton exchange membrane fuel cell (PEMFC) was successfully prepared from carbon black and un-sintered PTFE, which included powder resin and colloidal dispersion, by a simple inexpensive method. The scanning electron micrographs of PTFE/CB-GDLs indicated that the PTFE resins were homogeneously dispersed in the carbon black matrix and showed a microporous layer (MPL)-like structure. The as-prepared PTFE/CB-GDLs exhibited good mechanical property, high gas permeability, and sufficient water repellency. The best current density obtained from the PEMFC with the single-layer PTFE/CB-GDL was 1.27 and 0.42 A cm{sup -2} for H{sub 2}/O{sub 2} and H{sub 2}/air system, respectively. (author)

  13. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  14. Gas-phase fragmentation of peptides to increase the spatial resolution of the Hydrogen Exchange Mass Spectrometry experiment

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Generation of overlapping peptides in solution via multiple proteases requires a very high peak capacity for the LC-MS analysis to minimize signal overlap. An inherent advantage of a gas-phase fragmentation step is that the additional gas-phase fragment ions used to sublocalize deuterium...... are produced after precursor ion selection and thus do not add complexity to the LC-MS analysis. The key to obtaining optimal spatial resolution in a hydrogen exchange mass spectrometry (HX-MS) experiment is the fragmentation efficiency. This chapter discusses common fragmentation techniques like collision......-induced dissociation (CID) occur with complete Hydrogen-deuterium (H/D) scrambling, while other techniques that induce dissociation on a faster timescale through radical-based fragmentation channels, like electron-capture dissociation (ECD) and electron-transfer dissociation (ETD), occur inherently without H...

  15. Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates

    Science.gov (United States)

    Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)

    2017-01-01

    Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (<1 atm). In general, the overall adsorption performance of the exchanged materials increased as follows: Ce3+exchanged materials excelled at low-pressure ranges, exhibiting very sharp isotherms slopes at all temperatures. The Sr2+ species were responsible for the surface strong interaction and the cations were occupying exposed sites (SII') in the materials Chabazite cages. All the sorbent materials exhibited higher affinity for CO2 over the other gases tested (i.e., CH4, H2, N2 and O2) due to strong ion-quadrupole interactions. Sr2+-SAPO-34 sorbents are by far the best option for CO2 removal from CH4 mixtures, especially at low concentrations.

  16. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    Science.gov (United States)

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  17. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.

  18. Effect of transjugular intrahepatic portosystemic shunt on pulmonary gas exchange in patients with portal hypertension and hepatopulmonary syndrome

    Institute of Scientific and Technical Information of China (English)

    Graciela Martínez-Pallí; Britt B Drake; Joan-Carles García-Pagán; Joan-Albert Barberà; Miguel R Arguedas; Robert Rodriguez-Roisin; Jaume Bosch; Michael B Fallon

    2005-01-01

    AIM: To assess the impact of transjugular intrahepatic portosystemic shunt (TIPS) on pulmonary gas exchange and to evaluate the use of TIPS for the treatment of hepatopulmonary syndrome (HPS).METHODS: Seven patients, three of them with advanced HPS, in whom detailed pulmonary function tests were performed before and after TIPS placementat the University of Alabama Hospital and at the Hospital Clinic, Barcelona, were considered.RESULTS: TIPS patency was confirmed by hemodynamic evaluation. No changes in arterial blood gases were observed in the overall subset of patients. Transient arterial oxygenation improvement was observed in only one HPS patient, early after TIPS, but this was not sustained 4 mo later.CONCLUSION: TIPS neither improved nor worsened pulmonary gas exchange in patients with portal hypertension. This data does not support the use of TIPS as a specific treatment for HPS. However, it does reinforce the view that TIPS can be safely performed for the treatment of other complications of portal hypertension in patients with HPS.

  19. Analysis of cutaneous and internal gill gas exchange morphology in early larval amphibians, Pseudophryne bibronii and Crinia georgiana.

    Science.gov (United States)

    Mueller, Casey A; Seymour, Roger S

    2012-08-01

    This study uses stereological techniques to examine body, internal gill and cardiovascular morphology of two larval amphibians, Pseudophryne bibronii and Crinia georgiana, to evaluate the roles of diffusive and convective gas exchange. Gosner stage 27 specimens were prepared for light microscopy and six parallel sections of equal distance taken through the body as well as a further six through the heart and internal gills. Body, internal gill and heart volume as well as body and internal gill surface areas were determined. The harmonic mean distance across the internal gills was also measured and used to estimate oxygen diffusive conductance, DO₂. The species were of similar body size and surface area, but the heart and internal gills were larger in P. bibronii, which may represent precursors for greater growth of the species beyond stage 27. The much larger surface area of the skin compared to the internal gills in both species suggests it is the main site for gas exchange, with the gills supplementing oxygen uptake. The sparse cutaneous capillary network suggests diffusion is the main oxygen transport mechanism across the skin and directly into deeper tissues. A numerical model that simplifies larval shape, and has an internal (axial vessels) and external oxygen source, confirms that diffusion is able to maintain tissue oxygen with limited convective input.

  20. Gas exchange rates, plant height, yield components, and productivity of upland rice as affected by plant regulators

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2012-10-01

    Full Text Available The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol, besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.

  1. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  2. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    Science.gov (United States)

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  3. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  4. The North American Electric Grid as an Exchange Network: An Approach for Evaluating Energy Resource Composition and Greenhouse Gas Mitigation.

    Science.gov (United States)

    Kodra, Evan; Sheldon, Seth; Dolen, Ryan; Zik, Ory

    2015-11-17

    Using a complex network framework, the North American electric grid is modeled as a dynamic, equilibrium-based supply chain of more than 100 interconnected power control areas (PCAs) in the contiguous United States, Canada, and Northern Mexico. Monthly generation and yearly inter-PCA exchange data reported by PCAs are used to estimate a directed network topology. Variables including electricity, as well as primary fuels, technologies, and greenhouse gas emissions associated with power generation can be traced through the network, providing energy source composition statistics for power consumers at a given location. Results show opportunities for more precise measurement by consumers of emissions occurring on their behalf at power plants. Specifically, we show a larger range of possible factors (∼0 to 1.3 kgCO2/kWh) as compared to the range provided by the EPA's eGRID analysis (∼0.4 to 1 kgCO2/kWh). We also show that 66-73% of the variance in PCA-level estimated emissions savings is the result of PCA-to-PCA differences that are not captured by the larger eGRID subregions. The increased precision could bolster development of effective greenhouse gas reporting and mitigation policies. This study also highlights the need for improvements in the consistency and spatiotemporal resolution of PCA-level generation and exchange data reporting.

  5. Laboratory Investigation of Air-Sea Interfacial Properties in Relation to Gas Exchange and Remote Sensing

    Science.gov (United States)

    2016-06-13

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson... vectors and gas transfer velocities from such information. OBJECTIVES This project is an experimental study of wave dynamics, boundary layer turbulence

  6. History effects on the gas exchange between a bubble and a liquid

    Science.gov (United States)

    Chu, Shigan; Prosperetti, Andrea

    2016-11-01

    History effects are a distinctive feature of diffusive processes. For a diffusing gas bubble at rest in a liquid, such effects arise when the concentration of dissolved gas at the bubble surface, connected to the gas pressure by Henry's law, depends on time. This time dependence can be caused by several factors, such as varying ambient pressure, mole fraction in a multicomponent gas bubble, surface tension and others. In this study we consider history effects in the three situations mentioned above. More specifically, rectified diffusion in an oscillating ambient pressure field is explored under conditions when the diffusion length is larger than the bubble radius. History effects are found to be important in determining the threshold conditions for rectified diffusion. In contrast, history effects are small in the other two cases. Supported by the BP/The Gulf of Mexico Research Initiative through the University of Texas Marine Science Institute (DROPPS II consortium: "Dispersion Research on Oil: Physics and Plankton Studies").

  7. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing.

    Science.gov (United States)

    Carter, R; Banham, S W

    2000-04-01

    The slow response characteristics of the combined transcutaneous electrode have been viewed as a major disadvantage when compared with other types of non-invasive assessment of gas exchange during exercise testing. We have previously shown that by using the highest recommended temperature of 45 degrees C to reduce response times, and combining this with an exercise protocol of gradual work load increments, that this allows changes in arterial blood gases to be closely followed by transcutaneous values. In the present study we have validated the use of a transcutaneous electrode for estimation of alveolar-arterial oxygen gradient (AaO2) and dead space to tidal volume ratio (V(D)/V(T)) during exercise, against values calculated from direct arterial blood gas analysis. One hundred measurements were made in 20 patients with various cardiopulmonary disorders who underwent exercise testing. Exercise testing was performed by bicycle ergometry with a specific protocol involving gradual work load increments at 2 min intervals. Transcutaneous gas tensions were measured by a heated combined O2 and CO2 electrode. Arterial blood was sampled at the midpoint of each stage of exercise and transcutaneous tensions noted at the end of each stage. The mean difference of the AaO2 gradient calculated from blood gas tensions obtained by the two methods was 0.14 kPa. The limits of agreement were -0.26 and 0.63 kPa. The same values for V(D)/V(T) calculated from gas tensions measured by the two methods were: mean difference 0001; limits of agreement -0.0242 and 0.0252. For both these parameters there was an even scatter around the mean value on Bland and Altman analysis. The findings of this study suggest that estimation of parameters of gas exchange using transcutaneous values during exercise testing is reliable, provided the electrode is heated to a slightly higher temperature than usual and the work load increments are gradual, allowing for the latency in the response time of the system

  8. Peripheral intravenous line (image)

    Science.gov (United States)

    A peripheral intravenous line is a small, short plastic catheter that is placed through the skin into a vein, ... or foot, but occasionally in the head. A peripheral intravenous line is used to give fluids and ...

  9. Stomata size and spatial pattern effects on leaf gas exchange - a quantitative assessment of plant evolutionary choices

    Science.gov (United States)

    Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter

    2014-05-01

    Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are

  10. Gas-phase hydrogen/deuterium exchange of 5'- and 3'-mononucleotides in a quadrupole ion trap: exploring the role of conformation and system energy.

    Science.gov (United States)

    Chipuk, Joseph E; Brodbelt, Jennifer S

    2007-04-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions for deprotonated 2'-deoxy-5'-monophosphate and 2'-deoxy-3'-monophosphate nucleotides with D(2)O were performed in a quadrupole ion trap mass spectrometer. To augment these experiments, molecular modeling was also conducted to identify likely deprotonation sites and potential gas-phase conformations of the anions. A majority of the 5'-monophosphates exchanged extensively with several of the compounds completely incorporating deuterium in place of their labile hydrogen atoms. In contrast, most of the 3'-monophosphate isomers exchanged relatively few hydrogen atoms, even though the rate of the first two exchanges was greater than observed for the 5'-monophosphates. Mononucleotides that failed to incorporate more than two deuterium atoms under default reaction conditions were often found to exchange more extensively when reactions were performed under higher energy conditions. Integration of the experimental and theoretical results supports the use of a relay exchange mechanism and suggests that the exchange behavior depends highly on the identity and orientation of the nucleobase and the position and flexibility of the deprotonated phosphate moiety. These observations also highlight the importance of the distance between the various participating groups in addition to their gas-phase acidity and basicity.

  11. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  12. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    Science.gov (United States)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  13. Element exchange in a water-and gas-closed biological life support system

    Science.gov (United States)

    Gribovskaya, I. V.; Kudenko, Yu. A.; Gitelson, J. I.

    1997-01-01

    Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80 degC controlled electromagnetic field is proposed.

  14. Numerical Simulation of Heat Transfer in a Gas Solid Crossflow Moving Packed Bed Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Anyuan Liu; Shi Liu; Yufeng Duan; Zhonggang Pan

    2001-01-01

    The mechanism of heat transfer in a crossfiow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM) approach, in which both phases are considered to be continuous and fully interpenetrating. This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.

  15. EFFECT OF HEAT EXCHANGE ON THE INTERFACIAL INSTABILITY OF GAS-LIQUID JET

    Institute of Scientific and Technical Information of China (English)

    王志亮; 周哲玮

    2003-01-01

    The classical linear instability theory was applied to the planar stratified two-layers flow with high speed compressible gas layer impacting on incompressible viscous liquidlayer. The walls were kept at different temperatures, resulting in heat transfer across thelayers. The thermal conductivity and the density of the gas were alerted when thetemperature changes. After some treatment, a four-order stiff ordinary differential equationwas derived, and numerical integration and multi-shooting method were used to solve thisequation for its spatial mode calculation. The numerical results of characteristic parametersshow good coincidence with other models. At the same time, when the wall temperatureratio decreases, as well as the Reynolds number and the gas thermal conductivity changeincreases, the atomization would be more efficient and producing finer droplets. And theresults show good fit with the experimental datum of HJE. Co. Inc ( Glens Falls, NY,USA ).

  16. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen

    2012-01-01

    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  17. Photosynthetic pigments and gas exchange in castor bean under conditions of above the optimal temperature and high CO2

    Directory of Open Access Journals (Sweden)

    Fabiola França Silva

    2015-08-01

    Full Text Available The castor bean plant, a Euphorbiaceae oil seed C3-metabolism rustic and drought-resistant plant, is cultivated in a wide range of environments due to its good adaptive capacity. However, given the current environmental changes, many biochemical and physiological impacts may affect the productivity of important crops, such as castor bean. This work aimed to evaluate the impacts of the castor bean gas exchange in response to high temperature and increased CO2concentration.Our experiment was conducted in a phytotron located at Embrapa Algodão in 2010. We adopted a completely randomized design, with four treatments in a factorial combination of two temperatures (30/20 and 37/30°C and two CO2 levels (400 and 800 mmol L-1; four replications were performed, obtained in five surveys over the growth cycle, for a total of 80 sample units. An infrared gas analyzer (IRGA - Infra Red Gas Analyzer was used for the quantification of the photosynthetic rate, stomatal conductance and transpiration. An increase in the atmospheric CO2 concentration and temperature negatively affected the physiology of the castor bean plants, decreasing the net rate of photosynthesis, transpiration and stomatal conductance.

  18. Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain

    Directory of Open Access Journals (Sweden)

    Fernandez-Cortes A.

    2009-07-01

    Full Text Available The large microclimatic stability is a basic characteristic of the subterranean karst systems and causes a high sensitivity to changesin environmental conditions. High-accuracy monitoring of Castañar de Ibor cave (Spain determined the temporal evolution of theaerodynamic processes and ventilation rate by tracking CO2 and 222Rn levels over a twelve-month period. This cave is characterizedby a very stable microclimate, with high and relatively constant radon content (the mean value is 32200 Bq/m3, roughly, and thestandard deviation is 7600 Bq/m3 and a moderate and quite stable CO2 concentration (the mean value is 3730 ppm and the standarddeviation is 250 ppm. Beside the general patterns of cave microclimate throughout an annual cycle, some particular microclimaticprocesses are described with regard to the gas exchange between the cave and the outside atmosphere. There is a complexmicroclimatic functional relationship between the meteorological and cave microclimate conditions and the diffusion and flow of tracergases from the fractures and the pore system of soil and host rock to cave atmosphere. Transient variations of tracer gas on cave airare controlled by natural barometric fluxes and anthropogenic forced ventilation due to uncontrolled opening of cave entrance. Theshort-term fluctuations of gas levels on cave air reveal distinct patterns during the exhalation process of theses gases from the netof fissures and pores to the cave atmosphere, depending on the isolation effect of soil and host rock.

  19. Standardized Elemental Basis for Gas-Turbine Engine Heat Exchangers is the Key Factor for Their Cost Reduction

    Institute of Scientific and Technical Information of China (English)

    Soudarev A.V; Soudarev B.V; Kondratiev V.V; Lazarev M.V

    2001-01-01

    The competitiveness of the small gas turbine units (GTUs) (Ne<300 kW) in the world power market is dependent on both the maintenance expenses and the capital costs of production. Reduction in the maintenance expenditures could be achieved by increasing the plant efficiency. This task could be solved by some methods: increasing the cycle inlet temperature TIT, getting the cycle more complex (use of heat regeneration and compressed air intermediate cooling), cutting the power consumption on heat-stressed parts cooling. Putting the above into effect is linked with introduction of novel structural materials, a sharp increase in the mass-size values and the plant manufacture expenditures, in particular, at provision of its self-regulation.In connection with the above, the development of the combined metal-ceramic airheaters and standardization of the elemental basis of the metal gas-gas heat exchangers will promote reduction in the expenditures of the maintenance and the manufacture of the small-size independent power GTEs.

  20. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  1. Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output?

    DEFF Research Database (Denmark)

    Calbet, J.A.; Robach, P.; Lundby, C.

    2008-01-01

    -a)DO(2) is accentuated. Using the multiple inert gas elimination technique it has been shown that during exercise in acute hypoxia the contribution of ventilation-perfusion inequality to (A-a)DO(2) is rather small and in the absence of pulmonary edema intrapulmonary shunts can be ruled out. This implies...

  2. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    Science.gov (United States)

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates.

  3. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  4. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Science.gov (United States)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in

  5. Finite element modeling of 129Xe diffusive gas exchange NMR in the human alveoli

    Science.gov (United States)

    Stewart, Neil J.; Parra-Robles, Juan; Wild, Jim M.

    2016-10-01

    Existing models of 129Xe diffusive exchange for lung microstructural modeling with time-resolved MR spectroscopy data have considered analytical solutions to one-dimensional, homogeneous models of the lungs with specific assumptions about the alveolar geometry. In order to establish a model system for simulating the effects of physiologically-realistic changes in physical and microstructural parameters on 129Xe exchange NMR, we have developed a 3D alveolar capillary model for finite element analysis. To account for the heterogeneity of the alveolar geometry across the lungs, we have derived realistic geometries for finite element analysis based on 2D histological samples and 3D micro-CT image volumes obtained from ex vivo biopsies of lung tissue from normal subjects and patients with interstitial lung disease. The 3D alveolar capillary model permits investigation of the impact of alveolar geometrical parameters and diffusion and perfusion coefficients on the in vivo measured 129Xe CSSR signal response. The heterogeneity of alveolar microstructure that is accounted for in image-based models resulted in considerable alterations to the shape of the 129Xe diffusive uptake curve when compared to 1D models. Our findings have important implications for the future design and optimization of 129Xe MR experiments and in the interpretation of lung microstructural changes from this data.

  6. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed

    injury was induced by repeated lung lavage. Thereafter the tracheal tube was, after a lung recruitment maneuver, connected to 20 cmH2O continuous positive airway pressure (FiO2 = 1.0) for oxygenation of the blood. A pumpless membrane lung (Interventional Lung Assist, NovaLung, Germany) was connected......Background and aim of study We hypothesized that continuous high airway pressure without ventilatory movements (apneic oxygenation), using an open lung approach, combined with extracorporeal, pumpless, arterio-venous, carbon dioxide (CO2) removal would provide adequate gas exchange in acute lung...... injury. The aim of this study was to test this hypothesis in a lung injury model using pigs of human adult size, to mimic the O2 consumption and the CO2 production of adult patients.   Materials and methods In eight anesthetized, tracheally intubated and mechanically ventilated pigs (85-95 kg), lung...

  7. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA....... maxima than the sedges under low nutrient supply supports the importance of nutrient management, especially N, as a strategy to minimise the invasive behaviour of fast-growing herbaceous species in wetlands.......We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...

  8. [Comparative analysis of gas exchange and cardiorespiratory systems reactions to increasing normobaric hypoxia and physical load of swimmers and skiers].

    Science.gov (United States)

    Krivoshchekin, S G; Divert, V E; Mel'nikov, V N; Vodianitskiĭ, S N; Girenko, L A

    2013-01-01

    Qualification comparable groups of young men engaged in cyclic kinds of sports were tested with stepwise accruing loads on bicycle ergometer and 25-minute exponential increasing normobaric hypoxia to final concentration of 10% oxygen. Group of skiers, having the greatest values of the maximal oxygen consumption at muscular work, show the relaxed cardiorespiratory reactions and more falling of blood oxygen in the hypoxia. The swimmers, having restrictions of ventilatory function in the course of trainings, form preadaptation to hypoxia with changes of external respiration and gas exchange functions that allows at hypoxia to better oxygen sate the blood in lungs. The joint assessment of aerobic capacity at physical work and physiological reactions to hypoxia shows the direct relation between individual maximal oxygen consumption and the descent rate of blood oxygen saturation at accruing hypoxia that can be useful at an assessment of a sportsman functional state and its correction at training processes.

  9. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2015-04-01

    During the last decades an increasing area of drained peatlands has been rewetted. Especially in Germany, rewetting is the principal treatment on cutover sites when peat extraction is finished. The objectives are bog restoration and the reduction of greenhouse gas (GHG) emissions. The first sites were rewetted in the 1980s. Thus, there is a good opportunity to study long-term effects of rewetting on greenhouse gas exchange, which has not been done so far on temperate cutover peatlands. Moreover, Sphagnum cultivating may become a new way to use cutover peatlands and agriculturally used peatlands as it permits the economical use of bogs under wet conditions. The climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over the course of more than 2 years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled at a high temporal resolution. Measured and modelled values fit very well together. Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from -201.7 ± 126.8 to 29.7± 112.7g CO2-C m-2 a-1) due to differing weather conditions, water levels and vegetation. The Sphagnum cultivation site was a sink of CO2 (-118.8 ± 48.1 and -78.6 ± 39.8 g CO2-C m-2 a-1). The annual CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0g CH4-C m-2 a-1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to 0. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB was between -185.5 ± 126.9 and 49

  10. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake.

    Science.gov (United States)

    Bergweiler, Chris; Manning, William J; Chevone, Boris I

    2008-03-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.

  11. Food production and gas exchange system using blue-green alga (spirulina) for CELSS

    Science.gov (United States)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    1987-01-01

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself was conducted. Spirulina was cultivated in the 6 liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46 percent) at a rate of 100 to approx. 150 ml per minute could be obtained.

  12. Food production and gas exchange system using blue-green alga (Spirulina) for CELSS

    Science.gov (United States)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Hatayama, Shigeki

    In order to reduce the cultivation area required for the growth of higher plants in space adoption of algae, which have a higher photosynthetic ability, seems very suitable for obtaining oxygen and food as a useful source of high quality protein. The preliminary cultivation experiment for determining optimum cultivation conditions and for obtaining the critical design parameters of the cultivator itself has been conducted. Spirulina was cultivated in the 6-liter medium containing a sodium hydrogen carbonate solution and a cultivation temperature controlled using a thermostat. Generated oxygen gas was separated using a polypropyrene porous hollow fiber membrane module. Through this experiment, oxygen gas (at a concentration of more than 46%) at a rate of 100 ~ 150 ml per minute could be obtained.

  13. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Directory of Open Access Journals (Sweden)

    Mitra Rahmati

    Full Text Available In this study the sensitivity of peach tree (Prunus persica L. to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration as well as carbon (C storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i reduction in leaf photosynthesis (-23% and -50% under moderate (MS and severe (SS water stress compared to low (LS stress during growth season and (ii reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest. Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  14. Variation of gas exchange within native plant species of Switzerland and relationships with ozone injury: an open-top experiment.

    Science.gov (United States)

    Zhang, J; Ferdinand, J A; Vanderheyden, D J; Skelly, J M; Innes, J L

    2001-01-01

    Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures.

  15. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Science.gov (United States)

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  16. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.

    Science.gov (United States)

    Prior, S A; Runion, G B; Rogers, H H; Arriaga, F J

    2010-01-01

    Increasing atmospheric CO(2) concentration has led to concerns about potential effects on production agriculture. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional tillage and no-tillage) to elevated CO(2). The study used a split-plot design replicated three times with two management systems as main plots and two atmospheric CO(2) levels (ambient and twice ambient) as split plots using open-top chambers on a Decatur silt loam soil (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum [Sorghum bicolor (L.) Moench.] and soybean [Glycine max (L.) Merr.] rotation with winter fallow and spring tillage practices. In the no-tillage system, sorghum and soybean were rotated, and three cover crops were used [crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)]. Over multiple growing seasons, the effect of management and CO(2) concentration on leaf-level gas exchange during row crop (soybean in 1999, 2001, and 2003; sorghum in 2000, 2002, and 2004) reproductive growth were evaluated. Treatment effects were fairly consistent across years. In general, higher photosynthetic rates were observed under CO(2) enrichment (more so with soybean) regardless of residue management practice. Elevated CO(2) led to decreases in stomatal conductance and transpiration, which resulted in increased water use efficiency. The effects of management system on gas exchange measurements were infrequently significant, as were interactions of CO(2) and management. These results suggest that better soil moisture conservation and high rates of photosynthesis can occur in both tillage systems in CO(2)-enriched environments during reproductive growth.

  17. Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes

    Science.gov (United States)

    Cavieres, Lohengrin A.; Rada, Fermín; Azócar, Aura; García-Núñez, Carlos; Cabrera, Hernán M.

    2000-05-01

    Temperature may determine altitudinal tree distribution in different ways: affecting survival through freezing temperatures or by a negative carbon balance produced by lower photosynthetic rates. We studied gas exchange and supercooling capacity in a timberline and a treeline species ( Podocarpus oleifolius and Espeletia neriifolia, respectively) in order to determine if their altitudinal limits are related to carbon balance, freezing temperature damage, or both. Leaf gas exchange, leaf temperature-net photosynthesis curves and leaf temperature at which ice formation occurred were measured at two sites along an altitudinal gradient. Mean CO 2 assimilation rates for E. neriifolia were 3.4 and 1.3 μmol·m -2·s -1, at 2 400 and 3 200 m, respectively. Mean night respiration was 2.2 and 0.9 μmol·m -2·s -1 for this species at 2 400 and 3 200 m, respectively. Mean assimilation rates for P. oleifolius were 3.8 and 2.2 μmol·m -2·s -1 at 2 550 and 3 200 m, respectively. Night respiration was 0.8 μmol·m -2·s -1 for both altitudes. E. neriifolia showed similar optimum temperatures for photosynthesis at both altitudes, while a decrease was observed in P. oleifolius.E. neriifolia and P. oleifolius presented supercooling capacities of -6.5 and -3.0 °C, respectively. For E. neriifolia, freezing resistance mechanisms are sufficient to reach higher altitudes; however, other environmental factors such as cloudiness may be affecting its carbon balance. P. oleifolius does not reach higher elevations because it does not have the freezing resistance mechanisms.

  18. Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sayyaadi, Hoseyn; Aminian, Hamid Reza [Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis Str., Mollasadra Ave., Vanak Sq., Tehran 1999 143344 (Iran)

    2010-04-15

    A special non-TEMA type tubular recuperative heat exchanger used as a regenerator of a gas turbine cycle is considered for multi-criteria optimization. It is assumed that the recuperator is designed for an existing gas turbine cycle to be retrofitted. Three scenarios for optimization of the proposed system have been considered. In one scenario, the objective is minimizing the cost of recuperator; while in another scenario maximizing the cycle exergetic efficiency is considered. In third scenario, both objectives are optimized simultaneously in a multi-objective optimization approach. Geometric specification of the recuperator including tubes length, tubes outside/inside diameters, tube pitch in the tube bundle, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles are considered as decision variables. Combination of these objectives and decision variables with suitable engineering and physical constraints (including NO{sub x} and CO emission limitations) makes a set of MINLP optimization problem. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms namely NSGA-II. This approach which is based on the Genetic Algorithm is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained and a final optimal solution is selected in a decision-making process. It is shown that the multi-objective optimization scenario can be considered as a generalized optimization approach in which balances between economical viewpoints of both heat exchanger manufacturer and end user of recuperator. (author)

  19. Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub Pistacia lentiscus L.

    Science.gov (United States)

    Flexas, Jaume; Gulías, Javier; Jonasson, Sven; Medrano, Hipólito; Mus, Mauricio

    2001-02-01

    We examined temporal and spatial variations in net photosynthesis, stomatal conductance, intrinsic water-use efficiency, sub-stomatal CO 2 concentration, apparent carboxylation efficiency and chlorophyll fluorescence in the Mediterranean shrub Pistacia lentiscus. The study was done at the extremes of a precipitation and temperature gradient on the coast and in the mountains of Mallorca, Spain, with gas exchange measurements at different times of the year, and combined measurements of gas exchange and chlorophyll fluorescence in a controlled experiment. The objectives were to relate annual variation in photosynthetic functions to environmentally induced constraints and to quantify to which extent local differences in climate can affect photosynthesis in shrub populations. In the mountain population, net photosynthesis peaked in spring and autumn, when water was abundant and temperature was moderately high. It was reduced in winter paralleling reduced carboxylation efficiency. Photosynthesis was at the annual minimum in summer at both sites due to drought-induced stomata closure combined with impaired function of the Calvin cycle. The coastal population maintained high photosynthesis in mid winter but had a pronounced decline in spring, and the summer decline lasted longer than in the mountains. Integrated over the seasons, net photosynthesis was about 25 % lower in the coastal than in the mountain population, in spite of maintained high mid winter photosynthesis. Hence, the reduction at the coast was mainly due to early onset of drought in spring and a long period of summer drought, showing that local climatic differences can cause pronounced spatial differences in plant carbon balance. As a consequence, similar differences probably also occur as a function of year-to-year variability of precipitation patterns and temperatures.

  20. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

    Science.gov (United States)

    Lindberg, Pia; Lindblad, Peter; Cournac, Laurent

    2004-04-01

    Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

  1. Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

    Science.gov (United States)

    Hamour, M.; Garnier, J. P.; Grandidier, J. C.; Ouibrahim, A.; Martemianov, S.

    2011-05-01

    Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m-1 · K-1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 resistances. For this purpose, measurements with a different number of carbon cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the robustness of the developed method and apparatus for this type of application.

  2. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    Science.gov (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  3. Application of crop gas exchange and transpiration data obtained with CEEF to global change problem

    Science.gov (United States)

    Tako, Y.; Arai, R.; Otsubo, K.; Nitta, K.

    In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO 2 concentration, [CO 2] and temperature, long term effects of high [CO 2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO 2] at gene, cell, tissue or leaf level for only vegetative growth phase ( i.e. before formation of reproductive organs) have been conducted all over the world. However, CO 2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO 2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO 2] and day/night air temperature (350 μL CO 2 L -1, 24/17°C (population A); 700 μL CO 2 L -1, 24/17°C (population B) and 700 μL CO 2 L -1, 26/19°C (population C)) upon PPFD, leaf temperature and [CO 2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO 2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in

  4. Hydraulic Performance and Gas Behavior of a Tall Crystalline Silicotitanate Ion-Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.; Anderson, K.K.; Bostick, D.A.; Dillow, T.A.; Getting, M.W.; Hunt, R.D.; Lenarduzzi, R.; Mattus, A.J.; Taylor, P.A.; Wilmarth, W.R.

    2000-02-01

    Crystalline silicotitanate (CST) sorbent is one of several technologies being evaluated by the Savannah River Site (SRS) for removing cesium from high-level tank-waste supernatant. As currently envisioned, three large 5-ft-diam, 20-ft-high ion-exchange columns will be operated in series at a superficial velocity of 4.1 cm/min. The CST will be subjected to a high radiation field from the sorbed cesium. The tests described in this work were conducted to evaluate column hydraulics, to identify changes in the CST particles during operation, to explore how radiolytic gases generated during operation behave, and to demonstrate sluicing of CST into and out of columns.

  5. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  6. Diurnal Course of Gas Exchange and Water Use Efficiency of Platycladus orientalis in the Semiarid Region of the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Tian Jinghui; He Kangning; Wang Baitian; Guo Jianghong; Zhang Weiqiang; Yin Jing

    2006-01-01

    The daily gas exchange,stomatal conductance,and water use efficiency of Platycladus orientalis in the test field of Fangshan county of Shanxi Province in the semiarid region of the Loess Plateau were measured with portable Li-6200 gas analysis system in natural conditions.The results showed that the diurnal course of net photosynthetic rate displayed a two-peak pattern,that of stomatal conductance displayed a hollow pattern,and that of transpiration rate displayed a signal-peak pattern.Water use efficiency culminated in the early morning.On the basis of two criteria of stomatal limitation of photosynthesis suggested by Farquhar and Sharkey,the predominant limiting factor of photosynthesis was the stomatal conductance of stomatal limitation in the morning (10:00-12:00).However,the midday depression of photosynthesis at noon (12:00-14:00) and the decrease in photosynthesis in the afternoon (16:00-18:00) were the results of nonstomatal limitation,such as low carboxylation capacity of the leaf mesophyll.

  7. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells

    Science.gov (United States)

    Ito, Hiroshi; Heo, Yun; Ishida, Masayoshi; Nakano, Akihiro; Someya, Satoshi; Munakata, Tetsuo

    2017-02-01

    The intrinsic effect of properties of a self-supporting microporous layer (MPL) on the performance of proton exchange membrane fuel cells (PEMFCs) is identified. First, a self-supporting MPL is fabricated and applied to a gas diffusion layer (GDL) of a PEMFC, when the GDL is either an integrated sample composed of a gas diffusion backing (GDB, i.e., carbon paper) combined with MPL or a sample with only MPL. Cell performance tests reveal that, the same as the MPL fabricated by the coating method, the self-supporting MPL on the GDB improves the cell performance at high current density. Furthermore, the GDL composed only of the MPL (i.e., GDB-free GDL) shows better performance than does the integrated GDB/MPL GDL. These results along with literature data strongly suggest that the low thermal conductivity of MPL induces a high temperature throughout the GDL, and thus vapor diffusion is dominant in the transport of product water through the MPL.

  8. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.

    Science.gov (United States)

    He, Chuanjiu; Davies, Fred T

    2012-03-01

    Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO(2)). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Mathematical modeling of the "plant community -soil-like substrate -gas exchange with the human" closed ecosystem

    Science.gov (United States)

    Barkhatov, Yuri; Gubanov, Vladimir; Tikhomirov, Alexander A.; Degermendzhy, Andrey G.

    A mathematical model of the "plant community -soil-like substrate -gas exchange with the human" experimental biological life support system (BLSS) has been constructed to predict its functioning and estimate feasibility of controlling it. The mathematical model consists of three compartments -two `phytotron' models (with wheat and radish) and the `mycotron' model (for mushrooms). The following components are included in the model: edible mushrooms (mushroom fruit bodies and mycelium); wheat; radish; straw (processed by mycelium); dead organic matter in the phytotron (separately for the wheat unit and for the radish unit); worms; worms' coprolites; vermicompost used as a soil-like substrate (SLS); bacterial microflora; min-eral nitrogen, phosphorus and iron; products of the system intended for humans (wheat grains, radish roots and mushroom fruit bodies); oxygen and carbon dioxide. Under continuous gas exchange, the mass exchange between the compartments occurs at the harvesting time. The conveyor character of the closed ecosystem functioning has been taken into account -the num-ber of culture age groups can be regulated (in experiments -4 and 8 age groups). The conveyor cycle duration can be regulated as well. The module is designed for the food and gas exchange requirements of 1/30 of a virtually present human. Aim of model analysis is determination of investigation direction in real experimental BLSS. The model allows doing dynamic calcu-lations of closure coefficient based on the main elements taken into account in the model and evaluating all dynamic components of the system under different conditions and modes of its operation, especially under the conditions that can hardly be created experimentally. One of the sustainability conditions can be long-duration functioning of the system under the light-ing that is far from the optimum. The mathematical model of the system can demonstrate variants of its sustainable functioning or ruin under various critical

  10. Closed and continuous algae cultivation system for food production and gas exchange in CELSS

    Science.gov (United States)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Shimada, Atsuhiro; Fujii, Shigeo; Koyano, Takashi; Miki, Keizaburo

    In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. o (1)In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2)Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3)Algae mass and medium are separated by a specially designed harvester. (4)Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quanlity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system.

  11. Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage.

    Science.gov (United States)

    Pasqualotto, M; Neres, M A; Guimarães, V F; Klein, J; Inagaki, A M; Ducati, C

    2015-06-01

    The present study aimed at evaluating the intensity of Tifton 85 conditioning using a mower conditioner with free-swinging flail fingers and storage times on dehydration curve, fungi presence, nutritional value and in vitro digestibility of Tifton 85 bermudagrass hay dry matter (DM). The dehydration curve was determined in the whole plant for ten times until the baling. The zero time corresponded to the plant before cutting, which occurred at 11:00 and the other collections were carried out at 8:00, 10:00, 14:00, and 16:00. The experimental design was randomised blocks with two intensities of conditioning (high and low) and ten sampling times, with five replications. The high and low intensities related to adjusting the deflector plate of the free iron fingers (8 and 18 cm). In order to determine gas exchanges during Tifton 85 bermudagrass dehydration, there were evaluations of mature leaves, which were placed in the upper middle third of each branch before the cutting, at every hour for 4 hours. A portable gas analyser was used by an infrared IRGA (6400xt). The analysed variables were photosynthesis (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration (T), water use efficiency (WUE), and intrinsic water use efficiency (WUEi). In the second part of this study, the nutritional value of Tifton 85 hay was evaluated, so randomised blocks were designed in a split plot through time, with two treatments placed in the following plots: high and low intensity of cutting and five different time points as subplots: cutting (additional treatment), baling and after 30, 60, and 90 days of storage. Subsequently, fungi that were in green plants as well as hay were determined and samples were collected from the grass at the cutting period, during baling, and after 30, 60, and 90 days of storage. It was observed that Tifton 85 bermudagrass dehydration occurred within 49 hours, so this was considered the best time for drying hay. Gas exchanges were more

  12. The Study on Diurnal Changes in Leaf Gas Exchange of Lemon Balm, Catnip, Holy Basil and Sweet basil in Ahvaz

    Directory of Open Access Journals (Sweden)

    Mohammad Mahmoodi Sourestani

    2017-02-01

    Full Text Available Introduction: Mediterranean climate conditions induce several stresses that plants have to cope with, especially during summer months when high temperature and radiation levels along with low water availability in the soil prevail for long periods. Variation in physiological traits such as photosynthesis and plant water status and their association with morphological characters can play an important role in the adaptability of the species to environmental constraints. The previous studies show that scorching weather not only affects the rate of gas exchange, but also results in diurnal changes in activity. Thus, the impact of environmental stresses on plants growing in these conditions should be assessed by examining the evolution of their diurnal variations on leaf gas exchange. Aromatic plants represent a renewable source of valuable compounds that can be used in food, perfumery, and pharmaceutical industry. Among these plants, sweet basil (Ocimumbasilicum, holy basil (Ocimum sanctum, lemon balm (Melissa officinalisL. and catnip (Nepetacataria are very important for different industries. Studies on environmental physiology of medicinal plants are relatively scarce and very few information is available concerning the physiological basis of medicinal plant response to heat stress that is one of the most important factors limiting production of medicinal plants in Khuzestan province. Material and methods: In order to evaluate the diurnal fluctuation of gas exchange of mentioned plants, an experiment was carried out in 2013 at research farm of Horticultural Science, Shahid Chamran University (31°20'N latitude and 48°40'E longitude and 22.5m mean sea level, Ahvaz (Iran, a site characterized by a semidry and scorching weather during late spring and summer. The experiment was arranged based on randomized complete block design (RCBD with three replications and 4×8 factorial scheme (Four plants including lemon balm, catnip, holy basil and basil; and

  13. Estimation of Instantaneous Gas Exchange in Flow-Through Respirometry Systems: A Modern Revision of Bartholomew's Z-Transform Method.

    Directory of Open Access Journals (Sweden)

    Hodjat Pendar

    Full Text Available Flow-through respirometry systems provide accurate measurement of gas exchange over long periods of time. However, these systems have limitations in tracking rapid changes. When an animal infuses a metabolic gas into the respirometry chamber in a short burst, diffusion and airflow in the chamber gradually alter the original signal before it arrives at the gas analyzer. For single or multiple bursts, the recorded signal is smeared or mixed, which may result in dramatically altered recordings compared to the emitted signal. Recovering the original metabolic signal is a difficult task because of the inherent ill conditioning problem. Here, we present two new methods to recover the fast dynamics of metabolic patterns from recorded data. We first re-derive the equations of the well-known Z-transform method (ZT method to show the source of imprecision in this method. Then, we develop a new model of analysis for respirometry systems based on the experimentally determined impulse response, which is the response of the system to a very short unit input. As a result, we present a major modification of the ZT method (dubbed the 'EZT method' by using a new model for the impulse response, enhancing its precision to recover the true metabolic signals. The second method, the generalized Z-transform (GZT method, was then developed by generalizing the EZT method; it can be applied to any flow-through respirometry system with any arbitrary impulse response. Experiments verified that the accuracy of recovering the true metabolic signals is significantly improved by the new methods. These new methods can be used more broadly for input estimation in variety of physiological systems.

  14. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  15. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  16. CFD-based investigation of heat transfer characteristics of flue gas-water eat exchanger panels produced with a novel manufacturing proces

    NARCIS (Netherlands)

    Fukue, T.; Spitas, C.; Dwaikat, M.; Ishizuka, M.

    2013-01-01

    This study describes the characteristics of a panel geometry obtained by a novel manufacturing process for the development of ultra-compact flue gas-water condensing heat exchangers. In this process two stainless steel sheets are prepared and stacked and then brazed together in a special pattern out

  17. Short-term impacts of nutrient manipulations on leaf gas exchange and biomass partitioning in contrasting 2-year-old Pinus taeda clones during seedling establishment

    Science.gov (United States)

    Michael C. Tyree; John R. Seiler; Chris A. Maier

    2009-01-01

    We conducted a 1-year greenhouse experiment to assess the impact of nutrient manipulations on seedling growth, biomass partitioning, and leaf gas exchange between two fast growing Pinus taeda clones that differed in growth efficiency. After 1 year we observed significant treatment and treatment by clone effects on growth, biomass partitioning, and...

  18. Ambient ozone effects on gas exchange and total non-structural carbohydrate levels in cutleaf coneflower (Rudbeckia laciniata L.) growing in Great Smoky Mountains National Park

    Science.gov (United States)

    Ozone-sensitive and -tolerant individuals of the perennial herbaceous cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates in the Great Smoky Mountains National Park USA. Net photosynthesis decreased with increased f...

  19. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    Science.gov (United States)

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Differential Effects of Endotracheal Suctioning on Gas Exchanges in Patients with Acute Respiratory Failure under Pressure-Controlled and Volume-Controlled Ventilation

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Liu

    2015-01-01

    Full Text Available This study was conducted to evaluate the effects of open endotracheal suctioning on gas exchange and respiratory mechanics in ARF patients under the modes of PCV or VCV. Ninety-six ARF patients were treated with open endotracheal suctioning and their variations in respiratory mechanics and gas exchange after the suctions were compared. Under PCV mode, compared with the initial level of tidal volume (VT, ARF patients showed 30.0% and 27.8% decrease at 1 min and 10 min, respectively. Furthermore, the initial respiratory system compliance (Crs decreased by 29.6% and 28.5% at 1 min and 10 min, respectively. Under VCV mode, compared with the initial level, 38.6% and 37.5% increase in peak airway pressure (PAP were found at 1 min and 10 min, respectively. Under PCV mode, the initial PaO2 increased by 6.4% and 10.2 % at 3 min and 10 min, respectively, while 18.9% and 30.6% increase of the initial PaO2 were observed under VCV mode. Summarily, endotracheal suctioning may impair gas exchange and decrease lung compliance in ARF patients receiving mechanical ventilation under both PCV and VCV modes, but endotracheal suctioning effects on gas exchange were more severe and longer-lasting under PCV mode than VCV.

  1. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    Directory of Open Access Journals (Sweden)

    S. P. P. Grover

    2011-09-01

    Full Text Available Savanna ecosystems are subject to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4, nitrous oxide (N2O, and carbon dioxide (CO2 over a complete wet-dry seasonal cycle at three replicated sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5–7 and 25–30 yr ago, respectively in the Douglas Daly region of northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments.

    Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m−2 h−1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m−2 h−1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha−1 yr−1 having the lowest fluxes compared to old pasture (18.5 t CO2-C ha−1 yr−1 and young pasture (20.0 t CO2-C ha−1 yr−1. Clearing savanna increased soil-based greenhouse gas emissions from 53 to ~70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source

  2. Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    Science.gov (United States)

    Hall, Mark N.

    1996-01-01

    Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

  3. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  4. Trace gas and energy exchange above a pine afforestation: past, present and future research

    Science.gov (United States)

    Urbaniak, Marek; Chojnicki, Bogdan; Danielewska, Alina; Baran, Marcin; Ziemblinska, Klaudia; Merbold, Lutz; Olejnik, Janusz

    2013-04-01

    Forests are among the most important elements of the Earth's biosphere, providing In the context of global climate change forest plays an important role as a sink of CO2, besides providing other ecological advantages such as favourable habitat for plant and animal species. Changes in the global environment are likely to severely affect the functioning of forest ecosystems. The direction and intensity of these changes can be assessed by the analysis of mass and energy fluxes exchanged between the forest canopy and the atmosphere. Water vapour (H2O) and carbon dioxide (CO2) fluxes were measured using the eddy covariance (EC) method in order to obtain long-term data series. Measurements started in January 2008 and continue until today. The EC tower was established within a 56 year and 24 m tall scots pine (pinus sylvestris L.), located nearby the town of Tuczno (North-West Poland). This forest is representative for the large areas that are under the management of one national company (State Forests National Forest Holding). It has been hypothesized that this type of forest (same stand age and structure) are responsible for the major net uptake of atmospheric CO2 in Poland. Annual sequestration during the first two years of measurements was shown to be as high as (702 g C·m-2 in 2008 and 747 g C·m-2 in 2009. However, less carbon was sequestered during the years 2010 and 2011, 546gC·m-2 and 592 gC·m-2, respectively. During the upcoming years we aim at answering the following question: which variables, meteorological or air quality, determine the annual variance of net ecosystem productivity (NEP)? Therefore the existing EC tower was additionally instrumented with devices measuring basic meteorological parameters (solar radiation, air and soil temperature, precipitation). Research will further be extended by studying the hydrology, nutrient cycling and soil properties in order to derive a combined knowledge on forest ecosystem functioning in Poland.

  5. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around &ldq...

  6. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China

    Science.gov (United States)

    Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia

    2013-01-01

    Forty passive air samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing–Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of air PAH concentrations was addressed. In addition, the air–soil gas exchange of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m3 and 114 ng/m3, respectively, with a median total PAH concentration of 349 ng/m3. Higher PAH concentrations were measured in winter than in other seasons. Air PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban–rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%–77% of the spatial variation in ambient air PAH concentrations. The annual median air–soil gas exchange flux of PAHs was 42.2 ng/m2/day from soil to air. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total exchange flux. Furthermore, the air–soil gas exchange fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to air because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from air to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the air–soil gas exchange of PAHs. PMID:21669328

  7. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  8. Modelling of the change in national exchange rate model depending on the economic parameters of a natural gas cogeneration system: Turkey case

    Energy Technology Data Exchange (ETDEWEB)

    Inan, Aslan; Izgi, Ercan; Ay, Selim [Department of Electrical Engineering, Faculty of Electric-Electronics, Technical University of Yildiz, 34349 Istanbul (Turkey)

    2009-04-15

    In this paper, to what extent a cogeneration system's fixed and variable costs and profits are affected from the exchange rate model implemented in the country is examined. An autoproductor system, as known, uses a part of its electrical energy production for its own requirements while selling the remaining energy to the regional energy corporation. As a function of the load factor and the fuel cost, the production cost and energy sale income of the system are influenced much by the exchange rate model of the country. A cost analysis of a natural gas cogeneration (autoproductor) system has been performed for the numerical application, based on the monetary program supported by the IMF commenced in January 2000. In order to investigate the effect of the change in exchange rate model (introducing the floating exchange rate model) on the fuel cost, both the characteristics of the IMF program and some various forecasting methods have been utilized. (author)

  9. Intravenous paracetamol (acetaminophen).

    Science.gov (United States)

    Duggan, Sean T; Scott, Lesley J

    2009-01-01

    Intravenous paracetamol (rINN)/intravenous acetaminophen (USAN) is an analgesic and antipyretic agent, recommended worldwide as a first-line agent for the treatment of pain and fever in adults and children. In double-blind clinical trials, single or multiple doses of intravenous paracetamol 1 g generally provided significantly better analgesic efficacy than placebo treatment (as determined by primary efficacy endpoints) in adult patients who had undergone dental, orthopaedic or gynaecological surgery. Furthermore, where evaluated, intravenous paracetamol 1 g generally showed similar analgesic efficacy to a bioequivalent dose of propacetamol, and a reduced need for opioid rescue medication. In paediatric surgical patients, recommended doses of intravenous paracetamol 15 mg/kg were not significantly different from propacetamol 30 mg/kg for the treatment of pain, and showed equivocal analgesic efficacy compared with intramuscular pethidine 1 mg/kg in several randomized, active comparator-controlled studies. In a randomized, noninferiority study in paediatric patients with an infection-induced fever, intravenous paracetamol 15 mg/kg treatment was shown to be no less effective than propacetamol 30 mg/kg in terms of antipyretic efficacy. Intravenous paracetamol was well tolerated in clinical trials, having a tolerability profile similar to placebo. Additionally, adverse reactions emerging from the use of the intravenous formulation of paracetamol are extremely rare (<1/10 000). [table: see text].

  10. Atomic excitation by charge exchange of heavy ions in gas and solids

    Energy Technology Data Exchange (ETDEWEB)

    Chetioui, A.; Wohrer, K.; Rozet, J.P.; Stephan, C.; Salah, F.B.; Touati, A.; Politis, M.F.; Vernhet, D. (Paris-6 Univ., 75 (France))

    1989-01-01

    Recently an anomalous population of capture nl sublevels of Kr{sup 35+} ions emerging from thin solid foils have been reported. This effect was tentatively interpreted on the basis of the Stark effect in the electric field in the wake of the moving ion. Such a field has been quantitatively observed in a plasma source. However, in solids, only partial evidence of this phenomenon has been obtained. A well known drawback of experimental studies with solid targets is the multicollision effect. We have shown from theoretical grounds that the single collision condition is fulfilled for deepest ionic states when working with the fast heavy ions. Indeed mean free paths for the most probable process, nl' excitation, are many times larger than the target thicknesses used. We have measured the angular distribution of the 2P {yields} 1S transition following electron capture of 35 Mev/u Kr{sup 36+} ions in various gaseous and solid media. Polarizations of the Lyman {alpha}-Xrays emitted by projectiles after capture have been extracted from the best fit of their measured angular distributions. A good agreement is found between the experimental results and theoretical calculations for gas targets, but not for solids. (author).

  11. Development of gas diffusion layer using water based carbon slurry for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.F.; Liu, X.; Adame, A.; Villacorta, R. [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States); Kannan, A.M., E-mail: amk@asu.ed [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2011-01-01

    The micro-porous layer of gas diffusion layers (GDLs) was fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS), by wire rod coating process. The aqueous carbon slurry with micelle-encapsulation was highly consistent and stable without losing any homogeneity even after adding polytetrafluoroethylene (PTFE) binder for hundreds of hours. The surface morphology, contact angle and pore size distribution of the GDLs were examined using SEM, Goniometer and Hg Porosimeter, respectively. GDLs fabricated with various SDS concentrations were assembled into MEAs and evaluated in a single cell PEMFC under diverse operating relative humidity (RH) conditions using H{sub 2}/O{sub 2} and H{sub 2}/air as reactants. The peak power density of the single cell using the GDLs with optimum SDS concentration was 1400 and 500 mW cm{sup -2} with H{sub 2}/O{sub 2} and H{sub 2}/air at 90% RH, respectively. GDLs were also fabricated with isopropyl alcohol (IPA) based carbon slurry for fuel cell performance comparison. It was found that the composition of the carbon slurry, specifically SDS concentration played a critical role in controlling the pore diameter as well as the corresponding pore volumes of the GDLs.

  12. Effects of a nasal ventilator restriction device on lung ventilation and gas exchange during exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    José Luis González-Montesinos

    Full Text Available Introduction and objectives: A device called FeelBreathe® (FB has been designed, developed and patented for inspiratory muscle training (IMT. In order to examine the effects of FB on lung ventilation and gas exchange during exercise, 27 trained male healthy volunteers (age: 32.5 ± 7.2 years were measured. Methods: Maximum static inspiratory pressure (PImax and spirometry to determine lung capacity were measured at baseline. We continued with an incremental cycloergometer to determine the VO2 peak. Three days later, each subject performed randomly three identical submaximal cycloergometer tests at 50% between ventilatory thresholds under three different breathing conditions: a oronasal breathing (ONB, b nasal breathing (NB and c nasal breathing through the FB. Results: FB trial showed lower minute ventilation (VE and breathing frequency (BF than NB, which had lower BF, but similar VE than ONB (p < 0.001. Despite this, FB had similar values of VO2, respiratory exchange ratio (RER, heart rate (HR and peripheral capillary oxygen saturation (SpO2 compared to NB and ONB. The latter can occur partly due to increased tidal volume (VT and expiration time (Tex in FB until same level than NB, which were in both trials 15% and 14% respectively higher than ONB (p < 0.001. The percentage of inspiration time (Ti/Tot was 7% greater in FB compared to NB and ONB (p < 0.001. Increased end-tidal pressure of CO2 (P ET CO2 and reduced end-tidal pressure of O2 (P ET O2 and fraction of O2 expiration (FEO2 were found only in FB. Conclusions: FeelBreathe is a new nasal restriction device that stimulates the inspiratory muscles to produce a breathing pattern more efficiency during exercise in well-trained humans.

  13. Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo Citrange Seedlings during Drought Stress and Recovery

    Science.gov (United States)

    Pérez-Pérez, J. G.; Syvertsen, J. P.; Botía, P.; García-Sánchez, F.

    2007-01-01

    Background and Aims Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis × Poncirus trifoliata. Methods Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl− and Na+ were measured. Key Results Salinity increased leaf Cl− and Na+ concentrations and decreased osmotic potential (Ψπ) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO2 assimilation rate (ACO2) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower ACO2 was related to low RWC, whereas in salinized plants decreased ACO2 was related to high levels of leaf Cl− and Na+. ACO2 recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl−, Na+ and quaternary ammonium compounds after recovery. High leaf levels of Cl− and Na+ after recovery apparently came from the roots

  14. Alterations in Gas Exchange and Oxidative Metabolism in Rice Leaves Infected by Pyricularia oryzae are Attenuated by Silicon.

    Science.gov (United States)

    Domiciano, Gisele Pereira; Cacique, Isaías Severino; Chagas Freitas, Cecília; Filippi, Marta Cristina Corsi; DaMatta, Fábio Murilo; do Vale, Francisco Xavier Ribeiro; Rodrigues, Fabrício Ávila

    2015-06-01

    Rice blast, caused by Pyricularia oryzae, is the most important disease in rice worldwide. This study investigated the effects of silicon (Si) on the photosynthetic gas exchange parameters (net CO2 assimilation rate [A], stomatal conductance to water vapor [gs], internal-to-ambient CO2 concentration ratio [Ci/Ca], and transpiration rate [E]); chlorophyll fluorescence a (Chla) parameters (maximum photochemical efficiency of photosystem II [Fv/Fm], photochemical [qP] and nonphotochemical [NPQ] quenching coefficients, and electron transport rate [ETR]); concentrations of pigments, malondialdehyde (MDA), and hydrogen peroxide (H2O2); and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and lypoxigenase (LOX) in rice leaves. Rice plants were grown in a nutrient solution containing 0 or 2 mM Si (-Si or +Si, respectively) with and without P. oryzae inoculation. Blast severity decreased with higher foliar Si concentration. The values of A, gs and E were generally higher for the +Si plants in comparison with the -Si plants upon P. oryzae infection. The Fv/Fm, qp, NPQ, and ETR were greater for the +Si plants relative to the -Si plants at 108 and 132 h after inoculation (hai). The values for qp and ETR were significantly higher for the -Si plants in comparison with the +Si plants at 36 hai, and the NPQ was significantly higher for the -Si plants in comparison with the +Si plants at 0 and 36 hai. The concentrations of Chla, Chlb, Chla+b, and carotenoids were significantly greater in the +Si plants relative to the -Si plants. For the -Si plants, the MDA and H2O2 concentrations were significantly higher than those in the +Si plants. The LOX activity was significantly higher in the +Si plants than in the -Si plants. The SOD and GR activities were significantly higher for the -Si plants than in the +Si plants. The CAT and APX activities were significantly higher in the +Si plants than in the -Si plants. The supply of

  15. Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD.

    Science.gov (United States)

    Thomsen, Lars P; Weinreich, Ulla M; Karbing, Dan S; Wagner, Peter D; Rees, Stephen E

    2014-12-01

    Bedside estimation of pulmonary gas exchange efficiency may be possible from step changes in FIO2 and subsequent measurement of arterial oxygenation at steady state conditions. However, a steady state may not be achieved quickly after a change in FIO2, especially in patients with lung disease such as COPD, rendering this approach cumbersome. This paper investigates whether breath by breath measurement of respiratory gas and arterial oxygen levels as FIO2 is changed can be used as a much more rapid alternative to collecting data from steady state conditions for measuring pulmonary gas exchange efficiency. Fourteen patients with COPD were studied using 4-5 step changes in FIO2 in the range of 0.15-0.35. Values of expired respiratory gas and arterial oxygenation were used to calculate and compare the parameters of a mathematical model of pulmonary gas exchange in two cases: from data at steady state; and from breath by breath data prior to achievement of a steady state. For each patient, the breath by breath data were corrected for the delay in arterial oxygen saturation changes following each change in FIO2. Calculated model parameters were shown to be similar for the two data sets, with Bland-Altman bias and limits of agreement of -0.4 and -3.0 to 2.2 % for calculation of pulmonary shunt and 0.17 and -0.47 to 0.81 kPa for alveolar to end-capillary PO2, a measure of oxygen abnormality due to shunting plus regions of low [Formula: see text] A/[Formula: see text] ratio. This study shows that steady state oxygen levels may not be necessary when estimating pulmonary gas exchange using changes in FIO2. As such this technique may be applicable in patients with lung disease such as COPD.

  16. Ozone oxidation of sulfur in sea-salt aerosol particles during the Azores Marine Aerosol and Gas Exchange experiment

    Science.gov (United States)

    Sievering, H.; Gorman, E.; Ley, T.; Pszenny, A.; Springer-Young, M.; Boatman, J.; Kim, Y.; Nagamoto, C.; Wellman, D.

    1995-11-01

    Sea-salt aerosol particles in the lowest tens of meters above the ocean are, typically, more than three-fourths water on a volume basis. Calculations herein indicate that aqueous-phase conversion of sulfur dioxide dissolved in the water associated with sea-salt particles (sea-salt aerosol water) supported the production of 2-8 nmol m-3 of nonsea-salt sulfate (nssSO4=) during the Marine Aerosol and Gas Exchange (MAGE) experiment intensives. This production is based on ozone oxidation of dissolved SO2 in sea-salt aerosol water and accounts for sulfur gas and ozone mass transfer limitations as a function of sea-salt particle size. Measurements showed that 1-15 nmol m-3 of nssSO4= was actually present in the sea-salt particle mode except for four enhanced concentration cases due to continental sulfur input. The range in predicted, as well as observed, nssSO4= was primarily due to variability in sea-salt aerosol water volume. The nssSO4= produced by ozone oxidation of sulfur dioxide, being in the sea-salt particle mode with observed volume geometric median diameter of 3.5-5 μm, is dry deposited at a fairly rapid rate. The remainder, being large-particle cloud condensation nuclei, may contribute little to cloud albedo over the global oceans. The two papers following this one, Kim et al. (this issue) on aerosol size distribution and water content and Parfai et al. (this issue) on compositional variations of sea-salt-mode aerosol particles observed by electron microscopy, complement and support results presented here. All three present results of the MAGE experiment and precede a forthcoming special issue of the Journal of Geophysical Research-Atmospheres on MAGE (B. Huebert, guest editor).

  17. Project, construction and assembling of a compact heat exchanger for natural gas generator; Nacionalizacao de um recuperador de calor destinado ao reaproveitamento energetico dos gases de combustao de uma microturbina alimentada com gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Raphael Chaves; Dutra, Jose Carlos Charamba; Santos, Thiago Victor de Oliveira; Oliveira, Guilherme Lacerda Batista de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    The objective of this work is to present the construction of a heat exchanger developed for reuse of hot gases from a natural gas microturbine installed at the Laboratory of Micro-CHP at Federal University of Pernambuco. As in Brazil there was no manufacturer of similar equipment that could be used with this microturbine and imported equipment is very expensive, it, has proposed a project to CNPq for development of a national prototype, capable of replacing imports. The work talks about the design, construction, assembly, instrumentation and operation. The paper presents data taken from heat exchanger in operation. We recorded the temperature of fluids and held thermal exchange, which allowed the calculation of its effectiveness. The results show that the heat exchanger reached a satisfactory performance with maximum effectiveness of 0.8, condition for the full load of microturbine, and that represents a maximum heat recovered around 50 kW. (author)

  18. Deriving ozone dose-response of photosynthesis in adult forest trees from branch-level cuvette gas exchange assessment

    Energy Technology Data Exchange (ETDEWEB)

    Then, C. [Unit of Alpine Timberline Ecophysiology, Federal Office and Research Centre for Forests, Rennweg 1, A-6020 Innsbruck (Austria); Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Life Science Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany)], E-mail: christiane.then@uibk.ac.at; Loew, M.; Matyssek, R. [Ecophysiology of Plants, Department of Ecology, Technische Universitaet Muenchen, Life Science Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Wieser, G. [Unit of Alpine Timberline Ecophysiology, Federal Office and Research Centre for Forests, Rennweg 1, A-6020 Innsbruck (Austria)

    2008-06-15

    Branch-level gas exchange provided the basis for assessing ozone flux in order to derive the dose-response relationship between cumulative O{sub 3} uptake (COU) and carbon gain in the upper sun crown of adult Fagus sylvatica. Fluxes of ozone, CO{sub 2} and water vapour were monitored simultaneously by climatized branch cuvettes. The cuvettes allowed branch exposure to an ambient or twice-ambient O{sub 3} regime, while tree crowns were exposed to the same O{sub 3} regimes (twice-ambient generated by a free-air canopy O{sub 3} exposure system). COU levels higher than 20 mmol m{sup -2} led to a pronounced decline in carbon gain under elevated O{sub 3}. The limiting COU range is consistent with findings on neighbouring branches exposed to twice-ambient O{sub 3} through free-air fumigation. The cuvette approach allows to estimate O{sub 3} flux at peripheral crown positions, where boundary layers are low, yielding a meso-scale within-crown resolution of photosynthetic foliage sensitivity under whole-tree free-air O{sub 3} fumigation. - Branch-level O{sub 3} dose dependence of photosynthesis derived from cuvette assessment yields sun-crown foliage sensitivity under whole-tree free-air O{sub 3} fumigation.

  19. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Dursch, Thomas J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ciontea, Monica A. [Univ. of California, Berkeley, CA (United States); Radke, Clayton J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.

  20. Three-dimensional two-phase flow model of proton exchange membrane fuel cell with parallel gas distributors

    Science.gov (United States)

    Liu, Xunliang; Lou, Guofeng; Wen, Zhi

    A non-isothermal, steady-state, three-dimensional (3D), two-phase, multicomponent transport model is developed for proton exchange membrane (PEM) fuel cell with parallel gas distributors. A key feature of this work is that a detailed membrane model is developed for the liquid water transport with a two-mode water transfer condition, accounting for the non-equilibrium humidification of membrane with the replacement of an equilibrium assumption. Another key feature is that water transport processes inside electrodes are coupled and the balance of water flux is insured between anode and cathode during the modeling. The model is validated by the comparison of predicted cell polarization curve with experimental data. The simulation is performed for water vapor concentration field of reactant gases, water content distribution in the membrane, liquid water velocity field and liquid water saturation distribution inside the cathode. The net water flux and net water transport coefficient values are obtained at different current densities in this work, which are seldom discussed in other modeling works. The temperature distribution inside the cell is also simulated by this model.

  1. The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In a pot experiment conducted in a phytotron, the effectiveness of foliar feeding of different potassium salts, with and without the addition of 0.5% CO(NH22, in spinach (Spinacia oleracea L. was investigated. Potassium was applied 3 times in the form of 1% solutions KCl, KNO3, K2SO4 and C6H5K3O7•H2O, compared to water as the control treatment. The obtained results show that foliar feeding of potassium salts in spinach is an efficient method of supplementing the level of K+ in plants during vegetation. Plants fed with KNO3 had the highest content of potassium in leaves, and those fertilized with K2SO4, C6H5K3O7 × H2O and KCl had an only slightly lower potassium content. The application of potassium salts resulted in more intensive gas exchange in leaves (stomatal conductance, photosynthesis, transpiration and, as a consequence of that, increased leaf yield. Potassium nitrate and citrate influenced most effectively the abovementioned processes. The treatment of spinach with potassium salts resulted in an increased content of protein, chlorophyll, carotenoids, nitrates and iron as well as a decreased content of vitamin C and calcium in leaves.

  2. Study of polyaniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gharibi, Hussein; Zhiani, Mohammad; Kheirmand, Mehdi; Kakaei, Karim [Department of Physical Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-175, Tehran (Iran); Entezami, Ali Akbar [Faculty of Chemistry, Tabriz University, Tabriz (Iran); Mirzaie, Rasol Abdullah [Department of Chemistry, Faculty of Science, Shahid Rajaee University, Tehran (Iran)

    2006-04-21

    Polytetrafluoroethylene (PTFE)-bonded gas-diffusion electrodes (GDEs), modified with polyaniline as an electron and proton conductor in the catalyst layer, are prepared and evaluated for use in proton-exchange membrane fuel cells (PEMFCs). Polyaniline is coated on the GDE by electropolymerization of aniline and trifluoromethane sulfonic acid as the proton-conductive monomer. The electrodes are characterized by cyclic voltammetry, current-potential measurements, electrochemical impedance spectroscopy, and chronoamperometry. The polyaniline is found to be homogenously dispersed in the catalyst layer, making it a good candidate proton and electron conductor. Use of polyaniline instead of Nafion in the catalyst layer, increases the utility of the electrocatalyst by 18%. The results are consistent with the presence of polyaniline as a conductive polymer in the reaction layer reducing the polarization resistance of the electrode in comparison with that of a corresponding electrode containing Nafion. Thus, the present results indicate that PEMFCs using polyaniline-containing electrocatalysts should give superior performance to those using catalysts containing traditional ionomers. (author)

  3. Characteristics of Gas Exchange and Chlorophyll Fluorescence in Different Position Leaves at Booting Stage in Rice Plants

    Institute of Scientific and Technical Information of China (English)

    Mo Yi-wei; JIN Song-heng; WANG Zhong; WANG Pin-mei; QIAN Shan-qin; ZHAO Kai; GU Yun-jie; YANG Yi-qing; YAO Sheng; JIANG De-an

    2004-01-01

    To investigate the senescence of rice leaves at different positions at booting stage, gas exchange and chlorophyll fluorescence properties in leaves at different positions were examined by using six rice materials. The net rates of photosynthesis (Pn),stomatal conductance (gs), transpiration rate (E) and water use efficiency (WUE) decreased significantly with lowering of leaf positions,while intercellular CO2 concentration (Cj) had a little change, indicating that the decrease of photosynthetic rate was not resulted from the decrease of gs. The decrease of SPAD reading which had a close correlation with chlorophyll content was one of apparent reasons resulting in the decease of Pn. Further evidence by chlorophyll fluorescence showed that the photochemical efficiency of PS Ⅱ and its electron transport rate (ETR) decreased substantially with lowering of the leaf positions but the variable-to-maximum fluorescence ratio(Fv/Fm) and efficiency of energy conversion of open PS Ⅱ (Fv'/Fm') remained rather stable, suggesting that primary limitation of Pn was suppression of electron transport of PS Ⅰ, and probably associated with carbon assimilation.

  4. Gas analyzer’s drift leads to systematic error in maximal oxygen uptake and maximal respiratory exchange ratio determination

    Directory of Open Access Journals (Sweden)

    Ibai eGarcia-Tabar

    2015-10-01

    Full Text Available The aim was to examine the drift in the measurements of fractional concentration of oxygen (FO2 and carbon dioxide (FCO2 of a Nafion-using metabolic cart during incremental maximal exercise in 18 young and 12 elderly males, and to propose a way in which the drift can be corrected. The drift was verified by comparing the pre-test calibration values with the immediate post-test verification values of the calibration gases. The system demonstrated an average downscale drift (P < 0.001 in FO2 and FCO2 of -0.18% and -0.05%, respectively. Compared with measured values, corrected average maximal oxygen uptake values were 5-6% lower (P < 0.001 whereas corrected maximal respiratory exchange ratio values were 8-9% higher (P < 0.001. The drift was not due to an electronic instability in the analyzers because it was reverted after 20 minutes of recovery from the end of the exercise. The drift may be related to an incomplete removal of water vapor from the expired gas during transit through the Nafion conducting tube. These data demonstrate the importance of checking FO2 and FCO2 values by regular pre-test calibrations and post-test verifications, and also the importance of correcting a possible shift immediately after exercise.

  5. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    Science.gov (United States)

    Pandit, Jaideep J; Allen, Caroline; Little, Evelyn; Formenti, Federico; Harris, Adrian L; Robbins, Peter A

    2015-04-16

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  6. Does Amifostine Reduce Metabolic Rate? Effect of the Drug on Gas Exchange and Acute Ventilatory Hypoxic Response in Humans

    Directory of Open Access Journals (Sweden)

    Jaideep J. Pandit

    2015-04-01

    Full Text Available Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113. However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045. In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  7. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis.

    Science.gov (United States)

    Pavlíková, Daniela; Pavlík, Milan; Procházková, Dagmar; Zemanová, Veronika; Hnilička, František; Wilhelmová, Naďa

    2014-04-15

    Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.

  8. Effects of Glucose Feeding on Respiration and Photosynthesis in Photoautotrophic Dianthus caryophyllus Cells: Mass Spectrometric Determination of Gas Exchange.

    Science.gov (United States)

    Avelange, M H; Sarrey, F; Rébillé, F

    1990-11-01

    When glucose (20 millimolar) was added to photoautotrophic cell suspension cultures of Dianthus caryophyllus, there was during the first 10 hours an accumulation of carbohydrates and phosphorylated compounds. These biochemical changes were accompanied by a progressive decrease of net photosynthesis and a twofold increase of the dark respiratory rate. The rise of respiration was associated with a rise of fumarase and cytochrome c oxidase activities, two mitochondrial markers. Gas exchange of illuminated cells were performed with a mass spectrometry technique and clearly established that during the first hours of glucose feeding, the decrease of net photosynthesis was essentially due to an increase of respiration in light, whereas the photosynthetic processes (gross O(2) evolution and gross CO(2) fixation) were almost not affected. However, after 24 hours of experiment, O(2) evolution and CO(2) fixation started to decline in turn. While ribulose-1,5-bisphosphate carboxylase activity was little affected during the first 48 hours of the experiment, the maximal light-induced phosphoribulokinase activity dramatically decreased with time and represented after 48 hours only 30% of its initial activity. It is postulated that the decrease in phosphoribulokinase activity was at least partially responsible for the decrease of CO(2) fixation and the metabolic events involved in this regulation are discussed.

  9. A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity.

    Science.gov (United States)

    Bellasio, Chandra; Burgess, Steven J; Griffiths, Howard; Hibberd, Julian M

    2014-07-01

    Large-scale research programmes seeking to characterize the C4 pathway have a requirement for a simple, high throughput screen that quantifies photorespiratory activity in C3 and C4 model systems. At present, approaches rely on model-fitting to assimilatory responses (A/C i curves, PSII quantum yield) or real-time carbon isotope discrimination, which are complicated and time-consuming. Here we present a method, and the associated theory, to determine the effectiveness of the C4 carboxylation, carbon concentration mechanism (CCM) by assessing the responsiveness of V O/V C, the ratio of RuBisCO oxygenase to carboxylase activity, upon transfer to low O2. This determination compares concurrent gas exchange and pulse-modulated chlorophyll fluorescence under ambient and low O2, using widely available equipment. Run time for the procedure can take as little as 6 minutes if plants are pre-adapted. The responsiveness of V O/V C is derived for typical C3 (tobacco, rice, wheat) and C4 (maize, Miscanthus, cleome) plants, and compared with full C3 and C4 model systems. We also undertake sensitivity analyses to determine the impact of R LIGHT (respiration in the light) and the effectiveness of the light saturating pulse used by fluorescence systems. The results show that the method can readily resolve variations in photorespiratory activity between C3 and C4 plants and could be used to rapidly screen large numbers of mutants or transformants in high throughput studies.

  10. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    Science.gov (United States)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  11. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma.

    Science.gov (United States)

    Woodruff, David R; Meinzer, Frederick C; Marias, Danielle E; Sevanto, Sanna; Jenkins, Michael W; McDowell, Nate G

    2015-04-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P₅₀) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P₅₀ only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.

  12. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bergweiler, Chris [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: bergweiler@nre.umass.edu; Manning, William J. [Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Chevone, Boris I. [Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2008-03-15

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation. - Temporal variation in physiological processes underlying diurnal and seasonal ozone uptake are described for a key ozone bioindicator species of North America.

  13. Pulmonary gas exchange and acid–base status during immobilisation of black rhinoceroses (Diceros bicornis in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Åsa Fahlman

    2016-02-01

    Full Text Available When immobilising wildlife, adverse side effects can include hypoxaemia, acidosis and hypertension. Pulmonary gas exchange and acid–base status were evaluated during immobilisation of 25 free-ranging and one boma-held black rhinoceros (Diceros bicornis in Zimbabwe. The effect of different body positions on arterial oxygenation was evaluated. A combination of the following drugs was used: an opioid (etorphine or thiafentanil, azaperone and an a2 -adrenoceptor agonist (detomidine or xylazine. Respiratory and heart rates, rectal temperature and pulse oximetry–derived haemoglobin oxygen saturation were recorded. Serial arterial blood samples were analysed immediately in the field. Marked hypoxaemia and hypercapnia were recorded in immobilised free-ranging black rhinoceroses. Arterial oxygenation was higher during sternal compared to lateral recumbency. Most rhinoceroses developed acidaemia of respiratory and metabolic origin. Initially high lactate concentrations in free-ranging rhinoceroses decreased during immobilisation. Pulse oximetry was unreliable in the detection of hypoxaemia. Positioning in sternal recumbency and routine use of oxygen supplementation are recommended in the management of immobilised rhinoceroses as measures to improve arterial oxygenation.

  14. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.

  15. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  16. Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    Science.gov (United States)

    Smith, Stefan J. D.; Ladewig, Bradley P.; Hill, Anita J.; Lau, Cher Hon; Hill, Matthew R.

    2015-01-01

    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed.

  17. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury.

    Science.gov (United States)

    Thammanomai, Apiradee; Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Suki, Béla

    2013-01-01

    The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (V(T)) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-V(T) combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH(2)O with conventional ventilation (CV), CV with intermittent large breaths (CV(LB)) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VV(N)). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CV(LB) was better than CV, VV(N) outperformed CV(LB) in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury.

  18. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore.

    Science.gov (United States)

    Allen, Christopher B; Will, Rodney E; McGarvey, Robert C; Coyle, David R; Coleman, Mark D

    2005-02-01

    We investigated how water and nutrient availability affect radiation-use efficiency (epsilon) and assessed leaf gas exchange as a possible mechanism for shifts in epsilon. We measured aboveground net primary production (ANPP) and annual photosynthetically active radiation (PAR) capture to calculate epsilon as well as leaf-level physiological variables (light-saturated net photosynthesis, Asat; stomatal conductance, gs; leaf internal CO2 concentration, Ci; foliar nitrogen concentration, foliar [N]; and midday leaf water potential, Psileaf) during the second (2001) and third (2002) growing seasons in sweetgum (Liquidambar styraciflua L.) and sycamore (Platanus occidentalis L.) stands receiving a factorial combination of irrigation and fertilization at the Savannah River Site, South Carolina. Irrigation and fertilization increased PAR capture (maximum increase 60%) in 2001 and 2002 for both species and annual PAR capture was well correlated with ANPP (mean r2 = 0.77). A decreasing trend in epsilon was observed in non-irrigated stands for sweetgum in 2001 and for sycamore in both years, although this was only significant for sycamore in 2002. Irrigated stands maintained higher gas exchange rates than non-irrigated stands for sweetgum in 2001 and for sycamore in both years, although foliar [N] and Psileaf were generally unaffected. Because Ci decreased in proportion to gs in non-irrigated stands, it appeared that greater stomatal limitation of photosynthesis was associated with decreased Asat. On several measurement dates for sweetgum in 2001 and for sycamore in both years, epsilon was positively correlated with gas exchange variables (Asat, gs, Ci) (r ranged from 0.600 to 0.857). These results indicate that PAR capture is well correlated with ANPP and that gas exchange rates modified by irrigation can influence the conversion of captured light energy to biomass.

  19. 微泡对气体交换影响的理论研究%The Theoretical Study for the Gas Exchange of Microbubbles at Different Positions

    Institute of Scientific and Technical Information of China (English)

    周翔; 柳晓军; 李珂; 庄华; 罗燕; 彭玉兰; 解慧琪

    2012-01-01

    Microbubbles have been used in ultrasound contrast imaging for over 10 years. However,influence of microbubbles for gas exchange is still difficult to know. The modelling of the gas exchange procedures between microbubble and tissue is further complicated because of incomplete understanding of the processes that determine bubble formation. Therefore,the authors introduced a new model for describing the exchange of inert gas between tissues and blood based on distributed capillary units or lumped compartments,either of which may be perfusion- or diffusion-limited. According to the Fick theory,Boyle law and Dalton law,the mathematical model for gas exchange in micorobubble was made. Three different positions for gas exchange at normal condition and high oxygen pressure were simulated by Matlab5.0. The theory results indicate that for normal condition,O2,CO2 and N2 have the similar dynamic process at different positions. For high O2 pressure condition,high O2 volume was carried to tissue by micorobubble,and large volume of microbubble plus high O2 pressure may produce available local gas physiological effects.%依据菲克第一定律、玻意耳定律及道尔顿气体分压定律,建立微泡内外气体交换的数学模型.通过理论推导和计算机模拟,研究微泡在不同条件下对机体的肺部、动脉系统及其周围组织等不同部位微循环中气体交换的影响.理论分析结果显示,O2、CO2及N2在三个部位都呈现为由内向外的弥散过程,且在正常呼吸条件下,超声造影剂微泡不会对周围组织微循环的气体交换产生有效的生理作用.而在吸氧35%或70%的条件下,微泡的携氧量明显增加,对三个部位局部周围组织微循环的气体交换产生一定影响.

  20. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Zhao, Y.; Pines, D.; Buggeln, R.C.; Shamroth, S.J.

    1993-11-01

    Significant improvements in efficiency for the conversion of coal into electricity can be achieved by cycles which employ a high temperature gas turbine topping cycle. The objective of this project is the development of an externally fired gas turbine system. The project computationally tested a new concept for a High Temperature Advanced Furnace (HITAF) and high temperature heat exchanger with a proprietary design to reduce the problems associated with the harsh coal environment. The program addressed two key technology issues: (1) the HITAF/heat exchanger heat transfer through a 2-D computer analysis of the HITAF configuration; (2) 3-D Computational Fluid Dynamics (CFD) model application to simulate the exclusion of particles and corrosive gases from the heat exchanger surface. The basic concept of this new combustor design was verified through the 2D and 3D modeling. It demonstrated that the corrosion and erosion of the exchanger material caused by coal and ash particles can be largely reduced by employing a specially designed firing scheme. It also suggested that a proper combustion geometry design is necessary to maximize the cleaning effect.

  1. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    Science.gov (United States)

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  2. Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Völzke Henry

    2008-02-01

    Full Text Available Abstract Background Cardiopulmonary exercise testing (CPET has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension. Methods Twenty-two patients (17 female, 5 male; mean age 49 ± 14 yrs underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO2 and anaerobic threshold (VO2AT, maximal ventilation (VE, breathing reserve (VE/MVV, ventilatory efficiency (VE vs. VCO2 slope, exercise time, maximal power and work rate were assessed and compared between both protocols. Results Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 ± 19 W vs. 74 ± 18 W; p 2, VO2AT and VE vs. VCO2 slope. Conclusion Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.

  3. Characteristics of Gas Exchange, Chlorophyll Fluorescence and Expression of Key Enzymes in Photosynthesis During Leaf Senescence in Rice Plants

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yan WENG; Hong-Xia XU; De-An JIANG

    2005-01-01

    Gas exchange, chlorophyll (Chl) fluorescence, photosynthetic pigments, and the expression of Rubisco and Rubisco activase in flag leaves of rice (Oryza sativa L.) from the heading to mature grain stage were investigated. The results showed that the photosynthetic capacity declined after full expansion of flag leaves. The decline of photosynthetic rate (Pn) in two cultivars during natural senescence was accompanied by a decrease in Chl content, as well as in the Rubisco and Rubisco activase contents. The Rubisco and Rubisco activase contents in Zhenong 966 decreased faster than that in Zhenong 952. The Pn diminished without a decrease in intercellular CO2 concentration during the early senescence of flag leaves, indicating that lower photosynthetic capacity is not caused by stomatal limitation but by reduced carboxylation efficiency. During the senescence of flag leaves, the correlation between the change in photosynthetic capacity and the variation in the abundance of Rubisco and Rubisco activase suggested that the decline in Pn of flag leaves could be attributed to the lower level of rbcS and rca transcripts. The (φ)PSⅡ and the electron transport rate appeared in the same rate as Pn. However, excitation pressure (1-qP) showed a different pattern and there was an inverse linear correlation between increased excitation pressure and the reduced Rubisco. Therefore, it is likely that the increased excitation pressure resulted from saturation of the electron transport chain, owing to a limitation of the reductant used by the Calvin cycle; in addition, the change in excitation pressure could further mediate the expression of the rbcS and rca genes, resulting in a fast reduction in Rubisco content.

  4. [Effects of O3-FACE(ozone-free air control enrichment) on gas exchange and chlorophyll fluorescence of rice leaf].

    Science.gov (United States)

    Liang, Jing; Zeng, Qing; Zhu, Jian-Guo; Zhu, Chun-Wu; Cao, Ji-Ling; Xie, Zu-Bin; Liu, Gang; Tang, Hao-Ye

    2010-04-01

    O3-FACE (Ozone-free air control enrichment) platform has been established for observing the effect of elevated tropospheric ozone concentration on the gas exchange and chlorophyll fluorescence of two rice varieties (Wuyunjing 21 and Liangyoupeijiu). The results showed that high ozone concentration decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of rice leaves. After 76d fumigation the decline in them for Wuyunjing 21 was as follows: 21.7%, 26.64% and 24.74% respectively, and that for Liangyoupeijiu was as follows: 25.53%, 30.31% and 25.48% respectively; however, no significant impact on leaf intercellular CO2 concentration was observed. Chlorophyll fluorescence kinetics parameters changed as can be seen by the decrease in F0 (initial fluorescence in the dark), ETR (The apparent electron transfer rate) and psiPSII (actual photochemical efficiency of PS II in the light), and the increase in NPQ (non-photochemical quenching). After 76 days of O3 treatment, the NPQ of Wuyunjing 21 and Liangyoupeijiu was enhanced by 16.37% and 11.77%, respectively. The impact of ozone on rice was a cumulative effect, and the extent of variation in the above parameters and the differences between the two varieties were enlarged as the O3 treatment time increased; At the same time because the rice leaf intercellular CO2 concentration did not significantly reduce, the inferred decrease in net photosynthetic rate was restricted by non-stomatal factors. The results of this experiment indicated that Liangyoupeijiu was more susceptible to ozone than Wuyunjing 21.

  5. Impact of bypass flow rate and catheter position in veno-venous extracorporeal membrane oxygenation on gas exchange in vivo.

    Science.gov (United States)

    Togo, Konomi; Takewa, Yoshiaki; Katagiri, Nobumasa; Fujii, Yutaka; Kishimoto, Satoru; Date, Kazuma; Miyamoto, Yuji; Tatsumi, Eisuke

    2015-06-01

    The clinical use of veno-venous extracorporeal membrane oxygenation (VVECMO) in adult patients with respiratory failure is rapidly increasing. However, recirculation of blood oxygenated by ECMO back into the circuit may occur in VVECMO, resulting in insufficient oxygenation. The cannula position and bypass flow rate are two major factors influencing recirculation, but the relationship and ideal configuration of these factors are not fully understood. In the present study, we attempted to clarify these parameters for effective gas exchange. VVECMO was performed in eight adult goats under general anesthesia. The position of the drainage cannula was fixed in the inferior vena cava (IVC), but the return cannula position was varied between the IVC, right atrium (RA), and superior vena cava (SVC). At each position, the recirculation rates calculated, and the adequacy of oxygen delivery by ECMO in supplying systemic oxygen demand was assessed by measuring the arterial oxygen saturation (SaO2) and pressure (PaO2). Although the recirculation rates increased as the bypass flow rates increased, SaO2 and PaO2 also increased in any position of return cannula. The recirculation rates and PaO2 were 27 ± 2% and 162 ± 16 mmHg, 36 ± 6% and 139 ± 11 mmHg, and 63 ± 6% and 77 ± 9 mmHg in the SVC, RA and IVC position at 4 L/min respectively. In conclusion, the best return cannula position was the SVC, and a high bypass flow rate was advantageous for effective oxygenation. Both the bypass flow rates and cannula position must be considered to achieve effective oxygenation.

  6. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  7. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  8. Evaluation of the Efficiency of the Atraumatic Endotracheal Tube in the Pulmonary-Gas Exchange: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Raíssa Quaiatti Antonelli

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: Mechanical ventilation is frequently necessary, in which case the use of an endotracheal tube is mandatory. The tube has an inflatable balloon in its distal extremity, whose aim is, among other functions, an efficient arterialization. However, serious injuries in the place of contact of the balloon with the trachea can be frequent. Some studies point out that balloons with permanent pressure may reduce this complication. Nevertheless, air scape, expressed by the inspiratory (IV and expiratory volume (EV variation (Δ IV-EV, may occur, possibly leading to hypoxemia. Thus, the goal of this study was to verify the efficiency of a modified endotracheal tube on arterializations compared to the traditional endotracheal tube. METHODS: The modified endotracheal tube presents intermittent insufflation, with three drillings in the internal region of the cuff, allowing for insufflation in the inspiratory phase of the mechanical ventilation. Three animals were used for the control group, with a cuff pressure of 30 cmH2O, and seven pigs had the modified endotracheal tube. Each animal was kept under mechanical ventilation (FIO2=0.21 for 6 hours. Arterial and venous gases were measured every three hours (T0; T3; T6. RESULTS: The gases confirmed the lack of hypoxia between the Groups, with a difference in the ΔIV-EV at T0 (P=0.0486. CONCLUSIONS: In this study, the lack of hypoxia showed the efficiency of the modified endotracheal tube. However, new studies are necessary, particularly in diseased lungs, in order to evaluate the real efficiency of the mentioned device on the pulmonary gas exchange.

  9. Quantitative Variation in Water-Use Efficiency across Water Regimes and Its Relationship with Circadian, Vegetative, Reproductive, and Leaf Gas-Exchange Traits

    Institute of Scientific and Technical Information of China (English)

    Christine E. Edwards; Brent E. Ewers; C. Robertson McClung; Ping Lou; Cynthia Weinig

    2012-01-01

    Drought limits light harvesting,resulting in lower plant growth and reproduction.One trait important for plant drought response is water-use efficiency (WUE).We investigated (1) how the joint genetic architecture of WUE,reproductive characters,and vegetative traits changed across drought and well-watered conditions,(2) whether traits with distinct developmental bases (e.g.leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture,and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa.Overall,WUE increased in drought,primarily because stomatal conductance,and thus water loss,declined more than carbon fixation.Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions,and had the largest vegetative and floral organs in both treatments.Thus,large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments.The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions,but not for floral traits.Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments,indicating that circadian period affects physiological function regardless of water availability.These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.

  10. The effect of the application of the biological control agent EM1 on gas exchange parameters and productivity of Pisum sativum L. infected with Fusarium oxysporum Schlecht.

    Directory of Open Access Journals (Sweden)

    Adam Okorski

    2012-12-01

    Full Text Available A pot experiment on different methods of EM 1 application was conducted in the period 2002-2004. The study was carried out under controlled growth conditions. The experimental factor was the method of EM1 application. Before application, the biological preparation EM1 was propagated as recommended by the manufacturer (Greenland. The health status of the aboveground parts of 'Ramrod' pea plants was estimated at the flowering stage. The assessment of pea leaf gas exchange parameters (An, E, Gs, and Ci was made using a LI-Cor 6400 Portable Photosynthesis System. Soil application of EM1 combined with chemical control contributed to inhibiting Fusarium wilt of pea. Foliar application of EM1 combined with chemical control increased all gas exchange rates of pea leaves. Fusarium wilt of pea insignificantly decreased all gas exchange rates of pea leaves and the number of seeds per pod. The best method of EM1 application was soil treatment combined with chemical control, which increased all yield-related morphometric parameters of pea.

  11. Air-sea exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow.

    Science.gov (United States)

    Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang

    2017-11-01

    We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m(-2) d(-1), and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logPL(0)), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Stirrat, Elaine [Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); McKenzie, Charles [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Schulte, Rolf F. [General Electric Global Research, Munich 85748 (Germany); Santyr, Giles E. [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G1L7 (Canada)

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  13. An Initial Investigation into the Use of a Flux Chamber Technique to Measure Soil-Atmosphere Gas Exchanges from Application of Biosolids to UK Soils

    Directory of Open Access Journals (Sweden)

    S. M. Donovan

    2011-01-01

    Full Text Available While a significant amount of work has been conducted to assess the concentration of pollutants in soils and waterways near land that has been amended with biosolids, a relatively small body of research investigating emissions to atmosphere is available in the literature. Some studies have indicated that while the CO2 emissions from soils decrease with fertiliser application, the CH4 and N2O emissions might be increased, offsetting the benefit. The objective of the research presented in this paper was to address this gap, by the use of a flux chamber technique to measure soil-atmosphere gas exchanges from the application of biosolids to land. This was done by applying three different types of biosolids to soils and measuring gases at the soil-atmosphere interface. The measurements were taken on areas with three different types of vegetation. The gases were collected using a flux chamber technique and analysed by gas chromatography. The results presented here are preliminary findings of an ongoing experiment. Insignificant variation appeared to occur between different areas of vegetation; however, small variations in gas concentrations were observed indicating a need for continued monitoring of soil-atmosphere gas exchanges to determine the long-term impacts on the atmosphere and the environment.

  14. Changes in net ecosystem productivity and greenhouse gas exchange with fertilization of Douglas fir: Mathematical modeling in ecosys

    Science.gov (United States)

    Grant, R. F.; Black, T. A.; Jassal, R. S.; Bruemmer, C.

    2010-12-01

    The application of nitrogen fertilizers to Douglas fir forests is known to raise net ecosystem productivity (NEP), but also N2O emissions, the CO2 equivalent of which may offset gains in NEP when accounting for net greenhouse gas (GHG) exchange. However, total changes in NEP and N2O emissions caused by fertilizer between times of application and harvest, while needed for national GHG inventories, are difficult to quantify except through modeling. In this study, integrated hypotheses for soil and plant N processes within the ecosystem model ecosys were tested against changes in CO2 and N2O fluxes recorded with eddy covariance (EC) and surface flux chambers for 1 year after applying 20 g N m-2 of urea to a mature Douglas fir stand in British Columbia. Parameters from annual regressions of hourly modeled versus measured CO2 fluxes conducted before and after fertilization were unchanged (b = 1.0, R2 = 0.8, RMSD = 3.4 μmol m-2 s-1), indicating that model hypotheses for soil and plant N processes did not introduce bias into CO2 fluxes modeled after fertilization. These model hypotheses were then used to project changes in NEP and GHG exchange attributed to the fertilizer during the following 10 years until likely harvest of the Douglas fir stand. Increased CO2 uptake caused modeled and EC-derived annual NEP to rise from 443 and 386 g C m-2 in the year before fertilization to 591 and 547 g C m-2 in the year after. These gains contributed to a sustained rise in modeled wood C production with fertilization, which was partly offset by a decline in soil C attributed in the model to reduced root C productivity and litterfall. Gains in net CO2 uptake were further offset in the model by a rise of 0.74 g N m-2 yr-1 in N2O emissions during the first year after fertilization, which was consistent with one of 1.05 g N m-2 yr-1 estimated from surface flux chamber measurements. Further N2O emissions were neither modeled nor measured after the first year. At the end of the 11 year

  15. CO2 and O2 Gas Exchange in an Experimental Model of the Btlss with Plant Wastes and Human Wastes Included in the Mass Exchange

    Science.gov (United States)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Velichko, Vladimir; Tikhomirova, Natalia; Trifonov, Sergey V.

    2016-07-01

    Mass exchange processes in the new experimental model of the biotechnical life support system (BTLSS) constructed at the Institute of Biophysics SB RAS have a higher degree of closure than in the previous BTLSS, and, thus, the technologies employed in the new system are more complex. Therefore, before closing the loops of mass exchange processes for several months, the new model of the BTLSS was run to match the technologies employed to cultivate plants and the methods used to involve inedible plant parts and human wastes into the mass exchange with the CO2 absorption rate and the amount of the resulting O2. The plant compartment included vegetables grown on the soil-like substrate (SLS) (chufa, beet, carrot, radish, and lettuce), plants hydroponically grown on expanded clay aggregate (wheat, soybean, watercress), and plants grown in aquaculture (common glasswort and watercress). Nutrient solutions for hydroponically grown plants were prepared by using products of physicochemical mineralization of human wastes. Growing the plants in aquaculture enabled maintaining NaCl concentration in the irrigation solution for hydroponically grown plants at a level safe for the plants. Inedible plant biomass was added to the SLS. Three cycles of closing the system were run, which lasted 7, 7, and 10 days. The comparison of the amount of CO2 fed into the system over 24 h (simulating human respiration) and the amount of CO2 daily exhaled by a 70-kg middle-aged human showed that between 1% and 4% of the daily emissions of CO2 were assimilated in the system, and about 3% of the average human daily O2 requirement accumulated in the system. Plant productivity was between 4 and 4.7% of the human daily vegetable requirement, or between 3 and 3.5% of the total human daily food requirement. Thus, testing of the BTLSS showed a match between the technologies employed to arrange mass exchange processes. This study was supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  16. Diffusion capacity of the lung for carbon monoxide - A potential marker of impaired gas exchange or of systemic deconditioning in chronic obstructive lung disease?

    Science.gov (United States)

    Weinreich, Ulla Møller; Thomsen, Lars Pilegaard; Brock, Christina; Karbing, Dan Stieper; Rees, Stephen Edward

    2015-11-01

    Gas exchange impairment is primarily caused by ventilation-perfusion mismatch in chronic obstructive pulmonary disease (COPD), where diffusing capacity of the lungs for carbon monoxide (DLCO) remains the clinical measure. This study investigates whether DLCO: (1) can predict respiratory impairment in COPD, that is, changes in oxygen and carbon dioxide (CO2); (2) is associated with combined risk assessment score for COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) score); and (3) is associated with blood glucose and body mass index (BMI). Fifty patients were included retrospectively. DLCO; arterial blood gas at inspired oxygen (FiO2) = 0.21; oxygen saturation (SpO2) at FiO2 = 0.21 (SpO2 (21)) and FiO2 = 0.15 (SpO2 (15)) were registered. Difference between arterial and end-tidal CO2 (ΔCO2) was calculated. COPD severity was stratified according to GOLD score. The association between DLCO, SpO2, ΔCO2, GOLD score, blood glucose, and BMI was investigated. Multiple regression showed association between DLCO and GOLD score, BMI, and glucose level (R (2) = 0.6, p < 0.0001). Linear and multiple regression showed an association between DLCO and SpO2 (21) (R (2) = 0.3, p = 0.001 and p = 0.03, respectively) without contribution from SpO2 (15) or ΔCO2. A stronger association between DLCO and GOLD score than between DLCO and SpO2 could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed. A weaker association is seen between DLCO and SpO2 (21) without contribution from SpO2 (15) and ΔCO2. This could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed.

  17. The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits.

    Directory of Open Access Journals (Sweden)

    Helmut D Hummler

    Full Text Available Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor.To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency.30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O and randomized into three groups: Normoventilation-Normocapnia (NN-group: tidal volume (Vt = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL, to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology.PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05, with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8 resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group.Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone.

  18. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings.

    Science.gov (United States)

    Lu, Yi-Bin; Yang, Lin-Tong; Li, Yan; Xu, Jing; Liao, Tian-Tai; Chen, Yan-Bin; Chen, Li-Song

    2014-06-01

    Boron (B) deficiency is a widespread problem in many crops, including Citrus. The effects of B-deficiency on gas exchange, carbohydrates, organic acids, amino acids, total soluble proteins and phenolics, and the activities of key enzymes involved in organic acid and amino acid metabolism in 'Xuegan' [Citrus sinensis (L.) Osbeck] leaves and roots were investigated. Boron-deficient leaves displayed excessive accumulation of nonstructural carbohydrates and much lower CO2 assimilation, demonstrating feedback inhibition of photosynthesis. Dark respiration, concentrations of most organic acids [i.e., malate, citrate, oxaloacetate (OAA), pyruvate and phosphoenolpyruvate] and activities of enzymes [i.e., phosphoenolpyruvate carboxylase (PEPC), NAD-malate dehydrogenase, NAD-malic enzyme (NAD-ME), NADP-ME, pyruvate kinase (PK), phosphoenolpyruvate phosphatase (PEPP), citrate synthase (CS), aconitase (ACO), NADP-isocitrate dehydrogenase (NADP-IDH) and hexokinase] involved in glycolysis, the tricarboxylic acid (TCA) cycle and the anapleurotic reaction were higher in B-deficient leaves than in controls. Also, total free amino acid (TFAA) concentration and related enzyme [i.e., NADH-dependent glutamate 2-oxoglutarate aminotransferase (NADH-GOGAT) and glutamate OAA transaminase (GOT)] activities were enhanced in B-deficient leaves. By contrast, respiration, concentrations of nonstructural carbohydrates and three organic acids (malate, citrate and pyruvate), and activities of most enzymes [i.e., PEPC, NADP-ME, PK, PEPP, CS, ACO, NAD-isocitrate dehydrogenase, NADP-IDH and hexokinase] involved in glycolysis, the TCA cycle and the anapleurotic reaction, as well as concentration of TFAA and activities of related enzymes (i.e., nitrate reductase, NADH-GOGAT, glutamate pyruvate transaminase and glutamine synthetase) were lower in B-deficient roots than in controls. Interestingly, leaf and root concentration of total phenolics increased, whereas that of total soluble protein decreased

  19. Adjustment for gas exchange threshold enhances precision of heart rate-derived VO2 estimates during heavy exercise.

    Science.gov (United States)

    Pettitt, Robert W; Symons, J David; Taylor, Julie E; Eisenman, Patricia A; White, Andrea T

    2008-02-01

    Overestimates of oxygen uptake (VO2) are derived from the heart rate reserve-VO2 reserve (HRR-VO2R) model. We tested the hypothesis that adjusting for differences above and below gas exchange threshold (HRR-GET model) would tighten the precision of HR-derived VO2 estimates during heavy exercise. Seven men and 7 women of various VO2 max levels, on 2 separate days, cycled for 6 min at intensities equal to power at GET, 15% the difference between GET and VO2 max (15% above), and at 30% above GET. A second bout at 15% above GET (15% above (bout 2)) after 3 min of recovery was performed to assess estimates during interval training. Actual VO2 was compared with estimates derived from the HRR-VO2R and the HRR-GET. VO2 values were summed over the 6 min duration of data collection (6 min LO2) and compared with Bland-Altman plots. HRR-VO2R yielded 6 min LO2 (+/-2 SD) overestimates of 2.0 (+/-2.5), 1.9 (+/-2.7), and 1.3 (+/-3.3) for GET, 15% over, and 30% over, respectively, whereas corresponding 6 min LO2 difference values for the HRR-GET model were -0.42 (+/-1.6), -0.23 (+/-1.1), and -0.55 (+/-1.8), respectively. For 15% above (bout 2), the 6 min LO2 difference for HRR-VO2R was 1.8 (+/-2.9), whereas the difference for HRR-GET was 0.17 (+/-1.4). The 6 min LO2 values relative to the subjects' VO2 max did not vary (r=0.05 to 0.36); therefore, fitness level did not affect estimates. Sex did not affect accuracy of either estimate model (sex X estimate model interaction, p>0.95). We observed accurate estimates from the HRR-GET model during heavy exercise.

  20. Pain management in emergency department: intravenous morphine vs. intravenous acetaminophen

    Directory of Open Access Journals (Sweden)

    Morteza Talebi Doluee

    2015-01-01

    Full Text Available Pain is the most common complaint in emergency department and there are several methods for its control. Among them, pharmaceutical methods are the most effective. Although intravenous morphine has been the most common choice for several years, it has some adverse effects. There are many researches about intravenous acetaminophen as an analgesic agent and it appears that it has good analgesic effects for various types of pain. We searched some electronic resources for clinical trials comparing analgesic effects of intravenous acetaminophen vs. intravenous morphine for acute pain treatment in emergency setting.In two clinical trials, the analgesic effect of intravenous acetaminophen has been compared with intravenous morphine for renal colic. The results revealed no significant difference between analgesic effects of two medications. Another clinical trial revealed that intravenous acetaminophen has acceptable analgesic effects on the post-cesarean section pain when combined with other analgesic medications. One study revealed that administration of intravenous acetaminophen compared to placebo before hysterectomy decreased consumption of morphine via patient-controlled analgesia pump and decreased the side effects. Similarly, another study revealed that the infusion of intravenous acetaminophen vs. placebo after orthopedic surgery decreased the consumption of morphine after the surgery. A clinical trial revealed intravenous acetaminophen provided a level of analgesia comparable to intravenous morphine in isolated limb trauma, while causing less side effects than morphine.It appears that intravenous acetaminophen has good analgesic effects for visceral, traumatic and postoperative pains compare with intravenous morphine.

  1. Scientific Verification Test of Orbitec Deployable Vegetable Production System for Salad Crop Growth on ISS- Gas Exchange System design and function

    Science.gov (United States)

    Eldemire, Ashleigh

    2007-01-01

    The ability to produce and maintain salad crops during long term missions would be a great benefit to NASA; the renewable food supply would save cargo space, weight and money. The ambient conditions of previous ground controlled crop plant experiments do not reflect the microgravity and high CO2 concentrations present during orbit. It has been established that microgravity does not considerably alter plant growth. (Monje, Stutte, Chapman, 2005). To support plants in a space-craft environment efficient and effective lighting and containment units are necessary. Three lighting systems were previously evaluated for radish growth in ambient air; fluorescent lamps in an Orbitec Biomass Production System Educational (BPSE), a combination of red, blue, and green LED's in a Deployable Vegetable Production System (Veggie), and a combination of red and blue LED's in a Veggie. When mass measurements compared the entire possible growing area vs. power consumed by the respective units, the Veggies clearly exceeded the BPSE indicating that the LED units were a more resource efficient means of growing radishes under ambient conditions in comparison with fluorescent lighting. To evaluate the most productive light treatment system for a long term space mission a more closely simulated ISS environment is necessary. To induce a CO2 dense atmosphere inside the Veggie's and BPSE a gas exchange system has been developed to maintain a range of 1000-1200 ppm CO2 during a 21-day light treatment experiment. This report details the design and function of the gas exchange system. The rehabilitation, trouble shooting, maintenance and testing of the gas exchange system have been my major assignments. I have also contributed to the planting, daily measurements and harvesting of the radish crops 21-day light treatment verification test.

  2. Mass-spectrometric determination of O2 and CO 2 gas exchange in illuminated higher-plant cells : Evidence for light-inhibition of substrate decarboxylations.

    Science.gov (United States)

    Avelange, M H; Thiéry, J M; Sarrey, F; Gans, P; Rébeillé, F

    1991-01-01

    In order to estimate photosynthetic and respiratory rates in illuminated photoautotrophic cells of carnation (Dianthus caryophyllus L.), simultaneous measurements of CO2 and O2 gas exchange were performed using (18)O2, (13)CO2 and a mass-spectrometry technique. This method allowed the determination, and thus the comparison, of unidirectional fluxes of O2 and CO2. In optimum photosynthetic conditions (i.e. in the presence of high light and a saturating level of CO2), the rate of CO2 influx represented 75±5% of the rate of gross O2 evolution. After a dark-to-light transition, the rate of CO2 efflux was inhibited by 50% whereas the O2-uptake rate was little affected. The effect of a recycling of respiratory CO2 through photosynthesis on the exchange of CO2 gas was investigated using a mathematical model. The confliction of the experimental data with the simulated gas-exchange rates strongly supported the view that CO2 recycling was a minor event in these cells and could not be responsible for the observed inhibition of CO2 efflux. On the basis of this assumption it was concluded that illumination of carnation cells resulted in a decrease of substrate decarboxylations, and that CO2 efflux and O2 uptake were not as tightly coupled in the light as in the dark. Furthermore, it could be calculated from the rate of gross photosynthesis that the chloroplastic electron-transport chain produced enough ATP in the light to account for the measured CO2-uptake rate without involving cyclic transfer of electrons around PS I or mitochondrial supplementation.

  3. Evidence of break-points in breathing pattern at the gas-exchange thresholds during incremental cycling in young, healthy subjects.

    Science.gov (United States)

    Cross, Troy J; Morris, Norman R; Schneider, Donald A; Sabapathy, Surendran

    2012-03-01

    The present study investigated whether 'break-points' in breathing pattern correspond to the first ([Formula: see text]) and second gas-exchange thresholds ([Formula: see text]) during incremental cycling. We used polynomial spline smoothing to detect accelerations and decelerations in pulmonary gas-exchange data, which provided an objective means of 'break-point' detection without assumption of the number and shape of said 'break-points'. Twenty-eight recreational cyclists completed the study, with five individuals excluded from analyses due to low signal-to-noise ratios and/or high risk of 'pseudo-threshold' detection. In the remaining participants (n = 23), two separate and distinct accelerations in respiratory frequency (f (R)) during incremental work were observed, both of which demonstrated trivial biases and reasonably small ±95% limits of agreement (LOA) for the [Formula: see text] (0.2 ± 3.0 ml O(2) kg(-1) min(-1)) and [Formula: see text] (0.0 ± 2.4 ml O(2) kg(-1) min(-1)), respectively. A plateau in tidal volume (V (T)) data near the [Formula: see text] was identified in only 14 individuals, and yielded the most unsatisfactory mean bias ±LOA of all comparisons made (-0.4 ± 5.3 ml O(2) kg(-1) min(-1)). Conversely, 18 individuals displayed V (T)-plateau in close proximity to the [Formula: see text] evidenced by a mean bias ± LOA of 0.1 ± 3.1 ml O(2) kg(-1) min(-1). Our findings suggest that both accelerations in f (R) correspond to the gas-exchange thresholds, and a plateau (or decline) in V (T) at the [Formula: see text] is a common (but not universal) feature of the breathing pattern response to incremental cycling.

  4. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    Science.gov (United States)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  5. Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury

    Science.gov (United States)

    Henzler, Dietrich; Pelosi, Paolo; Dembinski, Rolf; Ullmann, Annette; Mahnken, Andreas H; Rossaint, Rolf; Kuhlen, Ralf

    2005-01-01

    Introduction Atelectasis is a common finding in acute lung injury, leading to increased shunt and hypoxemia. Current treatment strategies aim to recruit alveoli for gas exchange. Improvement in oxygenation is commonly used to detect recruitment, although the assumption that gas exchange parameters adequately represent the mechanical process of alveolar opening has not been proven so far. The aim of this study was to investigate whether commonly used measures of lung mechanics better detect lung tissue collapse and changes in lung aeration after a recruitment maneuver as compared to measures of gas exchange Methods In eight anesthetized and mechanically ventilated pigs, acute lung injury was induced by saline lavage and a recruitment maneuver was performed by inflating the lungs three times with a pressure of 45 cmH2O for 40 s with a constant positive end-expiratory pressure of 10 cmH2O. The association of gas exchange and lung mechanics parameters with the amount and the changes in aerated and nonaerated lung volumes induced by this specific recruitment maneuver was investigated by multi slice CT scan analysis of the whole lung. Results Nonaerated lung correlated with shunt fraction (r = 0.68) and respiratory system compliance (r = 0.59). The arterial partial oxygen pressure (PaO2) and the respiratory system compliance correlated with poorly aerated lung volume (r = 0.57 and 0.72, respectively). The recruitment maneuver caused a decrease in nonaerated lung volume, an increase in normally and poorly aerated lung, but no change in the distribution of a tidal breath to differently aerated lung volumes. The fractional changes in PaO2, arterial partial carbon dioxide pressure (PaCO2) and venous admixture after the recruitment maneuver did not correlate with the changes in lung volumes. Alveolar recruitment correlated only with changes in the plateau pressure (r = 0.89), respiratory system compliance (r = 0.82) and parameters obtained from the pressure-volume curve

  6. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Delu, E-mail: deluzh@163.com [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Liu, Siyi [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Jing [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Jian Kong [Department of Lifescience and Biotechnology, College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070 (China); Hu, Chunxiang, E-mail: deluzh@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Liu, Yongding [Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China)

    2016-08-15

    Highlights: • Aphantoxins induce respiratory dysfunction in zebrafish gills. • Changes in LDH and cellular ultrastructure indicate gill damage. • Decreased NKA and CA reflect abnormal ion transport and gas exchange. • Increased ROS and decreased T-AOC suggest oxidative stress in the gills. - Abstract: Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61 μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na{sup +}-K{sup +}-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24 h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12 h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish

  7. Effect of spin-polarized subbands in the inhomogeneous hole gas providing the indirect exchange in GaMnAs bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Boselli, M.A. E-mail: boselli@uerj.br; Cunha Lima, I.C. da; Ghazali, A

    2004-05-01

    The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established.

  8. [Effects of long-term ozone exposure on chlorophyll a fluorescence and gas exchange of winter-wheat leaves].

    Science.gov (United States)

    Zheng, You-fei; Zhao, Ze; Wu, Rong-jun; Hu, Cheng-da; Liu, Hong-ju

    2010-02-01

    In order to provide basis for evaluating the effects of air pollutant such as O3 on crops yield and food security, the effects of O3 fumigation (ambient air, CK; 100 nL x L(-1), T1; 150 nL x L(-1), T2) on chlorophyll a fluorescence and gas exchange of a field-grown winter-wheat (Triticum aestivum L. Yang Mai 13) in different growing period were conducted via open-top chamber technique in conjunction with Diving-PAM fluorometer and LC pro + photosynthesis system. Results indicated that Fv/Fm caused by T1 was higher than 0.8, while the Pm, qP, (1-qP)/NPQ and Y(NO) were similar to those of CK, the NPQ and Y(NPQ) were increased by 13.5%-29.0% and 13.3%-22.7% respectively due to O3 stress. Under nature light (rapid light curve, RLC) and after dark adaptation (induction curve in steady-state, IC) the Yield of T1 was decreased by 4.6%-7.6% and 11.3%-19.3% respectively, with 8.0%-9.8% and 11.0%-23.1% reductions in Pn, and Gs compared to CK, respectively. In heading stage and blooming stage, the Ls of T, was greater than CK, but in filling stage and mature stage, it became lower compared to CK. The Fv/Fm was slightly lower than 0.8 under T2 treatment, with the Y(NO), (1-qP)/NPQ and c(i) were increased by 37.9%-75.6%, 157.1%-325.8% and 3.4%-18.1% relative to CK. Under RLC and IC condition, the Yield of T2 was respectively decreased by 10.2%-13.6% and 21.4%-29.1%, and the Pn, Ls, qP, Pm, NPQ and Y(NPQ) were decreased by 28.1%-39.9%, 5.2%-21.3%, 15.8%-30.4%, 27.6%-45.6%, 3.3%-52.9% and 5.7%-17.9% in comparison, respectively. Obviously the enhanced O3 causes a significant decrease in the capacity of photosynthesis of winter wheat, and the influence mechanism presents a series of dynamic changes according to growing seasons. The reduction of Fv/Fm under T1 treatment is a response of PS II reaction center to the increase of NPQ, and the decrease in Pn and Yield is a consequence of protective adjustment, by this approach, the antioxidant system and energy dissipation mechanism can

  9. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.

    Science.gov (United States)

    Rand, Kasper D; Zehl, Martin; Jørgensen, Thomas J D

    2014-10-21

    acidic conditions where the amide hydrogen exchange rate is slowed by many orders of magnitude). The ability to localize the individual deuterated residues (the spatial resolution) is determined by the size (typically ∼7-15 residues) and the number of peptic peptides. These peptides provide a relatively coarse-grained picture of the protein dynamics. A fundamental understanding of the relationship between protein function/dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement for this approach is that the pattern of deuterium labeling from solution is retained in the gas-phase fragment ions. It is therefore essential to control and minimize any occurrence of gas-phase randomization of the solution deuterium label (H/D scrambling) during the MS experiment. For this purpose, we have developed model peptide probes to accurately measure the onset and extent of H/D scrambling. Our analytical procedures to control the occurrence of H/D scrambling are detailed along with the physical parameters that induce it during MS analysis. In light of the growing use of gas-phase dissociation experiments to measure the HDX of proteins in order to obtain a detailed characterization and understanding of the dynamic conformations and interactions of proteins at the molecular level, we discuss the perspectives and challenges of future high-resolution HDX-MS methodology.

  10. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange

    DEFF Research Database (Denmark)

    Colmer, Timothy David; Pedersen, Ole

    2007-01-01

    Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films......, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already...... diffusion-limited at 20.6 kPa (critical O(2) pressure for respiration, COP(R)>/= 284 mmol O(2) m(-3)), whereas for some leaves with gas films, O(2) uptake declined only at approx. 4 kPa (COP(R) 54 mmol O(2) m(-3)). Gas films also improved CO(2) uptake so that, during light periods, underwater P...

  11. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimetry

    Science.gov (United States)

    The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...

  12. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimeter

    Science.gov (United States)

    This paper analyzes the accuracy of metabolic rate calculations performed in the whole room indirect calorimeter using the molar balance equations. The equations are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes need to b...

  13. Feasibility study for an advanced coal fired heat exchanger/gas turbine topping cycle for a high efficiency power plant. Technical report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Zhao, Y.; Buggeln, R.C.; Shamroth, S.J.

    1993-04-01

    The overall objective of this project is to prove the feasibility of AFR`s concepts for a high efficiency coal-fired generating plant using the REACH/Exchanger concept to power an externally fired gas turbine. The computational REACH reactor was modeled with PCGC-2. The reactor geometry, inlet flow rates and configurations were investigated via modeling in order to get an optimum operation condition, with which a thorough coal and gas mixture and a required coal particle dispersion can both be achieved. This is to ensure the efficiencies of both coal combustion and aerodynamic cleaning. The aerodynamic cleaning effect of the tertiary air injection was modeled with CELMINT. Various injection schemes investigated show the dramatic impact of the tertiary air and the injection positions on the overall air flow pattern in the reactor which is one of the major influencing factors on the particle dispersion. It is clearly demonstrated that an optimum tertiary injection scheme with a reasonable flow rate is able to keep the heat exchange tubes from particle fouling.

  14. Biological effects of short-term, high-concentration exposure to methyl isocyanate. III. Influence on gas exchange in the guinea pig lung

    Energy Technology Data Exchange (ETDEWEB)

    Fedde, M.R.; Dodd, D.E.; Troup, C.M.; Fowler, E.H.

    1987-06-01

    The influence of methyl isocyanate (MIC) inhalation on the gas exchange function of the lungs in guinea pigs was studied by measuring arterial blood gases, pH, and tracheal pressure during constant-volume, artificial ventilation with air or 100% O/sub 2/ at 40 and 120 min after exposure. A 15 min exposure to MIC at concentrations of 240 to 628 ppm caused a marked reduction in PaO/sub 2/ and pH/sub a/ and an elevated tracheal pressure during artificial ventilation. The low PaO/sub 2/ was only slightly elevated when the animals were ventilated with 100% O/sub 2/. Although the dry-wet lung weight ratio was reduced at the highest exposure concentration, the effect was not severe and no significant increase in lung water was found at the lower concentrations. MIC inhalation caused severe pulmonary blood shunting and ventilation/perfusion imbalance. This, in turn, led to hypoxemia, metabolic acidosis, and tissue hypoxia, which could produce death. The pulmonary gas exchange deficit likely resulted from bronchial and bronchiolar obstruction caused by sloughed epithelium and other debris from intra- and extrapulmonary airways.

  15. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Calbet, Jose A L; van Hall, Gerrit

    2004-01-01

    We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altit......We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing...... at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise...... in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum...

  16. Gas exchange variability and water use efficiency of thirty landraces of rice still under cultivation in Kumaun region of the Indian Central Himalaya.

    Science.gov (United States)

    Agnihotri, R K; Palni, L M S; Chandra, Suman; Joshi, S C

    2009-10-01

    Gas exchange characteristics of thirty landraces of rice (Oryza sativa L.) along with an introduced variety VL-206 (recommended high yielding variety for rainfed uplands of the Indian Central Himalaya, ICH), grown in earthen pots and kept in the open at the Institute nursery at Kosi (1150m amsl, 79°38'10″E and 29°38'15″N) were studied. The photosynthetic rate (Pn) and other related parameters were found to vary considerably among landraces. Based on the comparison of Pn of landraces with that of VL-206, these were categorized into two groups: i) high (〉6.0 µmol m(-2)s(-1)), and ii) low (stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), mesophyll efficiency (low Ci/gs ratio) and chlorophyll (Chl) content in comparison to landraces in the low Pn group. However, significant differences were not found in the intercellular CO2 concentration (Ci) between landraces belonging to the high and low Pn groups. Differences among landraces were found with regard to dark respiration; landraces with low Pn respired proportionately more of the carbon fixed than those of high Pn group. Based on the studied gas exchange characteristics Saurajubawan, Syaudhan and Taichin, local landraces of rice, may be identified as potential cultivars with high Pn and WUE.

  17. Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot and Periodic (Cheyne-Stokes Breathings and Bronchial Asthma Attack

    Directory of Open Access Journals (Sweden)

    Andrey Golov

    2017-02-01

    Full Text Available An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller airways, extended with convective transport model throughout the lung and alveolar components which were combined with the model of oxygen and carbon dioxide transport between the alveolar volume and the averaged blood compartment during pathological respiratory conditions. The novel features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation of the computed tomography (CT data; 1D−0D coupling of the models of 1D bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster (Biot and periodic (Cheyne-Stokes respirations and bronchial asthma attack. The suitability of the proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed in all these cases. In the future, these results might be integrated into research and practical studies aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of breathing patterns and alveolar gas exchange for patients with breathing problems.

  18. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    Directory of Open Access Journals (Sweden)

    Carmen Rey-Santano

    Full Text Available OBJECTIVES: Surfactant (SF and partial liquid ventilation (PLV improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. SETTING: Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. DESIGN: Prospective, randomized study using sealed envelopes. SUBJECTS: 36 preterm lambs were exposed (at 125 or 133-days of gestational age by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. INTERVENTIONS: All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV, surfactant (Curosurf®, 200 mg/kg or (3 no pulmonary treatment (Controls for 3 h. MEASUREMENTS AND MAIN RESULTS: Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. CONCLUSION: SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  19. Evaluation of variations in CO2 gas exchange in the atmosphere of the BTLSS with plants grown in a conveyor mode on the soil-like substrate

    Science.gov (United States)

    Velichko, Vladimir; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Ushakova, Sofya

    2016-07-01

    The soil-like substrate (SLS) included in the bioregenerative life support system (BLSS) exerts a substantial effect on its gas exchange. This effect is determined by the non-uniform rate of organic matter degradation in the SLS, on the one hand, and by the variable intensity of photosynthesis of the plants grown on it, on the other. The purpose of this study was to compare CO2 variations in the atmosphere of the higher plants - SLS system at different intervals in uneven-aged higher plant conveyers. The study showed that CO2 concentration could reach and exceed the levels of atmospheric carbon dioxide acceptable for humans (over 1%) even when the conveyer interval was rather short. CO2 variations in the atmosphere of the higher plants - SLS system were determined not only by the frequency of adding plant waste to the SLS and the mass of the waste but also by the amount of the harvested actively photosynthesizing plant biomass. At the same time, no significant differences were found in the mineral and production components between the plants in different experiments. Results of the study can be used to optimize the conveyor interval and the associated effectiveness of mineralization of the plant waste added to the SLS and to stabilize the CO2 gas exchange. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  20. Excess VO2 during ramp exercise is positively correlated to intercostal muscles deoxyhemoglobin levels above the gas exchange threshold in young trained cyclists.

    Science.gov (United States)

    Oueslati, Ferid; Girard, Olivier; Tabka, Zouhair; Ahmaidi, Said

    2016-07-01

    We assessed respiratory muscles oxygenation responses during a ramp exercise to exhaustion and further explored their relationship with the non-linear increase of VO2 (VO2 excess) observed above the gas-exchange threshold. Ten male cyclists completed a ramp exercise to exhaustion on an electromagnetically braked cycle-ergometer with a rate of increment of 30Wmin(-1) with continuous monitoring of expired gases (breath-by-breath) and oxygenation status of intercostal muscles. Maximal inspiratory and expiratory pressure measurements were taken at rest and at exhaustion. The VO2 excess represents the difference between VO2max observed and VO2max expected using linear equation between the VO2 and the intensity before gas-exchange threshold. The deoxyhemoglobin remained unchanged until 60% of maximal aerobic power (MAP) and thereafter increased significantly by 37±18% and 40±22% at 80% and 100% of MAP, respectively. Additionally, the amplitude of deoxyhemoglobin increase between 60 and 100% of MAP positively correlated with the VO2 excess (r=0.69, p<0.05). Compared to exercise start, the oxygen tissue saturation index decreased from 80% of MAP (-4.8±3.2%, p<0.05) onwards. At exhaustion, maximal inspiratory and expiratory pressures declined by 7.8±16% and 12.6±10% (both p<0.05), respectively. In summary, our results suggest a significant contribution of respiratory muscles to the VO2 excess phenomenon.

  1. Enhancement of Leaf Gas Exchange and Primary Metabolites under Carbon Dioxide Enrichment Up-Regulates the Production of Secondary Metabolites in Labisia pumila Seedlings

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2011-05-01

    Full Text Available A split plot 3 by 3 experiment was designed to investigate and distinguish the relationships among production of primary metabolites (soluble sugar and starch, secondary metabolites (total phenolics, TP; total flavonoids, TF and leaf gas exchange of three varieties of the Malaysian medicinal herb Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under three levels of CO2 enrichment (400, 800 and 1,200 µmol mol−1 for 15 weeks. The treatment effects were solely contributed by CO2 enrichment levels; no varietal differences were observed. As CO2 levels increased from 400 to 1,200 µmol mol−1, the production of carbohydrates also increased steadily, especially for starch more than soluble sugar (sucrose. TF and TP content, simultaneously, reached their peaks under 1,200 µmol exposure, followed by 800 and 400 µmol mol−1. Net photosynthesis (A and quantum efficiency of photosystem II (fv/fm were also enhanced as CO2 increased from 400 to 1,200 µmol mol−1. Leaf gas exchange characteristics displayed a significant positive relationship with the production of secondary metabolites and carbohydrate contents. The increase in production of TP and TFs were manifested by high C/N ratio and low protein content in L. pumila seedlings, and accompanied by reduction in cholorophyll content that exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.

  2. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    Science.gov (United States)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  3. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.

  4. Impact of nitrogen fertilization on soil–Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China

    Science.gov (United States)

    Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu

    2017-01-01

    Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil–atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153–266 mg m-2 h-1, -55 –-40 μg m-2 h-1, and 11–95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil–atmosphere greenhouse gas exchanges, which should be considered in assessing

  5. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.

    Science.gov (United States)

    Terblanche, John S; Clusella-Trullas, Susana; Chown, Steven L

    2010-09-01

    Investigation of gas exchange patterns and modulation of metabolism provide insight into metabolic control systems and evolution in diverse terrestrial environments. Variation in metabolic rate in response to environmental conditions has been explained largely in the context of two contrasting hypotheses, namely metabolic depression in response to stressful or resource-(e.g. water) limited conditions, or elevation of metabolism at low temperatures to sustain life in extreme conditions. To deconstruct the basis for metabolic rate changes in response to temperature variation, here we undertake a full factorial study investigating the longer- and short-term effects of temperature exposure on gas exchange patterns. We examined responses of traits of gas exchange [standard metabolic rate (SMR); discontinuous gas exchange (DGE) cycle frequency; cuticular, respiratory and total water loss rate (WLR)] to elucidate the magnitude and form of plastic responses in the dung beetle, Scarabaeus spretus. Results showed that short- and longer-term temperature variation generally have significant effects on SMR and WLR. Overall, acclimation to increased temperature led to a decline in SMR (from 0.071+/-0.004 ml CO(2) h(-1) in 15 degrees C-acclimated beetles to 0.039+/-0.004 ml CO(2) h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) modulated by reduced DGE frequency (15 degrees C acclimation: 0.554+/-0.027 mHz, 20 degrees C acclimation: 0.257+/-0.030 mHz, 25 degrees C acclimation: 0.208+/-0.027 mHz recorded at 20 degrees C), reduced cuticular WLRs (from 1.058+/-0.537 mg h(-1) in 15 degrees C-acclimated beetles to 0.900+/-0.400 mg h(-1) in 25 degrees C-acclimated beetles measured at 20 degrees C) and reduced total WLR (from 4.2+/-0.5 mg h(-1) in 15 degrees C-acclimated beetles to 3.1+/-0.5 mg h(-1) in 25 degrees C-acclimated beetles measured at 25 degrees C). Respiratory WLR was reduced from 2.25+/-0.40 mg h(-1) in 15 degrees C-acclimated beetles to 1.60+/-0.40 mg h

  6. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    Science.gov (United States)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  7. The Heat Exchanger Performance of Shell and Multi Tube Helical Coil as a Heater through the Utilization of a Diesel Machine’s Exhaust Gas

    Directory of Open Access Journals (Sweden)

    . Zainuddin

    2016-04-01

    Full Text Available A review on reutilization of heat waste from a diesel machine is absolutely important. This is because the exhaust gas potential of a Diesel machine keeps increasing and not much has been utilized by the industry. One of the techniques of reutilizing the heat waste in industry is by using a heat exchanger. The technique is also very useful for the environment because it can reduce air pollution caused by the exhaust gas of the diesel machine. The main purpose of the research is to find out the capability of shell and multi-tube helical coil HE as an air heater by utilizing the exhaust gas of the Diesel machine. The heat exchanger of shell and multi-tube helical coil  utilizes the exhaust thermal gas of the Diesel machine as the air heater already made. The apparatus has the following dimension: the shell length of 1.05 m, diameter 0.1524 m, tube length of 3.25 m with 20 coils, tube diameter of 0.011 m, coil diameter of 0.0508 m with 4 helical coils. The type of Diesel machine to use in the testing is 4FB1 Isuzu Diesel engine. The machine has the maximum machine power and rotation of 54 kW and 3,600 rpm. The performance testing of heat exchanger has been conducted in some variations of Diesel machine rotations of 1,500 rpm, 1,750 rpm, 2,000 rpm, 2,250 rpm and 2,500 rpm. The testing result shows a maximum effectiveness to happen at the machine rotation of 1,500 rpm. The maximum effectiveness to get is 67.8% and then it goes down drastically in accordance with the increase of air mass flow rate. The hot air temperature created is from 47.1°C to 52.3°C so that it can be used for the purpose of drying up the unhulled rice.

  8. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Directory of Open Access Journals (Sweden)

    M. D. Rowe

    2012-05-01

    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs.

  9. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Directory of Open Access Journals (Sweden)

    M. D. Rowe

    2012-01-01

    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported micrometeorological air-water exchange flux measurements of PCBs.

  10. Technical Note: A minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator)

    Science.gov (United States)

    Love, Brooke A.; Olson, M. Brady; Wuori, Tristen

    2017-05-01

    As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.

  11. Hydrogen peroxide in the marine atmospheric boundary layer during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic

    Science.gov (United States)

    Martin, Daniel; Tsivou, Maria; Bonsang, Bernard; Abonnel, Christian; Carsey, Thomas; Springer-Young, Margie; Pszenny, Alex; Suhre, Karsten

    1997-03-01

    Gas phase H2O2 was measured in surface air on the NOAA ship Malcolm Baldrige from June 8 to 27, 1992 (Julian days 160-179), during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic region. Average H2O2 mixing ratios observed were 0.63±0.28 ppbv, ranging between detection limit and 1.5 ppbv. For the entire experiment, only weak or no correlation was found between H2O2 mixing ratio and meteorological parameters (pressure, temperature, humidity, or UV radiation flux) as well as with tracers of continental air masses (CO, black carbon, radon). The average daily H2O2 cycle for the entire period exhibits a maximum of 0.8±0.3 ppbv near sunset and a minimum of 0.4±0.2 ppbv 4-5 hours after sunrise. Several clear H2O2 diurnal variations have been observed, from which a first-order removal rate of about 1×10-5 s-1 for H2O2 can be inferred from nighttime measurements. This rate compares well with those deduced from measurements taken at Cape Grim (Tasmania, 41°S) and during the Soviet-American Gas and Aerosol III experiment (equatorial Pacific Ocean).

  12. The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3 between plants and the atmosphere in the laboratory and in the field

    Directory of Open Access Journals (Sweden)

    F. X. Meixner

    2012-05-01

    Full Text Available We describe a dynamic chamber system to determine reactive trace gas exchange fluxes between plants and the atmosphere under laboratory and, with small modifications, also under field conditions. The system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. The chambers are made of transparent and chemically inert wall material and do not disturb plant physiology. For NO2 detection we used a highly NO2 specific blue light converter coupled to chemiluminescence detection of the photolysis product, NO. Exchange flux densities derived from dynamic chamber measurements are based on very small concentration differences of NO2 (NO, O3 between inlet and outlet of the chamber. High accuracy and precision measurements are therefore required, and high instrument sensitivity (limit of detection and the statistical significance of concentration differences are important for the determination of corresponding exchange flux densities, compensation point concentrations, and deposition velocities. The determination of NO2 concentrations at sub-ppb levels (2 analyzer with a lower detection limit (3σ-definition of 0.3 ppb or better. Deposition velocities and compensation point concentrations were determined by bi-variate weighted linear least-squares fitting regression analysis of the trace gas concentrations, measured at the inlet and outlet of the chamber. Performances of the dynamic chamber system and data analysis are demonstrated by studies of Picea abies L. (Norway Spruce under field and laboratory conditions. Our laboratory data show that the quality selection criterion based on the use of only significant NO2 concentration differences has a considerable impact on the resulting compensation point concentrations yielding values closer to zero. The results of field experiments demonstrate the need to consider photo-chemical reactions of NO, NO2, and O3 inside the chamber for

  13. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: Rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study.

    Science.gov (United States)

    Boada, M; Ramos-Fernández, E; Guivernau, B; Muñoz, F J; Costa, M; Ortiz, A M; Jorquera, J I; Núñez, L; Torres, M; Páez, A

    2016-09-01

    There is a growing interest in new therapeutic strategies for the treatment of Alzheimer disease (AD) which focus on reducing the beta-amyloid peptide (Aβ) burden in the brain by sequestering plasma Aβ, a large proportion of which is bound to albumin and other proteins. This review discusses the concepts of interaction between Aβ and albumin that have given rise to AMBAR (Alzheimer's Disease Management by Albumin Replacement) project, a new multicentre, randomised, controlled clinical trial for the treatment of AD. Results from preliminary research suggest that Albutein(®) (therapeutic albumin, Grifols) contains no quantifiable levels of Aβ. Studies also show that Albutein(®) has Aβ binding capacity. On the other hand, AD entails a high level of nitro-oxidative stress associated with fibrillar aggregates of Aβ that can induce albumin modification, thus affecting its biological functions. Results from the phase ii study confirm that using therapeutic apheresis to replace endogenous albumin with Albutein(®) 5% is feasible and safe in patients with AD. This process resulted in mobilisation of Aβ and cognitive improvement in treated patients. The AMBAR study will test combination therapy with therapeutic apheresis and haemopheresis with the possible leverage effect of Albutein(®) with intravenous immunoglobulin replacement (Flebogamma(®) DIF). Cognitive, functional, and behavioural changes in patients with mild to moderate AD will be assessed. the AMBAR study represents a new therapeutic perspective for AD. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. In vivo effects of Aphanizomenon flos-aquae DC-1 aphantoxins on gas exchange and ion equilibrium in the zebrafish gill.

    Science.gov (United States)

    Zhang, Delu; Liu, Siyi; Zhang, Jing; Zhang, Jian Kong; Hu, Chunxiang; Liu, Yongding

    2016-08-01

    Aphantoxins, neurotoxins or paralytic shellfish poisons (PSPs) generated by Aphanizomenon flos-aquae, are a threat to environmental safety and human health in eutrophic waters worldwide. The molecular mechanisms of neurotoxin function have been studied; however, the effects of these neurotoxins on oxidative stress, ion transport, gas exchange, and branchial ultrastructure in fish gills are not fully understood. Aphantoxins extracted from A. flos-aquae DC-1 were detected by high-performance liquid chromatography. The major ingredients were gonyautoxins 1 and 5 and neosaxitoxin, which comprised 34.04%, 21.28%, and 12.77% of the total, respectively. Zebrafish (Danio rerio) were administered A. flos-aquae DC-1 aphantoxins at 5.3 or 7.61μg saxitoxin equivalents (eq)/kg (low and high doses, respectively) by intraperitoneal injection. The activities of Na(+)-K(+)-ATPase (NKA), carbonic anhydrase (CA), and lactate dehydrogenase (LDH), ultrastructural alterations in chloride and epithelial cells, and reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were investigated in the gills during the first 24h after exposure. Aphantoxins significantly increased the level of ROS and decreased the T-AOC in zebrafish gills from 3 to 12h post-exposure, suggesting an induction of oxidative stress and inhibition of antioxidant capacity. Reduced activities of NKA and CA demonstrated abnormal ion transport and gas exchange in the gills of aphantoxin-treated fish. Toxin administration also resulted in increased LDH activity and ultrastructural alterations in chloride and epithelial cells, suggesting a disruption of function and structure in zebrafish gills. The observed abnormalities in zebrafish gills occurred in a time- and dose-dependent manner. These findings demonstrate that aphantoxins or PSPs may inhibit ion transport and gas exchange, increase LDH activity, and result in ultrastructural damage to the gills through elevations in oxidative stress and reduced

  15. ANALYSIS OF GROWTH AND GAS EXCHANGE OF PLANTS Lonchocarpus sericeus (Poir. D.C. IN FLOODING FOR THE RECOVERY OF THE RIPARIAN FORESTS

    Directory of Open Access Journals (Sweden)

    Jean Marcel Sousa Lira

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812349In order to select species for using in the restoration of riparian forests on the banks of the Sao FranciscoRiver, in the state of Sergipe, an experiment was conducted to evaluate the growth and gas exchange ofplants Lonchocarpus sericeus (Poir. D.C., subject to flooding conditions in the nursery. The experimentwas conducted at Forest Nursery, Department of Forest Sciences, Federal University of Sergipe (UFS,the municipality of São Cristóvão, (11 º 01 'S latitude and 37 º 12' longitude W, altitude 20 m , stateof Sergipe, Brazil, from October 2006 to January 2007 under ambient conditions. We used a completelyrandomized design (CRD, factorial (2x7, two treatments (control - T0, plants at field capacity and flooded- T1 and days after flooding (0, 15, 30, 45, 60, 75 and 90 days. To simulate the condition of flooding,the plants were placed in plastic pots of black color with a volume of 5 L and more substrate. Followingthese pots were attached to pots with a volume of 10 L, which was added water until it reaches a waterdepth of 5 cm above the top of the plants. The control plants kept in pots with a volume of 5 L substratemaintained at field capacity. In non-destructive variables were used four replicates per treatment evaluatedevery fifteen days, where each replicate consists of six plants, totaling 24. Destructive variables used were4 replicates per treatment, determined biweekly from 15 days after flooding, where each replicate consistsof a plant totaling 24 plants. Therefore, 48 plants were used per treatment. The non-destructive variableswere height, diameter and number of leaves. While the destructive variables analyzed were dry weight ofroots, dry weight of shoots and dry weight of root / shoot ratio. In addition, we carried out analysis of gasexchange on a monthly basis and evaluated twelve plants per treatment, with two sampling leaves, fullyexpanded, per plant. The biometric variables were

  16. Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings.

    Science.gov (United States)

    Li, Chun-Ping; Qi, Yi-Ping; Zhang, Jiang; Yang, Lin-Tong; Wang, Dan-Hong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-06-14

    Magnesium (Mg)-deficiency is a widespread problem adversely affecting the quality and yield of crops, including citrus. 'Xuegan' [Citrus sinensis (L.) Osbeck] seedlings were irrigated every other day with nutrient solution at an Mg concentration of 0 mM (Mg-deficiency) or 1 mM (Mg-sufficiency) for 16 weeks. Thereafter, biomass, leaf mass per area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), pigments in the upper and lower leaves, Mg, gas exchange, organic acids, nonstructural carbohydrates, total soluble proteins, amino acids, phenolics and anthocyanins, and key enzymes related to organic acid, amino acid and phenolic metabolisms in the roots, and upper and lower leaves were assayed in order to test the hypothesis that Mg-deficiency-induced alterations of gas exchange, major metabolites and key enzymes may differ among the roots, and upper and lower leaves. Magnesium-deficiency affected the most measured parameters more in the lower than in the upper leaves except for the nonstructural carbohydrates, but the variation trends were similar between the two. Despite increased accumulation of nonstructural carbohydrates, the lower CO2 assimilation in the Mg-deficient leaves was not caused by the feedback inhibition mechanism via sugar accumulation. Both dark respiration and organic acid metabolism were elevated in the Mg-deficient lower leaves to 'consume' the excess carbohydrates, and inhibited in the Mg-deficient roots with less accumulation of nonstructural carbohydrates to keep the balance of net carbon. More total phenolics and fewer anthocyanins were accumulated in the Mg-deficient lower leaves, whereas the accumulation of both total phenolics and anthocyanins was reduced in the Mg-deficient roots. Interestingly, amino acid biosynthesis was repressed in the Mg-deficient roots and lower leaves, thus lowering the level of total free amino acids in these roots and leaves. To conclude, great differences existed in the Mg-deficiency-induced alterations

  17. Gas Pipelines, LP and LNG, Gas transmission line work provided to AIMS from Kansas Gas Service. Data is limited to CUE (Collaborative Utility Exchange) Participants and subcontractors of them., Published in 2004, Johnson County AIMS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Gas Pipelines, LP and LNG dataset, was produced all or in part from Other information as of 2004. It is described as 'Gas transmission line work provided to...

  18. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met

    Science.gov (United States)

    Ellis, R. A.; Murphy, J. G.; Markovic, M. Z.; Vandenboer, T. C.; Makar, P. A.; Brook, J.; Mihele, C.

    2011-01-01

    The Border Air Quality and Meteorology study (BAQS-Met) was an intensive field campaign conducted in Southwestern Ontario during the summer of 2007. The focus of BAQS-Met was determining the causes of the formation of ozone and fine particulate matter (PM2.5), and of the regional significance of trans-boundary transport and lake breeze circulations on that formation. Fast (1 Hz) measurements of ammonia were acquired using a Quantum Cascade Laser Tunable Infrared Differential Absorption Spectrometer (QC-TILDAS) at the Harrow supersite. Measurements of PM2.5 ammonium, sulfate and nitrate were made using an Ambient Ion Monitor Ion Chromatograph (AIM-IC) with hourly time resolution. The median mixing ratio of ammonia was 2.5 ppb, with occasional high spikes at night resulting from local emissions. Measurements were used to assess major local emissions of NH3, diurnal profiles and gas-particle partitioning. The measurements were compared with results from A Unified Regional Air-quality Modelling System (AURAMS). While the fraction of total ammonia (NHx≡NH3 + NH4+) observed in the gas phase peaks between 0.1 and 0.8, AURAMS tended to predict fractions of either less than 0.05 or greater than 0.8. The model frequently predicted acidic aerosol, in contrast with observations wherein NHx almost always exceeded the observed equivalents of sulfate. One explanation for our observations is that the net flux of ammonia from the land surface to the atmosphere increases when aerosol sulfate is present, effectively buffering the mixing ratio of gas phase ammonia, a process not included in the model. A simple representation of an offline bi-directional flux parameterization using the ISORROPIA thermodynamic model was successful at reducing the population of zero gas fraction points, but not the higher gas fraction points.

  19. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  20. Phragmites australis: How do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange?

    DEFF Research Database (Denmark)

    Bui, Truong Tho

    2016-01-01

    It has been suggested that in plant invasions, species may develop intrinsically higher gas exchange and growth rates, and greater nitrogen uptake and allocation to shoots, in their invasive range than in their native habitat under excess nutrients. In this study, native populations of two old...... world Phragmites australis phylogeographic groups (EU and MED) were compared with their invasive populations in North America (NAint (M) and NAint (Delta)) under unlimited nutrient availability and identical environmental conditions in a common garden. We expected that both introduced groups would have......, the introduced groups invested more biomass in above-ground tissues than roots and rhizomes. Our results support the concept that invasive populations develop enhanced morphological, physiological and biomass traits in their new ranges that may assist their competiveness under nutrient-enriched conditions...

  1. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    Science.gov (United States)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  2. Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland

    DEFF Research Database (Denmark)

    Herbst, Mathias; Friborg, Thomas; Schelde, Kirsten;

    2013-01-01

    The atmospheric greenhouse gas (GHG) budget of a restored wetland in western Denmark was established for the years 2009–2011 from eddy covariance measurements of carbon dioxide (CO2) and methane (CH4) fluxes. The water table in the wetland, which was restored in 2002, was unregulated, and the veg......The atmospheric greenhouse gas (GHG) budget of a restored wetland in western Denmark was established for the years 2009–2011 from eddy covariance measurements of carbon dioxide (CO2) and methane (CH4) fluxes. The water table in the wetland, which was restored in 2002, was unregulated...... the atmosphere. However, in terms of the full annual GHG budget (assuming that 1 g CH4 is equivalent to 25 g CO2 with respect to the greenhouse effect over a time horizon of 100 years) the wetland was a sink in 2009, a source in 2010 and neutral in 2011. Complementary observations of meteorological factors...

  3. ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS

    Energy Technology Data Exchange (ETDEWEB)

    Husain, A.; Lewis, Brent J.

    2003-02-27

    Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing

  4. Diurnal and seasonal variation in air exchange rates and interzonal airflows measured by active and passive tracer gas in homes

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Gustavsen, Sine; Frederiksen, Marie

    2016-01-01

    studied the pollutant distribution from one room (source room) and interzonal airflows across the dwellings. The air within a given floor was well mixed, with the average tracer gas concentration in the non-source rooms reaching approximately 70% of the source room concentration. There was less air...... movement between different floors. The position of the internal doors had a strong influence on the air movement....

  5. Within-canopy and ozone fumigation effects on delta13C and Delta18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters.

    Science.gov (United States)

    Gessler, Arthur; Löw, Markus; Heerdt, Christian; de Beeck, Maarten Op; Schumacher, Johannes; Grams, Thorsten E E; Bahnweg, Günther; Ceulemans, Reinhart; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2009-11-01

    In this study, the effects of different light intensities either in direct sunlight or in the shade crown of adult beech (Fagus sylvatica L.) trees on delta13C and Delta18O were determined under ambient (1 x O3) and twice-ambient (2 x O3) atmospheric ozone concentrations during two consecutive years (2003 and 2004). We analysed the isotopic composition in leaf bulk, leaf cellulose, phloem and xylem material and related the results to (a) meteorological data (air temperature, T and relative humidity, RH), (b) leaf gas exchange measurements (stomatal conductance, g(s); transpiration rate, E; and maximum photosynthetic activity, A(max)) and (c) the outcome of a steady-state evaporative enrichment model. Delta13C was significantly lower in the shade than in the sun crown in all plant materials, whilst Delta18O was increased significantly in the shade than in the sun crown in bulk material and cellulose. Elevated ozone had no effect on delta13C, although Delta18O was influenced by ozone to varied degrees during single months. We observed significant seasonal changes for both parameters, especially in 2004, and also significant differences between the study years. Relating the findings to meteorological data and gas exchange parameters, we conclude that the differences in Delta18O between the sun and the shade crown were predominantly caused by the Péclet effect. This assumption was supported by the modelled Delta18O values for leaf cellulose. It was demonstrated that independent of RH, light-dependent reduction of stomatal conductance (and thus transpiration) and of A(max) can drive the pattern of Delta18O increase with the concomitant decrease of delta13C in the shade crown. The effect of doubling ozone levels on time-integrated stomatal conductance and transpiration as indicated by the combined analysis of Delta18O and delta13C was much lower than the influence caused by the light exposure.