WorldWideScience

Sample records for intranuclear p27kip1 protein

  1. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels

    International Nuclear Information System (INIS)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco

    2005-01-01

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase

  2. MIB-1 (KI-67) proliferation index and cyclin-dependent kinase inhibitor p27(Kip1) protein expression in nephroblastoma

    NARCIS (Netherlands)

    M.A.I. Ghanem (Mazen); Th.H. van der Kwast (Theo); M.K. Sudaryo; R.B. Mathoera (Rejiv); M.M. van den Heuvel-Eibrink (Marry); A.A. Al-Doray; R.J.M. Nijman (Rien); G.J. van Steenbrugge (Gert Jan)

    2004-01-01

    textabstractPURPOSE: A number of studies have indicated that the tumor proliferation marker MIB-1 and cell cycle inhibitor p27(Kip1) expression are of prognostic importance in a variety of cancers. The present study was performed to evaluate the prognostic value of these

  3. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    International Nuclear Information System (INIS)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-01-01

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects

  4. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  5. The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development.

    Directory of Open Access Journals (Sweden)

    Archana D Siddam

    2018-03-01

    Full Text Available Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.

  6. High-throughput screening reveals alsterpaullone, 2-cyanoethyl as a potent p27Kip1 transcriptional inhibitor.

    Directory of Open Access Journals (Sweden)

    Brandon J Walters

    Full Text Available p27Kip1 is a cell cycle inhibitor that prevents cyclin dependent kinase (CDK/cyclin complexes from phosphorylating their targets. p27Kip1 is a known tumor suppressor, as the germline loss of p27Kip1 results in sporadic pituitary formation in aged rodents, and its presence in human cancers is indicative of a poor prognosis. In addition to its role in cancer, loss of p27Kip1 results in regenerative phenotypes in some tissues and maintenance of stem cell pluripotency, suggesting that p27Kip1 inhibitors could be beneficial for tissue regeneration. Because p27Kip1 is an intrinsically disordered protein, identifying direct inhibitors of the p27Kip1 protein is difficult. Therefore, we pursued a high-throughput screening strategy to identify novel p27Kip1 transcriptional inhibitors. We utilized a luciferase reporter plasmid driven by the p27Kip1 promoter to transiently transfect HeLa cells and used cyclohexamide as a positive control for non-specific inhibition. We screened a "bioactive" library consisting of 8,904 (4,359 unique compounds, of which 830 are Food and Drug Administration (FDA approved. From this screen, we successfully identified 111 primary hits with inhibitory effect against the promoter of p27Kip1. These hits were further refined using a battery of secondary screens. Here we report four novel p27Kip1 transcriptional inhibitors, and further demonstrate that our most potent hit compound (IC50 = 200 nM Alsterpaullone 2-cyanoethyl, inhibits p27Kip1 transcription by preventing FoxO3a from binding to the p27Kip1 promoter. This screen represents one of the first attempts to identify inhibitors of p27Kip1 and may prove useful for future tissue regeneration studies.

  7. p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability

    Directory of Open Access Journals (Sweden)

    Giovanni Morelli

    2018-05-01

    Full Text Available Summary: The protein p27Kip1 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27Kip1 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27Kip1 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27Kip1 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport. : Morelli et al. report that p27Kip1/Dacapo modulates the acetylation of microtubules in axons via stabilization of ATAT1, the main α-tubulin acetyltransferase. Its conditional loss leads to the reduction of bidirectional axonal transport of vesicles and mitochondria in vitro in mice and in vivo in Drosophila. Keywords: p27Kip1, dacapo, acetylation, axonal transport, ATAT1, alpha-tubulin, HDAC6, Drosophila, mouse, cerebral cortex

  8. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    Directory of Open Access Journals (Sweden)

    Irene L Ibañez

    Full Text Available The Cyclin-dependent kinase inhibitor 1B (p27Kip1 is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2O(2 in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p at serine 10 (S10 and at threonine 198 (T198 because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2O(2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2O(2 (0.1 µM to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2O(2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization

  9. Vitamin E δ-tocotrienol induces p27(Kip1-dependent cell-cycle arrest in pancreatic cancer cells via an E2F-1-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Pamela J Hodul

    Full Text Available Vitamin E δ-tocotrienol has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we demonstrated that δ-tocotrienol exerted significant cell growth inhibition pancreatic ductal cancer (PDCA cells without affecting normal human pancreatic ductal epithelial cell growth. We also showed that δ-tocotrienol-induced growth inhibition occurred concomitantly with G(1 cell-cycle arrest and increased p27(Kip1 nuclear accumulation. This finding is significant considering that loss of nuclear p27(Kip1 expression is a well-established adverse prognostic factor in PDCA. Furthermore, δ-tocotrienol inactivated RAF-MEK-ERK signaling, a pathway known to suppress p27(Kip1 expression. To determine whether p27(Kip1 induction is required for δ-tocotrienol inhibition of PDCA cell proliferation, we stably silenced the CDKN1B gene, encoding p27(Kip1, in MIAPaCa-2 PDCA cells and demonstrated that p27(Kip1 silencing suppressed cell-cycle arrest induced by δ-tocotrienol. Furthermore, δ-tocotrienol induced p27(Kip1 mRNA expression but not its protein degradation. p27(Kip1 gene promoter activity was induced by δ-tocotrienol through the promoter's E2F-1 binding site, and this activity was attenuated by E2F-1 depletion using E2F-1 small interfering RNA. Finally, decreased proliferation, mediated by Ki67 and p27(Kip1 expression by δ-tocotrienol, was confirmed in vivo in a nude mouse xenograft pancreatic cancer model. Our findings reveal a new mechanism, dependent on p27(Kip1 induction, by which δ-tocotrienol can inhibit proliferation in PDCA cells, providing a new rationale for p27(Kip1 as a biomarker for δ-tocotrienol efficacy in pancreatic cancer prevention and therapy.

  10. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1.

    Science.gov (United States)

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-08-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.

  11. Histone Deacetylase Inhibitors Increase p27Kip1 by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    2016-01-01

    Full Text Available Histone deacetylase inhibitors (HDACIs represent an intriguing class of pharmacologically active compounds. Currently, some HDACIs are FDA approved for cancer therapy and many others are in clinical trials, showing important clinical activities at well tolerated doses. HDACIs also interfere with the aging process and are involved in the control of inflammation and oxidative stress. In vitro, HDACIs induce different cellular responses including growth arrest, differentiation, and apoptosis. Here, we evaluated the effects of HDACIs on p27Kip1, a key cyclin-dependent kinase inhibitor (CKI. We observed that HDACI-dependent antiproliferative activity is associated with p27Kip1 accumulation due to a reduced protein degradation. p27Kip1 removal requires a preliminary ubiquitination step due to the Skp2-SCF E3 ligase complex. We demonstrated that HDACIs increase p27Kip1 stability through downregulation of Skp2 protein levels. Skp2 decline is only partially due to a reduced Skp2 gene expression. Conversely, the protein decrease is more profound and enduring compared to the changes of Skp2 transcript. This argues for HDACIs effects on Skp2 protein posttranslational modifications and/or on its removal. In summary, we demonstrate that HDACIs increase p27Kip1 by hampering its nuclear ubiquitination/degradation. The findings might be of relevance in the phenotypic effects of these compounds, including their anticancer and aging-modulating activities.

  12. Prognostic implication of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma: a tissue microarray study

    Directory of Open Access Journals (Sweden)

    Wang Facheng

    2008-10-01

    Full Text Available Abstract Background p27Kip1 plays a major role as a negative regulator of the cell cycle. The regulation of p27Kip1 degradation is mediated by its specific ubiquitin ligase subunits S-phase kinase protein (Skp 2 and cyclin-dependent kinase subunit (Cks 1. However, little is known regarding the prognostic utility of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma. Methods Immunohistochemistry was performed for p27Kip1, Skp2 and Cks1 in tissue microarrays of 482 renal cell carcinomas with follow-up. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. Results Immunoreactivity of p27Kip1, Skp2 and Cks1 was noted in 357, 71 and 82 patients, respectively. Skp2 and Cks1 expression were not noted in chromophobe cancers. A strong correlation was found between Skp2 and Cks1 expression (P Kip1 levels (P = 0.006 and P Kip1 expression and Skp2 expression were correlated with larger tumor size and higher stage, as well as tumor necrosis. Cks1 expression was only correlated with tumor size. In univariate analysis, low p27Kip1 expression, Skp2 and Cks1 expression were all associated with a poor prognosis, while in multivariate analysis, only low p27Kip1 expression were independent prognostic factors for both cancer specific survival and recurrence-free survival in patients with RCC. Conclusion Our results suggest that immunohistochemical expression levels of p27Kip1, Skp2 and Cks1 may serve as markers with prognostic value in renal cell carcinoma.

  13. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Directory of Open Access Journals (Sweden)

    Perna Marla K

    2011-04-01

    Full Text Available Abstract Background Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Results Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. Conclusions p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia

  14. Ursodeoxycholic Acid Influences the Expression of p27kip1 but Not FoxO1 in Patients with Non-Cirrhotic Primary Biliary Cirrhosis

    Directory of Open Access Journals (Sweden)

    Malgorzata Milkiewicz

    2014-01-01

    Full Text Available Background. Enhanced expression of cell cycle inhibitor p27kip1 suppresses cell proliferation. Ursodeoxycholic acid (UDCA delays progression of primary biliary cirrhosis (PBC but its effect on p27kip1 expression is uncertain. Aims. To analyze the expression of p27kip1 and its transcription modulator FoxO1 in patients with PBC, and to assess the impact of UDCA on this pathway. Materials and Methods. The examined human tissue included explanted livers from patients with cirrhotic PBC (n=23, primary sclerosing cholangitis (PSC; n=9, alcoholic liver disease (ALD; n=9, and routine liver biopsies from patients with non-cirrhotic PBC (n=26. Healthy liver samples served as controls (n=19. Livers of FoxO-deficient mice were also studied. mRNA and protein expressions were analyzed by real-time PCR and Western blot. Results. p27kip1 expression was increased in cirrhotic and non-cirrhotic PBC. FoxO1 mRNA levels were increased in PBC (8.5-fold increase versus controls. FoxO1 protein expression in PBC was comparable to controls, but it was decreased in patients with PSC and ALD (63% and 70% reduction, respectively; both P<0.05 versus control. UDCA-treated non-cirrhotic patients with PBC showed decreased expression of p27kip1 mRNA. Conclusion. PBC progression is characterized by a FoxO1-independent increase of p27kip1 expression. In early PBC, UDCA may enhance liver regeneration via p27kip1-dependent mechanism.

  15. Clinical significance of cyclin-dependent kinase inhibitor p27Kip1 expression and proliferation in non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Skjødt, Karsten; Mortensen, Leif Spange

    1999-01-01

    The cyclin-dependent kinase inhibitor p27Kip1 is a negative cell cycle regulator linking extracellular growth-regulatory signals to the cell cycle machinery in G1. We investigated the pattern and prognostic value of p27Kip1 expression in a population-based group of 203 non-Hodgkin's lymphoma (NHL...... between p27Kip1 and Ki-67 expression. Low expression of p27Kip1, defined as nuclear p27Kip1 expression in lymphomas behaved differently as those with low p27Kip1...... expression tended to do better. Likewise, a high proliferation rate (Ki-67 >40%) was associated with poor survival in indolent and aggressive lymphomas. Multivariate analysis using the proportional hazards model showed that only p27Kip1, and not Ki-67, maintained independent prognostic significance...

  16. Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1

    Science.gov (United States)

    Murata, Kaoru; Hattori, Masakazu; Hirai, Norihito; Shinozuka, Yoriko; Hirata, Hiromi; Kageyama, Ryoichiro; Sakai, Toshiyuki; Minato, Nagahiro

    2005-01-01

    A transcriptional regulator, Hes1, plays crucial roles in the control of differentiation and proliferation of neuronal, endocrine, and T-lymphocyte progenitors during development. Mechanisms for the regulation of cell proliferation by Hes1, however, remain to be verified. In embryonic carcinoma cells, endogenous Hes1 expression was repressed by retinoic acid in concord with enhanced p27Kip1 expression and cell cycle arrest. Conversely, conditional expression of a moderate but not maximal level of Hes1 in HeLa cells by a tetracycline-inducible system resulted in reduced p27Kip1 expression, which was attributed to decreased basal transcript rather than enhanced proteasomal degradation, with concomitant increases in the growth rate and saturation density. Hes1 induction repressed the promoter activity of a 5′ flanking basal enhancer region of p27Kip1 gene in a manner dependent on Hes1 expression levels, and this was mediated by its binding to class C sites in the promoter region. Finally, hypoplastic fetal thymi, as well as livers and brains of Hes1-deficient mice, showed significantly increased p27Kip1 transcripts compared with those of control littermates. These results have suggested that Hes1 directly contributes to the promotion of progenitor cell proliferation through transcriptional repression of a cyclin-dependent kinase inhibitor, p27Kip1. PMID:15870295

  17. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.

  18. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia

    NARCIS (Netherlands)

    Georgitsi, Marianthi; Raitila, Anniina; Karhu, Auli; van der Luijt, Rob B.; Aalfs, Cora M.; Sane, Timo; Vierimaa, Outi; Mäkinen, Markus J.; Tuppurainen, Karoliina; Paschke, Ralph; Gimm, Oliver; Koch, Christian A.; Gündogdu, Sadi; Lucassen, Anneke; Tischkowitz, Marc; Izatt, Louise; Aylwin, Simon; Bano, Gul; Hodgson, Shirley; de Menis, Ernesto; Launonen, Virpi; Vahteristo, Pia; Aaltonen, Lauri A.

    2007-01-01

    Germline mutations in the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome, but in up to 20-25% of clinical MEN1 cases, no MEN1 mutations can be found. Recently, a germline mutation in the CDKN1B gene, encoding p27(Kip1), was reported in one suspected MEN1 family with two

  19. p27kip1 expression distinguishes papillary hyperplasia in Graves' disease from papillary thyroid carcinoma.

    Science.gov (United States)

    Erickson, L A; Yousef, O M; Jin, L; Lohse, C M; Pankratz, V S; Lloyd, R V

    2000-09-01

    In most cases, the histopathologic and cytologic distinction between Graves' disease and papillary thyroid carcinoma is relatively easy, but on occasion Graves' disease may simulate a thyroid papillary carcinoma. For example, papillary fronds with fibrovascular cores may be present in both Graves' disease and papillary carcinoma. p27kip1 (p27) is a cyclin-dependent kinase inhibitory protein that has been shown to be an independent prognostic factor in a variety of human tumors. Our previous studies of p27 expression in hyperplastic and neoplastic endocrine lesions showed that the level of p27 was quite different in these two conditions. To determine if this distinction could also be made between Graves' disease and papillary carcinoma, we analyzed expression of p27 and other cell cycle proteins in a series of cases of Graves' disease with papillary hyperplasia and a series of papillary thyroid carcinomas. Formalin-fixed paraffin-embedded tissues from 61 randomly selected patients with thyroid disease, including 29 cases of Graves' disease with papillary architectural features and 32 cases of papillary carcinoma, were analyzed for expression of p27, Ki-67, and DNA topoisomerase II alpha (topo II alpha) by immunostaining. The distribution of immunoreactivity was analyzed by quantifying the percentage of positive nuclei that was expressed as the labeling index (LI) plus or minus the standard error of the mean. The papillary hyperplasia of Graves' disease had a p27 LI of 68.2 +/- 3.1 (range, 24 to 88), whereas papillary carcinomas had a LI of 25.6 +/- 2.5 (range, 12 to 70) (P hyperplasia in Graves' disease and papillary carcinoma. These results indicate that p27 protein expression is significantly higher in papillary hyperplasia of Graves' disease compared to papillary carcinoma, which may be diagnostically useful in difficult cases.

  20. Resveratrol protects leukemic cells against cytotoxicity induced by proteasome inhibitors via induction of FOXO1 and p27Kip1

    International Nuclear Information System (INIS)

    Niu, Xiao-Fang; Liu, Bao-Qin; Du, Zhen-Xian; Gao, Yan-Yan; Li, Chao; Li, Ning; Guan, Yifu; Wang, Hua-Qin

    2011-01-01

    It was reported recently that resveratrol could sensitize a number of cancer cells to the antitumoral effects of some conventional chemotherapy drugs. The current study was designed to investigate whether resveratrol could sensitize leukemic cells to proteasome inhibitors. Leukemic cells were treated with MG132 alone or in combination with resveratrol. Cell viability was investigated using MTT assay, and induction of apoptosis and cell cycle distribution was measured using flow cytometry. Western blot and real-time RT-PCR were used to investigate the expression of FOXO1 and p27 Kip1 . CHIP was performed to investigate the binding of FOXO1 to the p27 Kip1 promoter. Resveratrol strongly reduced cytotoxic activities of proteasome inhibitors against leukemic cells. MG132 in combination with resveratrol caused cell cycle blockade at G1/S transition via p27 Kip1 accumulation. Knockdown of p27 Kip1 using siRNA dramatically attenuated the protective effects of resveratrol on cytotoxic actions of proteasome inhibitors against leukemic cells. Resveratrol induced FOXO1 expression at the transcriptional level, while MG132 increased nuclear distribution of FOXO1. MG132 in combination with resveratrol caused synergistic induction of p27 Kip1 through increased recruitment of FOXO1 on the p27 Kip1 promoter. Resveratrol may have the potential to negate the cytotoxic effects of proteasome inhibitors via regulation of FOXO1 transcriptional activity and accumulation of p27 Kip1

  1. p27kip1 overexpression regulates IL-1β in the microenvironment of stem cells and eutopic endometriosis co-cultures.

    Science.gov (United States)

    Gonçalves, G A; Invitti, A L; Parreira, R M; Kopelman, A; Schor, E; Girão, M J B C

    2017-01-01

    Endometriosis is a gynecological benign chronic disease defined as the growth of endometrial glands and stroma in extra-uterine sites, most commonly implanted over visceral and peritoneal surfaces within the female pelvis causing inflammatory lesions. It affects around 10% of the female population and is often accompanied by chronic pelvic pain, adhesion formation and infertility. Therefore, endometriosis could be considered a "social disease", since it affects the quality of life, reproductivity and also has a socio-economic impact. The expression of cell cycle and inflammatory proteins is modified in the endometriotic tissues. Immunostaining of glandular and stromal cells in endometrial biopsies obtained from patients with endometriosis compared with those of healthy control demonstrated that endometriotic tissues have lower levels of p27 kip1 protein. Endometriosis endometrial cells cultures have also lower levels of p27 kip1 compared to health endometrial cells cultures and restore the cell cycle balance when transduced with an adenoviral vector carring the p27 kip1 coding gene (Adp27EGFP). The low levels of p27 kip1 are related to the S phase in the cell cycle, whereas higher levels lead to a G1 cell cycle arrest. The inflammatory cytokine IL-1β was recently identified as another key protein in the endometriosis proliferation. This cytokine has elevated levels during the proliferative and secretory phases of the menstrual cycle. In endometriosis endometrial cells cultures the IL-1β stimulates the production of IL-6 and IL-8, increasing the cell proliferation and reducing the apoptosis and Bax expression in these cells. According to these remarks, this work aims to evaluate the inflammatory effects in vitro, but more next to what happens in a woman's body, associating endometrial cells with stem cells, thus mimicking the endometrial microenvironment, with gene therapy using Adp27, notoriously known as controller cell cycle, apoptosis and potent modulator of

  2. P27Kip1, regulated by glycogen synthase kinase-3β, results in HMBA-induced differentiation of human gastric cancer cells

    International Nuclear Information System (INIS)

    Wei, Min; Gu, Qinlong; Wang, Zhiwei; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Yu, Yingyan; Su, Liping; Zhu, Zhenggang

    2011-01-01

    Gastric cancer is the second most common cause of global cancer-related mortality. Although dedifferentiation predicts poor prognosis in gastric cancer, the molecular mechanism underlying dedifferentiation, which could provide fundamental insights into tumor development and progression, has yet to be elucidated. Furthermore, the molecular mechanism underlying the effects of hexamethylene bisacetamide (HMBA), a recently discovered differentiation inducer, requires investigation and there are no reported studies concerning the effect of HMBA on gastric cancer. Based on the results of FACS analysis, the levels of proteins involved in the cell cycle or apoptosis were determined using western blotting after single treatments and sequential combinations of HMBA and LiCl. GSK-3β and proton pump were investigated by western blotting after up-regulating Akt expression by Ad-Akt infection. To investigate the effects of HMBA on protein localization and the activities of GSK-3β, CDK2 and CDK4, kinase assays, immunoprecipitation and western blotting were performed. In addition, northern blotting and RNase protection assays were carried out to determine the functional concentration of HMBA. HMBA increased p27Kip1 expression and induced cell cycle arrest associated with gastric epithelial cell differentiation. In addition, treating gastric-derived cells with HMBA induced G0/G1 arrest and up-regulation of the proton pump, a marker of gastric cancer differentiation. Moreover, treatment with HMBA increased the expression and activity of GSK-3β in the nucleus but not the cytosol. HMBA decreased CDK2 activity and induced p27Kip1 expression, which could be rescued by inhibition of GSK-3β. Furthermore, HMBA increased p27Kip1 binding to CDK2, and this was abolished by GSK-3β inhibition. The results presented herein suggest that GSK-3β functions by regulating p27Kip1 assembly with CDK2, thereby playing a critical role in G0/G1 arrest associated with HMBA-induced gastric epithelial

  3. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1.

    Science.gov (United States)

    Galardi, Silvia; Mercatelli, Neri; Giorda, Ezio; Massalini, Simone; Frajese, Giovanni Vanni; Ciafrè, Silvia Anna; Farace, Maria Giulia

    2007-08-10

    MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level and are deeply involved in the pathogenesis of several types of cancers. Here we show that miR-221 and miR-222, encoded in tandem on chromosome X, are overexpressed in the PC3 cellular model of aggressive prostate carcinoma, as compared with LNCaP and 22Rv1 cell line models of slowly growing carcinomas. In all cell lines tested, we show an inverse relationship between the expression of miR-221 and miR-222 and the cell cycle inhibitor p27(Kip1). We recognize two target sites for the microRNAs in the 3' untranslated region of p27 mRNA, and we show that miR-221/222 ectopic overexpression directly results in p27 down-regulation in LNCaP cells. In those cells, we demonstrate that the ectopic overexpression of miR-221/222 strongly affects their growth potential by inducing a G(1) to S shift in the cell cycle and is sufficient to induce a powerful enhancement of their colony-forming potential in soft agar. Consistently, miR-221 and miR-222 knock-down through antisense LNA oligonucleotides increases p27(Kip1) in PC3 cells and strongly reduces their clonogenicity in vitro. Our results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27(Kip1), and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27(Kip1) down-regulation.

  4. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    Science.gov (United States)

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  5. p27Kip1 Is Required to Mediate a G1 Cell Cycle Arrest Downstream of ATM following Genotoxic Stress.

    Directory of Open Access Journals (Sweden)

    Erica K Cassimere

    Full Text Available The DNA damage response (DDR is a coordinated signaling network that ensures the maintenance of genome stability under DNA damaging stress. In response to DNA lesions, activation of the DDR leads to the establishment of cell cycle checkpoints that delay cell-cycle progression and allow repair of the defects. The tumor suppressor p27Kip1 is a cyclin-CDK inhibitor that plays an important role in regulating quiescence in a variety of tissues. Several studies have suggested that p27Kip1 also plays a role in the maintenance of genomic integrity. Here we demonstrate that p27Kip1 is essential for the establishment of a G1 checkpoint arrest after DNA damage. We also uncovered that ATM phosphorylates p27Kip1 on a previously uncharacterized residue (Ser-140, which leads to its stabilization after induction of DNA double-strand breaks. Inhibition of this stabilization by replacing endogenous p27Kip1 with a Ser-140 phospho-mutant (S140A significantly sensitized cells to IR treatments. Our findings reveal a novel role for p27Kip1 in the DNA damage response pathway and suggest that part of its tumor suppressing functions relies in its ability to mediate a G1 arrest after the induction of DNA double strand breaks.

  6. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1.

    Science.gov (United States)

    Yamaguchi, Fuminori; Takata, Maki; Kamitori, Kazuyo; Nonaka, Machiko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-02-01

    'Rare sugars' are defined as monosaccharides that exist in nature but are only present in limited quantities. The development of mass production method of rare sugars revealed some interesting physiological effects of these on animal cells, but the mechanisms have not been well studied. We examined the effect of D-allose on the proliferation of cancer cells and the underlying molecular mechanism of the action. The HuH-7 hepatocellular carcinoma cells were treated with various monosaccharides for 48 h and D-allose was shown to inhibit cell growth by 40% in a dose-dependent manner. D-allose induced G1 cell cycle arrest but not apoptosis. The microarray analysis revealed that D-allose significantly up-regulated thioredoxin interacting protein (TXNIP) gene expression, which is often suppressed in tumor cells and western blot analysis confirmed its increase at protein level. The overexpression of TXNIP also induced G1 cell cycle arrest. Analysis of cell cycle regulatory genes showed p27kip1, a key regulator of G1/S cell cycle transition, to be increased at the protein but not the transcriptional level. Protein interaction between TXNIP and jab1, and p27kip1 and jab1, was observed, suggesting stabilization of p27kip1 protein by the competitive inhibition of jab1-mediated nuclear export of p27kip1 by TXNIP. In addition, increased interaction and nuclear localization of TXNIP and p27kip1 were apparent after D-allose treatment. Our findings surprisingly suggest that D-allose, a simple monosaccharide, may act as a novel anticancer agent via unique TXNIP induction and p27kip1 protein stabilization.

  7. The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis.

    Science.gov (United States)

    Chou, Chu-Fang; Hsieh, Yu-Hua; Grubbs, Clinton J; Atigadda, Venkatram R; Mobley, James A; Dummer, Reinhard; Muccio, Donald D; Eto, Isao; Elmets, Craig A; Garvey, W Timothy; Chang, Pi-Ling

    2018-06-01

    Bexarotene (Targretin ® ) is currently the only FDA approved retinoid X receptor (RXR) -selective agonist for the treatment of cutaneous T-cell lymphomas (CTCLs). The main side effects of bexarotene are hypothyroidism and elevation of serum triglycerides (TGs). The novel RXR ligand, 9-cis UAB30 (UAB30) does not elevate serum TGs or induce hypothyroidism in normal subjects. To assess preclinical efficacy and mechanism of action of UAB30 in the treatment of CTCLs and compare its action with bexarotene. With patient-derived CTCL cell lines, we evaluated UAB30 function in regulating growth, apoptosis, cell cycle check points, and cell cycle-related markers. Compared to bexarotene, UAB30 had lower half maximal inhibitory concentration (IC 50 ) values and was more effective in inhibiting the G1 cell cycle checkpoint. Both rexinoids increased the stability of the cell cycle inhibitor, p27kip1 protein, in part, through targeting components involved in the ubiquitination-proteasome system: 1) decreasing SKP2, a F-box protein that binds and targets p27kip1 for degradation by 26S proteasome and 2) suppressing 20S proteasome activity (cell line-dependent) through downregulation of PSMA7, a component of the 20S proteolytic complex in 26S proteasome. UAB30 and bexarotene induce both early cell apoptosis and suppress cell proliferation. Inhibition of the G1 to S cell cycle transition by rexinoids is mediated, in part, through downregulation of SKP2 and/or 20S proteasome activity, leading to increased p27kip1 protein stability. Because UAB30 has minimal effect in elevating serum TGs and inducing hypothyroidism, it is potentially a better alternative to bexarotene for the treatment of CTCLs. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  8. In Vivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice

    Directory of Open Access Journals (Sweden)

    Bradley J. Walters

    2017-04-01

    Full Text Available Summary: Hearing loss is widespread and persistent because mature mammalian auditory hair cells (HCs are nonregenerative. In mice, the ability to regenerate HCs from surrounding supporting cells (SCs declines abruptly after postnatal maturation. We find that combining p27Kip1 deletion with ectopic ATOH1 expression surmounts this age-related decline, leading to conversion of SCs to HCs in mature mouse cochleae and after noise damage. p27Kip1 deletion, independent of canonical effects on Rb-family proteins, upregulated GATA3, a co-factor for ATOH1 that is lost from SCs with age. Co-activation of GATA3 or POU4F3 and ATOH1 promoted conversion of SCs to HCs in adult mice. Activation of POU4F3 alone also converted mature SCs to HCs in vivo. These data illuminate a genetic pathway that initiates auditory HC regeneration and suggest p27Kip1, GATA3, and POU4F3 as additional therapeutic targets for ATOH1-mediated HC regeneration. : Auditory hair cells are nonregenerative, resulting in persistent hearing loss upon damage. Walters et al. find that manipulating two genes, p27Kip1 and Atoh1, induces the conversion of nonsensory cells to hair cells in adult mice. This effect is mediated by GATA3 and POU4F3, where POU4F3 alone was found to convert nonsensory cells. Keywords: regeneration, aging, differentiation, proliferation, development, cancer, sensory, cochlea, hearing

  9. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression.

    Science.gov (United States)

    Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Han, Joo-Hui; Ma, Jin Yeul

    2016-07-28

    Kiom-18 is a novel composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra. Curcuma longa and Glycyrrhiza glabra, which are traditional medicines in Asia, have been reported to demonstrate preventive effects against atherosclerosis; however, they have not yet been developed into functional atherosclerosis treatments. We therefore studied the anti-atherosclerotic effects and possible molecular mechanisms of Kiom-18 using vascular smooth muscle cells (VSMCs). To assess the anti-proliferative effect of Kiom-18 in vitro, we performed thymidine incorporation, cell cycle progression, immunoblotting and immunofluorescence assays in VSMCs stimulated by platelet derived-growth factor (PDGF)-BB. In addition, we used LDLr knockout mice to identify the effects of Kiom-18 as a preliminary result in an atherosclerosis animal model. Kiom-18 inhibited platelet-derived growth factor (PDGF)-BB-stimulated-VSMC proliferation and DNA synthesis. Additionally, Kiom-18 arrested the cell cycle transition of G0/G1 stimulated by PDGF-BB and its cell cycle-related proteins. Correspondingly, the level of p27(kip1) expression was upregulated in the presence of the Kiom-18 extract. Moreover, in an atherosclerosis animal model of LDLr knockout mice, Kiom-18 extract showed a preventive effect for the formation of atherosclerotic plaque and suppressed body weight, fat weight, food treatment efficiency, neutrophil count, and triglyceride level. These results indicate that Kiom-18 exerts anti-atherosclerotic effects by inhibiting VSMC proliferation via G0/G1 arrest, which upregulates p27(Kip1) expression.

  11. Rp58 and p27kip1 coordinate cell cycle exit and neuronal migration within the embryonic mouse cerebral cortex.

    Science.gov (United States)

    Clément, Olivier; Hemming, Isabel Anne; Gladwyn-Ng, Ivan Enghian; Qu, Zhengdong; Li, Shan Shan; Piper, Michael; Heng, Julian Ik-Tsen

    2017-05-15

    During the development of the mammalian cerebral cortex, newborn postmitotic projection neurons are born from local neural stem cells and must undergo radial migration so as to position themselves appropriately to form functional neural circuits. The zinc finger transcriptional repressor Rp58 (also known as Znf238 or Zbtb18) is critical for coordinating corticogenesis, but its underlying molecular mechanism remains to be better characterised. Here, we demonstrate that the co-expression of Rp58 and the cyclin dependent kinase inhibitor (CDKI) p27 kip1 is important for E14.5-born cortical neurons to coordinate cell cycle exit and initiate their radial migration. Notably, we find that the impaired radial positioning of Rp58-deficient cortical neurons within the embryonic (E17.5) mouse cortex, as well as their multipolar to bipolar transition from the intermediate zone to the cortical plate can be restored by forced expression of p27 kip1 in concert with suppression of Rnd2, a downstream target gene of Rp58. Furthermore, the restorative effects of p27 kip1 and Rnd2 abrogation are reminiscent of suppressing RhoA signalling in Rp58-deficient cells. Our findings demonstrate functional interplay between a transcriptional regulator and a CDKI to mediate neuroprogenitor cell cycle exit, as well as to promote radial migration through a molecular mechanism consistent with suppression of RhoA signalling.

  12. Time and flow-dependent changes in the p27(kip1) gene network drive maladaptive vascular remodeling.

    Science.gov (United States)

    DeSart, Kenneth M; Butler, Khayree; O'Malley, Kerri A; Jiang, Zhihua; Berceli, Scott A

    2015-11-01

    Although clinical studies have identified that a single nucleotide polymorphism in the p27(kip1) gene is associated with success or failure after vein bypass grafting, the underlying mechanisms for this difference are not well defined. Using a high-throughput approach in a flow-dependent vein graft model, we explored the differences in p27(kip1)-related genes that drive the enhanced hyperplastic response under low-flow conditions. Bilateral rabbit carotid artery interposition grafts with jugular vein were placed with a unilateral distal outflow branch ligation to create differential flow states. Grafts were harvested at 2 hours and at 1, 3, 7, 14, and 28 days after implantation, measured for neointimal area, and assayed for cell proliferation. Whole-vessel messenger RNA was isolated and analyzed using an Affymetrix (Santa Clara, Calif) gene array platform. Ingenuity Pathway Analysis (Ingenuity, Redwood City, Calif) was used to identify the gene networks surrounding p27(kip1). This gene set was then analyzed for temporal expression changes after graft placement and for differential expression in the alternate flow conditions. Outflow branch ligation resulted in an eightfold difference in mean flow rates throughout the 28-day perfusion period (P Flow reduction led to a robust hyperplastic response, resulting in a significant increase in intimal area by 7 days (0.13 ± 0.04 mm(2) vs 0.014 ± 0.006 mm(2); P flow grafts demonstrated a burst of actively dividing intimal cells (36.4 ± 9.4 cells/mm(2) vs 11.5 ± 1.9 cells/mm(2); P = .04). Sixty-five unique genes within the microarray were identified as components of the p27(kip1) network. At a false discovery rate of 0.05, 26 genes demonstrated significant temporal changes, and two dominant patterns of expression were identified. Class comparison analysis identified differential expression of 11 genes at 2 hours and seven genes and 14 days between the high-flow and low-flow grafts (P flow and shear stress result in

  13. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

    Science.gov (United States)

    Fero, M L; Rivkin, M; Tasch, M; Porter, P; Carow, C E; Firpo, E; Polyak, K; Tsai, L H; Broudy, V; Perlmutter, R M; Kaushansky, K; Roberts, J M

    1996-05-31

    Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.

  14. Inactivation of p27kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation.

    Science.gov (United States)

    Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun

    2016-11-01

    Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.

  15. Deficiency of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 accelerates atherogenesis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Akyuerek, Levent M.; Boehm, Manfred; Olive, Michelle; Zhou, Alex-Xianghua; San, Hong; Nabel, Elizabeth G.

    2010-01-01

    Cyclin-dependent kinase inhibitors, p21 Cip1 and p27 Kip1 , are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21 Cip1 or p27 Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE -/- aortae, both apoE -/- /p21 -/- and apoE -/- /p27 -/- aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27 Kip1 accelerated plaque formation significantly more than p21 -/- in apoE -/- mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21 Cip1 and p27 Kip1 accelerates atherogenesis in apoE -/- mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.

  16. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  17. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading.

    Science.gov (United States)

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu 2+ -oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu 2+ -oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu 2+ -oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27 kip1 ). Both Cu 2+ -oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu 2+ - and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27 kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  18. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  19. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  20. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles.

    Science.gov (United States)

    Jang, Hoon; Na, Younghwa; Hong, Kwonho; Lee, Sangho; Moon, Sohyeon; Cho, Minha; Park, Miseon; Lee, Ok-Hee; Chang, Eun Mi; Lee, Dong Ryul; Ko, Jung Jae; Lee, Woo Sik; Choi, Youngsok

    2017-10-01

    Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27 Kip1 promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27 Kip1 , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms

    NARCIS (Netherlands)

    Roorda, Berber D.; ter Elst, Arja; Scherpen, Frank J. G.; Meemusen-de Boer, Tiny G. J.; Kamps, Willem A.; de Bont, Eveline S. J. M.

    Increased levels of circulating VEGF-A have been demonstrated in patients with non-Hodgkin lymphoma (NHL) and are associated with progressive disease and poor clinical outcome. We investigated the role of VEGF-A in lymphoma tumour growth on a molecular level in order to identify the mechanism of

  2. ER, PgR, Ki67, p27Kip1, and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab

    International Nuclear Information System (INIS)

    Kurozumi, Sasagu; Inoue, Kenichi; Takei, Hiroyuki; Matsumoto, Hiroshi; Kurosumi, Masafumi; Horiguchi, Jun; Takeyoshi, Izumi; Oyama, Tetsunari

    2015-01-01

    Neoadjuvant chemotherapy (NAC) with taxanes followed by fluorouracil, epirubicin, and cyclophosphamide (FEC), and concurrent trastuzumab is a potent regimen for HER2 over-expressing breast cancer. A high pathological complete response (pCR) rate has been achieved using this regimen; however, the predictive factors and prognostic effects of pCR currently remain unclear. In the present study, we determined whether pCR was related to histological grade (HG) and several biological factors including p27 Kip1 . We also assessed the prognosis of the pCR and non-pCR groups, and expected differences between those positive and negative for lymph node metastasis after chemotherapy. A total of 129 Japanese women with HER2-positive invasive breast cancer received either paclitaxel or docetaxel followed by FEC, with the concomitant administration of trastuzumab. The statuses of HG, ER, PgR, Ki67, and p27 Kip1 were evaluated to determine their relationship with pCR. Relapse-free survival (RFS) and overall survival (OS) were also analyzed for their relationship with pCR and pathological nodal involvement. pCR was obtained in 84 out of 129 patients and the pCR rate was 65.1 %. The pCR rates related to 5 factors were as follows: HG (grade 3, 70.0 % vs. grades 1–2, 36.8 %), ER (negative, 78.6 % vs. positive, 40.0 %), PgR (negative, 75.3 % vs. positive, 38.9 %), Ki67 (high, 72.0 % vs. low, 47.2 %), and p27 Kip1 (low, 71.0 % vs. high, 50.0 %). RFS was significantly better in the pCR group than in the non-pCR group (p = 0.018). Patients with remaining nodal disease in the pCR group had worse OS (p = 0.0002). High-HG, low-ER, low-PgR, high-Ki67, and low-p27 Kip1 were identified as predictive factors of pCR in NAC with trastuzumab, while pCR and negative nodes were predictive of better survivals. The online version of this article (doi:10.1186/s12885-015-1641-y) contains supplementary material, which is available to authorized users

  3. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization

    International Nuclear Information System (INIS)

    Taylor, Travis J; Knipe, David M.

    2003-01-01

    The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two α-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted α-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted α-helix was dispensable for the interaction of ICP8 with the U L 9 origin-binding protein. We propose that this C-terminal α-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites

  4. The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression

    Directory of Open Access Journals (Sweden)

    Bodén Mikael

    2010-04-01

    Full Text Available Abstract Background Cajal bodies, nucleoli, PML nuclear bodies, and nuclear speckles are morpohologically distinct intra-nuclear structures that dynamically respond to cellular cues. Such nuclear bodies are hypothesized to play important regulatory roles, e.g. by sequestering and releasing transcription factors in a timely manner. While the nucleolus and nuclear speckles have received more attention experimentally, the PML nuclear body and the Cajal body are still incompletely characterized in terms of their roles and protein complement. Results By collating recent experimentally verified data, we find that almost 1000 proteins in the mouse nuclear proteome are known to associate with one or more of the nuclear bodies. Their gene ontology terms highlight their regulatory roles: splicing is confirmed to be a core activity of speckles and PML nuclear bodies house a range of proteins involved in DNA repair. We train support-vector machines to show that nuclear proteins contain discriminative sequence features that can be used to identify their intra-nuclear body associations. Prediction accuracy is highest for nucleoli and nuclear speckles. The trained models are also used to estimate the full protein complement of each nuclear body. Protein interactions are found primarily to link proteins in the nuclear speckles with proteins from other compartments. Cell cycle expression data provide support for increased activity in nucleoli, nuclear speckles and PML nuclear bodies especially during S and G2 phases. Conclusions The large-scale analysis of the mouse nuclear proteome sheds light on the functional organization of physically embodied intra-nuclear compartments. We observe partial support for the hypothesis that the physical organization of the nucleus mirrors functional modularity. However, we are unable to unambiguously identify proteins' intra-nuclear destination, suggesting that critical drivers behind of intra-nuclear translocation are yet to

  5. Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21WAF1/CIP1

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Yoo, Young A.; Kim, Hyung Jung; Kang, Seongman; Kim, Yong Geon; Kim, Jun Suk; Yoo, Young Do

    2005-01-01

    Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27 Kip1 in the absence of p53. This study found that MRPL41 mediates the p21 WAF1/CIP1 -mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21 WAF1/CIP1 and p27 Kip1 levels under the growth inhibitory conditions

  6. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    Directory of Open Access Journals (Sweden)

    Richard Park

    Full Text Available Many viruses target cytoplasmic polyA binding protein (PABPC to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs. During lytic replication of Epstein Barr Virus (EBV we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E, was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.

  7. Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Hairong [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); State Key Laboratory of Virology, Institute of Medical Virology, Wuhan University School of Medicine, Wuhan (China); Lee, Robert J. [Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH (United States); Haura, Eric B. [Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Edwards, John G. [Apeliotus Technologies, Inc., Atlanta, GA (United States); Dynan, William S. [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); Li Shuyi, E-mail: sli@georgiahealth.edu [Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Georgia); Apeliotus Technologies, Inc., Atlanta, GA (United States)

    2012-07-01

    Purpose: To inhibit DNA double-strand break repair in tumor cells by delivery of a single-chain antibody variable region fragment (ScFv 18-2) to the cell nucleus. ScFv 18-2 binds to a regulatory region of the DNA-dependent protein kinase (DNA-PK), an essential enzyme in the nonhomologous end-joining pathway, and inhibits DNA end-joining in a cell-free system and when microinjected into single cells. Development as a radiosensitizer has been limited by the lack of a method for intranuclear delivery to target cells. We investigated a delivery method based on folate receptor-mediated endocytosis. Methods and Materials: A recombinant ScFv 18-2 derivative was conjugated to folate via a scissile disulfide linker. Folate-ScFv 18-2 was characterized for its ability to be internalized by tumor cells and to influence the behavior of ionizing radiation-induced repair foci. Radiosensitization was measured in a clonogenic survival assay. Survival curves were fitted to a linear-quadratic model, and between-group differences were evaluated by an F test. Sensitization ratios were determined based on mean inhibitory dose. Results: Human KB and NCI-H292 lung cancer cells treated with folate-conjugated ScFv 18-2 showed significant radiosensitization (p < 0.001). Sensitization enhancement ratios were 1.92 {+-} 0.42 for KB cells and 1.63 {+-} 0.13 for NCI-H292 cells. Studies suggest that treatment inhibits repair of radiation-induced DSBs, as evidenced by the persistence of {gamma}-H2AX-stained foci and by inhibition of staining with anti-DNA-PKcs phosphoserine 2056. Conclusions: Folate-mediated endocytosis is an effective method for intranuclear delivery of an antibody-derived DNA repair inhibitor.

  8. In vivo monitoring of intranuclear p27{sup kip1} protein expression in breast cancer cells during trastuzumab (Herceptin) therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart [Division of Nuclear Medicine, University Health Network, Toronto, ON, Canada M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); MRC/CRUK Gray Institute for Radiation Oncology and Biology, Oxford University, OX3 7LJ Oxford (United Kingdom)], E-mail: bart.cornelissen@rob.ox.ac.uk; Kersemans, Veerle; McLarty, Kristin [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Tran, Lara [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vallis, Katherine A. [MRC/CRUK Gray Institute for Radiation Oncology and Biology, Oxford University, OX3 7LJ Oxford (United Kingdom); Reilly, Raymond M. [Division of Nuclear Medicine, University Health Network, Toronto, ON, M5S 3E2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3E2 (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada)

    2009-10-15

    Introduction: Trastuzumab, a humanized antibody directed against the Her2 receptor, induces the expression of p27{sup kip1}, an intranuclear cyclin-dependent kinase inhibitor in some breast cancer cells. The aim of this study was to develop a radioimmunoconjugate (RIC) to monitor trastuzumab-induced p27{sup kip1} protein up-regulation in vivo. Materials and Methods: Anti-p27{sup kip1} IgG was purified, and conjugated to diethylenetriaminopentaacetate, to allow radiolabeling with {sup 111}In for in vivo detection. Then tat peptide (GRKKRRQRRRPPQGYG), containing a nuclear localization sequence (underlined), was conjugated to the Fc-domain of IgG, using NaIO{sub 4} oxidation of carbohydrates and the resulting Schiff base stabilized with NaCNBH{sub 3}. The conjugate was radiolabeled with {sup 111}In, yielding [{sup 111}In]-anti-p27{sup kip1}-tat. {sup 111}In labeling efficiency, purity and p27{sup kip1} binding were measured. Trastuzumab-induced p27{sup kip1} up-regulation was assessed in a panel of breast cancer cell lines by Western blot analysis. Uptake and retention of [{sup 111}In]-anti-p27{sup kip1}-tat were measured in MDA-MB-361 and SKBr3 cells after exposure to trastuzumab. Uptake of [{sup 111}In]-anti-p27{sup kip1}-tat was determined at 72 h postintravenous injection in MDA-MB-361 xenografts in athymic mice treated with trastuzumab or saline. Results: [{sup 111}In]-anti-p27{sup kip1}-tat was synthesized to 97% purity. The RIC was able to bind to p27{sup kip1} protein and internalized in the cells and was transported to the nuclei of MDA-MB-361 cells. The level of p27{sup kip1} protein in MDA-MB-361 cells was increased after exposure to clinically relevant doses of trastuzumab for 3 days. Trastuzumab-mediated induction of p27{sup kip1} was not associated with increased cellular uptake or nuclear localization of [{sup 111}In]-anti-p27{sup kip1}-tat (6.53{+-}0.61% vs. 6.98{+-}1.36% internalized into trastuzumab-treated vs. control cells, respectively). However

  9. The Cell Cycle Inhibitor p27KIP1: A Key of G1 Arrest by Androgen Ablation and by Vitamin D3 Analog

    National Research Council Canada - National Science Library

    Slingerland, Joyce

    2001-01-01

    .... Effects of androgens and vDR activation by EB 1089 on p27 function were assayed. We demonstrated that physiologic concentrations of DHT and EB 1089 have synergistic effects to upregulate p27 and inhibit growth of prostate cancer cells...

  10. Antitumor activity of intratumoral injection of pcDNA3.1-p27Kip1mt followed by in vivo electroporation in a malignant Burkitt’s lymphoma cell xenograft

    OpenAIRE

    Supriatno Supriatno; Sartari Entin Yuletnawati

    2012-01-01

    Background: Human malignant Burkitt’s lymphomas are an uncommon type of Non-Hodgkin Lymphoma commonly affects in children. It is a highly aggressive type of B-cell lymphoma. Treatment for this malignant are still limited. However, a new strategy for refractory cancer, gene therapy is watched with keen interest. Recently, a novel method for high-efficiency and region-controlled in vivo gene transfer was developed by combining in vivo electroporation and plasmid cDNA. In the present study, a no...

  11. Insertional mutagenesis in mice deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1 reveals cancer gene interactions and correlations with tumor phenotypes

    DEFF Research Database (Denmark)

    Kool, Jaap; Uren, Anthony G; Martins, Carla P

    2010-01-01

    -throughput murine leukemia virus insertional mutagenesis screens in mice that are deficient for one or two CDK inhibitors. We retrieved 9,117 retroviral insertions from 476 lymphomas to define hundreds of loci that are mutated more frequently than expected by chance. Many of these loci are skewed toward a specific...... revealed a significant overlap between the datasets. Together, our findings highlight the importance of genetic context within large-scale mutation detection studies, and they show a novel use for insertional mutagenesis data in prioritizing disease-associated genes that emerge from genome-wide association...

  12. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1

    OpenAIRE

    Lin, Hui-Ping; Lin, Ching-Yu; Huo, Chieh; Hsiao, Ping-Hsuan; Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-01-01

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1?3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4?2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAP...

  13. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  14. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.

    Science.gov (United States)

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-04-07

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27(kip1)and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27(kip1)mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. © The Author(s) 2016. Published by Oxford

  15. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    Science.gov (United States)

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  16. Retardation of hadrons in passing through intranuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1988-01-01

    Hadrons are reduced in velocities by their passages through layers of intranuclear matter - due to strong interactions, similarly as electrified particles are reduced in velocities by their passages through layers of materials - due to electromagnetic interactions. The observed hadron energy loss in intranuclear matter can be treated as an analog of the well-known energy loss of electrified particles in materials. 24 refs.; 2 figs.; 1 tab

  17. Beyond Oncogenesis: The Role of S-Phase Kinase-Associated Protein-2 (SKP2 In Vascular Restenosis

    Directory of Open Access Journals (Sweden)

    Yih-Jer Wu

    2008-12-01

    Full Text Available The clinical benefits of percutaneous coronary intervention, the most prevalent procedure nowadays for the treatment of symptomatic coronary artery disease, are frequently offset by the occurrence of vascular restenosis. Although the introduction of drug-eluting stents has significantly reduced restenotic rates, the rare, but potentially fatal, delayed thrombosis remains a clinical threat. Further refinement of the drug-eluting stent based on a better understanding of cell cycle regulation between the vascular smooth muscle cell (VSMC and endothelial cell (EC is required. In this review, we discuss the role of S-phase kinase-associated protein-2 (Skp2, previously known as an oncoprotein, in the regulation of VSMC proliferation and its signaling axis. The currently available evidence suggests that the Rac1-Skp2-p27Kip1 signaling axis acts as a common final pathway for many factors that regulate VSMC proliferation, such as growth factors, extracellular matrices and cyclic nucleotides. Importantly, although EC proliferation is also shown to be regulated by the same axis, cAMP seems to regulate this axis differentially between VSMC and EC, rendering the underlying mechanism of this differential regulation a promising target for the development of a new generation of drug-eluting stent.

  18. Participant intimacy: A cluster analysis of the intranuclear cascade

    International Nuclear Information System (INIS)

    Cugnon, J.; Knoll, J.; Randrup, J.

    1981-01-01

    The intranuclear cascade for relativistic nuclear collisions is analyzed in terms of clusters consisting of groups of nucleons which are dynamically linked to each other by violent interactions. The formation cross sections for the different cluster types as well as their intrinsic dynamics are studied and compared with the predictions of the linear cascade model ( rows-on-rows ). (orig.)

  19. Cluster approach to intranuclear cascade for relativistic heavy ion colisions

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Nazareth, R.A.M.S.

    1982-01-01

    A new approach to the intranuclear cascade model for relativistic heavy ion reaction is presented. The effect of nucleon conventration on the collision process is explicitly included. It is found that the contributions from the non-binary processes are far from being negligible. Such processes are shown to broaden the angular distribution of inclusive proton spectra for 20 Ne + 238 U head-on collisions. (Author) [pt

  20. Iodine-125 toxicity as a function of intranuclear radionuclide distribution

    International Nuclear Information System (INIS)

    Yasui, L.S.; Hofer, K.G.

    1984-01-01

    Chinese hamster ovary (CHO) cells were synchronized in the G/sub 1/ phase of the cell cycle by isoleucine deprivation and then subjected to 8 hr. labeling with /sup 125/I-iododeoxyuridine (/sup 125/IUdR) either in the presence or absence of aphidicolin. Cells labeled in the presence of aphidicolin showed a D/sub 0/ of 30 decays/cell as compared to a D/sub 0/ of 90-100 decays for control cells. Presumably, aphidicolin had shifted /sup 125/IUdR incorporation into a sensitive sub-fraction of the nuclear genome. However, no aphidicolin effect was seen in identical studies on asynchronous cell populations, i.e., both control and aphidicolin treated cells showed a D/sub 0/ of 90-100 decays/cell. An attempt was made to correlate /sup 125/I toxicity with intranuclear /sup 125/I distribution. Electron-microsopic autoradiography and Chi=squared analysis revealed that in all experimental groups grain density was highest in the heterochromatin region of the nucleus. However, isoleucine deprivation lead to a dramatic decrease in the nuclear area occupied by heterochromatin (19.5% in control cells, 0.7% in synchronized cells), resulting in a corresponding increase in area and grain density for the euchromatin containing portion of the nucleus. These observations suggest that any shift in intranuclear distribution of /sup 125/I causes a dramatic change in the toxic effects of intranuclear /sup 125/I decays

  1. Cell cycle deregulation by the HBx protein of hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Cell cycle control by oncogenic viruses usually involves disruption of the normal restraints on cellular proliferation via abnormal proteolytic degradation and malignant transformation of cells. The cell cycle regulatory molecules viz. cyclins, cyclin-dependent kinases (cdks and inhibitors of cdks as well as the transcriptional targets of signaling pathways induce cells to move through the cell cycle checkpoints. These check points are often found deregulated in tumor cells and in the cells afflicted with DNA tumor viruses predisposing them towards transformation. The X protein or HBx of hepatitis B virus is a promiscuous transactivator that has been implicated in the development of hepatocellular carcinoma in humans. However, the exact role of HBx in establishing a permissive environment for hepatocarcinogenesis is not fully understood. HBx activates the Ras-Raf-MAP kinase signaling cascade, through which it activates transcription factors AP-1 and NFkappa B, and stimulates cell DNA synthesis. HBx shows a profound effect on cell cycle progression even in the absence of serum. It can override the replicative senescence of cells in G0 phase by binding to p55sen. It stimulates the G0 cells to transit through G1 phase by activating Src kinases and the cyclin A-cyclin-dependent kinase 2 complexes, that in turn induces the cyclin A promoter. There is an early and sustained level of cyclin-cdk2 complex in the presence of HBx during the cell cycle which is coupled with an increased protein kinase activity of cdk2 suggesting an early appearance of S phase. The interaction between cyclin-cdk2 complex and HBx occurs through its carboxyterminal region (amino acids 85-119 and requires a constitutive Src kinase activity. The increased cdk2 activity is associated with stabilization of cyclin E as well as proteasomal degradation of cdk inhibitor p27Kip1. Notably, the HBx mutant

  2. Transcriptional Regulation of S Phase Kinase-associated Protein 2 by NR4A Orphan Nuclear Receptor NOR1 in Vascular Smooth Muscle Cells*

    Science.gov (United States)

    Gizard, Florence; Zhao, Yue; Findeisen, Hannes M.; Qing, Hua; Cohn, Dianne; Heywood, Elizabeth B.; Jones, Karrie L.; Nomiyama, Takashi; Bruemmer, Dennis

    2011-01-01

    Members of the NR4A subgroup of the nuclear hormone receptor superfamily have emerged as key transcriptional regulators of proliferation and inflammation. NOR1 constitutes a ligand-independent transcription factor of this subgroup and induces cell proliferation; however, the transcriptional mechanisms underlying this mitogenic role remain to be defined. Here, we demonstrate that the F-box protein SKP2 (S phase kinase-associated protein 2), the substrate-specific receptor of the ubiquitin ligase responsible for the degradation of p27KIP1 through the proteasome pathway, constitutes a direct transcriptional target for NOR1. Mitogen-induced Skp2 expression is silenced in vascular smooth muscle cells (VSMC) isolated from Nor1-deficient mice or transfected with Nor1 siRNA. Conversely, adenovirus-mediated overexpression of NOR1 induces Skp2 expression in VSMC and decreases protein abundance of its target p27. Transient transfection experiments establish that NOR1 transactivates the Skp2 promoter through a nerve growth factor-induced clone B response element (NBRE). Electrophoretic mobility shift and chromatin immunoprecipitation assays further revealed that NOR1 is recruited to this NBRE site in the Skp2 promoter in response to mitogenic stimulation. In vivo Skp2 expression is increased during the proliferative response underlying neointima formation, and this transcriptional induction depends on the expression of NOR1. Finally, we demonstrate that overexpression of Skp2 rescues the proliferative arrest of Nor1-deficient VSMC. Collectively, these results characterize Skp2 as a novel NOR1-regulated target gene and detail a previously unrecognized transcriptional cascade regulating mitogen-induced VSMC proliferation. PMID:21868379

  3. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    Science.gov (United States)

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  4. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  5. Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia

    Directory of Open Access Journals (Sweden)

    Sofya K. Garushyants

    2018-04-01

    Full Text Available While most endosymbiotic bacteria are transmitted only vertically, Holospora spp., an alphaproteobacterium from the Rickettsiales order, can desert its host and invade a new one. All bacteria from the genus Holospora are intranuclear symbionts of ciliates Paramecium spp. with strict species and nuclear specificity. Comparative metabolic reconstruction based on the newly sequenced genome of Holospora curviuscula, a macronuclear symbiont of Paramecium bursaria, and known genomes of other Holospora species shows that even though all Holospora spp. can persist outside the host, they cannot synthesize most of the essential small molecules, such as amino acids, and lack some central energy metabolic pathways, including glycolysis and the citric acid cycle. As the main energy source, Holospora spp. likely rely on nucleotides pirated from the host. Holospora-specific genes absent from other Rickettsiales are possibly involved in the lifestyle switch from the infectious to the reproductive form and in cell invasion.

  6. Relativistic nuclear reactions and the intranuclear cascade method

    International Nuclear Information System (INIS)

    Duarte, S.J.B.

    1983-01-01

    The intranuclear cascade (INC) procedure is analised as a method to describe the processes of relativistic heavy ions collisions. The effects caused by nucleon concentration during the collision are discussed. It is shown explicitly that the occurence of nonbinary collisions among particles is not at all negligible, in spite of the fact that the convencional INC only permits nucleon-nucleon binary collisions. The relativistic invariance of the results obtained by the INC method is discussed. This is especially important when the method is applied for much higher energies. Many of conventional procedures in the method will give certainly different predictions depending on what system of reference is used. The origin of such non-invariance nature of INC calculations is discussed and an alternative way of defining the INC procedure which presents a better credibility with respect to the relativistic invariance property is proposed. (Author) [pt

  7. The nonelastic reaction code BRIEFF and its intranuclear cascade BRIC

    International Nuclear Information System (INIS)

    Duarte, H.

    2008-01-01

    The intranuclear cascade (INC) code of Bruyeres-le-Chatel named BRIC is the first part of the nonelastic reaction code BRIEFF. Recent changes in our INC are presented. They were done for nucleon induced reaction to improve results below 100 MeV, and to calculate cross sections of compound nucleus formation. These cross sections are used in the evaporation component of our reaction code. BRIEFF is included in the Bruyeres-le-Chatel version of HETC (High Energy Transport Code) to perform thick targets calculations. BRIC has recently been incorporated into MCNPX 2.4.0 to verify thick target results of neutron yields and to do some comparisons with other nuclear models or libraries. Good agreement with data is obtained on average. (author)

  8. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  9. Autographa californica multiple nucleopolyhedrovirus ac75 is required for egress of nucleocapsids from the nucleus and formation of de novo intranuclear membrane microvesicles.

    Directory of Open Access Journals (Sweden)

    Ya-Jun Guo

    Full Text Available In this study, Autographa californica multiple nucleopolyhedrovirus ac75 was functionally characterized. Ac75 has homologs in all sequenced genomes of alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. It was determined to encode a protein that is associated with the nucleocapsid of budded virus and with both envelope and nucleocapsids of occlusion-derived virus. Sf9 cells transfected by an ac75-knockout bacmid resulted in the infection being restricted to single cells. No budded virus were detected although viral DNA replication and late gene expression were unaffected. Electron microscopy revealed that the virogenic stroma, nucleocapsids and occlusion bodies appeared normal in the cells transfected by an ac75-knockout bacmid. However, the nucleocapsids were unenveloped, the occlusion bodies did not contain any virions or nucleocapsids, and no nucleocapsids were found outside the nucleus or spanning the nuclear membrane. In addition, de novo intranuclear membrane microvesicles that are the precursor of occlusion-derived virus envelopes were absent in the nuclei of transfected cells. Confocal microscopy showed that AC75 protein appeared in the cytoplasm as early as 6 hours post infection. It localized to the ring zone at the periphery of the nucleus from 15 to 24 hours post infection and demonstrated light blocky cloud-like distribution in the center of the nucleus. AC75 was found to co-immunoprecipitate with BV and ODV associated envelope protein ODV-E25. The data from this study suggest that ac75 is essential for induction of the intranuclear membrane microvesicles, it appears to be required for the intranuclear envelopment of nucleocapsids, and is also essential for egress of nucleocapsids from the nuclei, in infected cells.

  10. Nuclear sizes and intranuclear matter distribution -- from hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1999-01-01

    The method of intranuclear matter studies by hadronic projectiles is found and worked out. It is tested on the pion-xenon nucleus collision events. Target-nucleus size and nucleon density distributions in it were estimated and described by formulas prompted experimentally

  11. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A

    OpenAIRE

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-01-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substr...

  12. Probing Intranuclear Environments at the Single-Molecule Level

    Science.gov (United States)

    Grünwald, David; Martin, Robert M.; Buschmann, Volker; Bazett-Jones, David P.; Leonhardt, Heinrich; Kubitscheck, Ulrich; Cardoso, M. Cristina

    2008-01-01

    Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites. PMID:18065482

  13. Citoquímica de inclusões intranucleares associadas ao vírus do mosaico amarelo do salsão Cytochemical studies of the intranuclear inclusions associated with the celery yellow mosaic virus (CYMV

    Directory of Open Access Journals (Sweden)

    Neusa D. da Cruz

    1972-01-01

    Full Text Available Estudos citoquímicos, ao nível do microscópio óptico, foram efetuados para determinar a natureza química de inclusões intranucleares, de aspecto fibroso, induzidas pelo vírus do mosaico amarelo do salsão na maioria de suas hospedeiras. Os testes citoquímicos foram conduzidos em material foliar fresco ou fixado (aldeído glutárico, Carnoy 3:1 ou Bouin, tendo sido feitas as seguintes reações: hematoxilina férrica (testemunha; Sudan IV e Azul do Nilo (lipídios; iodo-iodeto (amido; Feulgen, Azur B e verde-de-metila-pironina (ácidos nucleicos; ninidrina-Schiff e "Fast Green", este último em soluções ácida e alcalina (proteínas. Os testes com verde-de-metila-pironina, Azur B e ninidrina-Schiff foram combinados com digestão enzimática pela ribonuclease ou pepsina. Os dados obtidos sugerem que, dentro da sensibilidade dos testes realizados, a inclusão contenha proteína, mas não tenha amido, lipídios ou ácidos nucleicos. Isso permite supor, portanto, que essas inclusões não sejam formadas de partículas de vírus.Cytochemical studies at optical microscopic level were made to determine the chemical nature of intranuclear inclusions with fibrous aspect which were induced by the celery yellow mosaic virus (CYMV in most of its hosts. The cytochemical tests were carried on fresh as well on fixed foliar material, fixation being in glutaric aldeid, Carnoy 3:1 or Bouin. The following reactions were tried: ferric haematoxylin (control; Sudan IV and Nile blue (for lipids; iodine ioduret (for starch; Feulgen, azur B and methyl green-pyronin (for nucleic acids; ninhydrin-Schiff and fast-green, the latter in acid and in alcaline solution (for protein. The tests with methyl green-pyronin, azur B and ninhydrin-Schiff were combined with enzimatic digestion with RNase or pepsin. The results suggest that, within the sensibility of the tests, the inclusion contains protein but does not contain starch, lipids or nucleic acids. This permit to

  14. Monte Carlo event generator MCMHA for high energy hadron-nucleus collisions and intranuclear cascade interactions

    International Nuclear Information System (INIS)

    Iga, Y.; Hamatsu, R.; Yamazaki, S.

    1988-01-01

    The Monte Carlo event generator for high energy hadron-nucleus (h-A) collisions has been developed which is based on the multi-chain model. The concept of formation zone and the cascade interactions of secondary particles are properly taken into account in this Monte Carlo code. Comparing the results of this code with experimental data, the importance of intranuclear cascade interactions becomes very clear. (orig.)

  15. Familial frontotemporal dementia with neuronal intranuclear inclusions is not a polyglutamine expansion disease

    Directory of Open Access Journals (Sweden)

    Neal Scott J

    2006-08-01

    Full Text Available Abstract Background Many cases of frontotemporal dementia (FTD are familial, often with an autosomal dominant pattern of inheritance. Some are due to a mutation in the tau- encoding gene, on chromosome 17, and show an accumulation of abnormal tau in brain tissue (FTDP-17T. Most of the remaining familial cases do not exhibit tau pathology, but display neuropathology similar to patients with dementia and motor neuron disease, characterized by the presence of ubiquitin-immunoreactive (ub-ir, dystrophic neurites and neuronal cytoplasmic inclusions in the neocortex and hippocampus (FTLD-U. Recently, we described a subset of patients with familial FTD with autopsy-proven FTLD-U pathology and with the additional finding of ub-ir neuronal intranuclear inclusions (NII. NII are a characteristic feature of several other neurodegenerative conditions for which the genetic basis is abnormal expansion of a polyglutamine-encoding trinucleotide repeat region. The genetic basis of familial FTLD-U is currently not known, however the presence of NII suggests that a subset of cases may represent a polyglutamine expansion disease. Methods We studied DNA and post mortem brain tissue from 5 affected members of 4 different families with NII and one affected individual with familial FTLD-U without NII. Patient DNA was screened for CAA/CAG trinucleotide expansion in a set of candidate genes identified using a genome-wide computational approach. Genes containing CAA/CAG trinucleotide repeats encoding at least five glutamines were examined (n = 63, including the nine genes currently known to be associated with human disease. CAA/CAG tract sizes were compared with published normal values (where available and with those of healthy controls (n = 94. High-resolution agarose gel electrophoresis was used to measure allele size (number of CAA/CAG repeats. For any alleles estimated to be equal to or larger than the maximum measured in the control population, the CAA/CAG tract

  16. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    Directory of Open Access Journals (Sweden)

    Jamuna Vadivelu

    2017-01-01

    Full Text Available During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei reside/hide to escape from host immune sensors and antimicrobial pressure.We used transmission electron microscopy (TEM to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

  17. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    Science.gov (United States)

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  18. Massive target nuclei as disc-shaped slabs and spherical objects of intranuclear matter in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Zewislawski, Z.; Strugalski, Z.; Mausa, M.

    1990-01-01

    It has been found experimentally that a definite number of emitted nucleons corresponds to a definite impact parameter in hadron-nucleus collisions. This finding allows one: to treat the massive target nucleus as a piece of intranuclear matter of a definite thickness; to treat a numerous sample of collisions of monoenergetic identical hadrons with the nucleus as collection of interactions of a homogeneous beam of hadrons with disc-shaped slabs of intranuclear matter of definite thicknesses. 17 refs.; 1 fig

  19. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.

    2008-01-01

    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury...... neuroendocrine markers was found in the non-neuroendocrine epithelial cells after naphthalene exposure. In contrast, immunostaining for the cell cycle regulator p27(Kip1), which has previously been associated with PGP9.5 in lung cancer cells, revealed transient downregulation of p27(Kip1) in naphthalene exposed...... and further strengthens the accumulating evidence of PGP9.5 as a central player in lung epithelial damage and early carcinogenesis Udgivelsesdato: 2008/9/26...

  20. Cell cycle control by the thyroid hormone in neuroblastoma cells

    International Nuclear Information System (INIS)

    Garcia-Silva, Susana; Perez-Juste, German; Aranda, Ana

    2002-01-01

    The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-β cells that overexpress the β1 isoform of the T3 receptor. An element in the region responsible for premature termination of transcription mediates a rapid repression of c-myc gene expression by T3. The hormone also causes a decrease of cyclin D1 gene transcription, and is able to antagonize the activation of the cyclin D1 promoter by Ras. In addition, a strong and sustained increase of the levels of the cyclin kinase inhibitor (CKI) p27 Kip1 are found in T3-treated cells. The increased levels of p27 Kip1 lead to a marked inhibition of the kinase activity of the cyclin-CDK2 complexes. As a consequence of these changes, retinoblastoma proteins are hypophosphorylated in T3-treated N2a-β cells, and progression through the restriction point in the cell cycle is blocked

  1. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats.

    Science.gov (United States)

    Mahadevan, Jana; Parazzoli, Susan; Oseid, Elizabeth; Hertzel, Ann V; Bernlohr, David A; Vallerie, Sara N; Liu, Chang-qin; Lopez, Melissa; Harmon, Jamie S; Robertson, R Paul

    2013-10-01

    We reported earlier that β-cell-specific overexpression of glutathione peroxidase (GPx)-1 significantly ameliorated hyperglycemia in diabetic db/db mice and prevented glucotoxicity-induced deterioration of β-cell mass and function. We have now ascertained whether early treatment of Zucker diabetic fatty (ZDF) rats with ebselen, an oral GPx mimetic, will prevent β-cell deterioration. No other antihyperglycemic treatment was given. Ebselen ameliorated fasting hyperglycemia, sustained nonfasting insulin levels, lowered nonfasting glucose levels, and lowered HbA1c levels with no effects on body weight. Ebselen doubled β-cell mass, prevented apoptosis, prevented expression of oxidative stress markers, and enhanced intranuclear localization of pancreatic and duodenal homeobox (Pdx)-1 and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), two critical insulin transcription factors. Minimal β-cell replication was observed in both groups. These findings indicate that prevention of oxidative stress is the mechanism whereby ebselen prevents apoptosis and preserves intranuclear Pdx-1 and MafA, which, in turn, is a likely explanation for the beneficial effects of ebselen on β-cell mass and function. Since ebselen is an oral antioxidant currently used in clinical trials, it is a novel therapeutic candidate to ameliorate fasting hyperglycemia and further deterioration of β-cell mass and function in humans undergoing the onset of type 2 diabetes.

  2. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung.

    Directory of Open Access Journals (Sweden)

    Andreas A Kroon

    Full Text Available RATIONALE: The molecular mechanism(s by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹. MEASUREMENT AND MAIN RESULTS: Ventilation for 24 h (h decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2, decreased that of p16(INK4a, while the levels of p21(Waf/Cip1 and p15(INK4b were unchanged. Increased p27(Kip1 expression coincided with reduced phosphorylation of p27(Kip1 at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05, thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹ and when fetal lung epithelial cells were subjected to a continuous (17% elongation cyclic stretch. CONCLUSION: This is the first demonstration that prolonged (24 h of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1, p57(Kip2 from the Kip family.

  3. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  4. Cell Cycle Inhibitors and Outcome after Radiotherapy in Bladder Cancer Patients

    International Nuclear Information System (INIS)

    Roetterud, Ranveig; Pettersen, Erik O.; Berner, Aasmund; Holm, Ruth; Olsen, Dag Rune; Fossaa, Sophie D.

    2002-01-01

    The aim of this study was to correlate the expression of cell cycle inhibitors with outcome of patients with muscle-invasive bladder cancer treated with preoperative radiotherapy (46 Gy/4-5 weeks or 20 Gy/1 week) and cystectomy. Patients with pT3b (n=42) or pT0 (n=17) were included in the study. Expression of p16INK4a and p27KIP1 was assessed immunohistochemically in pre-radiotherapy biopsies and cystectomy specimens. Previously reported results of p21CIP1 expression were also included. No difference in pretreatment protein expression was found between patients with pT0 and pT3b. Expression of p21CIP1 and p27KIP1 was lower in cystectomy specimens than in pretreatment biopsies. None of the proteins showed significant impact on survival when analysed separately. However, patients with tumours showing > 50% expression of p16INK4a, p21CIP1, or p27KIP1 displayed poorer cancer-specific survival rates compared with the remaining patients (p=0.025). This effect was more pronounced in patients receiving 46 Gy than in those receiving 20 Gy. In conclusion, low expression of cell cycle inhibitors is related to favourable survival after precystectomy radiotherapy

  5. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  6. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-01-01

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH 2 -RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27 Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27 Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27 Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin

  7. Improvement of the intranuclear cascade code of Bruyeres-le-Chatel (BRIC) at low intermediate energy

    International Nuclear Information System (INIS)

    Duarte, H.

    2003-01-01

    The IntraNuclear cascade code of Bruyeres-le-Chatel called BRIC has been extended to low intermediate energy by taking in account some medium effects that are included in other nuclear dynamics models such as BUU or QMD. The results of BRIC 1.4 with the medium effects are in better agreement with experimental data than those of the first version on a wide range of incident energy, especially at low intermediate energy. We may conclude that no preequilibrium model is necessary between our INC and the deexcitation step. (orig.)

  8. An intranuclear cascade calculation of high-energy heavy-ion interactions

    International Nuclear Information System (INIS)

    Yariv, Y.; Fraenkel, Z.

    1979-01-01

    The intranuclear cascade model of Chen is extended to high-energy reactions between two heavy ions. The results of the calculations are compared with experimental results for the inclusive proton and pion cross sections, two-particle correlations, particle multiplicity distributions and spallation cross section distributions from light ( 12 C+ 12 C) to heavy( 40 Ar + 238 U) projectile-target systems in the laboratory bombarding energy range E/A=250-1000 MeV. The comparison shows that the model is fairly successful in reproducing the various aspects of high-energy reactions between heavy ions. It is also shown that the assumption that high particle multiplicities are indicative of ''central'' (small impact parameter) collisions are well founded for heavy projectile-target systems. (B.G.)

  9. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    International Nuclear Information System (INIS)

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-01-01

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model

  10. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Dong [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Cheon, So Yeong [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Park, Tae-Yoon; Shin, Bo-Young [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Oh, Hyunju; Ghosh, Sankar [Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Koo, Bon-Nyeo, E-mail: koobn@yuhs.ac [Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  11. The performance of a new Geant4 Bertini intra-nuclear cascade model in high throughput computing (HTC) cluster architecture

    Energy Technology Data Exchange (ETDEWEB)

    Aatos, Heikkinen; Andi, Hektor; Veikko, Karimaki; Tomas, Linden [Helsinki Univ., Institute of Physics (Finland)

    2003-07-01

    We study the performance of a new Bertini intra-nuclear cascade model implemented in the general detector simulation tool-kit Geant4 with a High Throughput Computing (HTC) cluster architecture. A 60 node Pentium III open-Mosix cluster is used with the Mosix kernel performing automatic process load-balancing across several CPUs. The Mosix cluster consists of several computer classes equipped with Windows NT workstations that automatically boot, daily and become nodes of the Mosix cluster. The models included in our study are a Bertini intra-nuclear cascade model with excitons, consisting of a pre-equilibrium model, a nucleus explosion model, a fission model and an evaporation model. The speed and accuracy obtained for these models is presented. (authors)

  12. Pathogenic characteristics of a novel intranuclear coccidia in Japanese black calves and its genetic identification as Eimeria subspherica.

    Science.gov (United States)

    Koreeda, Terunori; Kawakami, Tomo; Okada, Ayako; Hirashima, Yoshimasa; Imai, Naoto; Sasai, Kazumi; Tanaka, Shogo; Matsubayashi, Makoto; Shibahara, Tomoyuki

    2017-11-01

    Bovine intranuclear coccidiosis is caused by the protozoans Eimeria alabamensis and Cyclospora spp. Here, we characterized the disease and genetically identified the causative species in Japanese black calves with chronic and refractory watery diarrhea. Histologic examinations revealed atrophy of the jejunal villi and numerous parasites in the nucleus of epithelial cells in the jejunum. Based on molecular analyses using 18S ribosomal RNA gene-specific primers that we designed, the parasites were found to be formed in the same cluster as Eimeria subspherica in the phylogenetic tree, which was separated from those of other related Eimeria spp. These results constitute the first report of E. subspherica as a cause of bovine intranuclear coccidiosis.

  13. ORGANIZACIÓN INTRANUCLEAR DE PROTEÍNAS SR EN VERTEBRADOS

    Directory of Open Access Journals (Sweden)

    María de Lourdes Segura-Valdez

    2007-01-01

    Full Text Available En eucariontes, el mRNA se forma a partir de un transcrito primario o pre-mRNA que madura mediante tres pasos que son la 7-metil-guanilación del extremo 5., la poliadenilación del extremo 3. y el splicing o corte de intrones y ligado de los exones resultantes. Estos pasos requieren de diversos factores cuya organización celular observada con el microscopio de epifluorescencia corresponde a una distribución intranuclear conocida como patrón moteado (speckles, que incluye regiones de distribución concentrada (motas y difusa en el nucleoplasma. La morfología de este patrón cambia en función de la actividad transcripcional y de splicing tanto en células en cultivo como en tejidos de mamíferos. En este trabajo utilizamos inmunofluorescencia indirecta con anticuerpos monoclonales contra la familia de factores de splicing SR y mostramos que este patrón moteado también se presenta en células de tejidos de otros vertebrados como peces, anfibios, reptiles, aves y en otros cordados como el Balanoglossus. Los resultados muestran que el patrón moteado también es característico de cordados no mamíferos.

  14. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles.

    Science.gov (United States)

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Ni, Dalong; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-11-01

    Biophotonic technology that uses light and ionizing radiation for positioned cancer therapy is a holy grail in the field of biomedicine because it can overcome the systemic toxicity and adverse side effects of conventional chemotherapy. However, the existing biophotonic techniques fail to achieve the satisfactory treatment efficacy, which remains a big challenge for clinical implementation. Herein, we develop a novel theranostic technique of "intranuclear biophotonics" by the smart design of a nuclear-targeting biophotonic system based on photo-/radio-sensitizers covalently co-loaded upconversion nanoparticles. These nuclear-targeting biophotonic agents can not only generate a great deal of multiple cytotoxic reactive oxygen species in the nucleus by making full use of NIR/X-ray irradiation, but also produce greatly enhanced intranuclear synergetic radio-/photodynamic therapeutic effects under the magnetic/luminescent bimodal imaging guidance, which may achieve the optimal efficacy in treating radio-resistant tumors. We anticipate that the highly effective intranuclear biophotonics will contribute significantly to the development of biophotonic techniques and open new perspectives for a variety of cancer theranostic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Intranuclear cascade+percolation+evaporation model applied to the {sup 12}C+{sup 197}Au system at 1 GeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Volant, C.; Turzo, K.; Trautmann, W.; Auger, G.; Begemann-Blaich, M.-L.; Bittiger, R.; Borderie, B.; Botvina, A.S.; Bougault, R.; Bouriquet, B.; Charvet, J.-L.; Chbihi, A.; Dayras, R.; Dore, D.; Durand, D.; Frankland, J.D.; Galichet, E.; Gourio, D.; Guinet, D.; Hudan, S.; Imme, G.; Lautesse, Ph.; Lavaud, F.; Le Fevre, A.; Lopez, O.; Lukasik, J.; Lynen, U.; Mueller, W.F.J.; Nalpas, L.; Orth, H.; Plagnol, E.; Raciti, G.; Rosato, E.; Saija, A.; Schwarz, C.; Seidel, W.; Sfienti, C.; Steckmeyer, J.C.; Tamain, B.; Trzcinski, A.; Vient, E.; Vigilante, M.; Zwieglinski, B

    2004-04-05

    The nucleus-nucleus Liege intranuclear-cascade+percolation+evaporation model has been applied to the {sup 12}C+{sup 197}Au data measured by the INDRA-ALADIN collaboration at GSI. After the intranuclear cascade stage, the data are better reproduced when using the Statistical Multiframentation Model as afterburner. Further checks of the model are done on data from the EOS and KAOS collaborations.

  17. Degeneração oxychromatica ("inclusões intranucleares" na febre amarella

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1931-05-01

    ção oxychromatica (figs. 37 e 40; são escassos e de caracterisação duvidosa em virtude da concomitancia de alterações necrobíoticas não específicas. 2- Durante a epidemia de febre amarella em 1928 no Rio de Janeiro, notamos differenças assaz pronunciadas entre as lesões hepaticas no homem e no M. rhesus. Taes differenças, existindo em material assaz homogeneo quanto ás amostras de virus em questão, nos levam a concluir que a capacidade de formar corpusculos intranucleares especificos, como tambem a já conhecida permanencia do virus no sangue e nos tecidos, depende, de modo evidente, da especie animal usada e não da propria amostra empregada, nem do numero de passagens que ella soffreu no macaco. Embora os doentes pertencessem a raças differentes (quadro VIII e embora, possivelmente diversas amostras de virus tenham sido nelles inoculadas, estamos autorisados a concluir que a amostra ou amostras que infectaram o homem na epidemia de 1928, no Rio de janeiro, possuem nelle uma fraca capacidade de determinar inclusões intranucleares. Ao contrario, a mesma amostra ou amostras são capazes de produzir no M. rhesus, logo na primeira passagem, inclusões intranucleares assaz abundantes. Outra diferença que notamos e attribuimos a especie animal empregada foi; as alterações hepaticas de natureza toxica e circulatoria (congestão, necrose e necrobiose da cellula hepatica são nitidamente mais intensas no homem que nos macacos injectados com as amostras brasileiras do virus da febre amarella isoladas durante a epidemia de 1928 no Rio de Janeiro. Conseguimos, no homem, evidencia de inclusões typicas na cellula hepatica, apenas em tres casos dentre dezesete examinados. Esse resultado, provavelmente, ainda não é definitivo, indicando, apenas a raridade extrema que os corpusculos podem apresentar nos casos de febre amarella que ordinariamente chegam á autopsia. Tambem não realisamos uma pesquiza exhaustiva dos corpusculos em outros orgãos além do figado. O caso no qual

  18. A honey bee hexamerin, HEX 70a, is likely to play an intranuclear role in developing and mature ovarioles and testioles.

    Directory of Open Access Journals (Sweden)

    Juliana R Martins

    Full Text Available Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions.

  19. The determination of the hadron mean free path for particle-producing collisions in intranuclear matter by measurement

    International Nuclear Information System (INIS)

    Strugalski, Z.; Mousa, M.

    1987-01-01

    It is shown how it is possible to determine the hadron mean free path in > for particle-producing collisions in intranuclear matter by measurement. The mean free path for the collisions of pions inside 54 131 Xe nuclei at 3.5 GeV/c momentum has been measured. The relation between in > in units nucleons/S and the hadron-nucleon inelastic cross section σ in in units S/nucleon is found: in >k1/σ in , where S∼10 fm 2 , k=3.0±0.15; physical meaning of S is given in this paper

  20. Improvement of the spallation-reaction simulation code by considering both the high-momentum intranuclear nucleons and the preequilibrium process

    International Nuclear Information System (INIS)

    Ishibashi, K.; Miura, Y.; Sakae, T.

    1990-01-01

    In the present study, intranuclear nucleons with a high momentum are introduced into intranuclear cascade calculation, and the preequilibrium effects are considered at the end of the cascade process. The improvements made in the HETC (High Energy Transport Code) are outlined, focusing on intranuclear nucleons with a high momentum, and termination of the intranuclear cascade process. Discussion is made of the cutoff energy, and Monte Carlo calculations based on an excitation model are presented and analyzed. The experimental high energy neutrons in the backward direction are successfully reproduced. The preequilibrium effect is considered in a local manner, and this is introduced as a simple probability density function for terminating the intranuclear cascade process. The resultant neutron spectra reproduce the shoulders of the experimental data in the region of 20 to 50 MeV. The exciton model is coded with a Monte Carlo algorithm. The results of the exciton model calculation is not so appreciable except for intermediate energy neutrons in the backward direction. (N.K.)

  1. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  2. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    Science.gov (United States)

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  3. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  4. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    International Nuclear Information System (INIS)

    Au, Giang H T; Shih, Wan Y; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control. (paper)

  5. Identification of a major non-structural protein in the nuclei of Rift Valley fever virus-infected cells.

    Science.gov (United States)

    Struthers, J K; Swanepoel, R

    1982-06-01

    A non-structural protein of mol. wt. 34 X 10(3) was demonstrated in the nuclei of Rift Valley fever virus-infected Vero cells by SDS-polyacrylamide gel electro-phoresis. The protein appears to correspond to the virus-induced antigen demonstrated by indirect immunofluorescence in intranuclear inclusions.

  6. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Costello, F.; Huhtanen, M.

    1996-01-01

    Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP...

  7. A new intranuclear microsporidium, Enterospora nucleophila n. sp., causing an emaciative syndrome in a piscine host (Sparus aurata), prompts the redescription of the family Enterocytozoonidae.

    Science.gov (United States)

    Palenzuela, Oswaldo; Redondo, María José; Cali, Ann; Takvorian, Peter M; Alonso-Naveiro, María; Alvarez-Pellitero, Pilar; Sitjà-Bobadilla, Ariadna

    2014-03-01

    The presence of a new microsporidium is believed to be responsible for an emaciative syndrome observed in farmed gilthead sea bream (Sparus aurata) from different facilities along the Spanish coast. Infected fish were approximately half the average weight and significant mortality was attributed to the condition in some facilities. Clinical signs included anorexia, cachexia and pale internal organs. The microsporidium was found mainly in the intestinal mucosa and occasionally in the submucosa. Morphological, histopathological, ultrastructural and molecular phylogenetic studies were conducted to characterise this organism. This microsporidium undergoes intranuclear development in rodlet cells and enterocytes, and cytoplasmic development mainly in enterocytes and macrophages. The nucleus-infecting plasmodium contains several diplokarya and displays polysporous development which occurs without an interfacial envelope. In the host cell cytoplasm, the parasite develops within a membrane-bound matrix. In both infection locations, the polar tube precursors appear as disks, first with lucent centres, then as fully dense disks as they fuse to form the polar filament, all before division of the plasmodium into sporoblasts. Up to 16 intranuclear spores result from the sporogonic development of a single plasmodium, whereas more than 40 spores result from several asynchronous reproductive cycles in the cytoplasmic infection. Fixed spores are ellipsoidal and diplokaryotic, with five to six coils of an isofilar polar filament in a single row. ssrDNA-based molecular phylogenetic inference places this parasite as a sister clade to crustacean-infecting species of the Enterocytozoonidae and closer to Enterocytozoon bieneusi than to other fish-infecting microsporidians presenting intranuclear development, i.e. Nucleospora, Paranucleospora and Desmozoon. Our studies result in the erection of a new species, Enterospora nucleophila, within the family Enterocytozoonidae, and the

  8. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    Science.gov (United States)

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An intranuclear cascade-percolation approach for protons and light fragments production in neon-niobium reactions at 400 and 800 MeV per nucleon

    International Nuclear Information System (INIS)

    Montarou, G.; Marroncle, J.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Dupieux, P.; Fraysse, L.; Parizet, M.J.; Rahmani, A.; Brochard, F.; Gorodetzky, P.; Racca, C.; Cugnon, J.

    1992-01-01

    The results of intranuclear cascade calculations (ideal gas with two body collisions and no mean-field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments (d, t, 3 He and 4 He) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using the large solid angle detector DIOGENE. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross-sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow. For heavier nuclear fragments conclusions are not so clear. Since the cross-sections are the main ingredients of the detailed treatment of the first stage of the reaction by the intranuclear cascade, such an approach can be very fruitful in order to infer informations on effective nucleon-nucleon cross-sections. (authors). 31 refs., 23 figs., 6 tabs

  10. The Mr 30,000-33,000 major protein components of the lateral elements of synaptonemal complexes of the rat

    NARCIS (Netherlands)

    Lammers, H.

    1999-01-01

    Synaptonemal complexes (SCs) are intranuclear structures which are formed during meiotic prophase between homologous chromosomes. The SC consists of two protein-rich axes, either of which is found at the basis of one of the homologous chromosomes. These axes, called lateral elements (LEs),

  11. Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.

    Science.gov (United States)

    Chen, Jian; Guerriero, Emily; Lathrop, Kira; SundarRaj, Nirmala

    2008-01-01

    The authors' previous study showed that the expression of a Rho-associated serine/threonine kinase (ROCK) is regulated during cell cycle progression in corneal epithelial cells. The present study was conducted to determine whether and how Rho/ROCK signaling regulates cell cycle progression. Rabbit corneal epithelial cells (RCECs) in culture were arrested in the G(0) phase of the cell cycle by serum deprivation and then allowed to re-enter the cell cycle in the presence or absence of the ROCK inhibitor (Y27632) in serum-supplemented medium. The number of cells in the S phase, the relative levels of specific cyclins and CDKs and their intracellular distribution, and the relative levels of mRNAs were determined by BrdU labeling, Western blot and immunocytochemical analyses, and real-time RT-PCR, respectively. ROCK inhibition delayed the progression of G(1) to S phase and led to a decrease in the number of RCECs entering the S phase between 12 and 24 hours from 31.5% +/- 4.5% to 8.1% +/- 2.6%. During the cell cycle progression, protein and mRNA levels of cyclin-D1 and -D3 and cyclin-dependent kinases CDK4 and CDK6 were significantly lower, whereas the protein levels of the CDK inhibitor p27(Kip1) were higher in ROCK-inhibited cells. Intracellular mRNA or protein levels of cyclin-E and protein levels of CDK2 were not significantly affected, but their nuclear translocation was delayed by ROCK inhibition. ROCK signaling is involved in cell cycle progression in RCECs, possibly by upregulation of cyclin-D1 and -D3 and CDK4, -6, and -2; nuclear translocation of CDK2 and cyclin-E; and downregulation of p27(Kip1).

  12. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  13. Improvement of one-nucleon removal and total reaction cross sections in the Liège intranuclear-cascade model using Hartree-Fock-Bogoliubov calculations

    Science.gov (United States)

    Rodríguez-Sánchez, Jose Luis; David, Jean-Christophe; Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; Leray, Sylvie

    2017-11-01

    The prediction of one-nucleon-removal cross sections by the Liège intranuclear-cascade model has been improved using a refined description of the matter and energy densities in the nuclear surface. Hartree-Fock-Bogoliubov calculations with the Skyrme interaction are used to obtain a more realistic description of the radial-density distributions of protons and neutrons, as well as the excitation-energy uncorrelation at the nuclear surface due to quantum effects and short-range correlations. The results are compared with experimental data covering a large range of nuclei, from carbon to uranium, and projectile kinetic energies. We find that the new approach is in good agreement with experimental data of one-nucleon-removal cross sections covering a broad range in nuclei and energies. The new ingredients also improve the description of total reaction cross sections induced by protons at low energies, the production cross sections of heaviest residues close to the projectile, and the triple-differential cross sections for one-proton removal. However, other observables such as quadruple-differential cross sections of coincident protons do not present any sizable sensitivity to the new approach. Finally, the model is also tested for light-ion-induced reactions. It is shown that the new parameters can give a reasonable description of the nucleus-nucleus total reaction cross sections at high energies.

  14. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    International Nuclear Information System (INIS)

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-01-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model

  15. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    Science.gov (United States)

    Huang, Hongbiao; Liu, Ningning; Guo, Haiping; Liao, Siyan; Li, Xiaofen; Yang, Changshan; Liu, Shouting; Song, Wenbin; Liu, Chunjiao; Guan, Lixia; Li, Bing; Xu, Li; Zhang, Change; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2012-01-01

    L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21(cip1) gene, mRNA and protein in cancer cells but not p27(kip1); (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1) gene but not p27(kip1) detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  16. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  17. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer.

    Science.gov (United States)

    Lee, Jeong-Yeon; Jang, Ki-Seok; Shin, Dong-Hui; Oh, Mi-Yun; Kim, Hyun-Jun; Kim, Yongseok; Kong, Gu

    2008-06-01

    Mel-18, a polycomb group (PcG) protein, has been suggested as a tumor suppressor in human breast cancer. Previously, we reported that Mel-18 has antiproliferative activity in breast cancer cells. However, its functional mechanism has not been fully elucidated. Here, we investigated the role of Mel-18 in human breast cancer. We saw an inverse correlation between Mel-18 and phospho-Akt, which were expressed at low and high levels, respectively, in primary breast tumor tissues from 40 breast cancer patients. The effect of Mel-18 on cell growth was examined in two breast cancer cell lines, SK-BR-3 and T-47D, which express relatively low and high levels of endogenous Mel-18, respectively. On Mel-18 overexpression in SK-BR-3 cells, cell growth was attenuated and G(1) arrest was observed. Likewise, suppression of Mel-18 by antisense expression in T-47D cells led to enhanced cell growth and accelerated G(1)-S phase transition. In these cells, cyclin-dependent kinase (Cdk)-4 and Cdk2 activities were affected by Mel-18, which were mediated by changes in cyclin D1 expression and p27(Kip1) phosphorylation at Thr(157), but not by INK4a/ARF genes. The changes were both dependent on the phosphatidylinositol 3-kinase/Akt signaling pathway. Akt phosphorylation at Ser(473) was reduced by Mel-18 overexpression in SK-BR-3 cells and enhanced by Mel-18 suppression in T-47D cells. Akt-mediated cytoplasmic localization of p27(Kip1) was inhibited by Mel-18 in SK-BR-3 cells. Moreover, Mel-18 overexpression showed reduced glycogen synthase kinase-3beta phosphorylation, beta-catenin nuclear localization, T-cell factor/lymphoid enhancer factor promoter activity, and cyclin D1 mRNA level. Taken together, we established a linear relationship between Mel-18-->Akt-->G(1) phase regulators.

  18. Detection of intranuclear forces by the use of laser optics during the recovery process of elongated interphase nuclei in centrifuged protonemal cells of Adiantum capillus-veneris

    International Nuclear Information System (INIS)

    Wunsch, C.; Kurachi, M.; Kikumoto, M.; Tashiro, H.; Wada, M.

    1998-01-01

    For the direct investigation of intranuclear dynamics in living cells, extremely deformed nuclei of basipetally centrifuged protonemal cells of the fern Adiantum capillusveneris were manipulated by the laser rap and the laser scalpel. Whereas the nucleolus was tightly fixed at the central position inside the non-centrifuged nucleus and proved to be immovable by the optical trap, it could easily be trapped and moved towards three directions inside the bubble-like terminal widening of the basal thread-like extension of centrifuged nuclei. Due to the connection of the nucleolus to the chromatin inside the nuclear thread (NT), moving was not possible against the direction of the nuclear apical main body. Nucleoli in recovered nuclei were again immovable, thus indicating the presence of a dynamic nucleolar anchoring system inside the nucleus. When the nucleolus in the bubble was arrested during the thread shortening process by the optical trap, the acropetal movement of the bubble continued. Probably dye to dragging forces, some nucleoli became stretched, and a thick strand of a still unknown composition stretched between the nucleolus and the insertion site of the shortening NT. To assess whether the shrinking of the nuclear envelop (NE) and the shortening of the chromatin inside the NT were independent processes, the chromatin above the bubble was cut inside the Nt by the laser scalpel. After severance, a gap between the nucleolus and the end of the chromatin strand in the NT indicated the shortening of the chromatin inside the Nt. From these findings it was concluded that a shortening force was existing in the chromatin of the NT and that probably no physical link existed between the chromatin and the NE

  19. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    Science.gov (United States)

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  20. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation

    Directory of Open Access Journals (Sweden)

    Jeremy M. Henley

    2012-05-01

    Full Text Available Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.

  1. Development of a quantitative PCR for rapid and sensitive diagnosis of an intranuclear coccidian parasite in Testudines (TINC), and detection in the critically endangered Arakan forest turtle (Heosemys depressa).

    Science.gov (United States)

    Alvarez, W Alexander; Gibbons, Paul M; Rivera, Sam; Archer, Linda L; Childress, April L; Wellehan, James F X

    2013-03-31

    The intranuclear coccidian parasite of Testudines (TINC) is responsible for significant disease in turtles and tortoises causing high mortality and affecting several threatened species. Diagnostic testing has been limited to relatively labor intensive and expensive pan-coccidial PCR and sequencing techniques. A qPCR assay targeting a specific and conserved region of TINC 18S rRNA was designed. The qPCR reaction was run on samples known to be TINC positive and the results were consistent and analytically specific. The assay was able to detect as little as 10 copies of target DNA in a sample. Testing of soil and invertebrates was negative and did not provide any further insights into life cycles. This assay was used to identify TINC in a novel host species, the critically endangered Arakan forest turtle (Heosemys depressa). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  3. Alterações dos folículos pilo-sebáceos em um caso de sindromo bolhoso do grupo pênfigo: presença de inclusões intranucleares das doenças por virus filtraveis

    Directory of Open Access Journals (Sweden)

    Carlos Gatti

    1947-12-01

    Full Text Available Tendo a oportunidade de estudar fragmentos de pele retirados de diversas regiões, algumas providas de abundante revestimento capilar, em um caso de autopsia de doente com sindromo bolhoso do grupo pênfigo, chamaram a nossa atenção as alterações histologicas dos folículos pilo-sebaceso, sôbre as quais não encontramos referencia especial na literatura que nos foi dado consultar.Several skin fragments were available for histological study some of them from hairy regions in a case of pemphigus vulgaris observed in Asunción, Paraguay, which came to autopsy. The lesions on the skin are similar to those described in "fogo selvagem", a subtype of pemphigus which is endemic and sometimes epidemic in South America. The hair follicle shows hyperplasia of the outer sheath (acanthosis, acantholysis, dyskeratosis as well as necrosis of epithelial cells, dilatation of its mouth, loosening and loos of the hair. The first changes mentioned are more or less similar to those described in the epidermis. The striking finding, however, is the presence in some of them of intranuclear inclusion bodies in most cells of the outer sheath. The enlarged nuclei show thickening of the nuclear membrane and condensation of most intranuclear structures in acidophilic corpuscles of irregular shape, sometimes single, other times multiple, always separated from the nuclear membrane by a clear space apparently deprived of structure. Remaining portions of the linin reticulum are sometimes recognised besides the inclusion bodies. Minute granules suggestive of elementary corpuscles appear scattered in other nuclei faintly blue stained (advanced stages of the intranuclear inclusion bodies?. Intranuclear inclusion bodies could be demonstrated also in the epithelial cells of sebaceous glands which presented changes similar to those found in the hair follicles, but never in the cells of the epidermis. The histological changes in the epidermis however were quite similar to those

  4. Intranuclear cascade evaporation model predictions of double differential A(p,xn) neutron cross sections and comparison with experiments at 318 MeV and 800 MeV proton energy

    International Nuclear Information System (INIS)

    Cloth, P.; Dragovitsch, P.; Filges, D.; Reul, C.

    1989-08-01

    The intranuclear-cascade evaporation model as implemented in the high energy radiation transport code HETC, subsystem of HERMES is used in the calculation of double differential cross sections of proton induced neutron production. The investigations were done on target elements C, Al, Ta, Ni, W, Pb, and U at 318 MeV incident proton energy and on C, Al, Pb, and U at 800 MeV, respectively. The predictions of the INCE model were compared with experimental data for double differential cross sections taken at 7.5 and 30 degrees scattering angles at the Los Alamos WNR facility utilizing the Time of Flight technique at LANL. The calculations performed here are part of a experimental-theoretical program within the LANL-KFA collaboration concerning medium energy cross section measurements mainly neutrons and state of the art computer code validations of these measurements. In general, the model predictions reproduce the correct neutron production for evaporation neutrons and are also in good agreement with the experimental data at high neutron energies. In the energy range dominated by preequilibrium processes an underestimation of experimental yields has to be remarked. (orig.)

  5. Sphingosine kinase 1 is required for mesothelioma cell proliferation: role of histone acetylation.

    Directory of Open Access Journals (Sweden)

    Satish Kalari

    Full Text Available Malignant pleural mesothelioma (MPM is a devastating disease with an overall poor prognosis. Despite the recent advances in targeted molecular therapies, there is a clear and urgent need for the identification of novel mesothelioma targets for the development of highly efficacious therapeutics.In this study, we report that the expression of Sphingosine Kinase 1 (SphK1 protein was preferentially elevated in MPM tumor tissues (49 epithelioid and 13 sarcomatoid compared to normal tissue (n = 13. In addition, we also observed significantly elevated levels of SphK1 and SphK2 mRNA and SphK1 protein expression in MPM cell lines such as H2691, H513 and H2461 compared to the non-malignant mesothelial Met5 cells. The underlying mechanism appears to be mediated by SphK1 induced upregulation of select gene transcription programs such as that of CBP/p300 and PCAF, two histone acetyl transferases (HAT, and the down regulation of cell cycle dependent kinase inhibitor genes such as p27Kip1 and p21Cip1. In addition, using immunoprecipitates of anti-acetylated histone antibody from SphK inhibitor, SphK-I2 treated Met5A and H2691 cell lysates, we also showed activation of other cell proliferation related genes, such as Top2A (DNA replication, AKB (chromosome remodeling and mitotic spindle formation, and suppression of p21 CIP1 and p27KIP1. The CDK2, HAT1 and MYST2 were, however, unaffected in the above study. Using SphK inhibitor and specific siRNA targeting either SphK1 or SphK2, we also unequivocally established that SphK1, but not SphK2, promotes H2691 mesothelioma cell proliferation. Using a multi-walled carbon nanotubes induced peritoneal mesothelioma mouse model, we showed that the SphK1-/- null mice exhibited significantly less inflammation and granulamatous nodules compared to their wild type counterparts.The lipid kinase SphK1 plays a positive and essential role in the growth and development of malignant mesothelioma and is therefore a likely

  6. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Carpano, Marina; Perona, Marina; Thomasz, Lisa; Juvenal, Guillermo J.; Pisarev, Mario; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10 B to capture thermal neutrons leading to the production of 4 He and 7 Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10 B) + neutrons; 2) BOPP (10 ppm 10 B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 10 9 n/cm 2 sec) or with 60 Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10 BPA or 10 BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  7. Data on the association of the nuclear envelope protein Sun1 with nucleoli.

    Science.gov (United States)

    Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula

    2017-08-01

    SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.

  8. Localization in the Nucleolus and Coiled Bodies of Protein Subunits of the Ribonucleoprotein Ribonuclease P

    Science.gov (United States)

    Jarrous, Nayef; Wolenski, Joseph S.; Wesolowski, Donna; Lee, Christopher; Altman, Sidney

    1999-01-01

    The precise location of the tRNA processing ribonucleoprotein ribonuclease P (RNase P) and the mechanism of its intranuclear distribution have not been completely delineated. We show that three protein subunits of human RNase P (Rpp), Rpp14, Rpp29 and Rpp38, are found in the nucleolus and that each can localize a reporter protein to nucleoli of cells in tissue culture. In contrast to Rpp38, which is uniformly distributed in nucleoli, Rpp14 and Rpp29 are confined to the dense fibrillar component. Rpp29 and Rpp38 possess functional, yet distinct domains required for subnucleolar localization. The subunit Rpp14 lacks such a domain and appears to be dependent on a piggyback process to reach the nucleolus. Biochemical analysis suggests that catalytically active RNase P exists in the nucleolus. We also provide evidence that Rpp29 and Rpp38 reside in coiled bodies, organelles that are implicated in the biogenesis of several other small nuclear ribonucleoproteins required for processing of precursor mRNA. Because some protein subunits of RNase P are shared by the ribosomal RNA processing ribonucleoprotein RNase MRP, these two evolutionary related holoenzymes may share common intranuclear localization and assembly pathways to coordinate the processing of tRNA and rRNA precursors. PMID:10444065

  9. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    2010-12-01

    Full Text Available Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by

  10. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  11. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  12. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    Science.gov (United States)

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  13. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen Min; Mikecz, Anna von

    2005-01-01

    Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO 2 ) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO 2 nanoparticles trigger a subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology

  14. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Henkels, Karen M.; Short, Stephen; Peng, Hong-Juan; Fulvio, Mauricio Di; Gomez-Cambronero, Julian

    2009-01-01

    Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27 KIP1 and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y→F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y 179 and Y 511 .

  15. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  16. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  17. Dual roles for CoAA and its counterbalancing isoform CoAM in human kidney cell tumorigenesis

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y.; Tsai, Ming-Jer; W. O’Malley, Bert

    2008-01-01

    Co-Activator Activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein we show that CoAA is a dual-function coregulator that inhibits G1/S transition in human kidney cells and suppresses anchorage independent growth and xenograft tumor formation. Suppression occurs in part by downregulating c-myc and its downstream effectors ccnd1 and skp2, and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene, c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, Coactivator Modulator (CoAM), antagonizes CoAA-induced G1/S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma as compared to normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice-isoform. This is so far the only example of a nuclear receptor coregulator involved in suppression of kidney cancer, and suggests potentially significant new roles for coregulators in renal cancer biology. PMID:18829545

  18. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    International Nuclear Information System (INIS)

    Chen, C.; Yang, R.L.

    2013-01-01

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27 KIP1 protein and p21 CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21 CIP1 , p16 INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer

  19. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

    Directory of Open Access Journals (Sweden)

    Youn-Bok Lee

    2013-12-01

    Full Text Available The GGGGCC (G4C2 intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.

  20. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  1. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  2. Immunoprecipitation of Tri-methylated Capped RNA.

    Science.gov (United States)

    Hayes, Karen E; Barr, Jamie A; Xie, Mingyi; Steitz, Joan A; Martinez, Ivan

    2018-02-05

    Cellular quiescence (also known as G 0 arrest) is characterized by reduced DNA replication, increased autophagy, and increased expression of cyclin-dependent kinase p27 Kip1 . Quiescence is essential for wound healing, organ regeneration, and preventing neoplasia. Previous findings indicate that microRNAs (miRNAs) play an important role in regulating cellular quiescence. Our recent publication demonstrated the existence of an alternative miRNA biogenesis pathway in primary human foreskin fibroblast (HFF) cells during quiescence. Indeed, we have identified a group of pri-miRNAs (whose mature miRNAs were found induced during quiescence) modified with a 2,2,7-trimethylguanosine (TMG)-cap by the trimethylguanosine synthase 1 (TGS1) protein and transported to the cytoplasm by the Exportin-1 (XPO1) protein. We used an antibody against (TMG)-caps (which does not cross-react with the (m 7 G)-caps that most pri-miRNAs or mRNAs contain [Luhrmann et al ., 1982]) to perform RNA immunoprecipitations from total RNA extracts of proliferating or quiescent HFFs. The novelty of this assay is the specific isolation of pri-miRNAs as well as other non-coding RNAs containing a TMG-cap modification.

  3. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    DEFF Research Database (Denmark)

    Gallina, Irene; Colding, Camilla Skettrup; Henriksen, Peter

    2015-01-01

    DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1-together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25...... other proteins-define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression...... propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins....

  4. Antitumor Effects of Flavopiridol on Human Uterine Leiomyoma In Vitro and in a Xenograft Model

    Science.gov (United States)

    Lee, Hyun-Gyo; Baek, Jong-Woo; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do; Park, Won-Jin; Chung, Rosa; Choi, Eun-Som; Lee, Gun-Ho

    2014-01-01

    Dysregulated cyclin-dependent kinases (CDKs) are considered a potential target for cancer therapy. Flavopiridol is a potent CDK inhibitor. In this study, the antiproliferative effect of the flavonoid compound flavopiridol and its mechanism in human uterine leiomyoma cells were investigated. The present study focused on the effect of flavopiridol in cell proliferation and cell cycle progression in primary cultured human uterine leiomyoma cells. Cell viability and cell proliferation assays were conducted. Flow cytometry was performed to determine the effect of flavopiridol on cell cycle. The expression of cell cycle regulatory-related proteins was evaluated by Western blotting. Cell viability and proliferation of uterine leiomyoma cells were significantly reduced by flavopiridol treatment in a dose-dependent manner. Flow cytometry results showed that flavopiridol induced G1 phase arrest. Flavopiridol-induced growth inhibition in uterine leiomyoma cells was associated with increased expression of p21cip/wafl and p27kip1 in a dose-dependent manner. Downregulation of CDK2/4 and Cyclin A with a concomitant increase in dephosphorylation of retinoblastoma was observed. This study demonstrates that flavopiridol inhibits cell proliferation by initiating G1 cell cycle arrest in human uterine leiomyoma. We also found that flavopiridol is effective in inhibiting xenografted human uterine leiomyoma growth. These results indicate that flavopiridol could prove to be a promising chemopreventive and therapeutic agent for human uterine leiomyoma. PMID:24572052

  5. Global Identification of New Substrates for the Yeast Endoribonuclease, RNase Mitochondrial RNA Processing (MRP)*

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.

    2012-01-01

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255

  6. Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations

    Directory of Open Access Journals (Sweden)

    Ludovica Ciuffreda

    2009-08-01

    Full Text Available The Raf/MEK/ERK pathway is an importantmediator of tumor cell proliferation and angiogenesis. Here, weinvestigated the growth-inhibitory and antiangiogenic properties of PD0325901, a novel MEK inhibitor, in human melanoma cells. PD0325901 effects were determined in a panel of melanoma cell lines with different genetic aberrations. PD0325901 markedly inhibited ERK phosphorylation and growth of both BRAF mutant and wild-type melanoma cell lines, with IC50 in the nanomolar range even in the least responsive models. Growth inhibition was observed both in vitro and in vivo in xenograft models, regardless of BRAF mutation status, and was due to G1-phase cell cycle arrest and subsequent induction of apoptosis. Cell cycle (cyclin D1, c-Myc, and p27KIP1 and apoptosis (Bcl-2 and survivin regulators were modulated by PD0325901 at the protein level. Gene expression profiling revealed profound modulation of several genes involved in the negative control of MAPK signaling and melanoma cell differentiation, suggesting alternative, potentially relevant mechanisms of action. Finally, PD0325901 inhibited the production of the proangiogenic factors vascular endothelial growth factor and interleukin 8 at a transcriptional level. In conclusion, PD0325901 exerts potent growth-inhibitory, proapoptotic, and antiangiogenic activity in melanoma lines, regardless of their BRAF mutation status. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective treatment strategies for patients experiencing malignant melanoma.

  7. Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function

    Directory of Open Access Journals (Sweden)

    Fero Matthew

    2011-10-01

    Full Text Available Abstract Background The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor p27Kip1 (p27 or Cdkn1b in the adult mouse and determined the outcome on retinal structure and function. Results p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal. Conclusion The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.

  8. Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells.

    Science.gov (United States)

    Petrilli, Alejandra M; Garcia, Jeanine; Bott, Marga; Klingeman Plati, Stephani; Dinh, Christine T; Bracho, Olena R; Yan, Denise; Zou, Bing; Mittal, Rahul; Telischi, Fred F; Liu, Xue-Zhong; Chang, Long-Sheng; Welling, D Bradley; Copik, Alicja J; Fernández-Valle, Cristina

    2017-05-09

    Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation.

  9. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation.

    Science.gov (United States)

    Palacios, F; Abreu, C; Prieto, D; Morande, P; Ruiz, S; Fernández-Calero, T; Naya, H; Libisch, G; Robello, C; Landoni, A I; Gabus, R; Dighiero, G; Oppezzo, P

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal B cells arrested in G0/G1 stages that coexist, in different proportions, with proliferative B cells. Understanding the crosstalk between the proliferative subsets and their milieu could provide clues on CLL biology. We previously identified one of these subpopulations in the peripheral blood from unmutated patients that appears to be a hallmark of a progressive disease. Aiming to characterize the molecular mechanism underlying this proliferative behavior, we performed gene expression analysis comparing the global mRNA and microRNA expression of this leukemic subpopulation, and compared it with their quiescent counterparts. Our results suggest that proliferation of this fraction depend on microRNA-22 overexpression that induces phosphatase and tensin homolog downregulation and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. Transfection experiments demonstrated that miR-22 overexpression in CLL B cells switches on PI3K/AKT, leading to downregulation of p27(-Kip1) and overexpression of Survivin and Ki-67 proteins. We also demonstrated that this pathway could be triggered by microenvironment signals like CD40 ligand/interleukin-4 and, more importantly, that this regulatory loop is also present in lymph nodes from progressive unmutated patients. Altogether, these results underline the key role of PI3K/AKT pathway in the generation of the CLL proliferative pool and provide additional rationale for the usage of PI3K inhibitors.

  10. Whether to target single or multiple CDKs for therapy? That is the question.

    Science.gov (United States)

    Węsierska-Gądek, Józefa; Maurer, Margarita; Zulehner, Nora; Komina, Oxana

    2011-02-01

    Complexes consisting of cyclin-dependent kinases (CDKs) and their regulatory subunits (the cyclins) control the progression of normal mammalian cells through the cell cycle. However, during malignant transformation this regulatory apparatus malfunctions, allowing cells to undergo unchecked proliferation. In many cases, the high mitotic potential of malignant cells is due to the constitutive activation of CDK-cyclin complexes, facilitated by the inactivation of cellular CDK inhibitors, such as p16(INK4A) or p27(Kip1), and the loss of functional tumor suppressors, such as the p53 and pRb proteins. It has recently been suggested that pharmacological intervention based on remedying the deficiency or loss of activity of these negative regulators of the cell cycle could be a very effective therapeutic option in the treatment of cancer. Multiple CDK inhibitors have been synthesized over the last two decades, spanning at least five classes of compounds. While these inhibitors can be classified on the basis of their chemical structure, it may be more interesting to categorize them according to their pharmacological nature, as broad-spectrum unspecific, pan-specific, or very selective antagonists. This review offers a critical assessment of the advantages and disadvantages of both pan-specific and highly selective CDK inhibitors in therapy. © 2010 Wiley-Liss, Inc.

  11. Cycle inhibiting factors (CIFs are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Grégory Jubelin

    Full Text Available The cycle inhibiting factor (Cif produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1 and G(2 cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs p21(waf1/cip1 and p27(kip1 and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.

  12. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells

    Science.gov (United States)

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of CDK inhibitors (CDKI) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF-2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells FGF-2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15INK4B and p27KIP1, become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration. PMID:25447026

  13. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  14. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    Science.gov (United States)

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  15. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells.

    Science.gov (United States)

    Hashimoto, Takashi; He, Zhiwei; Ma, Wei-Ya; Schmid, Patricia C; Bode, Ann M; Yang, Chung S; Dong, Zigang

    2004-05-01

    Caffeine is a major biologically active constituent in coffee and tea. Because caffeine has been reported to inhibit carcinogenesis in UVB-exposed mice, the cancer-preventing effect of caffeine has attracted considerable attention. In the present study, the effect of caffeine in quiescent (G0 phase) cells was investigated. Pretreatment with caffeine suppressed cell proliferation in a dose-dependent manner 36 h after addition of fetal bovine serum as a cell growth stimulator. Analysis by flow cytometry showed that caffeine suppressed cell cycle progression at the G0/G1 phase, i.e., 18 h after addition of fetal bovine serum, the percentages of cells in G0/G1 phase in 1 mM caffeine-treated cells and in caffeine-untreated cells were 61.7 and 29.0, respectively. The percentage of cells in G0/G1 phase at 0 h was 75.5. Caffeine inhibited phosphorylation of retinoblastoma protein at Ser780 and Ser807/Ser811, the sites where retinoblastoma protein has been reported to be phosphorylated by cyclin-dependent kinase 4 (cdk4). Furthermore, caffeine inhibited the activation of the cyclin D1-cdk4 complex in a dose-dependent manner. However this compound did not directly inhibit the activity of this complex. In addition, caffeine did not affect p16INK4 or p27Kip1 protein levels, but inhibited the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3beta. Our results showed that caffeine suppressed the progression of quiescent cells into the cell cycle. The inhibitory mechanism may be due to the inhibition of cell growth signal-induced activation of cdk4, which may be involved in the inhibition of carcinogenesis in vivo.

  16. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  17. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats

    International Nuclear Information System (INIS)

    Tsuchiya, Takuma; Wang, Liyun; Yafune, Atsunori; Kimura, Masayuki; Ohishi, Takumi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16 Ink4a following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P + liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P + foci, checkpoint proteins at G 1 /S (p21 Cip1 , p27 Kip1 and p16 Ink4a ) and G 2 /M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P + foci was either increased or decreased with proteins related to G 2 -M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16 Ink4a typically downregulated in GST-P + foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G 1 /S and G 2 /M proteins, which allows for clonal selection of GST-P + foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P + foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16 Ink4a -downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

  18. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer.

    Science.gov (United States)

    Jusu, Sylvester; Presley, John F; Williams, Chris; Das, Sanjoy Kumar; Jean-Claude, Bertrand; Kremer, Richard

    2018-03-01

    Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy. Copyright © 2018 Endocrine Society.

  19. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  20. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state.

    Science.gov (United States)

    Zenzmaier, Christoph; Hermann, Martin; Hengster, Paul; Berger, Peter

    2012-01-01

    Pancreatic cancer (PaCa) is the fourth leading cause of cancer deaths in Western societies, with pancreatic ductal adenocarcinomas (PDACs) accounting for >90% of such cases. PDAC is a heterogeneous disease that includes a subset showing overexpression of the secreted glycoprotein Dickkopf-related protein 3 (Dkk-3), a protein shown to be downregulated in various cancers of different tissues. The biological function of Dkk-3 in this subset was studied using the Dkk-3 expressing PANC-1 cell line as a model for PDACs. The influence of Dkk-3 overexpression and knockdown on cellular differentiation and proliferation of PANC-1 was investigated. Confocal microscopy showed that Dkk-3 was expressed in a fraction of PANC-1 cells. While lentiviral-mediated overexpression of DKK3 did not alter cellular proliferation, knockdown of DKK3 resulted in significant reduction of cellular proliferation and concomitant induction of cell cycle inhibitors CDKN2B (p15INK4b), CDKN1A (p21CIP1) and CDKN1B (p27KIP1). In parallel, pancreatic epithelial cell differentiation markers AMY2A, CELA1, CTRB1, GCG, GLB1 and INS were significantly upregulated. PANC-1 cells differentiated using exendin-4 showed analogous induction of cell cycle inhibitors and differentiation markers. Thus, we conclude that Dkk-3 is required to maintain a highly dedifferentiated and consequently proliferative state in PANC-1, indicating a similar function in the Dkk-3 overexpressing subset of PDACs. Therefore, Dkk-3 represents a potential target for the treatment of Dkk-3-positive subtypes of PaCa to drive cells into cell cycle arrest and differentiation.

  1. Radiosensitivity of prostatic cell lines: bicalutamide effect (Casodex), micro-RNAs actions

    International Nuclear Information System (INIS)

    Quero, J.L.

    2011-10-01

    The first aim of our study was to evaluate the effect of the association between bicalutamide, an androgen receptor inhibitor, and ionizing radiation in three prostate cancer cell lines. The second aim was to examine a possible correlation between the expression of miR-210 or miR-373, the tolerance to hypoxia tolerance and the responses to radiation.We found that bicalutamide produced cytostatic and cytotoxic effects in the androgen receptor- positive LNCaP cell line. The androgen receptor-negative DU145 and PC3 cell lines were more resistant to bicalutamide. However, these cell lines were affected by high bicalutamide concentration with the same endpoints as for LNCaP cells. The inhibition of proliferation by bicalutamide was associated with G1 cell cycle phase arrest, increased expression of p27KIP1 protein, and decreased expression of HER2 protein. Last but not least, bicalutamide elicited a marked radioprotective effect in LNCaP cells when associated with concomitant irradiation. This result suggests that bicalutamide and radiotherapy should not be delivered in close temporal proximity, especially in case of hypo-fractionated radiotherapy protocols.Hypoxia is a well known radioresistance factor in tumors and is associated with a bad prognosis in prostate cancer. In this study, we found that hypoxia promotes the expression of HIF-1α, CA9, VEGF and miR-210 but not miR-373 in prostate cancer cell lines irrespective of their androgen receptor status.Our findings suggest that miR-210 expression is correlated with resistance to hypoxia and could be used as a prognostic marker in prostate cancer. Conversely, miR-210 inhibition did not impact the radiation susceptibility of PC3 prostate cancer cell line under hypoxia. (author)

  2. The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca2+-dependent pathway(s)

    International Nuclear Information System (INIS)

    Manzati, Elisa; Aguiari, Gianluca; Banzi, Manuela; Manzati, Michele; Selvatici, Rita; Falzarano, Sofia; Maestri, Iva; Pinton, Paolo; Rizzuto, Rosario; Senno, Laura del

    2005-01-01

    Polycystin-1 (PC1) is a large transmembrane protein important in renal differentiation and defective in most cases of autosomal dominant polycystic kidney disease (ADPKD), a common cause of renal failure in adults. Although the genetic basis of ADPKD has been elucidated, molecular and cellular mechanisms responsible for the dysregulation of epithelial cell growth in ADPKD cysts are still not well defined. We approached this issue by investigating the role of the carboxyl cytoplasmic domain of PC1 involved in signal transduction on the control of kidney cell proliferation. Therefore, we generated human HEK293 cells stably expressing the PC1 cytoplasmic tail as a membrane targeted TrkA-PC1 chimeric receptor protein (TrkPC1). We found that TrkPC1 increased cell proliferation through an increase in cytoplasmic Ca 2+ levels and activation of PKCα, thereby upregulating D1 and D3 cyclin, downregulating p21 waf1 and p27 kip1 cyclin inhibitors, and thus inducing cell cycle progression from G0/G1 to the S phase. Interestingly, TrkPC1-dependent Ca 2+ increase and PKCα activation are not constitutive, but require serum factor(s) as parallel component. In agreement with this observation, a significant increase in ERK1/2 phosphorylation was observed. Consistently, inhibitors specifically blocking either PKCα or ERK1/2 prevented the TrkPC1-dependent proliferation increase. NGF, the TrkA ligand, blocked this increase. We propose that in kidney epithelial cells the overexpression of PC1 C-terminus upregulates serum-evoked intracellular Ca 2+ by counteracting the growth-suppression activity of endogenous PC1 and leading to an increase in cell proliferation

  3. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats.

    Directory of Open Access Journals (Sweden)

    Muriel Thomas

    Full Text Available Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8 and p27(Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.

  4. ANGPTL3 is a novel biomarker as it activates ERK/MAPK pathway in oral cancer

    International Nuclear Information System (INIS)

    Koyama, Tomoyoshi; Ogawara, Katsunori; Kasamatsu, Atsushi; Okamoto, Atsushi; Kasama, Hiroki; Minakawa, Yasuyuki; Shimada, Ken; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Angiopoietin-like 3 (ANGPTL3), which is involved in new blood vessel growth and stimulation of mitogen-activated protein kinase (MAPK), is expressed aberrantly in several types of human cancers. However, little is known about the relevance of ANGPTL3 in the behavior of oral squamous cell carcinoma (OSCC). In this study, we evaluated ANGPTL3 mRNA and protein in OSCC-derived cell lines (n = 8) and primary OSCCs (n = 109) and assessed the effect of ANGPTL3 on the biology and function of OSCCs in vitro and in vivo. Significant (P < 0.05) ANGPTL3 upregulation was detected in the cell lines and most primary OSCCs (60%) compared with the normal counterparts. The ANGPTL3 expression level was correlated closely (P < 0.05) with tumoral size. In patients with T3/T4 tumors, the overall survival rate with an ANGPTL3-positive tumor was significantly (P < 0.05) lower than that of ANGPTL3-negative cases. In vitro, cellular growth in ANGPTL3 knockdown cells significantly (P < 0.05) decreased with inactivated extracellular regulated kinase (ERK) and cell-cycle arrest at the G1 phase resulting from upregulation of the cyclin-dependent kinase inhibitors, including p21 Cip1 and p27 Kip1 . We also observed a marked (P < 0.05) reduction in the growth in ANGPTL3 knockdown-cell xenografts with decreased levels of phosphorylated ERK relative to control-cell xenografts. The current data indicated that ANGPTL3 may play a role in OSCCs via MAPK signaling cascades, making it a potentially useful diagnostic/therapeutic target for use in patients with OSCC

  5. An integrated protein localization and interaction map for Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anindya; Kopperud, Kristin; Anderson, Gavin; Martin, Kathleen; Goodin, Michael

    2010-01-01

    The genome of Potato yellow dwarf virus (PYDV; Nucleorhabdovirus type species) was determined to be 12,875 nucleotides (nt). The antigenome is organized into seven open reading frames (ORFs) ordered 3'-N-X-P-Y-M-G-L-5', which likely encode the nucleocapsid, phospho, movement, matrix, glyco and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. The ORFs are flanked by a 3' leader RNA of 149 nt and a 5' trailer RNA of 97 nt, and are separated by conserved intergenic junctions. Phylogenetic analyses indicated that PYDV is closely related to other leafhopper-transmitted rhabdoviruses. Functional protein assays were used to determine the subcellular localization of PYDV proteins. Surprisingly, the M protein was able to induce the intranuclear accumulation of the inner nuclear membrane in the absence of any other viral protein. Finally, bimolecular fluorescence complementation was used to generate the most comprehensive protein interaction map for a plant-adapted rhabdovirus to date.

  6. The Bmi-1 helix–turn and ring finger domains are required for Bmi-1 antagonism of (–) epigallocatechin-3-gallate suppression of skin cancer cell survival

    Science.gov (United States)

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M.; Han, Bingshe; Xu, Wen; Eckert, Richard L.

    2016-01-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (–) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21Cip1 and p27Kip1 expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix–turn–helix–turn–helix–turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. PMID:25843776

  7. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    Science.gov (United States)

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  8. Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection.

    Directory of Open Access Journals (Sweden)

    Marise Pinheiro Nunes

    Full Text Available BACKGROUND: The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4(+ T cells. Our data show that cross-linking of CD3 on naïve CD4(+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27(kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4(+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4(+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Tc Muc mediates inhibitory efects on CD4(+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs on CD4(+ T cells, which may allow the parasite to modulate the immune system.

  9. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.

    Science.gov (United States)

    Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae

    2009-08-01

    It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.

  10. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-11-01

    The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7fold and DNA-binding activity increasing by 1.3-2.9fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5fold in the turtle liver under anoxia. The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013.

  11. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Andrew Parker

    2015-12-01

    Full Text Available Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182 in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  12. Endogenous testosterone attenuates neointima formation after moderate coronary balloon injury in male swine.

    Science.gov (United States)

    Tharp, Darla L; Masseau, Isabelle; Ivey, Jan; Ganjam, Venkataseshu K; Bowles, Douglas K

    2009-04-01

    Previous studies from our laboratory have demonstrated that testosterone increases coronary smooth muscle protein kinase C delta (PKC delta) both in vivo and in vitro and inhibits coronary smooth muscle proliferation by inducing G(0)/G(1) cell cycle arrest in a PKC delta-dependent manner. The purpose of the present study was to determine whether endogenous testosterone limits coronary neointima (NI) formation in a porcine model of post-angioplasty restenosis. Sexually mature, male Yucatan miniature swine were either left intact (IM), castrated (CM), or castrated with testosterone replacement (CMT; Androgel, 10 mg/day). Angioplasty was performed in both the left anterior descending and left circumflex coronary arteries with balloon catheter overinflation to induce either moderate (1.25-1.3 x diameter; 3 x 30 s) or severe (1.4x diameter; 3 x 30 s) injury, and animals were allowed to recover for either 10 or 28 days. Injured coronary sections were dissected, fixed, stained (Verheoff-Van Gieson, Ki67, PKC delta, p27), and analysed. Vessels without internal elastic laminal rupture were excluded. Following moderate injury, intimal area, intima-to-media ratio (I/M), and I/M normalized to rupture index (RI) were increased in CM compared with IM and CMT. RI, medial area, and intimal/medial thickness (IMT) were not different between groups. NI formation was inversely related to serum testosterone concentration. Conversely, following severe injury, there were no significant differences between the groups. Testosterone inhibited proliferation and stimulated PKC delta and p27(kip1) expression during NI formation (10 days post-injury). These findings demonstrate that endogenous testosterone limits coronary NI formation in male swine and provides support for a protective role for testosterone in coronary vasculoproliferative diseases, such as restenosis and atherosclerosis.

  13. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Directory of Open Access Journals (Sweden)

    Marie-Laure Plissonnier

    Full Text Available Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ. Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines.Using RT4 (derived from a well differentiated grade I papillary tumor and T24 (derived from an undifferentiated grade III carcinoma bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1 and p27(Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism.Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  14. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Directory of Open Access Journals (Sweden)

    Mian M K Shahzad

    Full Text Available The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA. MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  15. Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state.

    Science.gov (United States)

    Tomas, Julie; Reygner, Julie; Mayeur, Camille; Ducroc, Robert; Bouet, Stephan; Bridonneau, Chantal; Cavin, Jean-Baptiste; Thomas, Muriel; Langella, Philippe; Cherbuy, Claire

    2015-01-01

    We investigated the effects of early colonizing bacteria on the colonic epithelium. We isolated dominant bacteria, Escherichia coli, Enterococcus faecalis, Lactobacillus intestinalis, Clostridium innocuum and a novel Fusobacterium spp., from the intestinal contents of conventional suckling rats and transferred them in different combinations into germfree (GF) adult rats. Animals were investigated after various times up to 21 days. Proliferative cell markers (Ki67, proliferating cell nuclear antigen, phospho-histone H3, cyclin A) were higher in rats monocolonized with E. coli than in GF at all time points, but not in rats monocolonized with E. faecalis. The mucin content of goblet cells declined shortly after E. coli administration whereas the mucus layer doubled in thickness. Fluorescence in situ hybridization analyses revealed that E. coli resides in this mucus layer. The epithelial mucin content progressively returned to baseline, following an increase in KLF4 and in the cell cycle arrest-related proteins p21(CIP1) and p27(KIP1). Markers of colonic differentiated cells involved in electrolyte (carbonic anhydrase II and slc26A3) and water (aquaglyceroporin3 (aqp3)) transport, and secretory responses to carbachol were modulated after E. coli inoculation suggesting that ion transport dynamics were also affected. The colonic responses to simplified microbiotas differed substantially according to whether or not E. coli was combined with the other four bacteria. Thus, proliferation markers increased substantially when E. coli was in the mix, but very much less when it was absent. This work demonstrates that a pioneer strain of E. coli elicits sequential epithelial remodeling affecting the structure, mucus layer and ionic movements and suggests this can result in a microbiota-compliant state.

  16. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yao Wang

    Full Text Available Cucurbitacin IIb (CuIIb is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65, it blocked the nuclear translocation of NF-κB (p65. In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.

  17. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src.

    Science.gov (United States)

    Shahzad, Mian M K; Felder, Mildred; Ludwig, Kai; Van Galder, Hannah R; Anderson, Matthew L; Kim, Jong; Cook, Mark E; Kapur, Arvinder K; Patankar, Manish S

    2018-01-01

    The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 μM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3β and loss of β-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.

  18. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    Science.gov (United States)

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  19. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  20. Necrosis related HIF-1α expression predicts prognosis in patients with endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Seeber, Laura MS; Horrée, Nicole; Groep, Petra van der; Wall, Elsken van der; Verheijen, René HM; Diest, Paul J van

    2010-01-01

    Hypoxia inducible factor 1α (HIF-1α) plays an essential role in the adaptive response of cells to hypoxia and is associated with aggressive tumour behaviour. We have shown p27 kip1 , which is generally reduced in endometrial cancer, to be re-expressed in hypoxic regions. This possibly contributes to survival of cancer cells. The aim of this study was to evaluate the prognostic value of HIF-1α and p27 kip expression in patients with endometrioid endometrial cancer. Expression levels of HIF-1α, CAIX, Glut-1, and p27 kip1 were analyzed by immunohistochemistry. Percentage of positive cells, staining pattern (perinecrotic, diffuse, or mixed) and presence of necrosis were noted. Necrosis was correlated with shortened disease free survival (DFS) (p = 0.008) and overall survival (OS) (p = 0.045). For DFS, perinecrotic HIF-1α expression was also prognostic (p = 0.044). Moreover, high p27 kip1 expression was an additional prognostic factor for these patients with perinecrotic HIF-1α expression. In multivariate Cox regression, perinecrotic HIF-expression emerged as an independent prognostic factor. Perinecrotic HIF-1α expression was significantly associated with CAIX and Glut-1 expression, pointing towards functional HIF-1. In patients with endometrioid endometrial cancer, necrosis and necrosis-related expression of HIF-1α are important prognostic factors. More aggressive adjuvant treatment might be necessary to improve the outcome of patients with these characteristics

  1. AHM1, a Novel Type of Nuclear Matrix–Localized, MAR Binding Protein with a Single AT Hook and a J Domain–Homologous Region

    Science.gov (United States)

    Morisawa, Gaku; Han-yama, Atsushi; Moda, Ichiro; Tamai, Atsushi; Iwabuchi, Masaki; Meshi, Tetsuo

    2000-01-01

    Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook–containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain–homologous region and a Zn finger–like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger–like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones. PMID:11041885

  2. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  3. Proteins engineering

    International Nuclear Information System (INIS)

    2000-01-01

    At the - Departement d'Ingenierie et d'etudes de proteines (Deip) of the CEA more than seventy researchers are working hard to understand the function of proteins. For that they use the molecular labelling technique (F.M.)

  4. Whey Protein

    Science.gov (United States)

    ... reliable information about the safety of taking whey protein if you are pregnant or breast feeding. Stay on the safe side and avoid use. Milk allergy: If you are allergic to cow's milk, avoid using whey protein.

  5. Larger aggregates of mutant seipin in Celia's Encephalopathy, a new protein misfolding neurodegenerative disease.

    Science.gov (United States)

    Ruiz-Riquelme, Alejandro; Sánchez-Iglesias, Sofía; Rábano, Alberto; Guillén-Navarro, Encarna; Domingo-Jiménez, Rosario; Ramos, Adriana; Rosa, Isaac; Senra, Ana; Nilsson, Peter; García, Ángel; Araújo-Vilar, David; Requena, Jesús R

    2015-11-01

    Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    Directory of Open Access Journals (Sweden)

    Mei Zhang

    Full Text Available The Protein Kinase A (PKA and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling.

  7. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  8. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  9. Protein politics

    NARCIS (Netherlands)

    Vijver, Marike

    2005-01-01

    This study is part of the program of the interdisciplinary research group Profetas (protein foods, environment, technology and society). Profetas consists of technological, environmental and socio-economic research projects on protein food systems which result in the development of scenarios and

  10. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  11. Properties of virion transactivator proteins encoded by primate cytomegaloviruses

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2009-05-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is a betaherpesvirus that causes severe disease in situations where the immune system is immature or compromised. HCMV immediate early (IE gene expression is stimulated by the virion phosphoprotein pp71, encoded by open reading frame (ORF UL82, and this transactivation activity is important for the efficient initiation of viral replication. It is currently recognized that pp71 acts to overcome cellular intrinsic defences that otherwise block viral IE gene expression, and that interactions of pp71 with the cell proteins Daxx and ATRX are important for this function. A further property of pp71 is the ability to enable prolonged gene expression from quiescent herpes simplex virus type 1 (HSV-1 genomes. Non-human primate cytomegaloviruses encode homologs of pp71, but there is currently no published information that addresses their effects on gene expression and modes of action. Results The UL82 homolog encoded by simian cytomegalovirus (SCMV, strain Colburn, was identified and cloned. This ORF, named S82, was cloned into an HSV-1 vector, as were those from baboon, rhesus monkey and chimpanzee cytomegaloviruses. The use of an HSV-1 vector enabled expression of the UL82 homologs in a range of cell types, and permitted investigation of their abilities to direct prolonged gene expression from quiescent genomes. The results show that all UL82 homologs activate gene expression, and that neither host cell type nor promoter target sequence has major effects on these activities. Surprisingly, the UL82 proteins specified by non-human primate cytomegaloviruses, unlike pp71, did not direct long term expression from quiescent HSV-1 genomes. In addition, significant differences were observed in the intranuclear localization of the UL82 homologs, and in their effects on Daxx. Strikingly, S82 mediated the release of Daxx from nuclear domain 10 substructures much more rapidly than pp71 or the other proteins tested. All

  12. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  13. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    International Nuclear Information System (INIS)

    Wang Qishan; Bag, Jnanankur

    2006-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including α-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis

  14. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

    Science.gov (United States)

    Hepler, John R.

    2017-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus. PMID:28934222

  15. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    International Nuclear Information System (INIS)

    Cavalcanti, M.B.; Fernandes, T.S.; Melo, J.A.; Neves, M.A.B.; Machado, C.G.F

    2005-01-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10 6 /mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO 2 at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results obtained

  16. Study of p53 protein expression levels from irradiated peripheral blood lymphocytes for biodosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, M.B.; Fernandes, T.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Amaral, A. [Universite Paris XII (UPXII) (France); Melo, J.A. [Centro de Radioterapia de Pernambuco (CERAPE), PE (Brazil); Neves, M.A.B.; Machado, C.G.F, E-mail: maribrayner@yahoo.com.br [Fundacao de Hematologia e Hemoterapia de Pernambuco, PE (Brazil)

    2005-07-01

    Biodosimetry can be defined as the investigation of radioinduced biological effects in order to correlate them with the absorbed dose. Scoring of unstable chromosomal aberrations and micronuclei, from in vitro irradiated peripheral blood lymphocytes, is commonly used for biodosimetry based on cytogenetic analysis. However, this method of analysis is time-consuming, which may represent a pitfall when fast investigation of a possible exposure to ionizing radiation (IR) is needed. The interaction of IR with the living cell can cause injuries in the DNA molecules. However, normal cells possess mechanisms of repair that are capable to correct those damages. During the repair process of the DNA various proteins are expressed. Among these proteins, p53 plays an important role. This protein is a transcription factor that helps in the maintenance of the genomic integrity. p53 protein is found into the cytoplasm in reduced concentrations and has a short average life. However, expression of p53 protein can be induced by DNA harmful radioinduced, which increases the concentration and the average life of this protein, making possible its detection. Thus, the correlation between the increasing of p53 expression and the irradiation may constitute a fast and reliable method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the objective of this research was to evaluate the p53 protein expression levels from lymphocytes of the human peripheral blood after in vitro irradiation. For this, samples of peripheral blood from healthy individuals were irradiated with known doses. Lymphocytes were separated on ficoll gradient by centrifugation and re-suspended at 1x 10{sub 6}/mL in RPMI medium enriched with fetal calf serum. Hence, lymphocytes were incubated in 5% CO{sub 2} at 37 deg C prior to the methodology of flow cytometry, using intranuclear antigens for the quantification of p53. In this report, the methodology performed and the results

  17. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  18. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  19. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of

  20. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  1. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer

    International Nuclear Information System (INIS)

    Larson, Pamela S; Schlechter, Benjamin L; King, Chia-Lin; Yang, Qiong; Glass, Chelsea N; Mack, Charline; Pistey, Robert; Morenas, Antonio de las; Rosenberg, Carol L

    2008-01-01

    CDKN1C (also known as p57 KIP2 ) is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21 CIP1 and B/p27 KIP1 ) have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. We determined rates of allele imbalance or loss of heterozygosity (AI/LOH) in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR), and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC). All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. AI/LOH at 11p15.5 occurred in 28/73 (38%) informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19%) cancers (p = ns). In contrast, CDKN1C mRNA levels were reduced in 9/10 (90%) cancers (p < 0.0001), ranging from 2–60% of paired normal epithelium. Similarly, CDKN1C protein staining was seen in 19/20 (95%) cases' normal epithelium but in only 7/14 (50%) cases' CIS (p < 0.004) and 5/18 (28%) cases' IC (p < 0.00003). The reduction appears primarily due to loss of CDKN1C expression from myoepithelial layer cells, which stained intensely in 17/20 (85%) normal lobules, but in 0/14 (0%) CIS (p < 0.00001). In contrast, luminal cells displayed less intense, focal staining fairly consistently across histologies. Decreased CDKN1C was not clearly associated with tumor grade, histology, ER, PR or HER2 status. CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor

  2. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  3. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein.

    Directory of Open Access Journals (Sweden)

    Natacha Scarafone

    Full Text Available Nine neurodegenerative disorders, called polyglutamine (polyQ diseases, are characterized by the formation of intranuclear amyloid-like aggregates by nine proteins containing a polyQ tract above a threshold length. These insoluble aggregates and/or some of their soluble precursors are thought to play a role in the pathogenesis. The mechanism by which polyQ expansions trigger the aggregation of the relevant proteins remains, however, unclear. In this work, polyQ tracts of different lengths were inserted into a solvent-exposed loop of the β-lactamase BlaP and the effects of these insertions on the properties of BlaP were investigated by a range of biophysical techniques. The insertion of up to 79 glutamines does not modify the structure of BlaP; it does, however, significantly destabilize the enzyme. The extent of destabilization is largely independent of the polyQ length, allowing us to study independently the effects intrinsic to the polyQ length and those related to the structural integrity of BlaP on the aggregating properties of the chimeras. Only chimeras with 55Q and 79Q readily form amyloid-like fibrils; therefore, similarly to the proteins associated with diseases, there is a threshold number of glutamines above which the chimeras aggregate into amyloid-like fibrils. Most importantly, the chimera containing 79Q forms amyloid-like fibrils at the same rate whether BlaP is folded or not, whereas the 55Q chimera aggregates into amyloid-like fibrils only if BlaP is unfolded. The threshold value for amyloid-like fibril formation depends, therefore, on the structural integrity of the β-lactamase moiety and thus on the steric and/or conformational constraints applied to the polyQ tract. These constraints have, however, no significant effect on the propensity of the 79Q tract to trigger fibril formation. These results suggest that the influence of the protein context on the aggregating properties of polyQ disease-associated proteins could be

  4. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  5. 1α,25 dihydroxi-vitamin D3 modulates CDK4 and CDK6 expression and localization

    International Nuclear Information System (INIS)

    Irazoqui, Ana P.; Heim, Nadia B.; Boland, Ricardo L.; Buitrago, Claudia G.

    2015-01-01

    We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH) 2 -vitamin D 3 [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21 Waf1/Cip1 and p27 Kip1 expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D –induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs –dependent mechanism in hormone modulation of myogenesis. - Highlights: • 1,25D modulates CDKs 4 and 6 expression in skeletal muscle cells. • CDK4 co-localizates with VDR after 1

  6. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  7. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    International Nuclear Information System (INIS)

    Preto, Ana; Soares, Paula; Sobrinho-Simões, Manuel; Gonçalves, Joana; Rebocho, Ana P; Figueiredo, Joana; Meireles, Ana M; Rocha, Ana S; Vasconcelos, Helena M; Seca, Hugo; Seruca, Raquel

    2009-01-01

    Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds. Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot. Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF V600E mutation. In BRAF V600E mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27 Kip1 . Specific inhibition of BRAF by RNAi in cells with BRAF V600E mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF V600E mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2. Our results in thyroid cancer cells, namely those harbouring BRAF V600E mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF V600E mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and

  8. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  9. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  10. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma.

    Science.gov (United States)

    Felicetti, Federica; De Feo, Alessandra; Coscia, Carolina; Puglisi, Rossella; Pedini, Francesca; Pasquini, Luca; Bellenghi, Maria; Errico, Maria Cristina; Pagani, Elena; Carè, Alessandra

    2016-02-24

    Growing evidence is showing that metastatic cell populations are able to transfer their characteristics to less malignant cells. Exosomes (EXOs) are membrane vesicles of endocytic origin able to convey their cargo of mRNAs, microRNAs (miRs), proteins and lipids from donors to proximal as well as distant acceptor cells. Our previous results indicated that miR-221&222 are key factors for melanoma development and dissemination. The aim of this study was to verify whether the tumorigenic properties associated with miR-222 overexpression can be also propagated by miR-222-containing EXOs. EXOs were isolated by UltraCentrifugation or Exoquick-TC(®) methods. Preparations of melanoma-derived vesicles were characterized by using the Nanosight™ technology and the expression of exosome markers analyzed by western blot. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR. Confocal microscopy was used to evaluate transfer and uptake of microvesicles from donor to recipient cells. The functional significance of exosomal miR-222 was estimated by analyzing the vessel-like process formation, as well as cell cycle rates, invasive and chemotactic capabilities. Besides microvesicle marker characterization, we evidenced that miR-222 exosomal expression mostly reflected its abundance in the cells of origin, correctly paralleled by repression of its target genes, such as p27Kip1, and induction of the PI3K/AKT pathway, thus confirming its functional implication in cancer. The possible differential significance of PI3K/AKT blockade was assessed by using the BKM120 inhibitor in miR-222-transduced cell lines. In addition, in vitro cultures showed that vesicles released by miR-222-overexpressing cells were able to transfer miR-222-dependent malignancy when taken-up by recipient primary melanomas. Results were confirmed by antagomiR-221&222 treatments and by functional observations after internalization of EXOs devoid of these miRs. All together these data

  11. SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

    Science.gov (United States)

    Barzegar, Mansoureh; Ma, Shuang; Zhang, Chao; Chen, Xin; Gu, Ying; Shang, Chaowei; Jiang, Xiaojuan; Yang, Jiao; Nathan, Cherie-Ann; Yang, Shengyong; Huang, Shile

    2017-10-10

    Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. SKLB188 inhibited HNSCC cell proliferation by inducing G 1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21 Cip1 and p27 Kip1 ), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC 50 =5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose

  12. Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Ibrahim Tekedereli

    Full Text Available Eukaryotic elongation factor 2 kinase (eEF-2K, through its phosphorylation of elongation factor 2 (eEF2, provides a mechanism by which cells can control the rate of the elongation phase of protein synthesis. The activity of eEF-2K is increased in rapidly proliferating malignant cells, is inhibited during mitosis, and may contribute to the promotion of autophagy in response to anti-cancer therapies. The purpose of this study was to examine the therapeutic potential of targeting eEF-2K in breast cancer tumors. Through the systemic administration of liposomal eEF-2K siRNA (twice a week, i.v. 150 µg/kg, the expression of eEF-2K was down-regulated in vivo in an orthotopic xenograft mouse model of a highly aggressive triple negative MDA-MB-231 tumor. This targeting resulted in a substantial decrease in eEF2 phosphorylation in the tumors, and led to the inhibition of tumor growth, the induction of apoptosis and the sensitization of tumors to the chemotherapy agent doxorubicin. eEF-2K down-modulation in vitro resulted in a decrease in the expression of c-Myc and cyclin D1 with a concomitant increase in the expression of p27(Kip1. A decrease in the basal activity of c-Src (phospho-Tyr-416, focal adhesion kinase (phospho-Tyr-397, and Akt (phospho-Ser-473 was also detected following eEF-2K down-regulation in MDA-MB-231 cells, as determined by Western blotting. Where tested, similar results were seen in ER-positive MCF-7 cells. These effects were also accompanied by a decrease in the observed invasive phenotype of the MDA-MB-231 cells. These data support the notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer.

  13. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    Science.gov (United States)

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  14. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  15. Heat Shock Protein Genes Undergo Dynamic Alteration in Their Three-Dimensional Structure and Genome Organization in Response to Thermal Stress.

    Science.gov (United States)

    Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2017-12-15

    Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein ( HSP ) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci. Copyright © 2017 American Society for Microbiology.

  16. Crosstalk between G protein-coupled receptors (GPCRs and tyrosine kinase receptor (TXR in the heart after morphine withdrawal

    Directory of Open Access Journals (Sweden)

    Pilar eAlmela

    2013-12-01

    Full Text Available G protein-coupled receptors (GPCRs comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signalling, resulting in high expression of protein kinase (PK A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK, one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl-5-isoquinolinesulfonamide (HA-1004, a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies.

  17. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  18. The E5 Proteins

    OpenAIRE

    DiMaio, Daniel; Petti, Lisa

    2013-01-01

    The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating ...

  19. EDITORIAL: Precision proteins Precision proteins

    Science.gov (United States)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  20. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle.

    Science.gov (United States)

    Yamashita, Tomoko; Nishimura, Kazuhiro; Saiki, Ryotaro; Okudaira, Hiroyuki; Tome, Mayuko; Higashi, Kyohei; Nakamura, Mizuho; Terui, Yusuke; Fujiwara, Kunio; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-06-01

    The role of polyamines at the G1/S boundary and in the G2/M phase of the cell cycle was studied using synchronized HeLa cells treated with thymidine or with thymidine and aphidicolin. Synchronized cells were cultured in the absence or presence of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, plus ethylglyoxal bis(guanylhydrazone) (EGBG), an inhibitor of S-adenosylmethionine decarboxylase. When polyamine content was reduced by treatment with DFMO and EGBG, the transition from G1 to S phase was delayed. In parallel, the level of p27(Kip1) was greatly increased, so its mechanism was studied in detail. Synthesis of p27(Kip1) was stimulated at the level of translation by a decrease in polyamine levels, because of the existence of long 5'-untranslated region (5'-UTR) in p27(Kip1) mRNA. Similarly, the transition from the G2/M to the G1 phase was delayed by a reduction in polyamine levels. In parallel, the number of multinucleate cells increased by 3-fold. This was parallel with the inhibition of cytokinesis due to an unusual distribution of actin and α-tubulin at the M phase. Since an association of polyamines with chromosomes was not observed by immunofluorescence microscopy at the M phase, polyamines may have only a minor role in structural changes of chromosomes at the M phase. In general, the involvement of polyamines at the G2/M phase was smaller than that at the G1/S boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2.

    Science.gov (United States)

    Goyeneche, Alicia A; Seidel, Erin E; Telleria, Carlos M

    2012-06-01

    Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.

  2. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Amy E Kiernan

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  3. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat.

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C; Gorbunova, Vera

    2009-11-17

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.

  4. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    Science.gov (United States)

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  6. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  7. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  8. Introduction to protein blotting.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is a powerful and important procedure for the immunodetection of proteins following electrophoresis, particularly proteins that are of low abundance. Since the inception of the protocol for protein transfer from an electrophoresed gel to a membrane in 1979, protein blotting has evolved greatly. The scientific community is now confronted with a variety of ways and means to carry out this transfer.

  9. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  10. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  11. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    International Nuclear Information System (INIS)

    Myre, Michael A.; O'Day, Danton H.

    2005-01-01

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ( 171 EDVSRFIKGKLLQKQQKIYKDLERF 195 ) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48 KKSYQDPEIIAHSRPRK 64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48 EF 49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48 EF 49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium

  12. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S

    2007-01-01

    )), and the Cip1/Waf1/Kip1-2-family (p21(Cip1/Waf1), p27(Kip1), p57(Kip2)) are shown both in the context of proliferation regulators and as contributors to the apoptotic machinery. Bcl2-family members (i.e. Bcl2, Bcl-X(L) Mcl-1(L); Bax, Bok/Mtd, Bak, and Bcl-X(S); Bad, Bid, Bim(EL), Bmf, Mcl-1(S)) are highlighted...... approaches that would involve redirecting over-active survival and proliferation pathways towards induction of apoptosis in cancer cells....

  13. Protein in diet

    Science.gov (United States)

    Diet - protein ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a ... to eat animal products to get all the protein you need in your diet. Amino acids are ...

  14. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  15. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  16. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  17. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  18. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  19. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  20. Amino acids and proteins

    Science.gov (United States)

    A balanced, safe diet with proteins is important to meet nutritional requirements. Proteins occur in animal as well as vegetable products in important quantities. In some countries, many people obtain much of their protein from animal products. In other regions, the major portion of dietary protein ...

  1. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity

    International Nuclear Information System (INIS)

    Béaslas, Olivier; Vihervaara, Terhi; Li, Jiwei; Laurila, Pirkka-Pekka; Yan, Daoguang; Olkkonen, Vesa M.

    2012-01-01

    ORP8 is an oxysterol/cholesterol binding protein anchored to the endoplasmic reticulum and the nuclear envelope, and is abundantly expressed in the macrophage. We created and characterized mouse RAW264.7 macrophages with ORP8 stably silenced using shRNA lentiviruses. A microarray transcriptome and gene ontology pathway analysis revealed significant alterations in several nuclear pathways and ones associated with centrosome and microtubule organization. ORP8 knockdown resulted in increased expression and altered subcellular distribution of an interaction partner of ORP8, nucleoporin NUP62, with an intranuclear localization aspect and association with cytoplasmic vesicular structures and lamellipodial edges of the cells. Moreover, ORP8 silenced cells displayed enhanced migration, and a more pronounced microtubule cytoskeleton than controls expressing a non-targeting shRNA. ORP8 was shown to compete with Exo70 for interaction with NUP62, and NUP62 knockdown abolished the migration enhancement of ORP8-silenced cells, suggesting that the endogenous ORP8 suppresses migration via binding to NUP62. As a conclusion, the present study reveals new, unexpected aspects of ORP8 function in macrophages not directly involving lipid metabolism, but rather associated with nuclear functions, microtubule organization, and migration capacity. -- Highlights: ► The phenotype of Raw264.7 macrophage with ORP8 silenced is characterized. ► ORP8 silencing alters mRNA levels of nuclear and microtubule/centrosome pathways. ► ORP8 silencing results in increased expression and altered distribution of NUP62. ► ORP8 silenced macrophages show enhanced migration and altered microtubule cytoskeleton. ► ORP8 competes in vitro with Exo70 for binding to NUP62.

  2. Silencing of OSBP-related protein 8 (ORP8) modifies the macrophage transcriptome, nucleoporin p62 distribution, and migration capacity

    Energy Technology Data Exchange (ETDEWEB)

    Beaslas, Olivier; Vihervaara, Terhi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Li, Jiwei [Department of Biology, Jinan University, Guangzhou 510632 (China); Laurila, Pirkka-Pekka [FIMM, Institute for Molecular Medicine Finland, FI-00290 Helsinki (Finland); National Institute for Health and Welfare, Public Health Genomics Unit, FI-00290 Helsinki (Finland); Yan, Daoguang [Department of Biology, Jinan University, Guangzhou 510632 (China); Olkkonen, Vesa M., E-mail: vesa.olkkonen@helsinki.fi [Minerva Foundation Institute for Medical Research, FI-00290 Helsinki (Finland); Institute of Biomedicine, Anatomy, University of Helsinki, FI-00014 (Finland)

    2012-09-10

    ORP8 is an oxysterol/cholesterol binding protein anchored to the endoplasmic reticulum and the nuclear envelope, and is abundantly expressed in the macrophage. We created and characterized mouse RAW264.7 macrophages with ORP8 stably silenced using shRNA lentiviruses. A microarray transcriptome and gene ontology pathway analysis revealed significant alterations in several nuclear pathways and ones associated with centrosome and microtubule organization. ORP8 knockdown resulted in increased expression and altered subcellular distribution of an interaction partner of ORP8, nucleoporin NUP62, with an intranuclear localization aspect and association with cytoplasmic vesicular structures and lamellipodial edges of the cells. Moreover, ORP8 silenced cells displayed enhanced migration, and a more pronounced microtubule cytoskeleton than controls expressing a non-targeting shRNA. ORP8 was shown to compete with Exo70 for interaction with NUP62, and NUP62 knockdown abolished the migration enhancement of ORP8-silenced cells, suggesting that the endogenous ORP8 suppresses migration via binding to NUP62. As a conclusion, the present study reveals new, unexpected aspects of ORP8 function in macrophages not directly involving lipid metabolism, but rather associated with nuclear functions, microtubule organization, and migration capacity. -- Highlights: Black-Right-Pointing-Pointer The phenotype of Raw264.7 macrophage with ORP8 silenced is characterized. Black-Right-Pointing-Pointer ORP8 silencing alters mRNA levels of nuclear and microtubule/centrosome pathways. Black-Right-Pointing-Pointer ORP8 silencing results in increased expression and altered distribution of NUP62. Black-Right-Pointing-Pointer ORP8 silenced macrophages show enhanced migration and altered microtubule cytoskeleton. Black-Right-Pointing-Pointer ORP8 competes in vitro with Exo70 for binding to NUP62.

  3. The Protein Model Portal

    OpenAIRE

    Arnold, Konstantin; Kiefer, Florian; Kopp, J?rgen; Battey, James N. D.; Podvinec, Michael; Westbrook, John D.; Berman, Helen M.; Bordoli, Lorenza; Schwede, Torsten

    2008-01-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploratio...

  4. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  5. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  6. IGSF9 Family Proteins

    DEFF Research Database (Denmark)

    Hansen, Maria; Walmod, Peter Schledermann

    2013-01-01

    The Drosophila protein Turtle and the vertebrate proteins immunoglobulin superfamily (IgSF), member 9 (IGSF9/Dasm1) and IGSF9B are members of an evolutionarily ancient protein family. A bioinformatics analysis of the protein family revealed that invertebrates contain only a single IGSF9 family gene......, the longest isoforms of the proteins have the same general organization as the neural cell adhesion molecule family of cell adhesion molecule proteins, and like this family of proteins, IGSF9 family members are expressed in the nervous system. A review of the literature revealed that Drosophila Turtle...... facilitates homophilic cell adhesion. Moreover, IGSF9 family proteins have been implicated in the outgrowth and branching of neurites, axon guidance, synapse maturation, self-avoidance, and tiling. However, despite the few published studies on IGSF9 family proteins, reports on the functions of both Turtle...

  7. Personalizing Protein Nourishment

    Science.gov (United States)

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  8. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  9. Athoropometric measurements and plasma proteins in protein ...

    African Journals Online (AJOL)

    Athoropometric measurements and plasma proteins in protein energy malnutrition. MH Etukudo, EO Agbedana, OO Akinyinka, BOA Osifo. Abstract. No Abstract. Global Journal of Medical Sciences Vol. 5(1) 2006: 7-11. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  10. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  11. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  12. Protein Data Bank (PDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Protein Data Bank (PDB) archive is the single worldwide repository of information about the 3D structures of large biological molecules, including proteins and...

  13. Learning about Proteins

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Learning About Proteins KidsHealth / For Kids / Learning About Proteins What's in ...

  14. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  15. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.; Snow, Christopher D.

    2011-01-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full

  16. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  17. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    interactions with other proteins, or binding of small molecules. Covalent .... vealed through structural elucidation of the protein in free and oxygen-bound forms .... stance, molecular dynamic simulation of glutamine binding pro- tein shows that ...

  18. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  19. CSF total protein

    Science.gov (United States)

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...

  20. Protein - Which is Best?

    Science.gov (United States)

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  1. Peptide segments in protein-protein interfaces

    Indian Academy of Sciences (India)

    Prakash

    2006-09-06

    Sep 6, 2006 ... contact surface from the rest of the protein surface have been used to identify ..... interfaces the contribution of the charged residues, such as. Lys, Asp and ..... Lawrence M C and Colman P M 1993 Shape complementarity at.

  2. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  3. Intracellular protein breakdown. 8

    International Nuclear Information System (INIS)

    Bohley, P.; Kirschke, H.; Langner, J.; Wiederanders, B.; Ansorge, S.

    1976-01-01

    Double-labelled proteins from rat liver cytosol ( 14 C in long-lived, 3 H in short-lived proteins after in-vivo-labelling) are used as substrates for unlabelled proteinases in vitro. Differences in the degradation rates of short-lived and long-lived proteins in vitro by different proteinases and after addition of different effectors allow conclusions concerning their importance for the in-vivo-turnover of substrate proteins. The main activity (>90%) of soluble lysosomal proteinases at pH 6.1 and pH 6.9 is caused by thiolproteinases, which degrade preferentially short-lived cytosol proteins. These proteinases are inhibited by leupeptin. Autolysis of double-labelled cell fractions shows a remarkably faster breakdown of short-lived substrate proteins only in the soluble part of lysosomes. Microsomal fractions degrade in vitro preferentially long-lived substrate proteins. (author)

  4. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...... specific carbonylated proteins have been identified. Protein carbonylation appears to accumulate at all stages of seed development and germination investigated to date. In some cases, such as seed aging, it is probably simply an accumulation of oxidative damage. However, in other cases protein...

  5. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  6. Texturized dairy proteins.

    Science.gov (United States)

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion

  7. Toward relating the subthalamic nucleus spiking activity to the local field potentials acquired intranuclearly

    International Nuclear Information System (INIS)

    Michmizos, K P; Nikita, K S; Sakas, D

    2011-01-01

    Studies on neurophysiological correlates of the functional magnetic resonance imaging (fMRI) signals reveal a strong relationship between the local field potential (LFP) acquired invasively and metabolic signal changes in fMRI experiments. Most of these studies failed to reveal an analogous relationship between metabolic signals and the spiking activity. That would allow for the prediction of the neural activity exclusively from the fMRI signals. However, the relationship between fMRI signals and spiking activity can be inferred indirectly provided that the LFPs can be used to predict the spiking activity of the area. Until now, only the LFP–spike relationship in cortical areas has been examined. Herein, we show that the spiking activity can be predicted by the LFPs acquired in a deep nucleus, namely the subthalamic nucleus (STN), using a nonlinear cascade model. The model can reproduce the spike patterns inside the motor area of the STN that represent information about the motor plans. Our findings expand the possibility of further recruiting non-invasive neuroimaging techniques to understand the activity of the STN and predict or even control movement

  8. Distribution of hadron intranuclear cascade for large distance from a source

    International Nuclear Information System (INIS)

    Bibin, V.L.; Kazarnovskij, M.V.; Serezhnikov, S.V.

    1985-01-01

    Analytical solution of the problem of three-component hadron cascade development for large distances from a source is obtained in the framework of a series of simplifying assumptions. It makes possible to understand physical mechanisms of the process studied and to obtain approximate asymptotic expressions for hadron distribution functions

  9. Spallation neutron production and the current intra-nuclear cascade and transport codes

    International Nuclear Information System (INIS)

    Filges, D.; Goldenbaum, F.

    2001-01-01

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models. (orig.)

  10. Spallation neutron production and the current intra-nuclear cascade and transport codes

    Science.gov (United States)

    Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.

  11. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  12. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  13. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  14. PROTEIN - WHICH IS BEST?

    Directory of Open Access Journals (Sweden)

    Michael J. Falvo

    2004-09-01

    Full Text Available Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids, whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function are also reviewed

  15. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  16. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  17. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Replication protein A and γ-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Geard, Charles R.

    2004-01-01

    Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, γ-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and γ-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and γ-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and γ-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and γ-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with γ-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and γ-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with γ-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells

  19. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  20. Blue Emission in Proteins

    OpenAIRE

    Sarkar, Sohini; Sengupta, Abhigyan; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band struc...

  1. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  2. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  3. Physics of protein folding

    Science.gov (United States)

    Finkelstein, A. V.; Galzitskaya, O. V.

    2004-04-01

    Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.

  4. Ultrafiltration of pegylated proteins

    Science.gov (United States)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine

  5. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  6. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    International Nuclear Information System (INIS)

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-01-01

    Highlights: → The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. → This SAP-like domain is essential for chromosome loading during early mitosis. → NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. → The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction

  7. The temporal and spatial distribution of the proliferation associated Ki-67 protein during female and male meiosis.

    Science.gov (United States)

    Traut, Walther; Endl, Elmar; Scholzen, Thomas; Gerdes, Johannes; Winking, Heinz

    2002-09-01

    We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in

  8. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  9. Synthesis of Lipidated Proteins.

    Science.gov (United States)

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  10. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  11. Protein Attachment on Nanodiamonds.

    Science.gov (United States)

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery.

  12. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  13. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard...... to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners...... and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals...

  14. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sensitizing properties of proteins

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Ladics, Gregory S; McClain, Scott

    2014-01-01

    The scope of allergy risk is diverse considering the myriad ways in which protein allergenicity is affected by physiochemical characteristics of proteins. The complexity created by the matrices of foods and the variability of the human immune system add additional challenges to understanding...... the relationship between sensitization potential and allergy disease. To address these and other issues, an April 2012 international symposium was held in Prague, Czech Republic, to review and discuss the state-of-the-science of sensitizing properties of protein allergens. The symposium, organized by the Protein...... Allergenicity Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, featured presentations on current methods, test systems, research trends, and unanswered questions in the field of protein sensitization. A diverse group of over 70 interdisciplinary...

  16. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  17. The Protein Model Portal.

    Science.gov (United States)

    Arnold, Konstantin; Kiefer, Florian; Kopp, Jürgen; Battey, James N D; Podvinec, Michael; Westbrook, John D; Berman, Helen M; Bordoli, Lorenza; Schwede, Torsten

    2009-03-01

    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase.

  18. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  19. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  20. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  1. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  2. Endometrial proteins: a reappraisal.

    Science.gov (United States)

    Seppälä, M; Julkunen, M; Riittinen, L; Koistinen, R

    1992-06-01

    Uterine factors influence reproduction at the macro-anatomy level, and the effects of hormonal steroids on endometrial morphology are well recognized in the histopathological diagnosis of dysfunctional bleeding and infertility. During the past decade, attention has been paid to endometrial protein synthesis and secretion with respect to endocrine stimuli and implantation, and to the paracrine/autocrine effects of endometrial peptide growth factors, their binding proteins and other factors. The emphasis of this presentation is on protein secretion of the secretory endometrium, in which progesterone plays a pivotal role. Insulin-like growth factors have receptors on the endometrium, and IGF-binding proteins, stimulated by progesterone, modulate the effects of IGFs locally. Also other protein products of the secretory endometrium have been reviewed in this communication, with special emphasis on studies of a progesterone-associated endometrial protein which has many names in the literature, such as PEP, PP14, alpha 2-PEG and AUP. Extensive studies are ongoing in many laboratories to elucidate the regulation, function, interplay at tissue and cellular levels, and clinical significance of these proteins.

  3. Protein trapping of nanoparticles

    International Nuclear Information System (INIS)

    Ang, Joo C.; Lin, Jack M.; Yaron, Peter N.; White, John W.

    2009-01-01

    Full text: We have observed the formation of protein-nanoparticle complexes at the air-water interfaces from three different methods of presenting the nanoparticles to proteins. The structures formed resemble the 'protein-nanoparticle corona' proposed by Lynch et al. [1-3) in relation to a possible route for nanoparticle entry into living cells. To do this, the methods of x-ray and neutron reflectivity (with isotopic contrast variation between the protein and nanoparticles) have been used to study the structures formed at the air-water interface of l 3 - casein presented to silica nanoparticle dispersions. Whilst the silica dispersions showed no observable reflectivity, strong signals appear in the reflectivity when protein is present. Drop-wise spreading of a small amount of protein at the air-silica sol interface and presentation of the silica sol to an isolated monomolecular protein film (made by the 'flow-trough' method [4]) gave an immediate signal. Mixing the components in solution only produces a slow response but in all cases a similar structure is formed. The different responses are interpreted in structural and stoichiometric ways.

  4. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  5. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  6. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  7. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  8. Pierced Lasso Proteins

    Science.gov (United States)

    Jennings, Patricia

    Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL

  9. Protein digestion in ruminants

    African Journals Online (AJOL)

    a balance between synthesis and hydrolysis. Aside from .... be used to follow the synthesis of this protein fraction. (Clarke, 1977a) .... form of digestive enzymes, urea and ammonia (Egan, ..... decreasing urine-nitrogen excretion (Thornton, Bird,.

  10. Dietary Proteins and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Medina

    2014-01-01

    Full Text Available Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis.

  11. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  12. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed...... of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio...... modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride...

  13. Protein Colloidal Aggregation Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  14. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff

    2014-01-01

    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils......, is a general hallmark. They also include the α1-antitrypsin deficiency, where disease-causing mutations in the serine protease inhibitor, α1-antitrypsin (α1AT), leads to accumulation of the aberrant protein in the liver of these patients. The native metastable structure of α1AT constitutes a molecular trap...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding...

  15. Protein turnover in sheep

    International Nuclear Information System (INIS)

    Buttery, P.J.

    1981-01-01

    Considerable advances have been made in the knowledge of the mechanisms and control of synthesis and degradation of proteins in animal tissues during the last decade. Most of the work on the measurement of synthetic and degradative rates of the mixed protein fraction from tissues has been conducted in the rat. There have, unfortunately, been few publications describing results of protein turnover studies with ruminants. Consideration is given here to the techniques used to measure protein turnover, and some of the results obtained, particularly with sheep, are summarized. No attempt has been made to discuss directly the situation in parasitized animals; rather the aim is to provide background information which complements other work dealing with the effects of parasites on the nitrogen metabolism of ruminants. (author)

  16. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...

  17. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  18. Interactive protein manipulation

    International Nuclear Information System (INIS)

    2003-01-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  19. The protein protocols handbook

    National Research Council Canada - National Science Library

    Walker, John M

    2002-01-01

    .... The new chapters cover with many rapidly developing areas, particularly the application of mass spectrometry in protein characterization, as well as the now well-established 2-D PAGE technique in proteomics...

  20. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  1. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  2. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  3. Occupational protein contact dermatitis.

    Science.gov (United States)

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-01-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals.

  4. Proteins and their crystals

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana; Hogg, T.; Hilgenfeld, R.; Grandori, R.; Carey, J.; Vácha, František; Štys, Dalibor

    2003-01-01

    Roč. 10, č. 1 (2003), s. 31-32 ISSN 1211-5894 R&D Projects: GA MŠk LN00A141; GA ČR GA206/00/D007 Institutional research plan: CEZ:AV0Z5051902; CEZ:MSM 123100001 Keywords : pokeweed antiviral protein * flavodoxin-like protein * PSII Subject RIV: EB - Genetics ; Molecular Biology

  5. The tubby family proteins

    OpenAIRE

    Mukhopadhyay, Saikat; Jackson, Peter K

    2011-01-01

    The tubby mouse shows a tripartite syndrome characterized by maturity-onset obesity, blindness and deafness. The causative gene Tub is the founding member of a family of related proteins present throughout the animal and plant kingdoms, each characterized by a signature carboxy-terminal tubby domain. This domain consists of a β barrel enclosing a central α helix and binds selectively to specific membrane phosphoinositides. The vertebrate family of tubby-like proteins (TULPs) includes the foun...

  6. The caveolin proteins

    OpenAIRE

    Williams, Terence M; Lisanti, Michael P

    2004-01-01

    The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also ...

  7. More protein in cereals?

    International Nuclear Information System (INIS)

    1969-01-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  8. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. More protein in cereals?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Ways in which the protein content of plant crops may be raised by the use of nuclear radiation are to be discussed at a symposium in Vienna in June next year, organized by the joint Food and Agriculture Organization/Agency Division of Atomic Energy in Food and Agriculture. Plant crops - especially cereal grains - are the basic food and protein source of most of the world's population, particularly in less-developed countries. But their natural protein content is low; increasing the quantity and nutritional quality of plant protein is potentially the most feasible way to combat widespread protein malnutrition. This improvement in seed stock can be achieved by plant breeding methods in which nuclear irradiation techniques are used to induce mutations in grain, and other isotopic techniques can be used to select only those mutants which have the desired properties. The scientists who attend the symposium will have an opportunity to review what mutation plant breeders have achieved, the application of nuclear techniques to screening for protein and amino-acid content and nutritional value, and isotopic methods which contribute to research in plant nutrition and physiology. (author)

  10. Disease specific protein corona

    Science.gov (United States)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  11. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  12. Protein hydrolysates in sports nutrition

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2009-09-01

    Full Text Available Abstract It has been suggested that protein hydrolysates providing mainly di- and tripeptides are superior to intact (whole proteins and free amino acids in terms of skeletal muscle protein anabolism. This review provides a critical examination of protein hydrolysate studies conducted in healthy humans with special reference to sports nutrition. The effects of protein hydrolysate ingestion on blood amino acid levels, muscle protein anabolism, body composition, exercise performance and muscle glycogen resynthesis are discussed.

  13. Unique Features of Halophilic Proteins.

    Science.gov (United States)

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  14. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  15. Bioinformatics and moonlighting proteins

    Directory of Open Access Journals (Sweden)

    Sergio eHernández

    2015-06-01

    Full Text Available Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyse and describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are: a remote homology searches using Psi-Blast, b detection of functional motifs and domains, c analysis of data from protein-protein interaction databases (PPIs, d match the query protein sequence to 3D databases (i.e., algorithms as PISITE, e mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs have the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations –it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/, previously published by our group, has been used as a benchmark for the all of the analyses.

  16. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  17. Protein (Cyanobacteria): 654346314 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Mastigocoleus testarum MLEQIELKPNWERNQVAFLDFIVNGTSLHDQFDHPQVRDLCTVFTSDQYEFDGKSSAAIHASWFLGYGETPFPDDRIPVYICSSGDFDCGTVTAYLTVNDGTIKWSEFRIERLTEELQDQPIELTSVKQCVFERNAYEKLFQPFLRKVID

  18. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  19. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  20. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  1. Changes in protein composition and protein phosphorylation during ...

    African Journals Online (AJOL)

    Changes in protein profiles and protein phosphorylation were studied in various stages of germinating somatic and zygotic embryos. Many proteins, which were expressed in cotyledonary stage somatic embryos, were also present in the zygotic embryos obtained from mature dry seed. The intensity of 22 kDa protein was ...

  2. A Stevedore's protein knot.

    Directory of Open Access Journals (Sweden)

    Daniel Bölinger

    2010-04-01

    Full Text Available Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered alpha-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.

  3. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  4. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  5. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  6. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  7. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  8. Protein: FBA7 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA7 claudin-zona occluden Tjp1 Zo1 Tight junction protein ZO-1 Tight junction protein 1, Zona occludens pr...otein 1, Zonula occludens protein 1 10090 Mus musculus 21872 P39447 2RRM P39447 21431884 ...

  9. Protein: FEA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FEA3 AREB pathway: Signaling proteins At4g11890/T26M18_100 At4g11890, Protein kinase family pr...otein, Putative uncharacterized protein At4g11890/T26M18_100 3702 Arabidopsis thaliana 826796 Q8GY82 22225700 ...

  10. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  11. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  12. Urinary Protein Biomarker Analysis

    Science.gov (United States)

    2017-10-01

    silica emitter via a Valco stainless steel union. Four μL of individual peptide fractions (total volume 20 μL) following PRISM were injected for LC...secreted cement gland protein XAG-2 homolog, AGR2 belongs to the protein disulfide 5 isomerase (PDI) family. The strongest AGR2 expression has...µm C18 column (75 µm i.d. × 10 cm), which was connected to a chemically etched 20 µm i.d. fused-silica emitter via a Valco stainless steel union

  13. Protein energy malnutrition.

    Science.gov (United States)

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  14. Heme Sensor Proteins*

    Science.gov (United States)

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  15. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  16. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  17. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    PC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR, p38 mitogen-activated protein kinase (p38 MAPK, and extracellular signal-regulated kinases 1 and 2 (Erk1/2 but activation of 5'-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1 and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer.Keywords: alisertib, pancreatic cancer, cell cycle, autophagy, EMT, Sirt1

  18. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  19. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  20. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  1. 24-hour urine protein

    Science.gov (United States)

    ... your provider may be able to order a test that is done on just one urine sample (protein-to-creatinine ratio). Normal Results The normal ... Some labs use different measurements or test different samples. Talk to your provider about the meaning of your specific test ... Abnormal results may be due to: A group ...

  2. Disorder in Protein Crystals.

    Science.gov (United States)

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  3. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  4. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  6. Mobility of photosynthetic proteins

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Radek

    2013-01-01

    Roč. 116, 2-3 (2013), s. 465-479 ISSN 0166-8595 R&D Projects: GA ČR GAP501/12/0304; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Photosynthesis * Protein mobility * FRAP Subject RIV: EE - Microbiology, Virology Impact factor : 3.185, year: 2013

  7. Proteins and their crystals

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana; Hogg, T.; Hilgenfeld, R.; Grandori, R.; Carey, J.; Vácha, František; Štys, D.

    2003-01-01

    Roč. 10, - (2003), s. 30-31 ISSN 1211-5894 R&D Projects: GA MŠk LN00A141; GA ČR GA206/00/D007 Institutional research plan: CEZ:MSM 123100001 Keywords : antiviral proteins Subject RIV: CD - Macromolecular Chemistry

  8. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  9. Radioimmunoassay of protein hormones

    International Nuclear Information System (INIS)

    Talas, M.; Fingerova, H.

    1976-01-01

    A survey is presented of the history of RIA methods for FSH, LH, HCG, HPL and prolactin determinations with special regard to the double antibody method in a kinetic system. Problems are shown in 125 I-labelling protein hormones in preparing own antisera. (L.O.)

  10. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  11. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  12. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Christina Funk

    2015-06-01

    Full Text Available Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary

  13. Dairy Proteins and Energy Balance

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist

    High protein diets affect energy balance beneficially through decreased hunger, enhanced satiety and increased energy expenditure. Dairy products are a major source of protein. Dairy proteins are comprised of two classes, casein (80%) and whey proteins (20%), which are both of high quality......, but casein is absorbed slowly and whey is absorbed rapidly. The present PhD study investigated the effects of total dairy proteins, whey, and casein, on energy balance and the mechanisms behind any differences in the effects of the specific proteins. The results do not support the hypothesis that dairy...... proteins, whey or casein are more beneficial than other protein sources in the regulation of energy balance, and suggest that dairy proteins, whey or casein seem to play only a minor role, if any, in the prevention and treatment of obesity....

  14. Phosphorylation of human link proteins

    International Nuclear Information System (INIS)

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-01-01

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain 32 P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO 4 /mole link protein

  15. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  16. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  17. Utilization of soya protein as an alternative protein source in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... For carcass trait, ash, crude fat, and energy varied significantly with soya protein ... high-protein content, relatively well-balanced amino acid profile ..... and organoleptic quality of flesh of brook char (Salvelinus fontinalis).

  18. Analysis of protein folds using protein contact networks

    Indian Academy of Sciences (India)

    is a well-recognized classification system of proteins, which is based on manual in- ... can easily correspond to the information in the 2D matrix. ..... [7] U K Muppirala and Zhijun Li, Protein Engineering, Design & Selection 19, 265 (2006).

  19. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  20. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  1. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  2. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  3. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    stability by randomly generate mutants and lengthy screening processes to identify the best new mutants. However, with the increase in available genomic sequences of thermophilic or hyperthermophilic organisms a world of enzymes with intrinsic high stability are now available. As these organisms are adapted...... to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  4. Structures composing protein domains.

    Science.gov (United States)

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  6. Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome.

    Directory of Open Access Journals (Sweden)

    Shahrzad Shirazi Fard

    Full Text Available Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.

  7. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    Science.gov (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  8. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  9. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  10. Why fibrous proteins are romantic.

    Science.gov (United States)

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  11. Tuber Storage Proteins

    OpenAIRE

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits act...

  12. Prion Protein and Aging

    Directory of Open Access Journals (Sweden)

    Lisa eGasperini

    2014-08-01

    Full Text Available The cellular prion protein (PrPC has been widely investigated ever since its conformational isoform, the prion (or PrPSc, was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and

  13. The mitochondrial uncoupling proteins

    OpenAIRE

    Ledesma, Amalia; de Lacoba, Mario García; Rial, Eduardo

    2002-01-01

    The uncoupling proteins (UCPs) are transporters, present in the mitochondrial inner membrane, that mediate a regulated discharge of the proton gradient that is generated by the respiratory chain. This energy-dissipatory mechanism can serve functions such as thermogenesis, maintenance of the redox balance, or reduction in the production of reactive oxygen species. Some UCP homologs may not act as true uncouplers, however, and their activity has yet to be defined. The UCPs are integral membrane...

  14. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  15. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  16. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  17. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    membrane targeting and association with ERES. We determine the localization of Sec16B by transient expression in HeLa cells, and find that the protein is evenly distributed throughout the cell except the nucleus at 37°C, as is also observed with mSec16A. When the temperature is lowered to 15°C, mSec16B...... proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...

  18. Papillomavirus E6 proteins

    International Nuclear Information System (INIS)

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-01-01

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition

  19. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  20. Noncovalent synthesis of protein dendrimers

    NARCIS (Netherlands)

    Lempens, E.H.M.; Baal, van I.; Dongen, van J.L.J.; Hackeng, T.M.; Merkx, M.; Meijer, E.W.

    2009-01-01

    The covalent synthesis of complex biomolecular systems such as multivalent protein dendrimers often proceeds with low efficiency, thereby making alternative strategies based on noncovalent chemistry of high interest. Here, the synthesis of protein dendrimers using a strong but noncovalent

  1. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  2. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters NIH Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a ... in mice suggests that lack of a certain protein may trigger atopic dermatitis, the most common type ...

  3. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2017-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  4. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2016-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  5. Designing proteins for therapeutic applications.

    Science.gov (United States)

    Lazar, Greg A; Marshall, Shannon A; Plecs, Joseph J; Mayo, Stephen L; Desjarlais, John R

    2003-08-01

    Protein design is becoming an increasingly useful tool for optimizing protein drugs and creating novel biotherapeutics. Recent progress includes the engineering of monoclonal antibodies, cytokines, enzymes and viral fusion inhibitors.

  6. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  7. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  8. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  10. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  11. Proteins: Chemistry, Characterization, and Quality

    NARCIS (Netherlands)

    Sforza, S.; Tedeschi, T.; Wierenga, P.A.

    2016-01-01

    Proteins are one of the major macronutrients in food, and several traditional food commodities are good sources of proteins (meat, egg, milk and dairy products, fish, and soya). Proteins are polymers made by 20 different amino acids. They might undergo desired or undesired chemical or enzymatic

  12. Protein: FBA8 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA8 LUBAC (linear ubiquitin chain-assembly complex) RNF31 ZIBRA RNF31 RING finger pr...otein 31 HOIL-1-interacting protein, Zinc in-between-RING-finger ubiquitin-associated domain protein 9606 Homo sapiens Q96EP0 55072 2CT7 55072 Q96EP0 ...

  13. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules MAVS IPS1, KIAA1271, VISA VISA_(gene) Mitochondrial antiviral-signaling pr...otein CARD adapter inducing interferon beta, Interferon beta promoter stimulator protein... 1, Putative NF-kappa-B-activating protein 031N, Virus-induced-signaling adapter 9606 Homo sapiens Q7Z434 57506 2VGQ 57506 ...

  14. Protein: FBA3 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available FBA3 Ubiquitination CBLB RNF56 CBLB E3 ubiquitin-protein ligase CBL-B Casitas B-lineage lymphoma pr...oto-oncogene b, RING finger protein 56, SH3-binding protein CBL-B, Signal transduction prote

  15. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases WWP1 WWP1 NEDD4-like E3 ubiquitin-protein ligase WWP1 Atrophin-1-interacting pr...otein 5, WW domain-containing protein 1 9606 Homo sapiens Q9H0M0 11059 2OP7, 1ND7 11059 ...

  16. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  17. Modeling complexes of modeled proteins.

    Science.gov (United States)

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  19. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  20. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  2. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  3. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  4. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  5. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    and drawbacks of each of these approaches is described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.......Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  6. Proteins in the experiment

    International Nuclear Information System (INIS)

    Yang, Y.S.

    1985-08-01

    The backbone of ferredoxin and hemoproteins are described by SAWs in two and three dimensions. But the spin-lattice relaxation process of Fsub(e) 3+ ions cannot be described by pure fractal model. The spectral dimensions observed in experiment is defined through dsub(s)=dsub(f)/a, a is given by the scaling form of the low frequency mode ω(bL)=bsup(a)ω(L) of the whole system consisting of proteins and the solvent upon a change of the length scale. (author)

  7. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  8. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  9. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  10. Metagenomics and the protein universe

    Science.gov (United States)

    Godzik, Adam

    2011-01-01

    Metagenomics sequencing projects have dramatically increased our knowledge of the protein universe and provided over one-half of currently known protein sequences; they have also introduced a much broader phylogenetic diversity into the protein databases. The full analysis of metagenomic datasets is only beginning, but it has already led to the discovery of thousands of new protein families, likely representing novel functions specific to given environments. At the same time, a deeper analysis of such novel families, including experimental structure determination of some representatives, suggests that most of them represent distant homologs of already characterized protein families, and thus most of the protein diversity present in the new environments are due to functional divergence of the known protein families rather than the emergence of new ones. PMID:21497084

  11. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  12. Prion protein in milk.

    Directory of Open Access Journals (Sweden)

    Nicola Franscini

    Full Text Available BACKGROUND: Prions are known to cause transmissible spongiform encephalopathies (TSE after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an adsorption matrix, Alicon PrioTrap, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrP(C--the precursor of prions (PrP(Sc--in milk from humans, cows, sheep, and goats. The absolute amount of PrP(C differs between the species (from microg/l range in sheep to ng/l range in human milk. PrP(C is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrP(C concentration. CONCLUSIONS/SIGNIFICANCE: In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrP(C in milk implies the possibility that milk of TSE-infected animals serves as source for PrP(Sc.

  13. Ethylene and protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D J

    1973-01-01

    Ethylene reduces the rate of expansion growth of cells and it is suggestive that the rate of expansion is controlled at least in part by the synthesis of hydroxyproline rich glycopeptides that are secreted with other polysaccharide material through the plasmalemma into the cell wall, thereby enhancing the thickness of the cell wall and also rendering it poorly extensible. In combination, auxin would appear to counteract the effect of ethylene in this respect, for although auxin enhances the synthesis of protein and the content in the cell walls, as well as causing some increase in wall thickness, it reduces the amount of hydroxyproline reaching the wall. Such effects may be instrumental in enhancing wall plasticity, the rate of expansion and the final cell size. These results indicate that ethylene and auxin together afford a dual regulatory system exerted through a control of a specific part of the protein synthetic pathway, the products of which regulate the rate of expansion, and the potential for expansion, of the plant cell wall. 38 references, 3 figures, 8 tables.

  14. The netrin protein family.

    Science.gov (United States)

    Rajasekharan, Sathyanath; Kennedy, Timothy E

    2009-01-01

    The name netrin is derived from the Sanskrit Netr, meaning 'guide'. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down's syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.

  15. Protein detection using biobarcodes.

    Science.gov (United States)

    Müller, Uwe R

    2006-10-01

    Over the past 50 years the development of assays for the detection of protein analytes has been driven by continuing demands for higher levels of sensitivity and multiplexing. The result has been a progression of sandwich-type immunoassays, starting with simple radioisotopic, colorimetric, or fluorescent labeling systems to include various enzymatic or nanostructure-based signal amplification schemes, with a concomitant sensitivity increase of over 1 million fold. Multiplexing of samples and tests has been enabled by microplate and microarray platforms, respectively, or lately by various molecular barcoding systems. Two different platforms have emerged as the current front-runners by combining a nucleic acid amplification step with the standard two-sided immunoassay. In both, the captured protein analyte is replaced by a multiplicity of oligonucleotides that serve as surrogate targets. One of these platforms employs DNA or RNA polymerases for the amplification step, while detection is by fluorescence. The other is based on gold nanoparticles for both amplification as well as detection. The latter technology, now termed Biobarcode, is completely enzyme-free and offers potentially much higher multiplexing power.

  16. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  17. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  18. Botanical and Protein Sweeteners

    Directory of Open Access Journals (Sweden)

    D.A. Agboola

    2014-10-01

    Full Text Available Plant species with unusual taste properties such as bitterness, sourness or sweetness and others with a taste- modifying components; have long been known to man, although their exploitation has been limited. Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with the development of bladder cancer. Naturally occurring sweet and taste modifying proteins (Thaumatin, Curculin, Miraculin, Brazzein, Pentadin, Monellin, Mabinlin present in  plants such as Thaumatococcus daniellii (Marantaceae, Curculigo latifolia (Hypoxidaceae, Synsepalum dulcificum (Sapotaceae, Pentadiplandra brazzeana (Pentadiplandraceae, Dioscoreophyllum cumminsii (Menispermaceae, Capparis masaikai (Capparaceae are being seen as potential replacements for the currently available artificial low calorie sweeteners. Most protein sweetener plants such as S. dulcificum, P. brazzeana, C. masaikai, are shrubs; C. latifolia, T. danielli, are perennial herbs while D. Cumminsii is an annual liana.

  19. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-01-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  20. Bioactive proteins from pipefishes

    Directory of Open Access Journals (Sweden)

    E. Rethna Priya

    2013-08-01

    Full Text Available Objective: To screen antimicrobial potence of some pipefish species collected from Tuticorin coastal environment. Methods: Antimicrobial activity of pipefishes in methanol extract was investigated against 10 bacterial and 10 fungal human pathogenic strains. Results: Among the tested strains, in Centriscus scutatus, pipefish showed maximum zone of inhibition against Vibrio cholerae (8 mm and minimum in the sample of Hippichthys cyanospilos against Klebseilla pneumoniae (2 mm. In positive control, maximum zone of inhibition was recorded in Vibrio cholerae (9 mm and minimum in Klebseilla pneumoniae, and Salmonella paratyphi (5 mm. Chemical investigation indicated the presence of peptides as evidenced by ninhydrin positive spots on thin layer chromatography and presence of peptide. In SDS PAGE, in Centriscus scutatus, four bands were detected in the gel that represented the presence of proteins in the range nearly 25.8-75 kDa. In Hippichthys cyanospilos, five bands were detected in the gel that represented the presence of proteins in the range nearly 20.5-78 kDa. The result of FT-IR spectrum revealed that the pipe fishes extracts compriseed to have peptide derivatives as their predominant chemical groups. Conclusions: It can be conclude that this present investigation suggests the tested pipe fishes will be a potential source of natural bioactive compounds.

  1. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  2. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  3. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  4. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  5. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  6. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  8. Protein Adaptations in Archaeal Extremophiles

    Science.gov (United States)

    Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449

  9. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  10. Viral Organization of Human Proteins

    Science.gov (United States)

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  11. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  12. Proteins of bacteriophage phi6

    International Nuclear Information System (INIS)

    Sinclair, J.F.; Tzagoloff, A.; Levine, D.; Mindich, L.

    1975-01-01

    We investigated the protein composition of the lipid-containing bacteriophage phi 6. We also studied the synthesis of phage-specific proteins in the host bacterium Pseudomonas phaseolicola HB10Y. The virion was found to contain 10 proteins of the following molecular weights: P1, 93,000; P2, 88,000; P3, 84,000; P4, 36,800; P5, 24,000; P6, 21,000; P7, 19,900; P8, 10,500; P9, 8,700; and P10, less than 6,000. Proteins P3, P9, and P10 were completely extracted from the virion with 1 percent Triton X-100. Protein P6 was partially extracted. Proteins P8 and P9 were purified by column chromatography. The amino acid composition of P9 was determined and was found to lack methionine. Labeling of viral proteins with [ 35 S]methionine in infected cells indicated that proteins P5, P9, P10, and P11 lacked methionine. Treatment of host cells with uv light before infection allowed the synthesis of P1, P2, P4, and P7; however, the extent of viral protein synthesis fell off exponentially with increasing delay time between irradiation and infection. Treatment of host cells with rifampin during infection allowed preferential synthesis of viral proteins, but the extent of synthesis also fell off exponentially with increasing delay time between the addition of rifampin and the addition of radioactive amino acids. All of the virion proteins were seen in gels prepared from rifampin-treated infected cells. In addition, two proteins, P11 and P12, were observed; their molecular weights were 25,200 and 20,100, respectively. Proteins P1, P2, P4, and P7 were synthesized early, whereas the rest began to increase at 45 min post-infection

  13. Protein (Cyanobacteria): 500464022 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Synechococcus sp. WH 7803 MSRQRFRGLYLQNTGHPLCFSFVTYTPQTREQMVACGDLRADEEYFSPVLFDFLLFVSEGILGASPGVAFPFGYDDLAIVASRIRGTGVQHEYLIAINASAWNESKQAVLQQLRDILSRDLWDGARLRRGNDHPSPSE

  14. Protein (Cyanobacteria): 504930526 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Rivularia sp. PCC 7116 MAEDNNLTNNSATNISSESQTLNKDIEELVTRQAKAWENADSEAIIADFAENGAFIAPGTSLKGKADIKKAAEDYFKEFTDTKVKITRIFSDGKEGGVEWTWSDKNKKTGEKSLIDDAIIFEIKDGKIIYWREYFDKQTVSS

  15. Protein (Viridiplantae): 159470305 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MSSRPKRAASANMANVIAAEKANKAAALHAWPKMWATKLEAQLQLMFMPTRLHRRPLHQGTCRNYSTAPGITGVIELTSAFYRMYPNATFVFNKETAAKGTYRGEEETAASWWLKHVGSKLEIYLSPLRCRPEVSR ...

  16. Protein (Cyanobacteria): 516317055 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ical protein Prochlorothrix hollandica MYENERDNERENEYDLISPVEILPVIVARAIAPPSPPATTPDDPERVYESENEREDESISPVEILPVIVARAIA...PPSPPSTAPDDPEDEYERGDEREDEYEDEAISPVEILPVIVARAIAPPSPPATAPDEDAAAPDENEDEYEEI

  17. Protein (Cyanobacteria): 497073171 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available pothetical protein Fischerella sp. JSC-11 MHYYVHPFQLELHKLENMIVHVQHVNNQEVKQIADSRLFTSQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTQAIGEEGGDTVTTQAIGEEGGDTVTTKAIGEEGGDTVTTLAFGEEGGF

  18. Protein (Cyanobacteria): 518320325 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... hypothetical protein Calothrix sp. PCC 7103 MDYVHPFQMELHKLESMIVHVQYADIKEVDKTLASNDAVSTQAVGEEGGTKVSTRALGEEGGNILTTYAVGEEGGNILTTYAVGEEGGDKVTTQAVGEEGGTRVTTYAVGEEGGGRVTTKAVGEEGGSIIRR

  19. Protein (Cyanobacteria): 447729 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Microcystis aeruginosa PCC 9806 MMEDIVWKMQQRSRTLQDYRKDIRGLWQDEAAKTLNRRYLDPHEDDDQKMIEFLQKQVQGLEKTNEELVKAKDYALEAERYSQQVEHFLEREKQEVKQAYYSYDRSIEYYGLTQAELPNIHRLIQQANRSCN ...

  20. Protein (Cyanobacteria): 515516403 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Anabaena sp. PCC 7108 MTVRFLLDSNIISEPSRPIPNIQVLDQLNRYRSEVAIASVVVHEILYGCWRLPPSKRKDSLWKYIQDSVLNLPVFDYNLNAAKWHAQERARLSKIGKTPAFIDGQIASIAFCNDLILVTNNVADFQDFQDLVIENWFI

  1. Protein (Viridiplantae): 308803454 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available unnamed protein product, partial Ostreococcus tauri MRSFVLIIHASASYDKIRSCTPATRYACDVRSNLKRAALGDVQPPLGLVLAALEIIFVPRADDARVTHGLFEQPIEEALLLPGLRARYSSRQSKSHVTSHDPRLDPPQIHHPAPVRYHPIASPSX ...

  2. Protein (Cyanobacteria): 493685768 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hypothetical protein Microcoleus vaginatus MSEIPAEQTQTNLTTPEITTESSISGVENVKNSLGNVLNSWKLKVGVAVVVLFAVSLFAFYWQHIIAVVGMKSWSARSGANPIECMVRDTNNDQYVSCSALLDQQIVPLECSSSLFNIGCRVNYGTAAANPRQTNPR

  3. Protein supplementation with sports protein bars in renal patients.

    Science.gov (United States)

    Meade, Anthony

    2007-05-01

    Malnutrition prevalence in patients on dialysis is well established. The protein requirements for both hemodialysis and peritoneal dialysis have been documented elsewhere, including the Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. The clinical challenge is to assist patients in meeting these targets, especially in those with anorexia. Traditional supplements have included fluid, which is an issue for patients who are fluid restricted. The study objectives were to (1) investigate the range of sports protein supplements that may be suitable for patients on hemodialysis to use and (2) trial nonfluid protein supplements in patients on hemodialysis. Known manufacturers of sports protein bars and other sports supplements available in Australia were contacted for the nutrient breakdown of high-protein products, specifically potassium, protein, and phosphorus contents. As a result, selected high-protein sports bars (Protein FX, Aussie Bodies, Port Melbourne, Victoria, Australia) were used as an alternative to the more commonly used renal-specific fluid supplements (Nepro, Abbott Laboratories, Abbott Park, IL; Novasource Renal, Novartis Nutrition Corporation, Fremont, MI; and Renilon, Nutricia, Wiltshire, UK) in patients with poor nutritional status requiring supplementation. Patient satisfaction and clinical nutrition markers were investigated. The study took place at inpatient, in-center, and satellite hemodialysis settings in Adelaide, South Australia. A total of 32 patients (16 females and 16 males) with an average age of 62.9 years (range 32-86 years) undergoing hemodialysis (acute and maintenance) were included. Subjects were selected by the author as part of routine clinical nutrition care. Patients trialed sports protein bars as a protein supplement alone or in conjunction with other supplementary products. All patients were in favor of the trial, with 22 of 32 patients continuing with the protein

  4. Modular protein switches derived from antibody mimetic proteins.

    Science.gov (United States)

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Protein degradation and protection against misfolded or damaged proteins

    Science.gov (United States)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  6. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  7. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  8. Protein Crystal Growth

    Science.gov (United States)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  9. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  10. Drosophila Protein interaction Map (DPiM)

    OpenAIRE

    Guruharsha, K.G.; Obar, Robert A.; Mintseris, Julian; Aishwarya, K.; Krishnan, R.T.; VijayRaghavan, K.; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when,...

  11. Nanofibers made of globular proteins.

    Science.gov (United States)

    Dror, Yael; Ziv, Tamar; Makarov, Vadim; Wolf, Hila; Admon, Arie; Zussman, Eyal

    2008-10-01

    Strong nanofibers composed entirely of a model globular protein, namely, bovine serum albumin (BSA), were produced by electrospinning directly from a BSA solution without the use of chemical cross-linkers. Control of the spinnability and the mechanical properties of the produced nanofibers was achieved by manipulating the protein conformation, protein aggregation, and intra/intermolecular disulfide bonds exchange. In this manner, a low-viscosity globular protein solution could be modified into a polymer-like spinnable solution and easily spun into fibers whose mechanical properties were as good as those of natural fibers made of fibrous protein. We demonstrate here that newly formed disulfide bonds (intra/intermolecular) have a dominant role in both the formation of the nanofibers and in providing them with superior mechanical properties. Our approach to engineer proteins into biocompatible fibrous structures may be used in a wide range of biomedical applications such as suturing, wound dressing, and wound closure.

  12. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...... irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated...

  13. Maintaining protein composition in cilia.

    Science.gov (United States)

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  14. Preparation of GST Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-04-01

    INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.

  15. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  16. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  17. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Myristoylated proteins and peptidyl myristoyltransferase

    International Nuclear Information System (INIS)

    Marchildon, G.A.

    1986-01-01

    The distribution and intracellular locations of myristoylated proteins have been examined in cultured cells. Incubating a variety of cells in minimal medium containing / 3 H/ myristate led to the incorporation of labeled myristate into as many as twenty-five different intracellular proteins. The incorporation increased linearly with time for up to six hours and then increased more slowly for an additional ten hours. The chemical stability indicated that the attachment was covalent and excluded nucleophile-labile bonds such as thioesters. Fluorographs of proteins modified by / 3 H/ myristate and resolved on gradient SDS-PAGE showed patterns that differed from cell type to cell type. To examine the intracellular locations of the myristate-labeled proteins, cells were isotonically subfractionated. Most of the myristate-labeled proteins remained in the high speed supernatant devoid of microsomal membranes. This indicated that the myristate modification in itself is not sufficient to serve as an anchor for membrane association. Myristate labeled catalytic subunit of the cyclic AMP dependent protein kinase was specifically immunoprecipitated from an aliquot of the high speed supernatant proteins. However, the prominent tyrosine protein kinase of the murine lymphoma cell line LSTRA, pp56/sup lstra/, also incorporated myristate and was specifically immunoprecipitated from the high speed pellet (particulate) fraction of labeled LSTRA cells. To begin to understand the biochemical mechanism of myristate attachment to protein. The authors partially purified and characterized the peptidyl myristoyltransferase from monkey liver. Recovery of enzymatic activity was 69%

  19. Computational protein design: a review

    International Nuclear Information System (INIS)

    Coluzza, Ivan

    2017-01-01

    Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future. (topical review)

  20. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  1. Fluorine-18 labeling of proteins

    International Nuclear Information System (INIS)

    Kilbourn, M.R.; Dence, C.S.; Welch, M.J.; Mathias, C.J.

    1987-01-01

    Two fluorine-18-labeled reagents, methyl 3-[ 18 F]fluoro-5-nitrobenzimidate and 4-[ 18 F]fluorophenacyl bromide, have been prepared for covalent attachment of fluorine-18 to proteins. Both reagents can be prepared in moderate yields (30-50%, EOB) in synthesis times of 50-70 min. Reaction of these reagents with proteins (human serum albumin, human fibrinogen, and human immunoglobulin A) is pH independent, protein concentration dependent, and takes 5-60 min at mild pH (8.0) and temperature (25-37 degrees C), in yields up to 95% (corrected). The 18 F-labeled proteins are purified by size exclusion chromatography

  2. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  3. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  4. Protein stability: a crystallographer’s perspective

    International Nuclear Information System (INIS)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed

  5. Protein stability: a crystallographer’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@stanford.edu [Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125 (United States); Kong, Leopold [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814 (United States); Rupp, Bernhard [k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2016-01-26

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.

  6. Protein linguistics - a grammar for modular protein assembly?

    Science.gov (United States)

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  7. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  8. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  9. Human Serum Protein-Bound iodine and Protein Fractions at ...

    African Journals Online (AJOL)

    Iodine profile of Nigerians at different ages in both sexes and in pregnant women, and under narcotic influence, such as alcoholism, cigarette smoking and marijuana addiction were studied. Their serum total protein, albumin and globulin concentrations were also determined. Results of the study showed that serum protein ...

  10. Implications of protein polymorphism on protein phase behaviour

    NARCIS (Netherlands)

    Stegen, J.; Schoot, van der P.P.A.M.

    2015-01-01

    The phase behaviour of small globular proteins is often modeled by approximating them as spherical particles with fixed internal structure. However, changes in the local environment of a protein can lead to changes in its conformation rendering this approximation invalid. We present a simple

  11. Protein scissors: Photocleavage of proteins at specific locations

    Indian Academy of Sciences (India)

    Unknown

    Binding of ligands to globular proteins at hydrophobic cavities while making specific ... ched to a PTI model A1010 monochromator. UV cut-off filter ..... >1:1 stoichiometry (protein to ligand), the binding equilibrium favors the thermo- dynamically ...

  12. Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins

    NARCIS (Netherlands)

    Blum, Christian; Meixner, Alfred J.; Subramaniam, Vinod

    2011-01-01

    DsRed is representative of the tetrameric reef coral fluorescent proteins that constitute particularly interesting coupled multichromophoric systems. Either a green emitting or a red emitting chromophore can form within each of the monomers of the protein tetramer. Within the tetramers the

  13. Inactivation of Tor proteins affects the dynamics of endocytic proteins ...

    Indian Academy of Sciences (India)

    Tor2 is an activator of the Rom2/Rho1 pathway that regulates -factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of -factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic ...

  14. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  15. Allergenicity assessment strategy for novel food proteins and protein sources

    NARCIS (Netherlands)

    Verhoeckx, Kitty; Broekman, Henrike; Knulst, André; Houben, Geert

    To solve the future food insecurity problem, alternative and sustainable protein sources (e.g. insects, rapeseed, fava bean and algae) are now being explored for the production of food and feed. To approve these novel protein sources for future food a comprehensive risk assessment is needed