WorldWideScience

Sample records for intraneural ganglia critical

  1. The clock face guide to peroneal intraneural ganglia: critical ''times'' and sites for accurate diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, Robert J. [Mayo Clinic, Department of Neurologic Surgery, Rochester, MN (United States); Mayo Clinic, Department of Orthopedics, Rochester, MN (United States); Mayo Clinic, Department of Anatomy, Rochester, MN (United States); Luthra, Gauri [University College Cork, National University of Ireland, Cork (Ireland); Desy, Nicholas M. [McGill University School of Medicine, Department of Orthopedics, Montreal, Quebec (Canada); Anderson, Meredith L. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Amrami, Kimberly K. [Mayo Clinic, Department of Neurologic Surgery, Rochester, MN (United States); Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2008-12-15

    The aim of this study is to exploit the normal nature of peroneal nerve anatomy to identify constant magnetic resonance imaging (MRI) patterns in peroneal intraneural ganglia. This study is designed as a retrospective clinical study. MR images of 25 patients with peroneal intraneural ganglia were analyzed and were compared to those of 25 patients with extraneural ganglia and 25 individuals with normal knees. All specimens were interpreted as left-sided. Using conventional axial images, the position of the common peroneal nerve and either intraneural or extraneural cyst was determined relative to the proximal fibula and the superior tibiofibular joint using a symbolic clock face. In all patients, the common peroneal nerve could be seen between the 4 and 5 o'clock position at the mid-portion of the fibular head. In patients with intraneural ganglia, a single axial image could reproducibly and reliably demonstrate both cyst within the common peroneal nerve at the mid-portion of the fibular head (signet ring sign) between 4 and 5 o'clock and within the articular branch at the superior tibiofibular joint connection (tail sign) between 11 and 12 o'clock; in addition, cyst within the transverse limb of the articular branch (transverse limb sign) was seen at the mid-portion of the fibular neck between the 12 and 2 o'clock positions on serial images. Extraneural ganglia typically arose from more superior joint connections with the epicenter of the cyst varying around the entire clock face without a consistent pattern. There was no significant difference between the visual and template assessment of clock face position for all three groups (intraneural, extraneural, and controls). We believe that the normal anatomic and pathologic relationships of the common peroneal nerve in the vicinity of the fibular neck/head region can be established readily and reliably on single axial images. This technique can provide radiologists and surgeons with rapid and

  2. Coexisting secondary intraneural and vascular adventitial ganglion cysts of joint origin: a causal rather than a coincidental relationship supporting an articular theory

    International Nuclear Information System (INIS)

    Spinner, Robert J.; Scheithauer, Bernd W.; Desy, Nicholas M.; Rock, Michael G.; Holdt, Frederik C.; Amrami, Kimberly K.

    2006-01-01

    To introduce the clinical entity of an intraneural ganglion cyst coexisting with a vascular adventitial cyst arising from the same joint. Retrospective review. Two patients presented with predominantly deep peroneal neuropathy due to complex superior tibiofibular joint-related cysts. In addition to having peroneal intraneural ganglion cysts, these patients had vascular adventitial cysts: one involving a capsular arterial branch, the other a capsular vein [as well as a large, recurrent, intramuscular (extraneural) ganglion]. We then reviewed MRIs of 12 other consecutive cases of intraneural ganglia (10 peroneal and 2 tibial) arising from the superior tibiofibular joint that we treated, as well as other reported cases in the literature to determine if there were other (unrecognized) examples supporting the combination of clinical findings and radiographic patterns. Retrospective analysis of MRIs in the two surgically proven cases of peroneal intraneural ganglia with vascular adventitial cyst extension showed a common imaging pattern that we have termed ''the wishbone sign,'' consisting of the connection of the ascending limb of the peroneal intraneural ganglion and the longitudinal limb of the vascular adventitial cyst in the axial plane. Our review suggests that vascular adventitial cyst extension occurs in a large proportion of cases of peroneal intraneural ganglia. A similar growth pattern was noted in a case of a tibial intraneural ganglion. The combination of intraneural and vascular adventitial cysts is understandable given our knowledge of normal and pathologic anatomy of para-articular cysts. The combination of intraneural ganglia and vascular adventitial cysts broadens the spectrum of clinical presentations of these cysts and suggests that cysts and their content can dissect from a joint along neurovascular bundles. These cases provide important evidence to support the articular theory for the pathogenesis of not only neural but vascular adventitial cysts as

  3. The clinico-anatomic explanation for tibial intraneural ganglion cysts arising from the superior tibiofibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, Robert J. [Mayo Clinic, Department of Neurologic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Anatomy, Rochester, Minnesota (United States); Mokhtarzadeh, Ali; Schiefer, Terry K. [Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Krishnan, Kartik G. [Carl Gustav Carus University Hospital, Department of Neurological Surgery, Dresden (Germany); Kliot, Michel [University of Washington, Department of Neurosurgery, Seattle, Washington (United States); Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, Minnesota (United States)

    2007-04-15

    To demonstrate that tibial intraneural ganglia in the popliteal fossa are derived from the posterior portion of the superior tibiofibular joint, in a mechanism similar to that of peroneal intraneural ganglia, which have recently been shown to arise from the anterior portion of the same joint. Retrospective clinical study and prospective anatomic study. The clinical records and MRI findings of three patients with tibial intraneural ganglion cysts were analyzed and compared with those of one patient with a tibial extraneural ganglion cyst and one volunteer. Seven cadaveric limbs were dissected to define the articular anatomy of the posterior aspect of the superior tibiofibular joint. The condition of the three patients with intraneural ganglia recurred because their joint connections were not identified initially. In two patients there was no cyst recurrence when the joint connection was treated at revision surgery; the third patient did not wish to undergo additional surgery. The one patient with an extraneural ganglion had the joint connection identified at initial assessment and had successful surgery addressing the cyst and the joint connection. Retrospective evaluation of the tibial intraneural ganglion cysts revealed stereotypic features, which allowed their accurate diagnosis and distinction from extraneural cases. The intraneural cysts had tubular (rather than globular) appearances. They derived from the postero-inferior portion of the superior tibiofibular joint and followed the expected course of the articular branch on the posterior surface of the popliteus muscle. The cysts then extended intra-epineurially into the parent tibial nerves, where they contained displaced nerve fascicles. The extraneural cyst extrinsically compressed the tibial nerve but did not directly involve it. All cadaveric specimens demonstrated a small single articular branch, which derived from the tibial nerve to the popliteus. The branch coursed obliquely across the posterior

  4. Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Awara, Kousuke; Takeno, Kenichi; Miyazaki, Tsuyoshi; Kubota, Masafumi; Negoro, Kohei; Baba, Hisatoshi

    2010-08-01

    Phalen's test has been one of the most significant of clinical signs when making a clinical diagnosis of idiopathic carpal tunnel syndrome (CTS). However, it is unknown whether intraneural blood flow changes during Phalen's test in patients with CTS. In this study, an intraoperative Phalen's test was conducted in patients with CTS to observe the changes in intraneural blood flow using a laser Doppler flow meter. During Phalen's test, intraneural blood flow showed a sharp decrease, which lasted for 1 min. Intraneural blood flow decreased by 56.7%-100% (average, 78.0%) in the median nerve relative to the blood flow before the test. At 1 min after completing the test, intraneural blood flow returned to the baseline value. After carpal tunnel release, there was no marked decrease in intraneural blood flow. This study demonstrated that the blood flow in the median nerve is reduced when Phalen's test is performed in vivo. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Tibial nerve intraneural ganglion cyst in a 10-year-old boy

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Judy H. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati, OH (United States); Emery, Kathleen H.; Johnson, Neil [Cincinnati Children' s Hospital Medical Center, Division of Radiology, Cincinnati, OH (United States); Sorger, Joel [Cincinnati Children' s Hospital Medical Center, Division of Orthopedics, Cincinnati, OH (United States)

    2014-04-15

    Intraneural ganglion cysts are uncommon cystic lesions of peripheral nerves that are typically encountered in adults. In the lower extremity, the peroneal nerve is most frequently affected with involvement of the tibial nerve much less common. This article describes a tibial intraneural ganglion cyst in a 10-year-old boy. Although extremely rare, intraneural ganglion cysts of the tibial nerve should be considered when a nonenhancing cystic structure with intra-articular extension is identified along the course of the nerve. This report also details the unsuccessful attempt at percutaneous treatment with US-guided cyst aspiration and steroid injection, an option recently reported as a viable alternative to open surgical resection. (orig.)

  6. Cisto sinovial intraneural do nervo fibular: relato de caso Intraneural synovial cyst of the peroneal nerve: case report

    Directory of Open Access Journals (Sweden)

    Roberto Sergio Martins

    1997-01-01

    Full Text Available Os autores apresentam um caso de um cisto sinovial intraneural ocorrendo no nervo fibular comum. O paciente apresentou-se com quadro de dor e dificuldade para a flexão dorsal e eversão do pé sendo submetido a exploração cirúrgica com exérese do cisto. Neste estudo são discutidos a patogênese, manifestações clínicas e tratamento desta rara lesão.The authors report the case of an intraneural synovial cyst of the peroneal nerve. The initial symptom was pain and weakness of dorsiflexion and eversion of the right foot. The patient was operated on and the cyst was totally resected. The authors discuss the pathogenesis, clinical diagnosis as well as the treatment of that uncommon lesion.

  7. An unusual variant of intraneural ganglion of the common peroneal nerve

    International Nuclear Information System (INIS)

    Bonar, S. Fiona; Viglione, Wayne; Schatz, Julie; Scolyer, Richard A.; McCarthy, Stanley W.

    2006-01-01

    A highly unusual variant of an intraneural ganglion of the common peroneal nerve in a 30-year-old male is presented. There was extrusion of the contents of the cyst into the substance of the nerve, dissecting between the fibres and expanding the nerve in such a way that it mimicked an intraneural tumour clinically, radiologically and histologically. A comprehensive review of the entity is undertaken. (orig.)

  8. TOPOGRAFÍA INTRANEURAL DE LA RAMA PROFUNDA DEL NERVIO ULNAR EN EL ANTEBRAZO DISTAL: ESTUDIO CADAVÉRICO. Intraneural topography of the deep branch of the ulnar nerve in the distal forearm: cadaveric study.

    Directory of Open Access Journals (Sweden)

    Joaquín García Pisón

    2016-07-01

    Full Text Available Objetivo: estudiar la topografía intraneural de la rama profunda del nervio ulnar (RPNU en el antebrazo distal en vistas a su identificación mediante disección intraneural mínima durante la transferencia del nervio del pronador cuadrado (NPC a la RPNU. Materiales y métodos: En 15 antebrazos cadavéricos se fijó el paquete vasculonervioso ulnar a los planos musculares profundos cada un centímetro tomando como referencia el hueso pisiforme. Se disecó en sentido proximal la RPNU bajo microscopio quirúrgico (Olympus OME, 4-20x y se registró su posición intraneural en base a una división en cuadrantes. Se midió la distancia desde el origen de la rama cutánea dorsal (RCD del nervio ulnar al pisiforme y se registró su relación intraneural con la RPNU. Resultados: La RPNU se individualizó hasta 69mm (41-94 proximal al hueso pisiforme, ubicándose en el cuadrante posteromedial del nervio ulnar en el 78% (67-87, el 93% (92-93 y el 100% de los casos entre los 0-2, 3-6 y 7-9 centímetros, respectivamente. La distancia pisiforme-RCD fue de 63mm (52-83. En 11 miembros la disección de la RPNU se extendió proximalmente al origen de la RCD, ubicándose siempre entre esta última y la rama superficial del nervio ulnar. Conclusiones: La topografía intraneural de la RPNU en el sitio óptimo para su sección en vistas a su anastomosis con el NPC es predecible en la mayoría de los casos, lo que confirma la viabilidad de su identificación precisa mediante disección intraneural mínima.  Objective: to assess the intraneural anatomy of the deep branch of the ulnar nerve (DBUN in the distal forearm in reference to its identification by means of minimal intraneural dissection during pronator quadratus nerve to DBUN transfers. Materials and methods: In 15 cadaveric forearms the ulnar neurovascular bundle was identified and attached to the subjacent muscles every one centimeter. Pisiform bone was used as reference. Intraneural proximal dissection of

  9. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  10. Intraneural metastasis of gastric carcinoma leads to sciatic nerve palsy

    International Nuclear Information System (INIS)

    Ichikawa, Jiro; Matsumoto, Seiichi; Shimoji, Takashi; Tanizawa, Taisuke; Gokita, Tabu; Hayakawa, Keiko; Aoki, Kaoru; Ina, Saori; Kanda, Hiroaki

    2012-01-01

    Soft tissue metastases, in particular intraneural metastasis, from any carcinomas seldom occur. To our knowledge, no case of sciatic nerve palsy due to intraneural metastasis of gastric carcinoma is reported in the literature. A case is reported of a 82-year old woman with sciatic nerve palsy with intraneural metastasis of gastric carcinoma. Although she had undergone partial gastrectomy with T2b, N0, M0 two years ago and primary site was cured, she developed sciatic nerve palsy from the carcinoma metastasis directly to the nerve. Operative resection and Histological examination revealed poorly differentiated adenocarcinoma, the same as her primary site adenocarcinoma. Sciatica is usually caused by a herniated disc or spinal canal stenosis. Sciatic nerve palsy may be caused by nondiscogenic etiologies that may be either intrapelvic or extrapelvic. It is important to image the entire course of the nerve to distinguish these etiologies quickly. The longer the nerve compression the less likely a palsy will recover. Surgery is a good intervention that simultaneously obtains a tissue diagnosis and decompresses the nerve

  11. Injection Pressure as a Marker of Intraneural Injection in Procedures of Peripheral Nerves Blockade

    Directory of Open Access Journals (Sweden)

    Ilvana Vučković

    2006-11-01

    Full Text Available The blockade of peripheral nerves carries a certain risk of unwanted complications, which can follow after unintentional intraneural injection of a local anesthetic. Up till today, the research of measuring injection pressure has been based on animal models, even though the histological structure of periphery nerve is different for animal and human population, so the application pressure which presages intraneural injection in human population is still unknown. As material in performing this study there have been used 12 Wistar rats and 12 delivered stillborns. After bilateral access to the median nerve, we applied 3 ml of 2% lidocaine with epinephrine, with the help of automatic syringe charger. The needle was at first placed perineural on one side, and then intraneural on the other side of both examination groups. During every application the pressure values were monitored using the manometer, and then they were analyzed by special software program BioBench. All perineural injections resulted with the pressure < or = 27.92 kPa, while the majority of intraneural injections were combined with the injectionpressure > or = 69.8 kPa. The difference between intraneural and perineural injection pressures for the two different examination groups (rats and delivered stillborns was not statistically significant (P>0.05. As prevention from intraneural injections today are in use two methods: the method of causing paresthesia or the method of using the peripheral nerve stimulator. However the nerve injury can still occur, independent from the technique used. If our results are used in clinical practice on human population, than the high injection pressure could be the markerof intraneural lodging of a needle.

  12. Myxoid intraneural cysts of external popliteal ischiadic nerve

    International Nuclear Information System (INIS)

    Masciocchi, Carlo; Innacoli, Michele; Cisternino, Salvatore; Barile, Antonio; Rossi, Folco; Passariello, Roberto.

    1992-01-01

    Peripheral neuropathy of the external popliteal ischiadic nerve caused by intraneural cysts is a very rare and peculiar pathological phenomenon compared with diseases associated with extraneural cysts or colliquative phenomena of solid nervous lesions. Two cases of peripheral neuropathy of the external poplitheal ischiadic nerve caused by intra-neural cysts and evaluated with ultrasound, computed tomography and magnetic resonance are described. The diagnostic efficacy of these imaging modalities is also evaluated with particular reference to MR capability to define the morphology of such lesions and their relation-ships to the surrounding structures. It is not yet possible to obtain a correct diagnosis about histopathologic features by means of the imaging techniques currently available. Nevertheless, they provide information about the involvement of the neighboring areas, which are useful indications for possible surgical treatment of the disease. (author). 9 refs.; 2 figs

  13. Intraneural perineurioma of the sciatic nerve in early childhood

    DEFF Research Database (Denmark)

    Østergaard, John R; Smith, Torben; Stausbøl-Grøn, Brian

    2009-01-01

    Intraneural perineurioma is an uncommon benign neoplasm characterized by focal perineural cell proliferation. The typical course is indolent, with gradual onset and slow progression of motor loss. In early childhood, uncertainty concerning the time of onset can lead to difficulty in distinguishin...

  14. Ultrasonographic demonstration of intraneural neovascularization after penetrating nerve injury.

    Science.gov (United States)

    Arányi, Zsuzsanna; Csillik, Anita; Dévay, Katalin; Rosero, Maja

    2018-06-01

    Hypervascularization of nerves has been shown to be a pathological sign in some peripheral nerve disorders, but has not been investigated in nerve trauma. An observational cohort study was performed of the intraneural blood flow of 30 patients (34 nerves) with penetrating nerve injuries, before or after nerve reconstruction. All patients underwent electrophysiological assessment, and B-mode and color Doppler ultrasonography. Intraneural hypervascularization proximal to the site of injury was found in all nerves, which was typically marked and had a longitudinal extension of several centimeters. In 6 nerves, some blood flow was also present within the injury site or immediately distal to the injury. No correlation was found between the degree of vascularization and age, size of the scar / neuroma, or degree of reinnervation. Neovascularization of nerves proximal to injury sites appears to be an essential element of nerve regeneration after penetrating nerve injuries. Muscle Nerve 57: 994-999, 2018. © 2018 Wiley Periodicals, Inc.

  15. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  16. Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation.

    Science.gov (United States)

    Gerster, Samuel; Namer, Barbara; Elam, Mikael; Bach, Dominik R

    2018-02-01

    Skin conductance responses (SCR) are increasingly analyzed with model-based approaches that assume a linear and time-invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non-SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non-SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  17. Sequential imaging of intraneural sciatic nerve endometriosis provides insight into symptoms of cyclical sciatica.

    Science.gov (United States)

    Capek, Stepan; Amrami, Kimberly K; Howe, Benjamin M; Collins, Mark S; Sandroni, Paola; Cheville, John C; Spinner, Robert J

    2016-03-01

    Endometriosis of the nerve often remains an elusive diagnosis. We report the first case of intraneural lumbosacral plexus endometriosis with sequential imaging at different phases of the menstrual cycle: during the luteal phase and menstruation. Compared to the first examination, the examination performed during the patient's period revealed the lumbosacral plexus larger and hyperintense on T2-weighted imaging. The intraneural endometriosis cyst was also larger and showed recent hemorrhage. Additionally, this case represents another example of perineural spread of endometriosis from the uterus to the lumbosacral plexus along the autonomic nerves and then distally to the sciatic nerve and proximally to the spinal nerves.

  18. De Novo Intraneural Arachnoid Cyst Presenting with Complete Third Nerve Palsy: Case Report and Literature Review.

    Science.gov (United States)

    Brewington, Danielle; Petrov, Dmitriy; Whitmore, Robert; Liu, Grant; Wolf, Ronald; Zager, Eric L

    2017-02-01

    Intraneural arachnoid cyst is an extremely rare etiology of isolated cranial nerve palsy. Although seldom encountered in clinical practice, this pathology is amenable to surgical intervention. Correct identification and treatment of the cyst are required to prevent permanent nerve damage and potentially reverse the deficits. We describe a rare case of isolated third nerve palsy caused by an intraneural arachnoid cyst. A 49-year-old woman with a recent history of headaches experienced acute onset of painless left-sided third nerve palsy. According to hospital records ptosis, mydriasis, absence of adduction, elevation, and intorsion were noted in the left eye. Computed tomography and magnetic resonance imaging studies showed an extra-axial, 1-cm lesion along the left paraclinoid region, causing mild indentation on the uncus. There was dense fluid layering dependently concerning for hemorrhage, but no evidence of aneurysms. A pterional craniotomy was performed, revealing a completely intraneural arachnoid cyst in the third nerve. The cyst was successfully fenestrated. At 7-month follow-up, the left eye had recovered intact intorsion and some adduction, but the left pupil remained dilated and nonreactive. There was still no elevation and no afferent pupillary defect. Double vision persisted with partial improvement in the ptosis, opening up to more than 75% early in the day. To our knowledge, this is the first report of an intraneural arachnoid cyst causing isolated third nerve palsy. This rare pathology proves to be both a diagnostic and therapeutic challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intraneural synovial sarcoma of the median nerve

    Directory of Open Access Journals (Sweden)

    Rahul Kasukurthi

    2010-06-01

    Full Text Available Synovial sarcomas are soft-tissue malignancies with a poor prognosis and propensity for distant metastases. Although originally believed to arise from the synovium, these tumors have been found to occur anywhere in the body. We report a rare case of synovial sarcoma arising from the median nerve. To our knowledge, this is the twelfth reported case of intraneural synovial sarcoma, and only the fourth arising from the median nerve. Because the diagnosis may not be apparent until after pathological examination of the surgical speci­men, synovial sarcoma should be kept in mind when dealing with what may seem like a benign nerve tumor.

  20. Intraneural hemangioma of the median nerve: A case report

    Directory of Open Access Journals (Sweden)

    Sevinç Teoman

    2008-02-01

    Full Text Available Abstract Hemangiomas of the median nerve are very rare and, so far, only ten cases of intraneural hemangioma of this nerve have been reported in the literature. We present a case of 14-year-old girl who had a soft tissue mass in the region of the left wrist with signs and symptoms of carpal tunnel syndrome. Total removal of the mass was achieved using microsurgical epineural and interfasicular dissection. The symptoms were relieved completely, after this procedure, without any neurologic deficit. On follow-up two years later, no recurrence was observed. Whenever a child or young adult patient presents with CTS the possibility of a hemangioma involving the median nerve should be kept in mind in the differential diagnosis.

  1. Hematoma intraneural experimental em ratos: avaliação da recuperação funcional e histomorfometria neural Experimental intraneural hematoma model in rats: evaluation of functional recovery and neural histomorphometry

    Directory of Open Access Journals (Sweden)

    Gean Paulo Scopel

    2007-01-01

    Full Text Available A formação do hematoma intraneural com comprometimento de nervos periféricos pode ocorrer após trauma ou coagulopatias. O tratamento expectante ou abordagem cirúrgica descompressiva ainda não estão definidos. Foram estudados 40 ratos da raça Wistar divididos em 4 grupos. No grupo A realizou-se injeção intraneural de 0,2 ml de sangue autógeno no nervo ciático direito. No grupo B, após produção do hematoma, fez-se descompressão imediata com epineurotomia longitudinal. No grupo D realizamos liberação imediata do hematoma com neurólise interfascicular. No grupo C (CONTROLE apenas realizou-se a exposição do nervo ciático sem formação de hematoma. A avaliação da função nervosa foi feita com o Índice de Função Ciática de Bain-Mackinnon-Hunter (IFC. O grupo A apresentou IFC inicial de -28,43, com recuperação funcional no 5º dia. A drenagem imediata desse hematoma através de uma epineurotomia longitudinal (B determinou retorno da função ciática normal desde o 1º dia (IFC= -14,42. Tratando o hematoma através da neurólise interfascicular observamos um IFC inicial de -23,69 e retorno da função ciática normal no 3º dia. Os parâmetros histomorfométricos apontaram melhora dos parâmetros de isquemia após os 2 tipos de intervenção cirúrgica aplicadas neste estudo. Não houve diferença entre os tipos de intervenções aplicadas.Emergence of intraneural hematoma with involvement of peripheral nerves can occur after trauma or coagulation disorders. The decision for expectant management or decompressive surgical techniques is still controversial. Forty male Wistar rats were divided into 4 groups. In group A, an intraneural injection of autologous blood was provided at the right sciatic nerve. In group B, after the hematoma creation, a longitudinal epineurotomy was performed. In the group C (sham-operated, the sciatic nerve was exposed without hematoma. In group D. immediately after the hematoma creation, an

  2. Effects of intraneural and perineural injection and concentration of Ropivacaine on nerve injury during peripheral nerve block in Wistar rats

    Directory of Open Access Journals (Sweden)

    Ilvana Hasanbegovic

    2013-12-01

    Full Text Available Introduction: Injury during peripheral nerve blocks is relatively uncommon, but potentially devastating complication. Recent studies emphasized that location of needle insertion in relationship to the fascicles may be the predominant factor that determines the risk for neurologic complications. However, it is wellestablished that concentration of local anesthetic is also associated with the risk for injury. In this study, we examined the effect of location of injection and concentration of Ropivacaine on risk for neurologic complications. Our hypothesis is that location of the injection is more prognostic for occurrence of nerve injury than the concentration of Ropivacaine.Methods: In experimental design of the study fi fty Wistar rats were used and sciatic nerves were randomized to receive: Ropivacaine or 0.9% NaCl, either intraneurally or perineurally. Pressure data during application was acquired by using a manometer and was analyzed using software package BioBench. Neurologic examination was performed thought the following seven days, there after the rats were sacrificed while sciatic nerves were extracted for histological examination.Results: Independently of tested solution intraneural injections in most of cases resulted with high injection pressure, followed by obvious neurologic defi cit and microscopic destruction of peripheral nerves. Also, low injection pressure, applied either in perineural or intraneural extrafascicular area, resulted with transitory neurologic defi cit and without destruction of the nerve normal histological structure.Conclusions: The main mechanism which leads to neurologic injury combined with peripheral nerve blockade is intrafascicular injection. Higher concentrations of Ropivacaine during intrafascicular applications magnify nerve injury.

  3. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  4. Do basal Ganglia amplify willed action by stochastic resonance? A model.

    Directory of Open Access Journals (Sweden)

    V Srinivasa Chakravarthy

    Full Text Available Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson's disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm's movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise and dyskinesias (high noise.

  5. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2018-03-01

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  6. Functional neuroanatomy of the basal ganglia.

    Science.gov (United States)

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  7. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  8. Opponent and bidirectional control of movement velocity in the basal ganglia

    Science.gov (United States)

    Yttri, Eric A.

    2016-01-01

    For goal-directed behavior it is critical that we can both select the appropriate action and learn to modify the underlying movements (e.g. the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behavior, such as neocortex and thalamus, are integrated with reward signaling 1 to reinforce successful, purposive actions 2. Dorsal striatum, a major input structure of basal ganglia is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes or suppress actions that do not, respectively 3,4. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in striatum 5,6. Although perturbations of basal ganglia function produce profound changes in movement 7, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we used cell-type specific stimulation delivered in closed-loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity without affecting action selection or motivation. These behavioral changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia. PMID:27135927

  9. Learning Reward Uncertainty in the Basal Ganglia.

    Directory of Open Access Journals (Sweden)

    John G Mikhael

    2016-09-01

    Full Text Available Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid options with variable reward can be controlled by increasing (or decreasing the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions.

  10. Cystic degeneration of the tibial nerve. Magnetic resonance neurography and sonography appearances of an intraneural ganglion cyst

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio Silveira, Claudio Regis [Sao Carlos Imaging/Sao Carlos Hospital, Musculoskeletal Imaging Division, Fortaleza, CE (Brazil); Maia Vieira, Clarissa Gadelha; Machado Pereira, Brenda [Sao Carlos Imaging/Sao Carlos Hospital, Fortaleza, CE (Brazil); Pinto Neto, Luiz Holanda [Articular Clinic, Fortaleza, CE (Brazil); Chhabra, Avneesh [UT Southwestern, Radiology and Orthopaedic Surgery, Dallas, TX (United States)

    2017-12-15

    Extra- and intraneural ganglion cysts have been described in the literature. The tibial nerve ganglion is uncommon and its occurrence without intra-articular extension is atypical. The pathogenesis of cystic degeneration localized to connective and perineural tissue secondary to chronic mechanical irritation or idiopathic mucoid degeneration is hypothesized. Since the above pathology is extremely rare and the magnetic resonance imaging examination detects the defining characteristics of the intrinsic alterations of the tibial nerve, the authors illustrate such a case of tibial intaneural ganglion cyst with its magnetic resonance neurography and sonography appearances. (orig.)

  11. Invasive Intraneural Interfaces: Foreign Body Reaction Issues

    Science.gov (United States)

    Lotti, Fiorenza; Ranieri, Federico; Vadalà, Gianluca; Zollo, Loredana; Di Pino, Giovanni

    2017-01-01

    Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach. PMID:28932181

  12. Celiac ganglia block

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan

    2005-01-01

    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation

  13. Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.

    Science.gov (United States)

    Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío

    2017-07-01

    Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.

  14. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  15. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  16. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    Science.gov (United States)

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Atrophy of the basal ganglia as the initial diagnostic sign of germinoma in the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Ishikawa, K.; Takahashi, N.; Furusawa, T.; Sakai, K. [Department of Radiology, Niigata University Faculty of Medicine (Japan); Ito, J.; Tokiguchi, S. [Department of Radiology, Niigata University Faculty of Dentistry (Japan); Morii, K. [Department of Neurosurgery, Niigata University Brain Research Institute (Japan); Yamada, M. [Department of Pathology, Niigata University Brain Research Institute (Japan)

    2002-05-01

    Germ-cell tumors of the central nervous system generally develop in the midline, but the tumors can also occur in the basal ganglia and/or thalamus. However, MR images have rarely been documented in the early stage of the tumor in these regions. We retrospectively reviewed MR images obtained on admission and approximately 3 years earlier in two patients with germinoma in the basal ganglia, and compared them with CT. In addition to hyperdensity on CT, both hyperintensity on T1-weighted images and a small hyperintense lesion on T2-weighted images were commonly seen in the basal ganglia. These findings may be early MRI signs of germinoma in this region, and the earliest and most characteristic diagnostic feature on MRI was atrophy of the basal ganglia, which was recognizable before development of hemiparesis. (orig.)

  18. Malignant Lesions as Mammographically Appearing Intramammary Ganglia

    International Nuclear Information System (INIS)

    Martinez-Miraveta, P.; Pons, M. J.; Pina, L. J.; Zornoza, G.

    2004-01-01

    Intramammary ganglia are frequent mammographic findings of no pathological importance. We present two cases of malignant breast lesions whose mammographic appearance could resemble that of intramammary ganglia. Although the mammographic appearance of a lesion is similar to that of intramammary ganglia, it should be carefully studied, especially if it presents a poorly defined border or is palpable. (Author)

  19. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  20. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  1. Anatomic study of celiac ganglia using CT in cadavers

    International Nuclear Information System (INIS)

    Zhao Qionghui; Zhang Xiaoming; Zeng Nanlin; Cai Changping; Xie Xingguo; Li Chengjun

    2005-01-01

    Objective: To identify the celiac ganglia in cadavers by using current CT techniques, and to facilitate its identification in vivo by CT. Methods: Fifty cadavers were dissected, moving peritoneal organs such as liver and stomach to expose the celiac ganglia. The location, morphology, and dimensions of celiac ganglia, and their relationship to abutting structures, were noted. The celiac ganglia in 6 of the 50 cadavers without peripancreatic diseases and with clear anatomy were isolated and marked with yellow dye and Iohexol injection. In these 6 cadavers, the moved organs were relocated, the abdomen was closed, and CT was performed. CT derived measurements of celiac ganglia were compared with those from cadavers study. Results: The celiac ganglia of 47 of 50 cadavers (94%) were located between T12-L1, and those of 3 cadavers (6%) were located between T11-12. The superior-inferior diameter of the right ganglia was (25.01 ±6.09) mm, long (left-right) diameter was (13.18 ± 3.62) mm, and short (thickness) diameter was (1.40 ± 0.55) mm. In the left ganglia, these three diameters were (22.74 ± 5.70) mm, (15.07 ± 4.35) mm, and (2.00 ± 0.71 ) mm, respectively. On the CT images of 6 cadavers, the right and left ganglia were all identified and were hyperdense relative to viscus, such as liver and spleen. The long and short diameters on CT images were (15.20 ± 1.64) mm and (1.53 ± 0.52) mm for the right ganglia and (16.25 ± 1.73 ) mm and (2.20 ± 0.73) mm for the left ganglia. There was no significant difference between the diameters of the ganglia measured on CT images and by dissection (P>0.05). Conclusion: Current CT techniques can demonstrate accurately the celiac ganglia in cadavers. This can be a reference for identifying the celiac plexus in vivo. (authors)

  2. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.

    Science.gov (United States)

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-05-21

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.

  3. Learning and memory functions of the Basal Ganglia.

    Science.gov (United States)

    Packard, Mark G; Knowlton, Barbara J

    2002-01-01

    Although the mammalian basal ganglia have long been implicated in motor behavior, it is generally recognized that the behavioral functions of this subcortical group of structures are not exclusively motoric in nature. Extensive evidence now indicates a role for the basal ganglia, in particular the dorsal striatum, in learning and memory. One prominent hypothesis is that this brain region mediates a form of learning in which stimulus-response (S-R) associations or habits are incrementally acquired. Support for this hypothesis is provided by numerous neurobehavioral studies in different mammalian species, including rats, monkeys, and humans. In rats and monkeys, localized brain lesion and pharmacological approaches have been used to examine the role of the basal ganglia in S-R learning. In humans, study of patients with neurodegenerative diseases that compromise the basal ganglia, as well as research using brain neuroimaging techniques, also provide evidence of a role for the basal ganglia in habit learning. Several of these studies have dissociated the role of the basal ganglia in S-R learning from those of a cognitive or declarative medial temporal lobe memory system that includes the hippocampus as a primary component. Evidence suggests that during learning, basal ganglia and medial temporal lobe memory systems are activated simultaneously and that in some learning situations competitive interference exists between these two systems.

  4. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.

    Science.gov (United States)

    Wichmann, Thomas; Bergman, Hagai; DeLong, Mahlon R

    2018-03-01

    replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.

  5. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    Science.gov (United States)

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Germinoma originating in the basal ganglia

    International Nuclear Information System (INIS)

    Anno, Y.; Hori, T.; Watanabe, T.; Takenobu, A.; Takigawa, H.; Kishimoto, M.; Tanaka, J.

    1990-01-01

    About 5-10% of primary intracranial germ cell tumors arise in basal ganglia and thalamus, where CT studies have been made. MR of the tumors in the pineal region, and to our knowledge, from one tumor in the basal ganglia were similar. In the present case, MR produced confusion in confirming diagnosis, which may require additional evidence from the clinical course, tumor markers, and CT images. (orig.)

  7. Traumatic bilateral basal ganglia hematoma: A report of two cases

    OpenAIRE

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively.

  8. Computed tomography of calcification of the basal ganglia

    International Nuclear Information System (INIS)

    Park, Churl Min; Suh, Soo Jhi; Kim, Soon Yong

    1981-01-01

    Calcifications of the basal ganglia are rarely found at routine autopsies and in skull radiographs. CT is superior to the plain skull radiographs in detecting intracranial attenuation differences and may be stated to be the method of choice in the diagnosis of intracranial calcifications. Of 5985 brain CT scans performed in Kyung Hee University Hospital during past 3 years, 36 cases were found to have high attenuation lesions suggesting calcifications within basal ganglia. 1. The incidence of basal ganglia calcification on CT scan was about 0.6%. 2. Of these 36 cases, 34 cases were bilateral and the remainder was unilateral. 3. The plain skull films of 23 cases showed visible calcification of basal ganglia in 3 cases (13%). 4. No specific metabolic disease was noted in the cases

  9. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    Science.gov (United States)

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  10. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    Science.gov (United States)

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Serum Fetuin-A Levels in Patients with Bilateral Basal Ganglia Calcification.

    Science.gov (United States)

    Demiryurek, Bekir Enes; Gundogdu, Asli Aksoy

    2018-02-14

    The idiopathic basal ganglia calcification (Fahr syndrome) may occur due to senility. Fetuin-A is a negative acute phase reactant which inhibits calcium-phosphorus precipitation and vascular calcification. In this study, we aimed to evaluate whether serum fetuin-A levels correlate with bilateral basal ganglia calcification. Forty-five patients who had bilateral basal ganglia calcification on brain CT were selected according to the inclusion and exclusion criteria, and 45 age and gender-matched subjects without basal ganglia calcification were included for the control group. Serum fetuin-A levels were measured from venous blood samples. All participants were divided into two groups; with and without basal ganglia calcification. These groups were divided into subgroups regarding age (18-32 and 33-45 years of age) and gender (male, female). We detected lower levels of serum fetuin-A in patients with basal ganglia calcification compared with the subjects without basal ganglia calcification. In all subgroups (female, male, 18-32 years and 33-45 years), mean fetuin-A levels were significantly lower in patients with basal ganglia calcification (p = 0.017, p = 0.014, p = 0.024, p = 0.026, p = 0.01 respectively). And statistically significantly lower levels of fetuin-A was found to be correlated with the increasing densities of calcification in the calcified basal ganglia group (p-value: <0.001). Considering the role of fetuin-A in tissue calcification and inflammation, higher serum fetuin-A levels should be measured in patients with basal ganglia calcification. We believe that the measurement of serum fetuin-A may play a role in the prediction of basal ganglia calcification as a biomarker. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CT and MRI diagnosis of traumatic basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Wu Shike; Zhang Yalin; Xu Derong; Zou Gaowei; Chen Dan; He Sujun; Zhou Lichao

    2009-01-01

    Objective: To analyze CT and MRI features of traumatic basal ganglia hemorrhage and investigate the diagnostic value. Methods: 21 cases with traumatic basal ganglia hemorrhage diagnosed by clinic, CT and MRI in our hospital were collected in this study Plain CT scan were immediately performed in 21 cases after injury, plain MR scan were performed in 1 to 3 days. 12 cases of them underwent diffusion weighted imagine (DWI). The CT and MRI findings were retrospectively summarized. Results: 8 cases were found with simple traumatic basal ganglia hemorrhage. Complexity of basal ganglia hemorrhage occurred in 13 cases, 6 cases combined with subdural hemorrhage, 3 cases with epidural hematoma, 2 cases with subarachnoid hemorrhage, 6 cases with brain contusion and laceration in other locations, 4 cases with skull fracture. 26 lesions of basal ganglia hematoma were showed in 21 cases, 14 lesions of pallidum hemorrhage in 11 cases confirmed by MR could not be distinguished from calcification at the fast CT scan. 5 more lesions of brain contusion and laceration and 4 more lesions of brain white matter laceration were found by MR. Conclusion: CT in combination with MRI can diagnose traumatic basal ganglia hemorrhage and its complications early, comprehensively and accurately, which plays an important role in the clinical therapy selection and prognosis evaluation. (authors)

  13. Basal ganglia circuits changes in Parkinson's disease patients.

    Science.gov (United States)

    Wu, Tao; Wang, Jue; Wang, Chaodong; Hallett, Mark; Zang, Yufeng; Wu, Xiaoli; Chan, Piu

    2012-08-22

    Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    Directory of Open Access Journals (Sweden)

    Christophe Lenglet

    Full Text Available Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD, essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS. Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI. This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric

  15. Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System.

    Science.gov (United States)

    Andres, Daniela S; Darbin, Olivier

    2018-01-01

    The rate and oscillatory hypotheses are the two main current frameworks of basal ganglia pathophysiology. Both hypotheses have emerged from research on movement disorders sharing similar conceptualizations. These pathological conditions are classified either as hypokinetic or hyperkinetic, and the electrophysiological hallmarks of basal ganglia dysfunction are categorized as prokinetic or antikinetic. Although nonmotor symptoms, including neurobehavioral symptoms, are a key manifestation of basal ganglia dysfunction, they are uncommonly accounted for in these models. In patients with Parkinson's disease, the broad spectrum of motor symptoms and neurobehavioral symptoms challenges the concept that basal ganglia disorders can be classified into two categories. The profile of symptoms of basal ganglia dysfunction is best characterized by a breakdown of information processing, accompanied at an electrophysiological level by complex alterations of spiking activity from basal ganglia neurons. The authors argue that the dynamics of the basal ganglia circuit cannot be fully characterized by linear properties such as the firing rate or oscillatory activity. In fact, the neuronal spiking stream of the basal ganglia circuit is irregular but has temporal structure. In this context, entropy was introduced as a measure of probabilistic irregularity in the temporal organization of neuronal activity of the basal ganglia, giving place to the entropy hypothesis of basal ganglia pathology. Obtaining a quantitative characterization of irregularity of spike trains from basal ganglia neurons is key to elaborating a new framework of basal ganglia pathophysiology.

  16. computed tomography features of basal ganglia and periventricular

    African Journals Online (AJOL)

    HIV is probably the most common cause of basal ganglia and periventricular calcification today. on-enhanced computed tomography (NECT) shows diffuse cerebral atrophy in 90% of cases. Bilateral, symmetrical basal ganglia calcification is seen in 30% of cases, but virtually never before 1 year of age.1. CMV (FIG.2).

  17. MRI of the basal ganglia calcification

    International Nuclear Information System (INIS)

    Maeda, Masayuki; Murata, Tetsuhito; Kimura, Hirohiko

    1992-01-01

    MR imaging was performed for 11 patients (9 in Down's syndrome and 2 in idiopathic intracerebral calcification) who showed calcifications in bilateral basal ganglia on CT. High signal intensity in the basal ganglia was found only in one patient with idiopathic intracerebral calcification on T1-weighted image. The calcified areas of all patients in Down's syndrome did not show high signal intensity on T1-weighted image. The exact reasons why MRI exhibits the different signal intensities in calcified tissue on T1-weighted image are unknown. Further clinical investigations will be needed. (author)

  18. Deep-Brain Stimulation for Basal Ganglia Disorders.

    Science.gov (United States)

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  19. THE SIGNIFICANCE OF LESIONS IN PERIPHERAL GANGLIA IN CHIMPANZEE AND IN HUMAN POLIOMYELITIS

    Science.gov (United States)

    Bodian, David; Howe, Howard A.

    1947-01-01

    1. The peripheral ganglia of eighteen inoculated chimpanzees and thirteen uninoculated controls, and of eighteen fatal human poliomyelitis cases, were studied for histopathological evidence of the route of transmission of virus from the alimentary tract to the CNS. 2. Lesions thought to be characteristic of poliomyelitis in inoculated chimpanzees could not be sharply differentiated from lesions of unknown origin in uninoculated control animals. Moreover, although the inoculated animals as a group, in comparison with the control animals, had a greater number of infiltrative lesions in sympathetic as well as in sensory ganglia, it was not possible to make satisfactory correlations between the distribution of these lesions and the routes of inoculation. 3. In sharp contrast with chimpanzees, the celiac and stellate ganglia of the human poliomyelitis cases were free of any but insignificant infiltrative lesions. Lesions in human trigeminal and spinal sensory ganglia included neuronal damage as well as focal and perivascular inflitrative lesions, as is well known. In most ganglia, as in monkey and chimpanzee sensory ganglia, these were correlated in intensify with the degree of severity of lesions in the region of the CNS receiving their axons. This suggested that lesions in sensory ganglia probably resulted from spread of virus centrifugally from the CNS, in accord with considerable experimental evidence. 4. Two principal difficulties in the interpretation of histopathological findings in peripheral ganglia were revealed by this study. The first is that the specificity of lesions in sympathetic ganglia has not been established beyond doubt as being due to poliomyelitis. The second is that the presence of characteristic lesions in sensory ganglia does not, and cannot, reveal whether the virus reached the ganglia from the periphery or from the central nervous system, except in very early preparalytic stages or in exceptional cases of early arrest of virus spread and of

  20. Bilateral basal ganglia calcifications visualised on CT scan.

    OpenAIRE

    Brannan, T S; Burger, A A; Chaudhary, M Y

    1980-01-01

    Thirty-eight cases of basal ganglia calcification imaged on computed axial tomography were reviewed. Most cases were felt to represent senescent calcification. The possibility of a vascular aetiology in this group is discussed. A less common group of patients was identified with calcification secondary to abnormalities in calcium metabolism or radiation therapy. Three cases of basal ganglia calcifications were detected in juvenile epileptic patients receiving chronic anticonvulsants. These ca...

  1. The expanding universe of disorders of the basal ganglia.

    Science.gov (United States)

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-09

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  3. [Distribution of herpes simplex virus type 1 and 2 genomes in the human spinal ganglia].

    Science.gov (United States)

    Obara, Y

    1994-09-01

    Herpes simplex virus (HSV) is well known for its propensity to cause recurrent oral or genital mucosal infections in humans. HSV-1 is involved primarily in oral lesions, whereas HSV-2 is more frequently involved in genital lesions. Based on this, it is thought that HSV-1 may produce latent infections in trigeminal ganglia, and HSV-2 in the sacral ganglia. However the distribution pattern of latent HSV-1 and HSV-2 infections in spinal ganglia remains unknown. Using the polymerase chain reaction we detected latent herpes HSV-1 and HSV-2 in human spinal ganglia obtained from autopsy material. A pair of primers which were specific for a part of the HSV-1 and HSV-2 DNA polymerase domain were employed. HSV-1 and HSV-2 DNAs were detected in 11 of 40 (28%) and 15 of 40 (38%) cervical ganglia, respectively, 52 of 103 (50%) and 47 of 103 (46%) thoracic ganglia, 16 of 53 (30%) and 17 of 53 (32%) lumbar ganglia, and 3 of 20 (15%) and 3 of 20 (15%) sacral ganglia. These findings suggest that latent HSV-1 and HSV-2 infections have a widespread distribution from the cervical ganglia to sacral ganglia. Importantly this study demonstrated latent HSV-1 infection of both the lumbar and sacral ganglia for the first time.

  4. The MRI appearance of cystic lesions around the knee

    International Nuclear Information System (INIS)

    McCarthy, Catherine L.; McNally, Eugene G.

    2004-01-01

    This review presents a comprehensive illustrated overview of the wide variety of cystic lesions around the knee. The aetiology, clinical presentation, MRI appearances and differential diagnosis are discussed. Bursae include those related to the patella as well as pes anserine, tibial collateral ligament, semimembranosus-tibial collateral ligament, iliotibial and fibular collateral ligament-biceps femoris. The anatomical extension, imaging features and clinical significance of meniscal cysts are illustrated. Review of ganglia includes intra-articular, extra-articular, intraosseous and periosteal ganglia, highlighting imaging findings and differential diagnoses. The relationship between proximal tibiofibular joint cysts and intraneural peroneal nerve ganglia is discussed. Intraosseous cystic lesions, including insertional and degenerative cysts, as well as lesions mimicking cysts of the knee are described and illustrated. Knowledge of the location, characteristic appearance and distinguishing features of cystic masses around the knee as well as potential imaging pitfalls such as normal anatomical recesses and atypical cyst contents on MR imaging aids in allowing a specific diagnosis to be made. This will prevent unnecessary additional investigations and determine whether intra-articular surgery or conservative management is appropriate. (orig.)

  5. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Christensen, Rikke Elgaard; Pedersen, Sara Hougaard

    2017-01-01

    The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved...... in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis...... was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox...

  6. Electrophysiological Evidences of Organization of Cortical Motor Information in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Hirokazu Iwamuro

    2011-05-01

    Full Text Available During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor information from different cortical areas is processed through several cortico-basal ganglia loops principally in a parallel fashion and somatotopy from each cortical area is also well preserved in each loop. Moreover, recent studies suggest that not only the parallel processing but also some convergence of information occur through the basal ganglia. Information from cortical areas whose functions are close to each other tends to converge in the basal ganglia. The cortico-basal ganglia loops should be comprehended more as a network rather than as separated subdivisions. However, the functions of this convergence still remain unknown. It is important even for clinical doctors to be well informed about this kind of current knowledge because some symptoms of movement disorders may be explained by disorganization of the information network in the basal ganglia.

  7. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki

    1988-01-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis. (author)

  8. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki and others

    1988-09-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis.

  9. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder

    OpenAIRE

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-01-01

    Patient: Female, 65 Final Diagnosis: Mitochondrial disorder Symptoms: Headache ? tetanic seizure Medication: Diazepam Clinical Procedure: Admission Specialty: Neurology Objective: Challenging differential diagnosis Background: Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. Case Report: We report the case of a 65-year-old Gypsy female who was admitted for a...

  10. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Yannes, Michael Paul; Nardone, Raffaele; Bailey, Ariel; Goldstein, Amy

    2015-01-01

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  11. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)

    2015-10-15

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  12. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    Science.gov (United States)

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with

  13. The role of basal ganglia in language production: evidence from Parkinson's disease.

    Science.gov (United States)

    Macoir, Joël; Fossard, Marion; Mérette, Chantal; Langlois, Mélanie; Chantal, Sophie; Auclair-Ouellet, Noémie

    2013-01-01

    According to the dominant view in the literature, basal ganglia do not play a direct role in language but are involved in cognitive control required by linguistic and non-linguistic processing. In Parkinson's disease, basal ganglia impairment leads to motor symptoms and language deficits; those affecting the production of verbs have been frequently explored. According to a controversial theory, basal ganglia play a specific role in the conjugation of regular verbs as compared to irregular verbs. We report the results of 15 patients with Parkinson's disease in experimental conjugation tasks. They performed below healthy controls but their performance did not differ for regular and irregular verbs. These results confirm that basal ganglia are involved in language processing but do not play a specific role in verb production.

  14. Ganglia of the tarsal sinus: MR imaging features and clinical findings

    International Nuclear Information System (INIS)

    Bauer, Jan S.; Müller, Dirk; Sauerschnig, Martin; Imhoff, Andreas B.; Rechl, H.; Rummeny, Ernst J.; Woertler, Klaus

    2011-01-01

    Purpose: To analyze MR imaging and clinical findings associated with ganglia of the tarsal sinus. Materials and methods: In a record search, ganglia of the tarsal sinus were retrospectively identified in 26 patients (mean age 48 ± 16 years), who underwent MR imaging for chronic ankle pain. Images were reviewed by two radiologists in consensus for size and location of ganglia, lesions of ligaments of the ankle and the tarsal sinus, tendon abnormalities, osteoarthritis, osseous erosions and bone marrow abnormalities. Medical records were reviewed for patient history and clinical findings. Results: Ganglia were associated with the interosseus ligament in 81%, the cervical ligament in 31% and the retinacula in 46% of cases. Signal alterations suggesting degeneration were found in 85%, 50% and 63% in case of the interosseus ligament, the cervical ligament and the retinacula, respectively. Scarring of the anterior talofibular ligament and the fibulocalcaneal ligament was found in 68% and 72% of the patients, respectively, while only 27% of the patients recalled ankle sprains. Ganglia at the retinacula were highly associated with synovitis and tendinosis of the posterior tibial tendon (p < 0.05). Conclusion: All patients with ganglia in the tarsal sinus presented with another pathology at the ankle, suggesting that degeneration of the tarsal sinus may be a secondary phenomenon, due to pathologic biomechanics at another site of the hind foot. Thus, in patients with degenerative changes of the tarsal sinus, one should be alerted and search for underlying pathology, which may be injury of the lateral collateral ligaments in up to 70%.

  15. Hemodynamics in the cerebral cortex and basal ganglia

    International Nuclear Information System (INIS)

    Yamaguchi, Shinya; Fukuyama, Hidenao; Yamauchi, Hiroshi; Kimura, Jun

    1991-01-01

    We examined ten healthy volunteers using positron emission tomography (PET) in order to elucidate regional changes and correlations in the cerebral circulation and oxygen metabolism. We also studied eight lacunar stroke patients so as to disclose the influences of vascular risk factors and aging on the cerebral blood flow and metabolism. We can conclude from our result as follows: (1) Cerebral blood volume (CBV) was minimum in the basal ganglia and cerebral blood flow (CBF)/CBV ratio was higher than that of cerebral cortex in healthy volunteers; (2) CBF of gray matter in healthy volunteers correlated with CBV and cerebral metabolic rate of oxygen where oxygen extraction fraction inversely correlated with CBF, CBV, and CBF/CBV; and (3) the basal ganglia CBF/CBV ratio in lacunar stroke patients was lower than that of healthy volunteers. These findings suggested that the perfusion pressure in the basal ganglia was so high in the normal condition than the angionecrosis or occlusion in the perforating arteries would be induced, especially in the aged and hypertensive patients. (author)

  16. Past, present and future of the pathophysiological model of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Jose A Obeso

    2011-07-01

    Full Text Available The current model of basal ganglia was introduced two decades ago and has settled most of our current understanding of basal ganglia function and dysfunction. Extensive research efforts have been carried out in recent years leading to further refinement and understanding of the normal and diseased basal ganglia. Several questions, however, are yet to be resolved. This short review provides a synopsis of the evolution of thought regarding the pathophysiological model of the BG and summarizes the main recent findings and additions to this field of research. We have also tried to identify major challenges that need to be addressed and resolved in the near future. Detailed accounts and state-of-the-art developments concerning research on the basal ganglia are provided in the articles that make up this Special Issue.

  17. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease.

    Science.gov (United States)

    Alfadhel, Majid; Al-Bluwi, Amal

    2017-01-01

    Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.

  18. Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood flow and electrophysiological properties.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Nakanishi, Yoshitaka; Uchida, Kenzo; Kokubo, Yasuo; Miyazaki, Tsuyoshi; Takeno, Kenichi; Awara, Kosuke; Mwaka, Erisa S; Iwamoto, Yukihide; Baba, Hisatoshi

    2010-04-01

    Entrapment neuropathy is a frequent clinical problem that can be caused by, among other factors, mechanical compression; however, exactly how a compressive force affects the peripheral nerves remains poorly understood. In this study, using a rabbit model of sciatic nerve injury (n=12), we evaluated the time-course of changes in intraneural blood flow, compound nerve action potentials, and functioning of the blood-nerve barrier during graded mechanical compression. Nerve injury was applied using a compressor equipped with a custom-made pressure transducer. Cessation of intraneural blood flow was noted at a mean compressive force of 0.457+/-0.022 N (+/-SEM), and the compound action potential became zero at 0.486+/-0.031 N. Marked extravasation of Evans blue albumin was noted after 20 min of intraneural ischemia. The functional changes induced by compression are likely due to intraneural edema, which could subsequently result in impairment of nerve function. These changes may be critical factors in the development of symptoms associated with nerve compression. (c) 2009 Elsevier Ltd. All rights reserved.

  19. Bilateral hyperintense basal ganglia on T1-weighted image

    International Nuclear Information System (INIS)

    Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi

    1994-01-01

    Bilateral high signal intensity in basal ganglia on T1-weighted images is unusual, the purpose of this study is to describe the pattern of high signal intensity and underlying disease. During the last three years, 8 patients showed bilateral high signal intensity in basal ganglia on T1-weighted image, as compared with cerebral white matter. Authors analyzed the images and underlying causes retrospectively. Of 8 patients, 5 were male and 3 were female. The age ranged from 15 days to 79 years. All patient were examined by a 0.5T superconductive MRI. Images were obtained by spin echo multislice technique. Underlying causes were 4 cases of hepatopathy, 2 cases of calcium metabolism disorder, and one case each of neurofibromatosis and hypoxic brain injury. These process were bilateral in all cases and usually symmetric. In all cases the hyperintense areas were generally homogenous without mass effect or edema, although somewhat nodular appearance was seen in neurofibromatosis. Lesions were located in the globus pallidus and internal capsule in hepatopathy and neurofibromatosis, head of the caudate nucleus in disorder of calcum metabolism, and the globus pallidus in hypoxic brain injury. Although this study is limited by its patient population, bilateral hyperintense basal ganglia is associated with various disease entities. On analysis of hyperintense basal ganglia lesion, the knowledge of clinical information improved diagnostic accuracy

  20. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A L; Wilcock, Gordon K; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T M; Mackay, Clare E

    2015-01-01

    Resting state functional MRI (rs-fMRI) has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD). In order to assess whether changes within the basal ganglia network (BGN) are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD). Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  1. Double nerve intraneural interface implant on a human amputee for robotic hand control.

    Science.gov (United States)

    Rossini, Paolo M; Micera, Silvestro; Benvenuto, Antonella; Carpaneto, Jacopo; Cavallo, Giuseppe; Citi, Luca; Cipriani, Christian; Denaro, Luca; Denaro, Vincenzo; Di Pino, Giovanni; Ferreri, Florinda; Guglielmelli, Eugenio; Hoffmann, Klaus-Peter; Raspopovic, Stanisa; Rigosa, Jacopo; Rossini, Luca; Tombini, Mario; Dario, Paolo

    2010-05-01

    The principle underlying this project is that, despite nervous reorganization following upper limb amputation, original pathways and CNS relays partially maintain their function and can be exploited for interfacing prostheses. Aim of this study is to evaluate a novel peripheral intraneural multielectrode for multi-movement prosthesis control and for sensory feed-back, while assessing cortical reorganization following the re-acquired stream of data. Four intrafascicular longitudinal flexible multielectrodes (tf-LIFE4) were implanted in the median and ulnar nerves of an amputee; they reliably recorded output signals for 4 weeks. Artificial intelligence classifiers were used off-line to analyse LIFE signals recorded during three distinct hand movements under voluntary order. Real-time control of motor output was achieved for the three actions. When applied off-line artificial intelligence reached >85% real-time correct classification of trials. Moreover, different types of current stimulation were determined to allow reproducible and localized hand/fingers sensations. Cortical organization was observed via TMS in parallel with partial resolution of symptoms due to the phantom-limb syndrome (PLS). tf-LIFE4s recorded output signals in human nerves for 4 weeks, though the efficacy of sensory stimulation decayed after 10 days. Recording from a number of fibres permitted a high percentage of distinct actions to be classified correctly. Reversal of plastic changes and alleviation of PLS represent corollary findings of potential therapeutic benefit. This study represents a breakthrough in robotic hand use in amputees. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Michal Rolinski

    2015-01-01

    Full Text Available Resting state functional MRI (rs-fMRI has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD. In order to assess whether changes within the basal ganglia network (BGN are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD. Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  3. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Ryu, Young Hoon; Kim, Hee Joung; Kim, Byung Moon; Lee, Jong Doo; Lee, Byung Hee

    1998-01-01

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | C R -C L |/ (C R -C L ) x 200, where C R and C L are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  4. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  5. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  6. Single-photon-emission-computed-tomography (SPECT) in basal ganglia disorders

    International Nuclear Information System (INIS)

    Tatsch, K.

    1997-01-01

    In the past, SPECT investigations of regional cerebral blood flow have played a minor role in the diagnostic work-up of patients with basal ganglia disorders. More recently, however, interest in nuclear medicine procedures has dramatically increased since with the development of selective receptor ligands diagnostic tools have been provided which address the pathology in basal ganglia disorders more specifically than other diagnostic modalities. Evaluations of the pre- and postsynaptic aspects of the dopaminergic system, for example, deliver not only interesting data from the scientific point of view but also for the daily routine work. This paper summarizes some of the experience reported in the literature on SPECT investigations in basal ganglia disorders, such as Parkinson's disease, parkinsonian syndromes of other etiology, Wilson's and Huntington's disease, focal dystonias, and schizophrenia under treatment with neuroleptics. (orig.) [de

  7. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification.

    Science.gov (United States)

    Nicolas, Gaël; Pottier, Cyril; Charbonnier, Camille; Guyant-Maréchal, Lucie; Le Ber, Isabelle; Pariente, Jérémie; Labauge, Pierre; Ayrignac, Xavier; Defebvre, Luc; Maltête, David; Martinaud, Olivier; Lefaucheur, Romain; Guillin, Olivier; Wallon, David; Chaumette, Boris; Rondepierre, Philippe; Derache, Nathalie; Fromager, Guillaume; Schaeffer, Stéphane; Krystkowiak, Pierre; Verny, Christophe; Jurici, Snejana; Sauvée, Mathilde; Vérin, Marc; Lebouvier, Thibaud; Rouaud, Olivier; Thauvin-Robinet, Christel; Rousseau, Stéphane; Rovelet-Lecrux, Anne; Frebourg, Thierry; Campion, Dominique; Hannequin, Didier

    2013-11-01

    Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: 60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis

  8. Oscillatory activity in the basal ganglia and deep brain stimulation.

    Science.gov (United States)

    Guridi, Jorge; Alegre, Manuel

    2017-01-01

    Over the past 10 years, research into the neurophysiology of the basal ganglia has provided new insights into the pathophysiology of movement disorders. The presence of pathological oscillations at specific frequencies has been linked to different signs and symptoms in PD and dystonia, suggesting a new model to explain basal ganglia dysfunction. These advances occurred in parallel with improvements in imaging and neurosurgical techniques, both of which having facilitated the more widespread use of DBS to modulate dysfunctional circuits. High-frequency stimulation is thought to disrupt pathological activity in the motor cortex/basal ganglia network; however, it is not easy to explain all of its effects based only on changes in network oscillations. In this viewpoint, we suggest that a return to classic anatomical concepts might help to understand some apparently paradoxical findings. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  9. The subdiaphragmatic part of the phrenic nerve - morphometry and connections to autonomic ganglia.

    Science.gov (United States)

    Loukas, Marios; Du Plessis, Maira; Louis, Robert G; Tubbs, R Shane; Wartmann, Christopher T; Apaydin, Nihal

    2016-01-01

    Few anatomical textbooks offer much information concerning the anatomy and distribution of the phrenic nerve inferior to the diaphragm. The aim of this study was to identify the subdiaphragmatic distribution of the phrenic nerve, the presence of phrenic ganglia, and possible connections to the celiac plexus. One hundred and thirty formalin-fixed adult cadavers were studied. The right phrenic nerve was found inferior to the diaphragm in 98% with 49.1% displaying a right phrenic ganglion. In 22.8% there was an additional smaller ganglion (right accessory phrenic ganglion). The remaining 50.9% had no grossly identifiable right phrenic ganglion. Most (65.5% of specimens) exhibited plexiform communications with the celiac ganglion, aorticorenal ganglion, and suprarenal gland. The left phrenic nerve inferior to the diaphragm was observed in 60% of specimens with 19% containing a left phrenic ganglion. No accessory left phrenic ganglia were observed. The left phrenic ganglion exhibited plexiform communications to several ganglia in 71.4% of specimens. Histologically, the right phrenic and left phrenic ganglia contained large soma concentrated in their peripheries. Both phrenic nerves and ganglia were closely related to the diaphragmatic crura. Surgically, sutures to approximate the crura for repair of hiatal hernias must be placed above the ganglia in order to avoid iatrogenic injuries to the autonomic supply to the diaphragm and abdomen. These findings could also provide a better understanding of the anatomy and distribution of the fibers of that autonomic supply. © 2015 Wiley Periodicals, Inc.

  10. Activity of the basal ganglia in Parkinson's disease estimated by PET

    International Nuclear Information System (INIS)

    Ohye, Chihiro

    1995-01-01

    Positron emission tomographic (PET) studies on the local cerebral blood flow, oxygen metabolic rate, glucose metabolic rate in the basal ganglia of Parkinson's disease are reviewed. PET has demonstrated that blood flow was decreased in the cerebral cortex, especially the frontal region, of Parkinson's disease and that specific change in blood flow or metabolic rate in the basal ganglia was detected only in patients with hemi-parkinsonism. In authors' study on PET using 18 FDG in patients with tremor type and rigid type Parkinson's disease, changes in blood flow and metabolic rate were minimal at the basal ganglia level in tremor type patients, but cortical blood flow was decreased and metabolic rate was more elevated in the basal ganglia in rigid type patients. These findings were correlated with depth micro-recordings obtained by stereotactic pallidotomy. PET studies have also revealed that activity in the nerve terminal was decreased with decreasing dopamine and that dopamine (mainly D 2 ) activity was remarkably increased. PET studies with specific tracers are promising in providing more accurate information about functional state of living human brain with minimal invasion to patients. (N.K.)

  11. Functional Neuroanatomy and Behavioural Correlates of the Basal Ganglia: Evidence from Lesion Studies

    Directory of Open Access Journals (Sweden)

    Peter Ward

    2013-01-01

    Full Text Available Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures.

  12. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    Science.gov (United States)

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  13. Thoracoscopic sympathectomy ganglia ablation in the management ...

    African Journals Online (AJOL)

    Thoracoscopic sympathectomy ganglia ablation in the management of palmer hyperhidrosis: A decade experience in a single institution. D Kravarusic, E Freud. Abstract. Background: Hyperhidrosis can cause significant professional and social handicaps. Surgery is the preferred treatment modality for hyperhidrosis.

  14. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    Directory of Open Access Journals (Sweden)

    Katsuhiro Omoto

    2015-08-01

    Full Text Available Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.

  15. Intraneural Platelet-Rich Plasma Injections for the Treatment of Radial Nerve Section: A Case Report

    Directory of Open Access Journals (Sweden)

    Unai García de Cortázar

    2018-01-01

    Full Text Available The radial nerve is the most frequently injured nerve in the upper extremity. Numerous options in treatment have been described for radial nerve injury, such as neurolysis, nerve grafts, or tendon transfers. Currently, new treatment options are arising, such as platelet-rich plasma (PRP, an autologous product with proved therapeutic effect for various musculoskeletal disorders. We hypothesized that this treatment is a promising alternative for this type of nerve pathology. The patient was a healthy 27-year-old man who suffered a deep and long cut in the distal anterolateral region of the right arm. Forty-eight hours after injury, an end-to-end suture was performed without a microscope. Three months after the surgery, an electromyogram (EMG showed right radial nerve neurotmesis with no tendency to reinnervation. Four months after the trauma, serial intraneural infiltrations of PRP were conducted using ultrasound guidance. The therapeutic effect was assessed by manual muscle testing and by EMG. Fourteen months after the injury and 11 months after the first PRP injection, functional recovery was achieved. The EMG showed a complete reinnervation of the musculature of the radial nerve dependent. The patient remains satisfied with the result and he is able to practice his profession. Conclusions: PRP infiltrations have the potential to enhance the healing process of radial nerve palsy. This case report demonstrates the therapeutic potential of this technology for traumatic peripheral nerve palsy, as well as the apt utility of US-guided PRP injections.

  16. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.

    Science.gov (United States)

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah

    2015-12-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. © The Author 2015. Published by Oxford University Press.

  17. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Anatomy of the nerves and ganglia of the aortic plexus in males

    Science.gov (United States)

    Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L

    2015-01-01

    It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240

  19. Uncovering the Forgotten Effect of Superior Cervical Ganglia on Pupil Diameter in Subarachnoid Hemorrhage: An Experimental Study.

    Science.gov (United States)

    Onen, Mehmet Resid; Yilmaz, Ilhan; Ramazanoglu, Leyla; Aydin, Mehmet Dumlu; Keles, Sadullah; Baykal, Orhan; Aydin, Nazan; Gundogdu, Cemal

    2018-01-01

    To investigate the relationship between neuron density of the superior cervical sympathetic ganglia and pupil diameter in subarachnoid hemorrhage. This study was conducted on 22 rabbits; 5 for the baseline control group, 5 for the SHAM group and 12 for the study group. Pupil diameters were measured via sunlight and ocular tomography on day 1 as the control values. Pupil diameters were re-measured after injecting 0.5 cc saline to the SHAM group, and autologous arterial blood into the cisterna magna of the study group. After 3 weeks, the brain, superior cervical sympathetic ganglia and ciliary ganglia were extracted with peripheral tissues bilaterally and examined histopathologically. Pupil diameters were compared with neuron densities of the sympathetic ganglia and ciliary ganglia which were examined using stereological methods. Baseline values were; normal pupil diameter 7.180±620 ?m and mean neuron density of the superior cervical sympathetic ganglia 6.321±510/mm3, degenerated neuron density of ciliary ganglia was 5±2/mm3 after histopathological examination in the control group. These values were measured as 6.850±578 ?m, 5.950±340/mm3 and 123±39/mm3 in the SHAM group and 9.910±840 ?m, 7.950±764/mm3 and 650±98/mm3 in the study group. A linear relationship was determined between neuron density of the superior cervical sympathetic ganglia and pupil diameters (p < 0.005). Degenerated ciliary ganglia neuron density had an inverse effect on pupil diameters in all groups (p < 0.0001). Highly degenerated neuron density of the ciliary ganglion is not responsible for pupil dilatation owing to parasympathetic pupilloconstrictor palsy, but high neuron density of the pupillodilatatory superior cervical sympathetic ganglia should be considered an important factor for pupil dilatation.

  20. Basal ganglia lesions in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, Monika, E-mail: m.figatowska@mp.pl [Department of Diagnostic Imaging, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Mierzewska, Hanna, E-mail: h.mierzewska@gmail.com [Department of Neurology of Children and Adolescents, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Jurkiewicz, Elżbieta, E-mail: e-jurkiewicz@o2.pl [Department of Diagnostic Imaging, Children' s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland)

    2013-05-15

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive.

  1. Basal ganglia lesions in children and adults

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, Elżbieta

    2013-01-01

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive

  2. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  3. Intramuscular ganglia arising from the superior tibiofibular joint: CT and MR evaluation

    International Nuclear Information System (INIS)

    Bianchi, S.; Abdelwahab, I.F.; Kenan, S.; Zwass, A.; Ricci, G.; Palomba, G.

    1995-01-01

    To evaluate the role of magnetic resonance imaging (MRI) and computed tomography (CT) in the diagnosis of intramuscular ganglia (IMG) that arise from the superior tibiofibular joint (STFJ). Our series consisted of three men and three women. Four patients were studied by MRI, one by CT only, and two by both modalities. Contrast was used in one of the two patients studied by CT. MRI was obtained in at least two orthogonal planes to demonstrate the relation of the ganglia to STFJ. The MR and CT appearance of these ganglia was basically that of a well-defined soft tissue mass with low attenuation on CT images consistent with the presence of fluid. On MR studies, they had an isointense signal on T1-weighted images and a homogenous high-intensity signal on T2-weighted images. MRI demonstrated the attachment of these ganglia to the STFJ. CT and MRI were effective, noninvasive modalities in the evaluation of IMG. The imaging features on both modalities were consistent with the presence of fluid-containing lesions that had close proximity and were attached to the STFJ. The combination of location and the fluid consistency of these lesions facilitated the diagnosis. (orig.)

  4. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Waugh, Jeff L

    2016-01-01

    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  5. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  6. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  7. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Science.gov (United States)

    Caligiore, Daniele; Mannella, Francesco; Arbib, Michael A; Baldassarre, Gianluca

    2017-03-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  8. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Daniele Caligiore

    2017-03-01

    Full Text Available Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  9. Migraine attacks the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Bigal Marcelo

    2011-09-01

    Full Text Available Abstract Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month. The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF to a matched (gender, age, age of onset and type of medication group of patients whose migraine episodes progressed (HF. Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine.

  10. Selective attentional enhancement and inhibition of fronto-posterior connectivity by the basal ganglia during attention switching.

    Science.gov (United States)

    van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan

    2015-06-01

    The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    Science.gov (United States)

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. [{sup 68}Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Thomas; Vogg, Andreas; Heinzel, Alexander; Behrendt, Florian F. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Verburg, Frederik A.; Mottaghy, Felix M. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Pufe, Thomas [RWTH University Aachen, Department of Anatomy and Cell Biology, Aachen (Germany); Neuhuber, Winfried [University of Erlangen-Nuremberg, Institute of Anatomy I, Erlangen (Germany)

    2014-09-24

    To determine the frequency of seemingly pathological retroperitoneal uptake in the location of the coeliac ganglia in patients undergoing [{sup 68}Ga]PSMA-HBED PET/CT. The study included 85 men with prostate cancer referred for [{sup 68}Ga]PSMA-HBED PET/CT. The PET/CT scans were evaluated for the local finding in the prostate and the presence of lymph node metastases, distant metastases and coeliac ganglia. The corresponding standardized uptake values (SUV) were determined. SUVmax to background uptake (gluteal muscle SUVmean) ratios were calculated for the ganglia and lymph node metastases. Immunohistochemistry was performed on the ganglia. In 76 of the 85 patients (89.4 %) at least one ganglion with tracer uptake was found. For the ganglia, SUVmax and SUVmax to background SUVmean ratios were 2.97 ± 0.88 and 7.98 ± 2.84 (range 1.57-6.38 and 2.83-30.6), respectively, and 82.8 % of all ganglia showed an uptake ratio of >5.0. For lymph node metastases, SUVmax and SUVmax to background SUVmean ratios were 8.5 ± 7.0 and 23.31 ± 22.23 (range 2.06-35.9 and 5.25-115.8), respectively. In 35 patients (41.2 %), no lymph node metastases were found but tracer uptake was seen in the ganglia. Immunohistochemistry confirmed strong PSMA expression in the ganglia. Coeliac ganglia show a relevant [{sup 68}Ga]PSMA-HBED uptake in most patients and may mimic lymph node metastases. (orig.)

  13. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    Science.gov (United States)

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  14. Computed tomography of basal ganglia calcifications in pseudo- and idiopathic hypoparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Kajihara, Yasumasa; Nishishita, Soichi; Morita, Rikushi; Nakano, Yoshihisa; Yamamoto, Itsuo; Torizuka, Kanji.

    1987-12-01

    It is well known that patients with pseudo (PHP)- and idiopathic (IHP) hypoparathyroidism are frequently associated with intracranial calcifications. The relative sensitivity of computed tomography (CT) and conventional skull radiography in detecting basal ganglia calcifications was studied in two patients with PHP and six with IHP. CT was more sensitive: the detection rate was 71 % (5/7) for CT and 14 % (1/7) for skull radiography. Furthermore, patients with more prolonged hypocalcemia showed a higher incidence of calcifications. Thus, CT was useful as a diagnostic technique in the early detection of calcified basal ganglia.

  15. Computed tomography of basal ganglia calcifications in pseudo- and idiopathic hypoparathyroidism

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Ono, Shimato; Kajihara, Yasumasa; Nishishita, Soichi; Morita, Rikushi; Nakano, Yoshihisa; Yamamoto, Itsuo; Torizuka, Kanji.

    1987-01-01

    It is well known that patients with pseudo (PHP)- and idiopathic (IHP) hypoparathyroidism are frequently associated with intracranial calcifications. The relative sensitivity of computed tomography (CT) and conventional skull radiography in detecting basal ganglia calcifications was studied in two patients with PHP and six with IHP. CT was more sensitive: the detection rate was 71 % (5/7) for CT and 14 % (1/7) for skull radiography. Furthermore, patients with more prolonged hypocalcemia showed a higher incidence of calcifications. Thus, CT was useful as a diagnostic technique in the early detection of calcified basal ganglia. (author)

  16. Basal ganglia calcification on CT in adult patients with Down's syndrome

    International Nuclear Information System (INIS)

    Ono, Yoshiro; Yoshida, Hironobu; Yoshimasu, Fumio; Higashi, Yuji.

    1987-01-01

    Fourteen adult cases with Down's syndrome were examined on cranial CT scan, and 5 of them (35.7 %) showed basal ganglia calcification (BGC). The incidence of BGC in the present cases was very high in comparison with the one in general population (0.3 ∼ 1.5 %). Abnormalities of calcium metabolism or dysfunctions of the basal ganglia were absent in each case with BGC. Calcifications were exclusively located in globus pallidus. It is considered that BGC found in the present cases may be due to the premature aging process in Down's syndrome. (author)

  17. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye

  18. Serial dynamic CT scan in patients with acute basal ganglia infarctions

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo; Tsuji, Yukihide.

    1987-01-01

    Dynamic computed tomography (CT) was performed on 15 patients (37 to 93 years of age) with acute basal ganglia infarctions, and the perfusion patterns of the infarcted regions on CT were evaluated. The initial dynamic CT was performed within 12 hours after onset, while the serial studies of the dynamic CT were performed on the 3rd and 7th days. The left-over-right ratio in the peak value in the basal ganglia in 15 normal subjects was 1.01 ± 0.03 (mean ± SD), so there were no differences in the peak values of the bilateral basal ganglia. We also examined the left-over-right ratio in the peak value and in the rapid-washout ratio in the basal ganglia in the 15 normal subjects. There was no difference in the peak values of the bilateral basal ganglia. The mean rapid-washout ratio was 0.62 ± 0.11 (mean ± SD). The prognoses of these patients three months after onset were as follows: 8 showed a good recovery, 5 had a moderate disability, and 2 had a severe disability. The perfusions on admission were as follows. 10 were hypoperfusions, 3 were hypo + late perfusions, one was a normoperfusion, and one was a late perfusion. There was a tendency for the rapid-washout ratio decrease more in the hypo + late perfusion group than in the other groups. Twelve patients showed an iso-density, while 3 showed a low density, on admission. The ''low-density'' group showed a decrease in the A/N ratio of the peak value. We performed serial dynamic CT in 11 cases. The group with severe disabilities (2 cases) showed a hypo + late perfusion in the initial CT, one case kept a hypo + late perfusion, and another case changed to a hypoperfusion; also, there was a tendency for there to be a poor improvement in the A/N ratio of the peak value in these two ''severe-disability'' patients. (J.P.N.)

  19. Transmitter-induced glycogenolysis and gluconeogenesis in leech segmental ganglia.

    Science.gov (United States)

    Pennington, A J; Pentreath, V W

    1987-01-01

    1. The utilization and control of glycogen stores were studied in the isolated segmental ganglia of the horse leech, Haemopis sanguisuga. The glycogen in the ganglia was extracted and assayed fluorimetrically and its cellular localization and turnover studied by autoradiography in conjunction with [3H] glucose. 2. The glycogen levels were measured after incubation with different neurotransmitters for 60 min at 28 degrees C. The results for each experimental ganglion were compared to a paired control ganglion, and the results analysed by paired t-tests. 3. Several transmitter substances (5-HT, octopamine, dopamine, noradrenaline, histamine) produced reductions in glycogen (glycogenolysis); other transmitters (glutamate, GABA) produced increases in glycogen (gluconeogenesis); others (adenosine, glycine) produced reductions or increases, depending on concentration. Acetylcholine had no effect on the glycogen levels. 4. Most of the glycogen in the ganglia is localized in the packet glial cells, which surround the neuron perikarya. Autoradiographic analysis demonstrated that the effects of histamine and dopamine were principally on the glycogen in the glial cells. 5. Adenylate cyclase was demonstrated by electron microscope histochemistry to be localized on the plasma membranes of the glial cells, and to a lesser extent on the neuronal membranes. 6. It is concluded that the changes in glycogen in the glial cells may be party controlled by transmitters via adenylate cyclase. This may provide a sensitive mechanism for coupling neuronal activity with energy metabolism.

  20. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    Science.gov (United States)

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  1. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia

    Directory of Open Access Journals (Sweden)

    Fumika Mori

    2016-11-01

    Full Text Available As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg are involved in the regulation of motor control (locomotion, posture and gaze and cognitive processes (attention, learning, and memory. The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition, and modulate aspects of executive function (such as motivation. In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation to relieve gait freezing and postural instability in advanced Parkinson’s disease patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function, and Parkinson’s disease.

  2. Meige`s syndrome associated with basal ganglia and thalamic functional disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Tsutomu; Shikishima, Keigo; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine

    1998-11-01

    Magnetic resonance imaging (MRI) or single positron emission computed tomography (SPECT) or both were performed and the responses of surface electromyography (EMG) were examined in seven cases of Meige`s syndrome. MRI or SPECT or both demonstrated lesions of the basal ganglia, the thalamus, or both in five of the cases. Surface EMG revealed abnormal burst discharges in the orbicularis oculi and a failure of reciprocal muscular activity between the frontalis and orbicularis oculi in all the cases. These findings suggest that voluntary motor control and reciprocal activity in the basal ganglia-thalamocortical circuits are impaired in Meige`s syndrome. In addition, good responses were seen to clonazepam, tiapride and trihexyphenidyl in these cases. Therefore, we conclude that dopaminergic, cholinergic, and {gamma}-aminobutyric acid (GABA) ergic imbalances in the disorders of the basal ganglia and thalamus in Meige`s syndrome cause control in the excitatory and inhibitory pathways to be lost, resulting in the failure of integration in reciprocal muscular activity and voluntary motor control. This failure subsequently causes the symptoms of Meige`s syndrome. (author)

  3. MRI volume measurement of basal ganglia volumes in patients with Tourette's syndrome

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Cao Yanxiang; Zhang Miao; Sui Xin; Zhang Xiaohua

    2009-01-01

    Objective: To evaluate MRI measurement of basal ganglia volumes in patients with Tourette's syndrome. Methods: Ten patients with Tourette's syndrome (TS) and 10 healthy volunteers were studied. Volumes of bilateral caudate, putamen and pallidum were measured, and the results were analyzed using paired t test. The basal ganglia volume was normalized according to individual brain volume. The basal ganglia volumes of TS patients were compared with normal control group using independent-sample t test. Results: In 10 healthy volunteers, volumes of the left caudate, putamen, pallidum were significantly larger compared with those of the right side (P 0.05) in TS patients. After normalized processing, the volumes of the left caudate (7.06 ± 0.48) cm 3 , putamen (8.81±1.01) cm 3 , pallidum (2.64± 0.38) cm 3 were smaller than those of control group [caudate (11.05±1.86) cm 3 , putamen (9.97± 1.11) cm 3 , pallidum (3.04±0.37) cm 3 ] (t=-6.577, -2.457, -2.376, P 3 in TS patients was significantly smaller compared with the control group (9.81±1.83) cm 3 (t=-4.258, P 0.05). Conclusion: The basal ganglia volumes were significantly decreased in patients with TS. MRI volumetric measurement was an important tool for evaluating pathologic changes of TS. (authors)

  4. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia.

    Science.gov (United States)

    Walter, U; Blitzer, A; Benecke, R; Grossmann, A; Dressler, D

    2014-02-01

    Abnormalities of the lenticular nucleus (LN) on transcranial sonography (TCS) are a characteristic finding in idiopathic segmental and generalized dystonia. Our intention was to study whether TCS detects basal ganglia abnormalities also in spasmodic dysphonia, an extremely focal form of dystonia. Transcranial sonography of basal ganglia, substantia nigra and ventricles was performed in 14 patients with spasmodic dysphonia (10 women, four men; disease duration 16.5 ± 6.1 years) and 14 age- and sex-matched healthy controls in an investigator-blinded setting. Lenticular nucleus hyperechogenicity was found in 12 spasmodic dysphonia patients but only in one healthy individual (Fisher's exact test, P spasmodic dysphonia severity (Spearman test, r = 0.82, P spasmodic dysphonia to that of more widespread forms of dystonia. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  5. Basal ganglia modulation of thalamocortical relay in Parkinson's disease and dystonia.

    Science.gov (United States)

    Guo, Yixin; Park, Choongseok; Worth, Robert M; Rubchinsky, Leonid L

    2013-01-01

    Basal ganglia dysfunction has being implied in both Parkinson's disease and dystonia. While these disorders probably involve different cellular and circuit pathologies within and beyond basal ganglia, there may be some shared neurophysiological pathways. For example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic treatment of both disorders. Both conditions are marked by alterations of rhythmicity of neural activity throughout basal ganglia-thalamocortical circuits. Increased synchronized oscillatory activity in beta band is characteristic of Parkinson's disease, while different frequency bands, theta and alpha, are involved in dystonia. We compare the effect of the activity of GPi, the output nuclei of the basal ganglia, on information processing in the downstream neural circuits of thalamus in Parkinson's disease and dystonia. We use a data-driven computational approach, a computational model of the thalamocortical (TC) cell modulated by experimentally recorded data, to study the differences and similarities of thalamic dynamics in dystonia and Parkinson's disease. Our analysis shows no substantial differences in TC relay between the two conditions. Our results suggest that, similar to Parkinson's disease, a disruption of thalamic processing could also be involved in dystonia. Moreover, the degree to which TC relay fidelity is impaired is approximately the same in both conditions. While Parkinson's disease and dystonia may have different pathologies and differ in the oscillatory content of neural discharge, our results suggest that the effect of patterning of pallidal discharge is similar in both conditions. Furthermore, these results suggest that the mechanisms of GPi DBS in dystonia may involve improvement of TC relay fidelity.

  6. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    Science.gov (United States)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  7. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  8. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements

    Directory of Open Access Journals (Sweden)

    Jeffery G. Bednark

    2015-07-01

    Full Text Available Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g. rhythm and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI and multi-voxel pattern analysis (MVPA, we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the SMA and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.

  9. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  10. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana eGalvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  11. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    Science.gov (United States)

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  12. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  13. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee

    2013-01-01

    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  14. Prevalences of CT detected calcification in the basal ganglia in idiopathic hypoparathyroidism and pseudohypoparathyroidism

    International Nuclear Information System (INIS)

    Illum, F.; Dupont, E.; Aarhus Univ.; Aarhus Univ.

    1985-01-01

    Sixteen patients with idiopathic hypoparathyroidism (IHP) and eight patients with pseudohypoparathyroidism (PHP) were examined by CT scan of the brain. Calcification in the basal ganglia was observed in 11 patients with IHP (69%) and in all eight patients with PHP. Of the 19 patients with basal ganglia calcification, nine had calcifications in the cerebral cortex (47%), and four had calcifications in the cerebellum (21%). Observation of basal ganglia calcification on CT gave rise to suspicion of IHP or PHP in three patients (12%). The remaining patients were examined at varying time after diagnosis. Since arrest in growth of calcifications after institution of treatment has never been proven, the reported prevalences of calcifications may not be valid to the situation at the time of diagnosis. (orig.)

  15. Centrality of striatal cholinergic transmission in basal ganglia function

    Directory of Open Access Journals (Sweden)

    Paola eBonsi

    2011-02-01

    Full Text Available Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction.Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson’s disease and dystonia.Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.

  16. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning

    Science.gov (United States)

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning. PMID:27047328

  17. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. How may the basal ganglia contribute to auditory categorization and speech perception?

    Directory of Open Access Journals (Sweden)

    Sung-Joo eLim

    2014-08-01

    Full Text Available Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.

  19. Immunohistochemical detection of ganglia in the rat stomach serosa, containing neurons immunoreactive for gastrin-releasing peptide and vasoactive intestinal peptide

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1987-01-01

    Ganglia, not previously described, were identified in the rat stomach serosa along the minor curvature. The ganglia consisted of varying number of cell bodies lying in clusters along or within nerve bundles. The ganglia were shown to contain GRP and VIP immunoreactive nerve fibers and cell bodies...

  20. The Development of the Basal Ganglia in Capuchin Monkeys (Cebus apella)

    Science.gov (United States)

    Phillips, Kimberley A.; Sobieski, Courtney A.; Gilbert, Valerie R.; Chiappini-Williamson, Christine; Sherwood, Chet C.; Strick, Peter L.

    2010-01-01

    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months – 20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia. PMID:20227397

  1. Cadmium effect on the structure of supra- and subpharyngeal ganglia and the neurosecretory processes in earthworm Dendrobaena veneta (Rosa)

    International Nuclear Information System (INIS)

    Siekierska, Ewa

    2003-01-01

    Cadmium adversely affected ganglia of the earthworm Dendrobaena veneta. - Cadmium effects on the supra- and subpharyngeal ganglia, neurosecretion and RNA content in the neurosecretory cells were tested in earthworms Dendrobaena veneta exposed to 10 and 50 mg Cd kg -1 in soil after 20 days of the experiment. Accumulation of cadmium in the ganglia of nervous system was also measured using AAS method. Cadmium was accumulated in the nervous system. The accumulated amount was proportional to Cd soil concentration and the exposure time. A considerable fall in neurosecretion and RNA content in the neurosecretory cells and neurosecretion in the neuropile (the axons) of both tested ganglia was induced by 50 mg Cd kg -1 . It seemed that neurosecretion synthesis and its axonal transport could be suppressed. Cadmium caused degenerative changes as vacuolization of the neurosecretory cells and neuropile in both tested ganglia

  2. The role of inhibition in generating and controlling Parkinson's disease oscillations in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-10-01

    Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.

  3. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients.These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  4. Flexible microelectrode array for interfacing with the surface of neural ganglia

    Science.gov (United States)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  5. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    Science.gov (United States)

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  6. Distribution of herpes simplex virus types 1 and 2 genomes in human spinal ganglia studied by PCR and in situ hybridization.

    Science.gov (United States)

    Obara, Y; Furuta, Y; Takasu, T; Suzuki, S; Suzuki, H; Matsukawa, S; Fujioka, Y; Takahashi, H; Kurata, T; Nagashima, K

    1997-06-01

    Clinical data indicate that the recurring herpes simplex virus (HSV) from oro-labial lesions is HSV subtype 1 and that the virus from genital lesions is HSV-2. This suggests that HSV-1 and HSV-2 reside in latent forms in the trigeminal ganglia and sacral ganglia, respectively. However, the distribution of latent HSV-1 and HSV-2 infections in human spinal ganglia has not been fully examined. This report concerns the application of polymerase chain reaction (PCR) and in situ hybridization (ISH) to such a study. By using PCR and employing the respective primers, HSV-1 and HSV-2 DNAs were detected in 207 of 524 samples from 262 spinal ganglia (from the cervical to the sacral ganglia) examined on both sides. The percentages of HSV-1 and HSV-2 detected in a given set of ganglia were similar, indicating an absence of site preference. By ISH, few but positive hybridization signals were detected evenly in sacral ganglia sections. The data suggest that regional specificity of recurrent HSV infections is not due to regional distribution of latent virus, but that local host factors may be important for recurrences.

  7. Cavitary Cryptogenic Organizing Pneumonia and abnormalities of the Basal Ganglia Case presentation

    International Nuclear Information System (INIS)

    Prieto, Enrique; Mora, Alfonso Sergio

    2007-01-01

    Cryptogenic Organizing Pneumonia (COP) is a pulmonary disorder with a wide spectrum of radiological features. A case of a young patient of 16 years old is shown with CAT appearance of multiple cavitary nodules in both lungs that responded with a complete resolution after corticosteroid therapy. This patient also reveals abnormalities of the basal ganglia as the result of hypoxic ischemic encephalopathy associated with the acute presentation of this disorder. We justify the inclusion of COP in the differential diagnosis of multiple cavitary nodules, and it is discussed the differential diagnosis of her abnormalities of the basal ganglia

  8. Mössbauer spectroscopy of Basal Ganglia

    International Nuclear Information System (INIS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-01-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57 Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57 Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior

  9. Mössbauer spectroscopy of Basal Ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia and Regional Centre of Advanced Technologies and Materials (Czech Republic); Lančok, Adriana [Institute of Inorganic Chemistry AS CR, v. v. i., 250 68 Husinec-Řež 1001 (Czech Republic); Kopáni, Martin [Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava (Slovakia); Boča, Roman [Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 917 01 Trnava (Slovakia)

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  10. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture.

    Science.gov (United States)

    Croen, K D; Ostrove, J M; Dragovic, L; Straus, S E

    1991-01-01

    The ability of herpes simplex virus type 2 (HSV-2) to establish latency in and reactivate from sacral dorsal root sensory ganglia is the basis for recurrent genital herpes. The expression of HSV-2 genes in latently infected human sacral ganglia was investigated by in situ hybridization. Hybridizations with a probe from the long repeat region of HSV-2 revealed strong nuclear signals overlying neurons in sacral ganglia from five of nine individuals. The RNA detected overlaps with the transcript for infected cell protein O but in the opposite, or "anti-sense," orientation. These observations mimic those made previously with HSV-1 in human trigeminal ganglia and confirm the recent findings during latency in HSV-2-infected mice and guinea pigs. Northern hybridization of RNA from infected Vero cells showed that an HSV-2 latency-associated transcript was similar in size to the larger (1.85 kb) latency transcript of HSV-1. Thus, HSV-1 and HSV-2 latency in human sensory ganglia are similar, if not identical, in terms of their cellular localization and pattern of transcription.

  11. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.

    Science.gov (United States)

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-04-09

    BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.

  12. Using a hybrid neuron in physiologically inspired models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Corey Michael Thibeault

    2013-07-01

    Full Text Available Our current understanding of the basal ganglia has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the basal ganglia however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the basal ganglia, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation. The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under deep brain stimulation. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of deep brain stimulation and the latter allowing for the efficient simulation of larger more comprehensive networks.

  13. Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume.

    Science.gov (United States)

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to

  14. Preventive Role of Hilar Parasympathetic Ganglia on Pulmonary Artery Vasospasm in Subarachnoid Hemorrhage: An Experimental Study.

    Science.gov (United States)

    Araz, Omer; Aydin, Mehmet Dumlu; Gundogdu, Betul; Altas, Ender; Cakir, Murteza; Calikoglu, Cagatay; Atalay, Canan; Gundogdu, Cemal

    2015-01-01

    Pulmonary arteries are mainly innervated by sympathetic vasoconstrictor and parasympathetic vasodilatory fibers. We examined whether there is a relationship between the neuron densities of hilar parasympathetic ganglia and pulmonary vasospasm in subarachnoid hemorrhage (SAH). Twenty-four rabbits were divided into two groups: control (n=8) and SAH (n=16). The animals were observed for 20 days following experimental SAH. The number of hilar parasympathetic ganglia and their neuron densities were determined. Proportion of pulmonary artery ring surface to lumen surface values was accepted as vasospasm index (VSI). Neuron densities of the hilar ganglia and VSI values were compared statistically. Animals in the SAH group experienced either mild (n=6) or severe (n=10) pulmonary artery vasospasm. In the control group, the mean VSI of pulmonary arteries was 0.777±0.048 and the hilar ganglion neuron density was estimated as 12.100±2.010/mm 3 . In SAH animals with mild vasospasm, VSI=1.148±0.090 and neuron density was estimated as 10.110±1.430/mm 3 ; in animals with severe vasospasm, VSI=1.500±0.120 and neuron density was estimated as 7.340±990/mm 3 . There was an inverse correlation between quantity and neuron density of hilar ganglia and vasospasm index value. The low numbers and low density of hilar parasympathetic ganglia may be responsible for the more severe artery vasospasm in SAH.

  15. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  16. iPhone-Assisted Augmented Reality Localization of Basal Ganglia Hypertensive Hematoma.

    Science.gov (United States)

    Hou, YuanZheng; Ma, LiChao; Zhu, RuYuan; Chen, XiaoLei

    2016-10-01

    A low-cost, time-efficient technique that could localize hypertensive hematomas in the basal ganglia would be beneficial for minimally invasive hematoma evacuation surgery. We used an iPhone to achieve this goal and evaluated its accuracy and feasibility. We located basal ganglia hematomas in 26 patients and depicted the boundaries of the hematomas on the skin. To verify the accuracy of the drawn boundaries, computed tomography (CT) markers surrounding the depicted boundaries were attached to 10 patients. The deviation between the CT markers and the actual hematoma boundaries was then measured. In the other 16 patients, minimally invasive endoscopic hematoma evacuation surgery was performed according to the depicted hematoma boundary. The deflection angle of the actual trajectory and deviation in the hematoma center were measured according to the preoperative and postoperative CT data. There were 40 CT markers placed on 10 patients. The mean deviation of these markers was 3.1 mm ± 2.4. In the 16 patients who received surgery, the deflection angle of the actual trajectory was 4.3° ± 2.1. The deviation in the hematoma center was 5.2 mm ± 2.6. This new method can locate basal ganglia hematomas with a sufficient level of accuracy and is helpful for minimally invasive endoscopic hematoma evacuation surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors.

    Directory of Open Access Journals (Sweden)

    Caroline Flegel

    Full Text Available The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq to conduct the first expression analysis of human trigeminal ganglia (TG and dorsal root ganglia (DRG. We analyzed the data with a focus on G-protein coupled receptors (GPCRs and ion channels, which are (potentially involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.

  18. Modulating basal ganglia and cerebellar activity to suppress parkinsonian tremor

    NARCIS (Netherlands)

    Heida, Tjitske; Zhao, Yan; van Wezel, Richard Jack Anton

    2013-01-01

    Despite extensive research, the detailed pathophysiology of the parkinsonian tremor is still unknown. It has been hypothesized that the generation of parkinsonian tremor is related to abnormal activity within the basal ganglia. The cerebello-thalamic-cortical loop has been suggested to indirectly

  19. Do gap junctions regulate synchrony in the parkinsonian basal ganglia?

    NARCIS (Netherlands)

    Schwab, B.C.

    2016-01-01

    Patients with Parkinson’s disease (PD) typically suffer severely from different types of symptoms. Motor symptoms, restricting the patients’ ability to perform controlled movements in daily life, are of special clinical interest and have been related to neural activity in the basal ganglia.

  20. Basal ganglia disorders studied by positron emission tomography

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1994-01-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [ 18 F]6-fluoro-L-dopa ([ 18 F]dopa), and striatal dopamine receptor density with suitable PET ligands. [ 18 F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [ 18 F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [ 18 F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [ 18 F] dopa uptake is lower in MSA than PD. However, [ 18 F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [ 18 F]dopa uptake overlap. D 1 and D 2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [ 18 F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D 2 receptor binding have been reported in the striatum of PSP patients. The reduction in D 2 receptor binding is more prominent in the caudate than putamen. Striatal [ 18 F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D 2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [ 18 F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  1. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.

    Directory of Open Access Journals (Sweden)

    María Jesús Nicolás

    Full Text Available Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU, substantia nigra pars reticulata (SNr and subthalamic nucleus (STN in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg, and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz, high gamma (~ 80 Hz and high frequency (HFO, ~ 150 Hz bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency

  2. Correlation transfer from basal ganglia to thalamus in Parkinson's disease

    Science.gov (United States)

    Pamela, Reitsma; Brent, Doiron; Jonathan, Rubin

    2011-01-01

    Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus. PMID:22355287

  3. Neuroradiology of basal ganglia diseases in children and adolescents

    International Nuclear Information System (INIS)

    Savoiardo, M.; Passerini, A.; D'Incerti, L.

    1987-01-01

    Computerized tomography and NMR imaging findings observed in the diseases affecting the basal ganglia in childhood and adolescence are discussed. First the dystonic syndromes associated with hereditary neurologic disorders of probable metabolic degenerative origin are considered; then the non-hereditary dystonias caused by various intoxications or acute insults are briefly discussed. 26 refs.; 4 figs

  4. Radiation Absorbed Dose to the Basal Ganglia from Dopamine Transporter Radioligand 18F-FPCIT

    Directory of Open Access Journals (Sweden)

    William Robeson

    2014-01-01

    Full Text Available Our previous dosimetry studies have demonstrated that for dopaminergic radiotracers, 18F-FDOPA and 18F-FPCIT, the urinary bladder is the critical organ. As these tracers accumulate in the basal ganglia (BG with high affinity and long residence times, radiation dose to the BG may become significant, especially in normal control subjects. We have performed dynamic PET measurements using 18F-FPCIT in 16 normal adult subjects to determine if in fact the BG, although not a whole organ, but a well-defined substructure, receives the highest dose. Regions of interest were drawn over left and right BG structures. Resultant time-activity curves were generated and used to determine residence times for dosimetry calculations. S-factors were computed using the MIRDOSE3 nodule model for each caudate and putamen. For 18F-FPCIT, BG dose ranged from 0.029 to 0.069 mGy/MBq. In half of all subjects, BG dose exceeded 85% of the published critical organ (bladder dose, and in three of those, the BG dose exceeded that for the bladder. The BG can become the dose-limiting organ in studies using dopamine transporter ligands. For some normal subjects studied with F-18 or long half-life radionuclide, the BG may exceed bladder dose and become the critical structure.

  5. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D

    2015-11-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    Science.gov (United States)

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    Multi-digit synergies, a recently developed, theory-based method to quantify stability of motor action, are shown to reflect basal ganglia dysfunction associated with parkinsonian syndromes. In this study, we tested the hypothesis that multi-digit synergies may capture early and subclinical basal ganglia dysfunction. We chose asymptomatic welders to test the hypothesis because the basal ganglia are known to be most susceptible to neurotoxicity caused by welding-related metal accumulation (such as manganese and iron). Twenty right-handed welders and 13 matched controls were invited to perform single- and multi-finger pressing tasks using the fingers of the right or left hand. Unified Parkinson's Disease Rating Scale and Grooved Pegboard scores were used to gauge gross and fine motor dysfunction, respectively. High-resolution (3T) T1-weighted, T2-weighted, T1 mapping, susceptibility, and diffusion tensor MRIs were obtained to reflect manganese, iron accumulation, and microstructural changes in basal ganglia. The synergy index stabilizing total force and anticipatory synergy adjustments were computed, compared between groups, and correlated with estimates of basal ganglia manganese [the pallidal index, R1 (1/T1)], iron [R2* (1/T2*)], and microstructural changes [fractional anisotropy and mean diffusivity]. There were no significant differences in Unified Parkinson's Disease Rating Scale (total or motor subscale) or Grooved Pegboard test scores between welders and controls. The synergy index during steady-state accurate force production was decreased significantly in the left hand of welders compared to controls (p=0.004) but did not reach statistical significance in the right hand (p=0.16). Anticipatory synergy adjustments, however, were not significantly different between groups. Among welders, higher synergy indices in the left hand were associated significantly with higher fractional anisotropy values in the left globus pallidus (R=0.731, psynergy metrics may serve

  7. Chronological changes in nonhaemorrhagic brain infarcts with short T1 in the cerebellum and basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T. [Dept. of Neurosurgery, Osaka City General Hospital, Miyakojima-Hondouri, Miyakojima, Osaka (Japan)

    2000-07-01

    Our purpose was to investigate nonhaemorrhagic infarcts with a short T1 in the cerebellum and basal ganglia. We carried out repeat MRI on 12 patients with infarcts in the cerebellum or basal ganglia with a short T1. Cerebellar cortical lesions showed high signal on T1-weighted spin-echo images beginning at 2 weeks, which became prominent from 3 weeks to 2 months, and persisted for as long as 14 months after the ictus. The basal ganglia lesions demonstrated slightly high signal from a week after the ictus, which became more intense thereafter. Signal intensity began to fade gradually after 2 months. High signal could be seen at the periphery until 5 months, and then disappeared, while low or isointense signal, seen in the central portion from day 20, persisted thereafter. (orig.)

  8. Chronological changes in nonhaemorrhagic brain infarcts with short T1 in the cerebellum and basal ganglia

    International Nuclear Information System (INIS)

    Komiyama, M.; Nakajima, H.; Nishikawa, M.; Yasui, T.

    2000-01-01

    Our purpose was to investigate nonhaemorrhagic infarcts with a short T1 in the cerebellum and basal ganglia. We carried out repeat MRI on 12 patients with infarcts in the cerebellum or basal ganglia with a short T1. Cerebellar cortical lesions showed high signal on T1-weighted spin-echo images beginning at 2 weeks, which became prominent from 3 weeks to 2 months, and persisted for as long as 14 months after the ictus. The basal ganglia lesions demonstrated slightly high signal from a week after the ictus, which became more intense thereafter. Signal intensity began to fade gradually after 2 months. High signal could be seen at the periphery until 5 months, and then disappeared, while low or isointense signal, seen in the central portion from day 20, persisted thereafter. (orig.)

  9. T2-weighted high-intensity signals in the basal ganglia as an interesting image finding in Unverricht-Lundborg disease.

    Science.gov (United States)

    Korja, Miikka; Ferlazzo, Edoardo; Soilu-Hänninen, Merja; Magaudda, Adriana; Marttila, Reijo; Genton, Pierre; Parkkola, Riitta

    2010-01-01

    We conducted a search for white matter changes (WMCs) in 13 Unverricht-Lundborg disease patients and compared the prevalence of WMCs in these patients to age-matched long-term epileptics and healthy controls. ULD patients had significantly more T2-weighted high-intensity signals on MRI than control subjects, due to the increased prevalence of these signals in the basal ganglia. Interestingly, ULD patients with the basal ganglia changes were overweight. Basal ganglia T2-weighted high-intensity signals are novel findings in ULD. 2009 Elsevier B.V. All rights reserved.

  10. Ictal hyperperfusion of cerebellum and basal ganglia in temporal lobe epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Won Chul; Hong, Seung Bong; Tae, Woo Suk; Seo, Dae Won; Kim, Sang Eun [School of Medicine, Sungkyunkwan, Seoul (Korea, Republic of)

    2001-02-01

    The ictal perfusion patterns of cerebellum and basal ganglia have not been systematically investigated in patients with temporal lobe epilepsy (TLE). Their ictal perfusion patterns were analyzed in relation with temporal lobe and frontal lobe hyperperfusion during TLE seizures using SPECT subtraction. Thirty-three TLE patients had interictal and ictal SPECT, video-EEG monitoring. SPGR MRI, and SPECT subtraction with MRI co-registration. The vermian cerebellar hyperperfusion (CH) was observed in 26 patients (78.8%) and hemispheric CH in 25 (75.8%). Compared to the side of epileptogenic temporal lobe, there were seven ipsilateral hemispheric CH (28.0%), fifteen contralateral hemispheric CH( 60.0%) and three bilateral hemispheric CH( 12.0%). CH was more frequently observed in patients with additional frontal hyperperfusion (15/15, 93.3%) than in patients without frontal hyperperfusion (11/18, 61.1 %). The basal ganglia hyperperfusion (14/15, 93.3%) than in patients without frontal hyperperfusion (BGH) was seen in 11 of the 15 patients with frontotemporal hyperperfusion (73.3%) and 11 of the 18 with temporal hyperperfusion only (61.1%). In 17 patients with unilateral BGH, contralateral CH to the BGH was observed in 14 (82.5%) and ipsilateral CH to BGH in 2 (11.8%) and bilateral CH in 1 (5.9%). The cerebellar hyperperfusion and basal ganglia hyperperfusion during seizures of TLE can be contralateral, ipsilateral or bilateral to the seizure focus. The presence of additional frontal or basal ganglia hyperperfusion was more frequently associated with contralateral hemispheric CH to their sides. However, temporal lobe hyperperfusion appears to be related with both ipsilateral and contralateral hemispheric CH.

  11. Ictal hyperperfusion of cerebellum and basal ganglia in temporal lobe epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    Shin, Won Chul; Hong, Seung Bong; Tae, Woo Suk; Seo, Dae Won; Kim, Sang Eun

    2001-01-01

    The ictal perfusion patterns of cerebellum and basal ganglia have not been systematically investigated in patients with temporal lobe epilepsy (TLE). Their ictal perfusion patterns were analyzed in relation with temporal lobe and frontal lobe hyperperfusion during TLE seizures using SPECT subtraction. Thirty-three TLE patients had interictal and ictal SPECT, video-EEG monitoring. SPGR MRI, and SPECT subtraction with MRI co-registration. The vermian cerebellar hyperperfusion (CH) was observed in 26 patients (78.8%) and hemispheric CH in 25 (75.8%). Compared to the side of epileptogenic temporal lobe, there were seven ipsilateral hemispheric CH (28.0%), fifteen contralateral hemispheric CH( 60.0%) and three bilateral hemispheric CH( 12.0%). CH was more frequently observed in patients with additional frontal hyperperfusion (15/15, 93.3%) than in patients without frontal hyperperfusion (11/18, 61.1 %). The basal ganglia hyperperfusion (14/15, 93.3%) than in patients without frontal hyperperfusion (BGH) was seen in 11 of the 15 patients with frontotemporal hyperperfusion (73.3%) and 11 of the 18 with temporal hyperperfusion only (61.1%). In 17 patients with unilateral BGH, contralateral CH to the BGH was observed in 14 (82.5%) and ipsilateral CH to BGH in 2 (11.8%) and bilateral CH in 1 (5.9%). The cerebellar hyperperfusion and basal ganglia hyperperfusion during seizures of TLE can be contralateral, ipsilateral or bilateral to the seizure focus. The presence of additional frontal or basal ganglia hyperperfusion was more frequently associated with contralateral hemispheric CH to their sides. However, temporal lobe hyperperfusion appears to be related with both ipsilateral and contralateral hemispheric CH

  12. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.

    Science.gov (United States)

    Humphries, Mark D; Gurney, Kevin

    2012-07-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Why we can talk, debate, and change our minds: neural circuits, basal ganglia operations, and transcriptional factors.

    Science.gov (United States)

    Lieberman, Philip

    2014-12-01

    Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for "what is special about the human brain." Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

  14. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    Science.gov (United States)

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Potential long-term effects of MDMA on the basal ganglia-thalamocortical circuit: a proton MR spectroscopy and diffusion-tensor imaging study.

    Science.gov (United States)

    Liu, Hua-Shan; Chou, Ming-Chung; Chung, Hsiao-Wen; Cho, Nai-Yu; Chiang, Shih-Wei; Wang, Chao-Ying; Kao, Hung-Wen; Huang, Guo-Shu; Chen, Cheng-Yu

    2011-08-01

    To investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA, commonly known as "ecstasy") on the alterations of brain metabolites and anatomic tissue integrity related to the function of the basal ganglia-thalamocortical circuit by using proton magnetic resonance (MR) spectroscopy and diffusion-tensor MR imaging. This study was approved by a local institutional review board, and written informed consent was obtained from all subjects. Thirty-one long-term (>1 year) MDMA users and 33 healthy subjects were enrolled. Proton MR spectroscopy from the middle frontal cortex and bilateral basal ganglia and whole-brain diffusion-tensor MR imaging were performed with a 3.0-T system. Absolute concentrations of metabolites were computed, and diffusion-tensor data were registered to the International Consortium for Brain Mapping template to facilitate voxel-based group comparison. The mean myo-inositol level in the basal ganglia of MDMA users (left: 4.55 mmol/L ± 2.01 [standard deviation], right: 4.48 mmol/L ± 1.33) was significantly higher than that in control subjects (left: 3.25 mmol/L ± 1.30, right: 3.31 mmol/L ± 1.19) (P 50 voxels). Increased myo-inositol and Cho concentrations in the basal ganglia of MDMA users are suggestive of glial response to degenerating serotonergic functions. The abnormal metabolic changes in the basal ganglia may consequently affect the inhibitory effect of the basal ganglia to the thalamus, as suggested by the increased FA in the thalamus and abnormal changes in water diffusion in the corresponding basal ganglia-thalamocortical circuit. © RSNA, 2011.

  16. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    Science.gov (United States)

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  19. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    International Nuclear Information System (INIS)

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah; Chi, Dae Yoon; Kim, Jong Ho; Choi, Tae Hyun

    2003-01-01

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  20. Dopamine transporter density of the basal ganglia in children with attention deficit hyperactivity disorder assessed with I-123 IPT SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Won Gee; Kim, Tae Hoon; Ryu, Young Hoon; Yun, Mi Jin; Lee, Jong Doo; Cheon, Keun Ah [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Chi, Dae Yoon [College of Medicine, Inha Univ., Incheon (Korea, Republic of); Kim, Jong Ho; Choi, Tae Hyun [School of Medicine, Gachon Univ., Gachon (Korea, Republic of)

    2003-08-01

    Attention deficit hyperactivity disorder (ADHD) has been known as psychiatric disorder in childhood associated with dopamine dysregulation. In present study, we investigated changes in dopamine transporter (DAT) density of the basal ganglias using I-123 N-(3-iodopropen-2-yl) -2-carbomethoxy-3beta-(4-chlorphenyl) tropane (I-123 IPT) SPECT in children with ADHD before and after methylphenidate treatment. Nine drug-naive children with ADHD and seven normal children were included in the study. We performed brain SPECT two hours after the intravenous administration of I-123 IPT and made both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of specific/nonspecific DAT binding ratios in the basal ganglia. All children with ADHD reperformed (123I)IPT SPECT after treatment with methylphenidate (0.7mg/kg/d) during about 8 weeks. SPECT data reconstructed for the assessment of specific/nonspecific DAT binding ratio of the basal ganglia were compared between before and after treatment methyphenidate. We investigated correlation between the change of ADHD symptom severity assessed with ADHD rating scale-IV and specific/nonspecific DAT binding ratio of basal ganglia. Children with ADHD had a significantly greater specific/nonspecific DAT binding ratio of the basal ganglia comparing to normal children (Right : z = 2.057, p = 0.041 ; Left : z = 2.096, p = 0.032). Under treatment with methylphenidate in all children with ADHD, specific/nonspecific DAT binding ratio of both ganglia decreased significantly greater than before treatment with methylphenidate (Right : t = 3.239, p = 0.018 ; Left : t = 3.133, p 0.020). However, no significant correlation between the change of ADHD symptom severity scores and specific/nonspecific DAT binding ratio of the basal ganglia were found. These findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD.

  1. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Ju; Choi, Sun Jeong; Kim, Chang Soo; Kim, Sun Hee; Chung, Chun Phil; Kim, Yang Sook [Maryknoll Hospital, Pusan (Korea, Republic of)

    1993-01-15

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography.

  2. High signal intensity lesion in basal ganglia on MR imaging: correlation with portal-systemic encephalopathy in liver cirrhosis

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Choi, Sun Jeong; Kim, Chang Soo; Kim, Sun Hee; Chung, Chun Phil; Kim, Yang Sook

    1993-01-01

    To evaluate of the relationship between basal ganglia lesion and portal-systemic encephalopathy, eleven patients who had clinically proved liver cirrhosis with superior mesenteric vein larger than 10mm in diameter on ultrasonogram underwent brain MR imaging. No evidence of clinical or neuropsychiatric disturbance was observed in any patient at the time of the MR examination. Brain MR imaging revealed basal ganglia lesion characterized by bilateral, symmetric, high signal intensity without edema or mass effect on spin echo T1-weighted images in nine patients which included three patients with the past history of portal-systemic encephalopathy. It was concluded that excepted in the circumstances of other causes of the high signal intensity in basal ganglia on T1-weighted images such as fat, methemoglobin, melanin, neurofibromatosis, dense calcification, and parenteral nutrition, bilateral and symmetric high signal intensity lesion in basal ganglia would be a useful MR finding of subclinical portal-systemic encephalopathy in liver cirrhosis patients with no clinical or neuropsychiatric symptoms and larger than 10mm in diameter of superior mesenteric vein in ultrasonography

  3. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    Science.gov (United States)

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS

  4. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    Directory of Open Access Journals (Sweden)

    Mohammad Daneshzand

    2017-08-01

    Full Text Available Deep brain stimulation (DBS has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD. Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the

  5. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  6. Clinical observation of hemocoagulase combined with aminomethylbenzoic acid in the treatment of basal ganglia hemorrhage

    Directory of Open Access Journals (Sweden)

    Min SU

    2014-07-01

    Full Text Available Patients with cerebral hemorrhage in basal ganglia were treated with hemocoagulase combined with aminomethylbenzoic acid from May 2010 to April 2013 in our hospital, and hematoma volume and neurological impairment were compared with the control group before and after treatment. This study confirmed that hemocoagulase combined with aninomethylbenzoic acid is a safe and effective method for cerebral hemorrhage in basal ganglia. It can effectively prevent the hematoma enlargement and improve neurological function and prognosis. doi: 10.3969/j.issn.1672-6731.2014.07.014

  7. Optogenetic Activation of the Sensorimotor Cortex Reveals "Local Inhibitory and Global Excitatory" Inputs to the Basal Ganglia.

    Science.gov (United States)

    Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi

    2017-12-01

    To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.

  8. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  9. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    Science.gov (United States)

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  10. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease

    Science.gov (United States)

    Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.

    2016-12-01

    An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.

  11. Early imaging findings in germ cell tumors arising from the basal ganglia

    International Nuclear Information System (INIS)

    Lee, So Mi; Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Hyun-Hae; You, Sun Kyoung

    2016-01-01

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  12. Early imaging findings in germ cell tumors arising from the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Department of Radiology, Daegu (Korea, Republic of); Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Cho, Hyun-Hae [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Ewha Woman' s University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun Kyoung [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of)

    2016-05-15

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  13. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    OpenAIRE

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr’s disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly present...

  14. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    International Nuclear Information System (INIS)

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-01-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using 18 F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis

  15. Basal ganglia structure in Tourette's disorder and/or attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Forde, N.J.; Zwiers, M.P.; Naaijen, J.; Akkermans, S.E.A.; Openneer, T.J.; Visscher, F.; Dietrich, A.; Buitelaar, J.K.; Hoekstra, P.J.

    2017-01-01

    BACKGROUND: Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. METHODS: T1-weighted magnetic resonance images from

  16. Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations.

    Science.gov (United States)

    van Albada, S J; Gray, R T; Drysdale, P M; Robinson, P A

    2009-04-21

    Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker

  17. Basal ganglia calcification as a putative cause for cognitive decline

    OpenAIRE

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    ABSTRACT Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological an...

  18. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output

    OpenAIRE

    Humphries, Mark D.; Gurney, Kevin

    2012-01-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contr...

  19. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    Science.gov (United States)

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  20. Tractographical model of the cortico-basal ganglia and corticothalamic connections: Improving Our Understanding of Deep Brain Stimulation.

    Science.gov (United States)

    Avecillas-Chasin, Josué M; Rascón-Ramírez, Fernando; Barcia, Juan A

    2016-05-01

    The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery. © 2016 Wiley Periodicals, Inc.

  1. Structural differences in basal ganglia of elite running versus martial arts athletes: a diffusion tensor imaging study.

    Science.gov (United States)

    Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung

    2015-07-01

    The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.

  2. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease

    OpenAIRE

    Cazorla, Maxime; Kang, Un Jung; Kellendonk, Christoph

    2015-01-01

    Current therapies for treating movement disorders such as Parkinson’s disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dys-regulation and why medication-induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different ba...

  3. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    Science.gov (United States)

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Differential Effects of Thalamus and Basal Ganglia on Facial Emotion Recognition

    Science.gov (United States)

    Cheung, Crystal C. Y.; Lee, Tatia M. C.; Yip, James T. H.; King, Kristin E.; Li, Leonard S. W.

    2006-01-01

    This study examined if subcortical stroke was associated with impaired facial emotion recognition. Furthermore, the lateralization of the impairment and the differential profiles of facial emotion recognition deficits with localized thalamic or basal ganglia damage were also studied. Thirty-eight patients with subcortical strokes and 19 matched…

  5. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung; Ryu, Young Hoon; Lee, Jong Doo

    2003-01-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([ 123 I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [ 123 I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  6. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  7. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    Directory of Open Access Journals (Sweden)

    Gurusidheshwar M Wali

    2011-01-01

    Full Text Available Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects.

  8. Characterization of Glutamatergic Neurons in the Rat Atrial Intrinsic Cardiac Ganglia that Project to the Cardiac Ventricular Wall

    Science.gov (United States)

    Wang, Ting; Miller, Kenneth E.

    2016-01-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside intrinsic cardiac ganglia. In the present study, rat intrinsic cardiac ganglia neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) intrinsic cardiac ganglia contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial intrinsic cardiac ganglia contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT. (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG

  9. The role of the basal ganglia in learning and memory: Insight from Parkinson's disease

    Science.gov (United States)

    2013-01-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. PMID:21945835

  10. The role of the basal ganglia in learning and memory: insight from Parkinson's disease.

    Science.gov (United States)

    Foerde, Karin; Shohamy, Daphna

    2011-11-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Lateralization of the connections of the ovary to the celiac ganglia in juvenile rats

    Directory of Open Access Journals (Sweden)

    Handal Anabella

    2009-05-01

    Full Text Available Abstract During the development of the female rat, a maturing process of the factors that regulate the functioning of the ovaries takes place, resulting in different responses according to the age of the animal. Studies show that peripheral innervation is one relevant factor involved. In the present study we analyzed the anatomical relationship between the neurons in the celiac-superior mesenteric ganglia (CSMG, and the right or left ovary in 24 or 28 days old female pre-pubertal rats. The participation of the superior ovarian nerve (SON in the communication between the CSMG and the ovaries was analyzed in animals with unilateral section of the SON, previous to injecting true blue (TB into the ovarian bursa. The animals were killed seven days after treatment. TB stained neurons were quantified at the superior mesenteric-celiac ganglia. The number of labeled neurons in the CSMG of rats treated at 28 days of age was significantly higher than those treated on day 24. At age 24 days, injecting TB into the right ovary resulted in neuron stains on both sides of the celiac ganglia; whereas, injecting the left side the stains were exclusively ipsilateral. Such asymmetry was not observed when the rats were treated at age of 28 days. In younger rats, sectioning the left SON resulted in significantly lower number of stained neurons in the left ganglia while sectioning the right SON did not modify the number of stained neurons. When sectioning of the SON was performed to 28 days old rats, no staining was observed. Present results show that the number and connectivity of post-ganglionic neurons of the CSMG connected to the ovary of juvenile female rats change as the animal mature; that the SON plays a role in this communication process as puberty approaches; and that this maturing process is different for the right or the left ovary.

  12. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia.

    Science.gov (United States)

    Stoessl, A Jon; Lehericy, Stephane; Strafella, Antonio P

    2014-08-09

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    NARCIS (Netherlands)

    Plantinga, B.R.; Temel, Y.; Roebroeck, A.; Uludag, K.; Ivanov, D.; Kuijf, M.L.; ter Haar Romeny, B.M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target

  14. Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease.

    Science.gov (United States)

    Alegre, Manuel; Valencia, Miguel

    2013-10-01

    The implantation of deep brain stimulators in different structures of the basal ganglia to treat neurological and psychiatric diseases has allowed the recording of local field potential activity in these structures. The analysis of these signals has helped our understanding of basal ganglia physiology in health and disease. However, there remain some major challenges and questions for the future. In a recent work, Tan et al. (Tan, H., Pogosyan, A., Anam, A., Foltynie, T., Limousin, P., Zrinzo, L., et al. 2013. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease. Exp. Neurol. 240,122-129) take profit of these recordings to study the changes in subthalamic oscillatory activity during the hold and release phases of a grasping paradigm, and correlate the changes in different frequency bands with performance parameters. They found that beta activity was related to the release phase, while force maintenance related most to theta and gamma/HFO activity. There was no significant effect of the motor state of the patient on this latter association. These findings suggest that the alterations in the oscillatory activity of the basal ganglia in Parkinson's disease are not limited to the beta band, and they involve aspects different from movement preparation and initiation. Additionally, these results highlight the usefulness of the combination of well-designed paradigms with recordings in off and on motor states (in Parkinson's disease), or in different pathologies, in order to understand not only the pathophysiology of the diseases affecting the patients, but also the normal physiology of the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phearts (767.80±18.37 versus 650.23±9.84 μm(2); Pneurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm(2); Pneurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  16. A morphometric CT study of Down's syndrome showing small posterior fossa and calcification of basal ganglia

    International Nuclear Information System (INIS)

    Ieshima, A.; Yoshino, K.; Takashima, S.; Takeshita, K.; Kisa, T.

    1984-01-01

    We report characteristic and morphometric changes of cranial computed tomography (CT) with increasing age in 56 patients with Down's syndrome aged from 0 month to 37 years. Patients were compared with 142 normal controls aged 0 to 59 years. Width of ventricles, Sylvian fissures, posterior fossa, pons and cisterna magna were measured on CT. The incidences of the cavum septi pellucidi, cavum vergae and cavum veli interpositi and high density in the basal ganglia were examined. There was high incidence (10.7%) of bilateral calcification of basal ganglia in Down's syndrome, although that of pineal body and choroid plexus calcification was similar in Down's syndrome and controls. Basal ganglia calcification is more frequently seen in young Down's syndrome and may be related to the premature aging characteristic of Down's syndrome. The CT in Down's syndrome showed relatively small posterior fossa, small cerebellum, small brain stem and relatively large Sylvian fissures in those under one year of age. There was a high frequency of midline cava and large cisterna magna. There were no significant atrophic changes on CT except after the fifth decade comparing with controls. (orig.)

  17. Dopamine transporter density in the basal ganglia assessed with [{sup 123}I]IPT SPET in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Keun-Ah; Kim, Young-Kee; Namkoong, Kee; Kim, Chan-Hyung [Department of Psychiatry, College of Medicine, Yonsei University, Seoul (Korea); Ryu, Young Hoon; Lee, Jong Doo [Division of Nuclear Medicine, Department of Radiology, College of Medicine, Yonsei University, 146-92 Dogokdong, Gangnam-Gu, Seoul, 135-720 (Korea)

    2003-02-01

    Attention deficit hyperactivity disorder (ADHD) is a psychiatric disorder in childhood that is known to be associated with dopamine dysregulation. In this study, we investigated dopamine transporter (DAT) density in children with ADHD using iodine-123 labelled N-(3-iodopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane ([{sup 123}I]IPT) single-photon emission tomography (SPET) and postulated that an alteration in DAT density in the basal ganglia is responsible for dopaminergic dysfunction in children with ADHD. Nine drug-naive children with ADHD and six normal children were included in the study. We performed brain SPET 2 h after the intravenous administration of [{sup 123}I]IPT and carried out both quantitative and qualitative analyses using the obtained SPET data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. We then investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale-IV and the specific/non-specific DAT binding ratio in the basal ganglia. Drug-naive children with ADHD showed a significantly increased specific/non-specific DAT binding ratio in the basal ganglia compared with normal children. However, no significant correlation was found between the severity scores of ADHD symptoms in children with ADHD and the specific/non-specific DAT binding ratio in the basal ganglia. Our findings support the complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD. (orig.)

  18. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Science.gov (United States)

    Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-01-01

    Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  19. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Fazio

    Full Text Available Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions.Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia.Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior.These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  20. Ictal and peri-ictal oscillations in the human basal ganglia in temporal lobe epilepsy

    Czech Academy of Sciences Publication Activity Database

    Rektor, I.; Kuba, R.; Brázdil, M.; Halámek, Josef; Jurák, Pavel

    2011-01-01

    Roč. 20, č. 3 (2011), s. 512-517 ISSN 1525-5050 Institutional research plan: CEZ:AV0Z20650511 Keywords : basal ganglia * oscillations * epilepsy * ictal Subject RIV: FH - Neurology Impact factor: 2.335, year: 2011

  1. Case Report

    DEFF Research Database (Denmark)

    Bilgin-Freiert, Arzu; Fugleholm, Kåre; Poulsgaard, Lars

    2015-01-01

    We report a case of an intraneural ganglion cyst of the hypoglossal canal. The patient presented with unilateral hypoglossal nerve palsy, and magnetic resonance imaging showed a small lesion in the hypoglossal canal with no contrast enhancement and high signal on T2-weighted imaging. The lesion...... irradiation as an option. This case illustrates a very rare location of an intraneural ganglion cyst in the hypoglossal nerve. To our knowledge there are no previous reports of an intraneural ganglion cyst confined to the hypoglossal canal....

  2. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.

    Science.gov (United States)

    Song, Dan-dan; Li, Yong; Tang, Dong; Huang, Li-ya; Yuan, Yao-zong

    2014-05-01

    Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.

  3. Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2017-08-01

    Full Text Available The classical model of basal ganglia has been refined in recent years with discoveries of subpopulations within a nucleus and previously unknown projections. One such discovery is the presence of subpopulations of arkypallidal and prototypical neurons in external globus pallidus, which was previously considered to be a primarily homogeneous nucleus. Developing a computational model of these multiple interconnected nuclei is challenging, because the strengths of the connections are largely unknown. We therefore use a genetic algorithm to search for the unknown connectivity parameters in a firing rate model. We apply a binary cost function derived from empirical firing rate and phase relationship data for the physiological and Parkinsonian conditions. Our approach generates ensembles of over 1,000 configurations, or homologies, for each condition, with broad distributions for many of the parameter values and overlap between the two conditions. However, the resulting effective weights of connections from or to prototypical and arkypallidal neurons are consistent with the experimental data. We investigate the significance of the weight variability by manipulating the parameters individually and cumulatively, and conclude that the correlation observed between the parameters is necessary for generating the dynamics of the two conditions. We then investigate the response of the networks to a transient cortical stimulus, and demonstrate that networks classified as physiological effectively suppress activity in the internal globus pallidus, and are not susceptible to oscillations, whereas parkinsonian networks show the opposite tendency. Thus, we conclude that the rates and phase relationships observed in the globus pallidus are predictive of experimentally observed higher level dynamical features of the physiological and parkinsonian basal ganglia, and that the multiplicity of solutions generated by our method may well be indicative of a natural

  4. A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology.

    Science.gov (United States)

    Schmidt, Robert; Berke, Joshua D

    2017-04-19

    Many studies have implicated the basal ganglia in the suppression of action impulses ('stopping'). Here, we discuss recent neurophysiological evidence that distinct hypothesized processes involved in action preparation and cancellation can be mapped onto distinct basal ganglia cell types and pathways. We examine how movement-related activity in the striatum is related to a 'Go' process and how going may be modulated by brief epochs of beta oscillations. We then describe how, rather than a unitary 'Stop' process, there appear to be separate, complementary 'Pause' and 'Cancel' mechanisms. We discuss the implications of these stopping subprocesses for the interpretation of the stop-signal reaction time-in particular, some activity that seems too slow to causally contribute to stopping when assuming a single Stop processes may actually be fast enough under a Pause-then-Cancel model. Finally, we suggest that combining complementary neural mechanisms that emphasize speed or accuracy respectively may serve more generally to optimize speed-accuracy trade-offs.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).

  5. Role of Basal Ganglia in Swallowing Process: A Systematic Review

    OpenAIRE

    Hamideh Ghaemi; Davood Sobhani-Rad; Ali Arabi; Sadegh Saifpanahi; Zahra Ghayoumi Anaraki

    2016-01-01

    Objectives: The basal ganglia (BG) controls different patterns of behavior by receiving inputs from sensory-motor and pre-motor cortex and projecting it to pre-frontal, pre-motor and supplementary motor areas. As the exact role of BG in swallowing process has not been fully determined, we aimed at reviewing the published data on neurological control in the swallowing technique to have a better understanding of BG’s role in this performance.  Methods: English-language articles, w...

  6. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Lee, Joo Ryung; Ahn, Byeong Cheol; Kewm, Do Hun

    2005-01-01

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  7. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  8. Related Changes of Autonomic Ganglia and Respiratory Compartments of Lungs in Case of Chronic Alcohol Intoxication in Experiments with Rats

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr Vladimirovich

    2014-09-01

    Full Text Available The article deals with description of morphological alterations in lungs and their autonomic ganglia due to chronic alcohol intoxication caused by compulsory ethanol ingesting in Wistar rats. Progressive decrease of air content, superficial density of bronchial and alveolar epithelia, and the increase of quantitative density of bronchial and alveolar macrophages became quantitative morphological evidence of chronic lung injury. At the same time, in autonomic ganglia of lungs the volume fraction and quantitative density of neurons decreased dramatically and the characteristics of neurons in radial morphometry were altered. The quantitative density of glial cells and glia/neuron ratio were increased. The total loss of neurons in ganglia reached 7 % to the 60th day of experiment, the signs of compensatory reactions were revealed simultaneously. These peculiarities can particularly explain the mechanisms of chronic lung pathology in late stages of alcohol disease.

  9. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  10. Respiratory Responses to Stimulation of Branchial Vagus Nerve Ganglia of a Teleost Fish

    NARCIS (Netherlands)

    Ballintijn, C.M.; Luiten, P.G.M.

    1983-01-01

    The effects of electrical stimulation of epibranchial vagus ganglia upon respiration of the carp were investigated. Single shocks evoked fast twitch responses in a number of respiratory muscles with latencies around 18 msec to the beginning and 30-35 msec to the peak of activity. Shocks given during

  11. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Lam, W.W.M.; Zhao, H.; Berry, G.T.; Kaplan, P.; Gibson, J.; Kaplan, B.S.

    1998-01-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  12. Minimal invasive puncture and drainage versus endoscopic surgery for spontaneous intracerebral hemorrhage in basal ganglia

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-01-01

    Full Text Available Zhihong Li,1,* Yuqian Li,1,* Feifei Xu,2,* Xi Zhang,3 Qiang Tian,4 Lihong Li1 1Department of Neurosurgery, Tangdu Hospital, 2Department of Foreign Languages, 3Department of Biomedical Engineering, 4Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China *These authors contributed equally to this work Abstract: Two prevalent therapies for the treatment of spontaneous intracerebral hemorrhage (ICH in basal ganglia are, minimally invasive puncture and drainage (MIPD, and endoscopic surgery (ES. Because both surgical techniques are of a minimally invasive nature, they have attracted greater attention in recent years. However, evidence comparing the curative effect of MIPD and ES has been uncertain. The indication for MIPD or ES has been uncertain till now. In the present study, 112 patients with spontaneous ICH in basal ganglia who received MIPD or ES were reviewed retrospectively. Baseline parameters prior to the operation, evacuation rate (ER, perihematoma edema, postoperative complications, and rebleeding incidences were collected. Moreover, 1-year postictus, the long-term functional outcomes of patients with regard to hematoma volume (HV or Glasgow Coma Scale (GCS score were judged, respectively, by the case fatality, Glasgow Outcome Scale (GOS, Barthel Index (BI, and modified Rankin Scale (mRS. The ES group had a higher ER than the MIPD group on postoperative day 1. The MIPD group had fewer adverse outcomes, which included less perihematoma edema, anesthetic time, and blood loss, than the ES group. The functional outcomes represented by GOS, BI, and mRS were better in the MIPD group than in the ES group for patients with HV 30–60 mL or GCS score 9–14. These results indicate that ES is more effective in evacuating hematoma in basal ganglia, while MIPD is less invasive than ES. Patients with HV 30–60 mL or GCS score 9–14 may benefit more from the MIPD

  13. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    OpenAIRE

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2014-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, adva...

  14. Bilateral basal ganglia necrosis following exogenous toxins shown on computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S

    1982-09-01

    By means of cranial computer tomography, it is possible to demonstrate the cerebral consequences of severe intoxications in vivo. A variety of different toxic agents produce similar disease patterns, which are thought to be due to fall in blood pressure caused by the toxin. The lesions are mainly localised in the basal ganglia at the borders of contiguous vascular territories. Six patients observed by the authors are described.

  15. Frequency and function in the basal ganglia: the origins of beta and gamma band activity.

    Science.gov (United States)

    Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin

    2017-07-01

    Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and

  16. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  17. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  18. Neuronal degeneration induced by status epilepticus in basal ganglia of immature rats

    Czech Academy of Sciences Publication Activity Database

    Druga, Rastislav; Kubová, Hana; Mareš, Pavel

    2005-01-01

    Roč. 46, č. S8 (2005), s. 98-99 ISSN 0013-9580. [Joint Annual Meeting of the American Epilepsy Society and American Clinical Neurophysiology Society. 02.12.2005-06.12.2005, Washington, DC] R&D Projects: GA ČR(CZ) GA304/04/0464 Institutional research plan: CEZ:AV0Z50110509 Keywords : status epilepticus * neurodegeneration * basal ganglia Subject RIV: ED - Physiology

  19. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    Science.gov (United States)

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2015-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673

  20. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    Science.gov (United States)

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  1. Homeobox gene expression in adult dorsal root ganglia: Is regeneration a recapitulation of development?

    NARCIS (Netherlands)

    Vogelaar, C.F.

    2003-01-01

    Neurons of the peripheral nervous system are able to regenerate their peripheral axons after injury, leading to complete recovery of sensory and motor function. The sciatic nerve crush model is frequently used to study peripheral nerve regeneration. Sensory neurons in the dorsal root ganglia (DRGs)

  2. Radiological imaging features of the basal ganglia that may predict progression to hemicraniectomy in large territory middle cerebral artery infarct

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Asim Z.; Edasery, David; Sakai, Osamu; Mustafa Qureshi, M. [Boston University School of Medicine, Department of Radiology, Boston Medical Center, Boston, MA 02118 (United States); Holsapple, James [Boston University School of Medicine, Department of Neurosurgery, Boston Medical Center, Boston, MA (United States); Nguyen, Thanh [Boston University School of Medicine, Department of Neurology, Boston Medical Center, Boston, MA (United States)

    2017-05-15

    Predicting which patients are at risk for hemicraniectomy can be helpful for triage and can help preserve neurologic function if detected early. We evaluated basal ganglia imaging predictors for early hemicraniectomy in patients with large territory anterior circulation infarct. This retrospective study evaluated patients with ischemic infarct admitted from January 2005 to July 2011. Patients with malignant cerebral edema refractory to medical therapy or with herniating signs such as depressed level of consciousness, anisocoria, and contralateral leg weakness were triaged to hemicraniectomy. Admission images were reviewed for presence of caudate, lentiform nucleus (putamen and globus pallidus), or basal ganglia (caudate + lentiform nucleus) infarction. Thirty-one patients with large territory MCA infarct, 10 (32%), underwent hemicraniectomy. Infarction of the caudate nucleus (9/10 vs 6/21, p = 0.002) or basal ganglia (5/10 vs 2/21, p = 0.02) predicted progression to hemicraniectomy. Infarction of the lentiform nucleus only did not predict progression to hemicraniectomy. Sensitivity for patients who did and did not have hemicraniectomy were 50% (5/10) and 90.5% (19/21). For caudate nucleus and caudate plus lentiform nucleus infarcts, the crude- and age-adjusted odds of progression to hemicraniectomy were 9.5 (1.4-64.3) and 6.6 (0.78-55.4), respectively. Infarction of the caudate nucleus or basal ganglia correlated with patients progressing to hemicraniectomy. Infarction of the lentiform nucleus alone did not. (orig.)

  3. Differential regulation of glutamate receptors in trigeminal ganglia following masseter inflammation

    OpenAIRE

    Lee, Jongseok; Ro, Jin Y.

    2007-01-01

    The present study examined whether N-methyl-D-aspartate receptor (NMDAR) and 5-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits and group I metabotropic glutamate receptors (mGluRs) are constitutively expressed in trigeminal ganglia (TG) using Western blot analysis in male Sprague Dawley rats. We then investigated whether experimental induction of masseter inflammation influences glutamate receptor expressions by comparing the protein levels from naïve rats to th...

  4. Vascular Risk Factors and Diseases Modulate Deficits of Reward-Based Reversal Learning in Acute Basal Ganglia Stroke.

    Directory of Open Access Journals (Sweden)

    Ulla K Seidel

    Full Text Available Besides motor function, the basal ganglia have been implicated in feedback learning. In patients with chronic basal ganglia infarcts, deficits in reward-based reversal learning have previously been described.We re-examined the acquisition and reversal of stimulus-stimulus-reward associations and acquired equivalence in eleven patients with acute basal ganglia stroke (8 men, 3 women; 57.8±13.3 years, whose performance was compared eleven healthy subjects of comparable age, sex distribution and education, who were recruited outside the hospital. Eleven hospitalized patients with a similar vascular risk profile as the stroke patients but without stroke history served as clinical control group.In a neuropsychological assessment 7±3 days post-stroke, verbal and spatial short-term and working memory and inhibition control did not differ between groups. Compared with healthy subjects, control patients with vascular risk factors exhibited significantly reduced performance in the reversal phase (F[2,30] = 3.47; p = 0.044; post-hoc comparison between risk factor controls and healthy controls: p = 0.030, but not the acquisition phase (F[2,30] = 1.01; p = 0.376 and the acquired equivalence (F[2,30] = 1.04; p = 0.367 tasks. In all tasks, the performance of vascular risk factor patients closely resembled that of basal ganglia stroke patients. Correlation studies revealed a significant association of the number of vascular risk factors with reversal learning (r = -0.33, p = 0.012, but not acquisition learning (r = -0.20, p = 0.121 or acquired equivalence (r = -0.22, p = 0.096.The previously reported impairment of reward-based learning may be attributed to vascular risk factors and associated diseases, which are enriched in stroke patients. This study emphasizes the necessity of appropriate control subjects in cognition studies.

  5. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  6. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  7. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Significant Risk Factors for Postoperative Enlargement of Basal Ganglia Hematoma after Frameless Stereotactic Aspiration: Antiplatelet Medication and Concomitant IVH.

    Science.gov (United States)

    Son, Wonsoo; Park, Jaechan

    2017-09-01

    Frameless stereotactic aspiration of a hematoma can be the one of the treatment options for spontaneous intracerebral hemorrhage in the basal ganglia. Postoperative hematoma enlargement, however, can be a serious complication of intracranial surgery that frequently results in severe neurological deficit and even death. Therefore, it is important to identify the risk factors of postoperative hematoma growth. During a 13-year period, 101 patients underwent minimally invasive frameless stereotactic aspiration for basal ganglia hematoma. Patients were classified into two groups according to whether or not they had postoperative hematoma enlargement in a computed tomography scan. Baseline demographic data and several risk factors, such as hypertension, preoperative hematoma growth, antiplatelet medication, presence of concomitant intraventricular hemorrhage (IVH), were analysed via a univariate statistical study. Nine of 101 patients (8.9%) showed hematoma enlargement after frameless stereotactic aspiration. Among the various risk factors, concomitant IVH and antiplatelet medication were found to be significantly associated with postoperative enlargement of hematomas. In conclusion, our study revealed that aspirin use and concomitant IVH are factors associated with hematoma enlargement subsequent to frameless stereotactic aspiration for basal ganglia hematoma.

  9. Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia.

    Directory of Open Access Journals (Sweden)

    Elisa Carpanese

    Full Text Available Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia. After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN(1 and GluA(1-3, GluK(1-3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA(1-3 subunits remained unchanged, while, the number of GluK(1-3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100-500 µM decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I

  10. Measurement of the Effect of Phenothiazine on the Manganese Concentration in the Basal Ganglia of Sub-Human Primates by Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bird, E. D.; Grant, L. G.; Ellis, W. H. [University of Florida, Gainesville, FL (United States)

    1967-10-15

    In man toxicity to manganese and phenothiazine drugs is manifested as dyskinesia. Cotzias and co-workers demonstrated that the phenothiazines form a semiquinone radical with manganese suggesting a common mechanism for production of Parkinsonism. Previous measurements of manganese have been made on whole brain. The very sensitive technique of activation analysis was used in the present study to measure manganese concentration in various nuclei of the basal ganglia. Phenothiazine was given to one group of Rhesus monkeys (Macaca mulatta) for one month. One group served as a control. After sacrifice the basal ganglia were dissected out with plastic knives, dried, and duplicate samples exposed to thermal neutrons at a flux of 1.35 x 10{sup 12} n/cm{sup 2}s. Manganese was separated radiochemical and counts under the manganese peak were compared to a standard handled identically. The results are presented. The manganese concentration was significantly increased in the putamen of primates receiving phenothiazine. There was no significant difference in the other nuclei examined. Phenothiazine is concentrated in basal ganglia. Dopamine is found in large quantities in caudate and putamen, and following phenothiazine therapy dopamine was found to be increased slightly. The associated increase of manganese and dopamine following phenothiazine provides some evidence that this drug causes profound biochemical alterations in the basal ganglia resulting in the various dyskinesias that are seen. (author)

  11. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  12. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Science.gov (United States)

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  13. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart.

    Science.gov (United States)

    Allen, Emily; Coote, John H; Grubb, Blair D; Batten, Trevor Fc; Pauza, Dainius H; Ng, G André; Brack, Kieran E

    2018-05-22

    The intrinsic cardiac nervous system (ICNS) is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. To provide a picture of the neurotransmitter/neuromodulator profile of the rabbit ICNS and determine the action of spatially divergent ganglia on cardiac electrophysiology. Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or neuronal nitric oxide synthase (nNOS) was performed on whole-mount preparations. Stimulation within all ganglia produced either bradycardia, tachycardia or a biphasic brady-tachycardia. Electrical stimulation of the right atrial (RA) and right neuronal cluster (RNC) regions produced the greatest chronotropic responses. Significant prolongation of atrioventricular conduction (AVC) was predominant at the pulmonary vein-caudal vein region (PVCV). Neurons immunoreactive (IR) only for ChAT, or TH or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946±668 neurons). Neurons IR solely for nNOS were distributed within ganglia. Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease. Copyright © 2018. Published by Elsevier Inc.

  14. Bilateral functional connectivity of the basal ganglia in patients with Parkinson's disease and its modulation by dopaminergic treatment.

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson's disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson's disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = -4.4, pbasal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei.

  15. Basal ganglia disorders studied by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1994-04-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [[sup 18]F]6-fluoro-L-dopa ([[sup 18]F]dopa), and striatal dopamine receptor density with suitable PET ligands. [[sup 18]F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [[sup 18]F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [[sup 18]F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [[sup 18]F] dopa uptake is lower in MSA than PD. However, [[sup 18]F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [[sup 18]F]dopa uptake overlap. D[sub 1] and D[sub 2] receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [[sup 18]F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D[sub 2] receptor binding have been reported in the striatum of PSP patients. The reduction in D[sub 2] receptor binding is more prominent in the caudate than putamen. Striatal [[sup 18]F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D[sub 2] receptor binding is markedly reduced in patients with Huntington's disease, while striatal [[sup 18]F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. (J.P.N.) 55 refs.

  16. Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.

    Science.gov (United States)

    Leblois, Arthur; Reese, René; Labarre, David; Hamann, Melanie; Richter, Angelika; Boraud, Thomas; Meissner, Wassilios G

    2010-05-01

    Dystonia is a heterogeneous syndrome of movement disorders characterized by involuntary muscle contractions leading to abnormal movements and postures. While medical treatment is often ineffective, deep brain stimulation (DBS) of the internal pallidum improves dystonia. Here, we studied the impact of DBS in the entopeduncular nucleus (EP), the rodent equivalent of the human globus pallidus internus, on basal ganglia output in the dt(sz)-hamster, a well-characterized model of dystonia by extracellular recordings. Previous work has shown that EP-DBS improves dystonic symptoms in dt(sz)-hamsters. We report that EP-DBS changes firing pattern in the EP, most neurons switching to a less regular firing pattern during DBS. In contrast, EP-DBS did not change the average firing rate of EP neurons. EP neurons display multiphasic responses to each stimulation impulse, likely underlying the disruption of their firing rhythm. Finally, neurons in the substantia nigra pars reticulata display similar responses to EP-DBS, supporting the idea that EP-DBS affects basal ganglia output activity through the activation of common afferent fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  17. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity

    Science.gov (United States)

    Quiroga-Varela, A.; Walters, J.R.; Brazhnik, E.; Marin, C.; Obeso, J.A.

    2014-01-01

    One well accepted functional feature of the parkinsonian state is the recording of enhanced beta oscillatory activity in the basal ganglia. This has been demonstrated in patients with Parkinson's disease (PD) and in animal models such as the rat with 6-hydroxydopamine (6-OHDA)-induced lesion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, all of which are associated with severe striatal dopamine depletion. Neuronal hyper-synchronization in the beta (or any other) band is not present despite the presence of bradykinetic features in the rat and monkey models, suggesting that increased beta band power may arise when nigro-striatal lesion is advanced and that it is not an essential feature of the early parkinsonian state. Similar observations and conclusions have been previously made for increased neuronal firing rate in the subthalamic and globus pallidus pars interna nuclei. Accordingly, it is suggested that early parkinsonism may be associated with dynamic changes in basal ganglia output activity leading to reduced movement facilitation that may be an earlier feature of the parkinsonian state. PMID:23727447

  18. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Science.gov (United States)

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Hereditary haemochromatosis: a case of iron accumulation in the basal ganglia associated with a parkinsonian syndrome

    DEFF Research Database (Denmark)

    Nielsen, J.E.; Jensen, L. Neerup; Krabbe, K.

    1995-01-01

    . A patient is reported with hereditary haemochromatosis and a syndrome of dementia, dysarthria, a slowly progressive gait disturbance, imbalance, muscle weakness, rigidity, bradykinesia, tremor, ataxia, and dyssynergia. The findings on MRI of a large signal decrease in the basal ganglia, consistent...

  20. MRI of enlarged dorsal ganglia, lumbar nerve roots, and cranial nerves in polyradiculoneuropathies

    International Nuclear Information System (INIS)

    Castillo, M.; Mukherji, S.K.

    1996-01-01

    This paper describes the MRI findings in four patients with a clinical diagnosis of hypertrophic polyradiculoneuropathies. In two examination of the lumbar spine showed enlarged nerve roots and dorsal ganglia, and similar findings were present in the cervical spine in a third. The cisternal portions of the cranial nerves were enlarged in another patient. MRI allows identification of enlarged nerves in hypertrophic polyradiculopathies. (orig.)

  1. Loss of function of Slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice

    DEFF Research Database (Denmark)

    Jensen, N.; Schroder, H. D.; Hejbol, E. K.

    2013-01-01

    Familial idiopathic basal ganglia calcification (FIBGC) is a neurodegenerative disorder with neuropsychiatric and motor symptoms. Deleterious mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), were recently linked to FIBGC in almost 50% of the families...... reported worldwide. Here, we show that knockout of Slc20a2 in mice causes calcifications in the thalamus, basal ganglia, and cortex, demonstrating that reduced PiT2 expression alone can cause brain calcifications....

  2. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in Healthy Older Adults.

    Science.gov (United States)

    Nagamatsu, Lindsay S; Weinstein, Andrea M; Erickson, Kirk I; Fanning, Jason; Awick, Elizabeth A; Kramer, Arthur F; McAuley, Edward

    2016-01-01

    To examine whether 12 months of aerobic training (AT) moderated the relationship between change in mobility and change in basal ganglia volume than balance and toning (BAT) exercises in older adults. Secondary analysis of a randomized controlled trial. Champaign-Urbana, Illinois. Community-dwelling older adults (N=101; mean age 66.4). Twelve-month exercise trial with two groups: AT and BAT. Mobility was assessed using the Timed Up and Go test. Basal ganglia (putamen, caudate nucleus, pallidum) was segmented from T1-weighted magnetic resonance images using the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software Library Integrated Registration and Segmentation Tool. Measurements were obtained at baseline and trial completion. Hierarchical multiple regression was conducted to examine whether exercise mode moderates the relationship between change in mobility and change in basal ganglia volume over 12 months. Age, sex, and education were included as covariates. Exercise significantly moderated the relationship between change in mobility and change in left putamen volume. Specifically, for the AT group, volume of the left putamen did not change, regardless of change in mobility. Similarly, in the BAT group, those who improved their mobility most over 12 months had no change in left putamen volume, although left putamen volume of those who declined in mobility levels decreased significantly. The primary finding that older adults who engaged in 12 months of BAT training and improved mobility exhibited maintenance of brain volume in an important region responsible for motor control provides compelling evidence that such exercises can contribute to the promotion of functional independence and healthy aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  3. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes.

    Science.gov (United States)

    Nagae, Lidia M; Honce, Justin M; Tanabe, Jody; Shelton, Erika; Sillau, Stefan H; Berman, Brian D

    2016-01-01

    Diffusion tensor imaging (DTI) of the substantia nigra has shown promise in detecting and quantifying neurodegeneration in Parkinson disease (PD). It remains unknown, however, whether differences in microstructural changes within the basal ganglia underlie PD motor subtypes. We investigated microstructural changes within the basal ganglia of mild to moderately affected PD patients using DTI and sought to determine if microstructural changes differ between the tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtypes. Fractional anisotropy, mean diffusivity, radial, and axial diffusivity were obtained from bilateral caudate, putamen, globus pallidus, and substantia nigra of 21 PD patients (12 TD and 9 PIGD) and 20 age-matched healthy controls. T-tests and ANOVA methods were used to compare PD patients, subtypes, and controls, and Spearman correlations tested for relationships between DTI and clinical measures. We found our cohort of PD patients had reduced fractional anisotropy within the substantia nigra and increased mean and radial diffusivity within the substantia nigra and globus pallidus compared to controls, and that changes within those structures were largely driven by the PIGD subtype. Across all PD patients fractional anisotropy within the substantia nigra correlated with disease stage, while in PIGD patients increased diffusivity within the globus pallidus correlated with disease stage and motor severity. We conclude that PIGD patients have more severely affected microstructural changes within the substantia nigra compared to TD, and that microstructural changes within the globus pallidus may be particularly relevant for the manifestation of the PIGD subtype.

  4. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  5. Basal ganglia-dependent processes in recalling learned visual-motor adaptations.

    Science.gov (United States)

    Bédard, Patrick; Sanes, Jerome N

    2011-03-01

    Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory-motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior work has mostly focused on the learning process. A current model suggests that basal ganglia, cerebellum, and their neocortical targets actively participate in forming new IMs but that a cerebellar cortical network would mediate automatization. However, a recent study (Marinelli et al. 2009) reported that patients with Parkinson's disease (PD), who have basal ganglia dysfunction, had similar adaptation rates as controls but demonstrated no savings at recall tests (24 and 48 h). Here, we assessed whether a longer training session, a feature known to increase long-term retention of IM in healthy individuals, could allow PD patients to demonstrate savings. We recruited PD patients and age-matched healthy adults and used a visual-motor adaptation paradigm similar to the study by Marinelli et al. (2009), doubling the number of training trials and assessed recall after a short and a 24-h delay. We hypothesized that a longer training session would allow PD patients to develop an enhanced representation of the IM as demonstrated by savings at the recall tests. Our results showed that PD patients had similar adaptation rates as controls but did not demonstrate savings at both recall tests. We interpret these results as evidence that fronto-striatal networks have involvement in the early to late phase of motor memory formation, but not during initial learning.

  6. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats.

    Directory of Open Access Journals (Sweden)

    Gabriela P Chaves-Kirsten

    Full Text Available The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD. Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP, internal globus pallidus (IGP and substantia nigra pars reticulata (SNpr of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH, parvalbumin, calbindin and glutamic acid decarboxylase (GAD expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.

  7. Altered effective connectivity network of the basal ganglia in low-grade hepatic encephalopathy: a resting-state fMRI study with Granger causality analysis.

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    Full Text Available BACKGROUND: The basal ganglia often show abnormal metabolism and intracranial hemodynamics in cirrhotic patients with hepatic encephalopathy (HE. Little is known about how the basal ganglia affect other brain system and is affected by other brain regions in HE. The purpose of this study was to investigate whether the effective connectivity network associated with the basal ganglia is disturbed in HE patients by using resting-state functional magnetic resonance imaging (rs-fMRI. METHODOLOGY/PRINCIPAL FINDINGS: Thirty five low-grade HE patients and thirty five age- and gender- matched healthy controls participated in the rs-fMRI scans. The effective connectivity networks associated with the globus pallidus, the primarily affected region within basal ganglia in HE, were characterized by using the Granger causality analysis and compared between HE patients and healthy controls. Pearson correlation analysis was performed between the abnormal effective connectivity and venous blood ammonia levels and neuropsychological performances of all HE patients. Compared with the healthy controls, patients with low-grade HE demonstrated mutually decreased influence between the globus pallidus and the anterior cingulate cortex (ACC, cuneus, bi-directionally increased influence between the globus pallidus and the precuneus, and either decreased or increased influence from and to the globus pallidus in many other frontal, temporal, parietal gyri, and cerebellum. Pearson correlation analyses revealed that the blood ammonia levels in HE patients negatively correlated with effective connectivity from the globus pallidus to ACC, and positively correlated with that from the globus pallidus to precuneus; and the number connectivity test scores in patients negatively correlated with the effective connectivity from the globus pallidus to ACC, and from superior frontal gyrus to globus pallidus. CONCLUSIONS/SIGNIFICANCE: Low-grade HE patients had disrupted effective

  8. Ablation of lumbar sympathetic ganglia by absolute ethanol injection and paravertebral catheter placement under CT guidance: evaluation of the efficacy

    International Nuclear Information System (INIS)

    Xu Hua; Xiong Yuanchang; Shao Chengwei; Zuo Changjing; Sheng Jing; Tian Jianming

    2009-01-01

    Objective: To evaluate the ablation of lumbar sympathetic ganglia by using single injection of absolute ethanol and retaining a paravertebral catheter under CT guidance for the treatment of lower extremity ischemia. Methods: Single absolute ethanol injection of L2 sympathetic ganglia was done in 25 cases (group B), single absolute ethanol injection of L2 sympathetic ganglia together with placement of a paravertebral catheter at L3 was carried out in 23 cases (group BT). All the procedures were performed under CT guidance. Three days after the procedure, the pain severity of the lower limbs was evaluated based on VAS method. If the patient in group BT still had a VAS score ≥4 on the third day, 3 ml of 1% lidocaine was infected via the retained catheter in the prone position. If VAS score became ≤3 at 5 min after the injection, additional 5 ml of ethanol was given through the catheter. The pain severity was evaluated again one week later. VAS score, analgesic dose and temperature of lower limbs were recorded. Results: One week after the procedure the excellent rate and effective rate for group B were 32% and 80% respectively, while for group BT were 60.9% and 95.7% respectively, with a significant difference between two groups (P<0.01). Conclusion: For the ablation of lumbar sympathetic ganglia the combination of single absolute ethanol injection with paravertebral catheter placement under CT guidance is superior to the single absolute ethanol injection. This technique is more individual with better results and is more likely to be accepted by the patients. (authors)

  9. Singing can improve speech function in aphasics associated with intact right basal ganglia and preserve right temporal glucose metabolism: Implications for singing therapy indication.

    Science.gov (United States)

    Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi

    2016-01-01

    Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy.

  10. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    Science.gov (United States)

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  11. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Christina Chatzi

    2011-04-01

    Full Text Available Although retinoic acid (RA has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE, where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3⁻/⁻ embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.

  12. MRI pattern of infarcts in basal ganglia region in patients with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, P.P.; Kalita, J.; Misra, U.K. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Neurology, Lucknow (India); Kumar, S. [Sanjay Gandhi Postgraduate Institute of Medical sciences, Department of Radiology, Lucknow (India)

    2009-04-15

    This study aimed to evaluate the pattern of infarct in basal ganglia region in tuberculous meningitis (TBM) and ischemic strokes and its sensitivity and specificity in the diagnosis of these disorders. Patients with TBM and ischemic strokes in basal ganglia region were retrospectively evaluated from our tuberculous meningitis and ischemic stroke registry. Magnetic resonance imaging findings were grouped into anterior (caudate, genu, anterior limb of internal capsule, anteromedial thalamus) and posterior (lentiform nuclei, posterior limb of internal capsule, posterolateral thalamus). The sensitivity and specificity of these patterns in diagnosing TBM and ischemic stroke were evaluated. There were 24 patients in each group. Infarct in TBM was purely anterior in eight patients and in ischemic stroke purely posterior in 18 patients. The frequency of caudate infarct was significantly higher in TBM compared to ischemic stroke (37.5% vs 8.3%). In TBM patients, purely posterior infarcts were present in seven patients; three had associated risk factors of ischemic stroke. The sensitivity of pure anterior infarct in the diagnosis of TBM was 33%, specificity 91.66%. For ischemic stroke, the sensitivity of posterior infarct was 75% and specificity 70.83%. TBM patients having infarcts in posterior region should be looked for associated risk factors of ischemic stroke. (orig.)

  13. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction

    Directory of Open Access Journals (Sweden)

    Jan eRusz

    2015-07-01

    Full Text Available Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programming and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally-distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability and acceleration. A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson's disease (PD, 11 progressive supranuclear palsy (PSP, 9 multiple system atrophy (MSA, 24 ephedrone-induced parkinsonism (EP, 20 Huntington's disease (HD, and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing rhythm instability and rhythm acceleration were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and nonspeech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step towards the development of acoustic technologies allowing automated assessment of rhythm

  15. Detection of nerve structures during peripheral nerve blockade in pigs model

    Directory of Open Access Journals (Sweden)

    Ilvana Hasanbegovic

    2013-01-01

    Results: All perineural injections resulted in injection pressures below 40 kPa. In contrast, intraneural injections resulted in significantly higher peak pressures (P 140 k Pa. Conclusion: High injection pressure (>140 kPa predicts intraneural injection and consequential neurologic deficit. As long as the injection pressure is low, injection into poorly compliant tissue can be avoided and neurological complication can be prevented.

  16. Suramin affects capsaicin responses and capsaicin-noxious heat interactions in rat dorsal root ganglia neurones

    Czech Academy of Sciences Publication Activity Database

    Vlachová, Viktorie; Lyfenko, Alla; Vyklický st., Ladislav; Orkand, R. K.

    2002-01-01

    Roč. 51, č. 2 (2002), s. 193-198 ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : dorsal root ganglia neurones * vanilloid receptor * capsaicin-noxious heat Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  17. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme

    2009-02-01

    The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

  18. Effects of NSAIDs on the Release of Calcitonin Gene-Related Peptide and Prostaglandin E2 from Rat Trigeminal Ganglia

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to treat migraine, but the mechanisms of their effects in this pathology are not fully elucidated. The trigeminal ganglia and calcitonin gene-related peptide (CGRP have been implicated in the pathophysiology of migraine. The release of CGRP and prostaglandin E2 (PGE2 from freshly isolated rat trigeminal ganglia was evaluated after oral administration of nimesulide, etoricoxib, and ketoprofen, NSAIDs with different pharmacological features. Thirty minutes after oral administration, nimesulide, 10 mg/Kg, decreased the GCRP release induced by an inflammatory soup, while the other NSAIDs were ineffective at this point in time. Two hours after oral nimesulide (5 and 10 mg/Kg and ketoprofen (10 mg/Kg, but not of etoricoxib, a significant decrease in the CGRP release was observed. All drugs reduced PGE2, although with some differences in timing and doses, and the action on CGRP does not seem to be related to PGE2 inhibition. The reduction of CGRP release from rat trigeminal ganglia after nimesulide and ketoprofen may help to explain the mechanism of action of NSAIDs in migraine. Since at 30 minutes only nimesulide was effective in reducing CGRP release, these results suggest that this NSAID may exert a particularly rapid effect in patients with migraine.

  19. Transient Sensory Recovery in Stroke Patients After Pulsed Radiofrequency Electrical Stimulation on Dorsal Root Ganglia: A Case Series.

    Science.gov (United States)

    Apiliogullari, Seza; Gezer, Ilknur A; Levendoglu, Funda

    2017-01-01

    The integrity of the somatosensory system is important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central stimulation in patients with central nervous system lesions can be an effective modality in improving function and in facilitating neuroplasticity. We present 2 hemiplegic cases with sensory motor deficit and the result of the pulsed radiofrequency (PRF) electrical stimulation to the dorsal root ganglia. After PRF electrical stimulation, significant improvement was achieved in the examination of patients with superficial and deep sensation. However, during the follow-up visits were observed that the effect of PRF electrical stimulation disappeared. We believe that these preliminary results could be used in the development of future prospective cohort studies and randomized controlled trials that focus on the effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in poststroke patients.

  20. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.

    Science.gov (United States)

    Kang, Guiyeom; Lowery, Madeleine M

    2013-03-01

    Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.

  1. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A.

    1991-01-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ( 125 I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  2. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy - A stereological study

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Ullerup, Birgitte H; Sunay, Fatma B

    2014-01-01

    Total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the basal ganglia and red nucleus were estimated in brains from 11 patients with multiple system atrophy (MSA) and 11 age- and gender-matched control subjects with unbiased stereological methods. Compared to the control...

  3. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Science.gov (United States)

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.

  4. Basal ganglia calcification as a putative cause for cognitive decline.

    Science.gov (United States)

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients.

  5. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    Science.gov (United States)

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  6. Proton MR spectroscopic imaging of basal ganglia and thalamus in neurofibromatosis type 1: correlation with T2 hyperintensities

    International Nuclear Information System (INIS)

    Barbier, Charlotte; Barantin, Laurent; Chabernaud, Camille; Bertrand, Philippe; Sembely, Catherine; Sirinelli, Dominique; Castelnau, Pierre; Cottier, Jean-Philippe

    2011-01-01

    Neurofibromatosis type 1 (NF1) is frequently associated with hyperintense lesions on T2-weighted images called ''unidentified bright objects'' (UBO). To better characterize the functional significance of UBO, we investigate the basal ganglia and thalamus using spectroscopic imaging in children with NF1 and compare the results to anomalies observed on T2-weighted images. Magnetic resonance (MR) data of 25 children with NF1 were analyzed. On the basis of T2-weighted images analysis, two groups were identified: one with normal MR imaging (UBO- group; n = 10) and one with UBO (UBO+ group; n = 15). Within the UBO+ group, a subpopulation of patients (n = 5) only had lesions of the basal ganglia. We analyzed herein seven regions of interest (ROIs) for each side: caudate nucleus, capsulo-lenticular region, lateral and posterior thalamus, thalamus (lateral and posterior voxels combined), putamen, and striatum. For each ROI, a spectrum of the metabolites and their ratio was obtained. Patients with abnormalities on T2-weighted images had significantly lower NAA/Cr, NAA/Cho, and NAA/mI ratios in the lateral right thalamus compared with patients with normal T2. These abnormal spectroscopic findings were not observed in capsulo-lenticular regions that had UBO but in the thalamus region that was devoid of UBO. Multivoxel spectroscopic imaging using short-time echo showed spectroscopic abnormalities in the right thalamus of NF1 patients harboring UBO, which were mainly located in the basal ganglia. This finding could reflect the anatomical and functional interactions of these regions. (orig.)

  7. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study.

    Science.gov (United States)

    Karlsen, Anna Schou; Pakkenberg, Bente

    2011-11-01

    The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.

  8. Effect of basal ganglia calcification on its glucose metabolism and dopaminergic function in idiopathic hypoparathyroidism.

    Science.gov (United States)

    Modi, Sagar; Arora, Geetanjali; Bal, Chandra Shekhar; Sreenivas, Vishnubhatla; Kailash, Suparna; Sagar, Rajesh; Goswami, Ravinder

    2015-10-01

    The functional significance of basal ganglia calcification (BGC) in idiopathic hypoparathyroidism (IH) is not clear. To assess the effect of BGC on glucose metabolism and dopaminergic function in IH. (18) F-FDG and (99m) Tc-TRODAT-1 nuclear imaging were performed in 35 IH patients with (n = 26) and without (n = 9) BGC. Controls were subjects without hypoparathyroidism or BGC (nine for (18) F-FDG and 12 for (99m) Tc-TRODAT-1). Relationship of the glucose metabolism and dopaminergic function was assessed with the neuropsychological and biochemical abnormalities. (18) F-FDG uptake in IH patients with calcification at caudate and striatum was less than that of IH patients without calcification (1·06 ± 0·13 vs 1·24 ± 0·09, P = <0·0001 and 1·06 ± 0·09 vs 1·14 ± 0·08, P = 0·03, respectively). (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. (18) F-FDG uptake in IH without BGC was significantly lower than that of controls. The mean (99m) Tc-TRODAT-1 uptake at basal ganglia was comparable between IH with and without BGC and between IH without BGC and controls. Serum calcium-phosphorus ratio maintained by the patients correlated with (18) F-FDG uptake at striatum (r = 0·57, P = 0·001). For every 0·1 unit reduction in calcium-phosphorus ratio, (18) F-FDG uptake decreased by 2·5 ± 0·68% (P = 0·001). BGC was associated with modest reduction (15%) in (18) F-FDG uptake at basal ganglia in IH but did not affect dopaminergic function. (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. Interestingly, chronic hypocalcaemia-hyperphosphataemia also contributed to reduction in (18) F-FDG uptake which was independent of BGC. © 2014 John Wiley & Sons Ltd.

  9. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    International Nuclear Information System (INIS)

    Ceballos, M.L. de; Boyce, S.; Taylor, M.; Jenner, P.; Marsden, C.D.

    1987-01-01

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens

  10. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, M.L. de; Boyce, S; Taylor, M; Jenner, P; Marsden, C D

    1987-03-20

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens.

  11. Energy utilization and gluconeogenesis in isolated leech segmental ganglia: Quantitative studies on the control and cellular localization of endogenous glycogen.

    Science.gov (United States)

    Pennington, A J; Pentreath, V W

    1988-01-01

    The isolated segmental ganglia of the horse leech Haemopis sanguisuga were used as a model system to study the utilization and control of glycogen stores within nervous tissue. The glycogen in the ganglia was extracted and assayed fluorimentrically and its cellular localization and turnover studied by autoradiography in conjunction with [(3)H]glucose. We measured the glycogen after various periods of electrical stimulation and after incubation with K(+), Ca(2+), ouabain and glucose. The results for each experimental ganglion were compared to a paired control ganglion and the results analysed by paired t-tests. Electrical stimulation caused sequential changes in glycogen levels: a reduction of up to 67% (5-10 min); followed by an increase of up to 124% (between 15-50 min); followed by a reduction of up to 63% (60-90 min). Values were calculated for glucose utilization (e.g. 0.53 ?mol glucose/gm wet weight/min after 90 min) and estimates derived for glucose consumption per action potential per neuron (e.g. 0.12 fmol at 90 min). Glucose (1.5-10 mM) increased the amount of glycogen (1.5 mM by 30% at 60 min) and attenuated the effects of electrical stimulation. Ouabain (1 mM) blocked the effect of 5 min electrical stimulation. Nine millimolar K(+) increased glycogen by 27% after 10 min and decreased glycogen by 34% after 60 min; 3 mM Ca(2+) had no effect after 10 or 20 min and decreased glycogen by 29% after 60 min. Other concentrations of K(+) and Ca(2+) reduced glycogen after 60 min. Autoradiographic analysis demonstrated that the effects of elevated K(+) were principally within the glial cells. We conclude that (i) the glycogen stores in the glial cells of leech segmental ganglia provide an endogenous energy source which can support sustained neuronal activity, (ii) both electrical stimulation and elevated K(+) can induce gluconeogenesis within the ganglia, (iii) that electrical activation of neurons produces changes in the glycogen in the glial cells which are

  12. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Directory of Open Access Journals (Sweden)

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  13. The critical period for peripheral specification of dorsal root ganglion neurons is related to the period of sensory neurogenesis

    International Nuclear Information System (INIS)

    Smith, C.L.

    1990-01-01

    Thoracic sensory neurons in bullfrog tadpoles can be induced to form connections typical of brachial sensory neurons by transplanting thoracic ganglia to the branchial level at stages when some thoracic sensory neurons already have formed connections. In order to find out how many postmitotic sensory neurons survive transplantation, [ 3 H]thymidine was administered to tadpoles in which thoracic ganglia were transplanted to the brachial level unilaterally at stages VII to IX. Between 16 and 37% of the neurons in transplanted ganglia were unlabeled, as compared to 46 to 60% in unoperated ganglia. Transplanted ganglia contained fewer unlabeled neurons than corresponding unoperated ganglia, indicating that transplantation caused degeneration of postmitotic neurons. Therefore, a large fraction of the neurons that formed connections typical of brachial sensory neurons probably differentiated while they were at the brachial level

  14. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    Full Text Available Abstract Background Propionic acidaemia (PA results from deficiency of Propionyl CoA carboxylase, the commonest form presenting in the neonatal period. Despite best current management, PA is associated with severe neurological sequelae, in particular movement disorders resulting from basal ganglia infarction, although the pathogenesis remains poorly understood. The role of liver transplantation remains controversial but may confer some neuro-protection. The present study utilises quantitative magnetic resonance spectroscopy (MRS to investigate brain metabolite alterations in propionic acidaemia during metabolic stability and acute encephalopathic episodes. Methods Quantitative MRS was used to evaluate brain metabolites in eight children with neonatal onset propionic acidaemia, with six elective studies acquired during metabolic stability and five studies during acute encephalopathic episodes. MRS studies were acquired concurrently with clinically indicated MR imaging studies at 1.5 Tesla. LCModel software was used to provide metabolite quantification. Comparison was made with a dataset of MRS metabolite concentrations from a cohort of children with normal appearing MR imaging. Results MRI findings confirm the vulnerability of basal ganglia to infarction during acute encephalopathy. We identified statistically significant decreases in basal ganglia glutamate+glutamine and N-Acetylaspartate, and increase in lactate, during encephalopathic episodes. In white matter lactate was significantly elevated but other metabolites not significantly altered. Metabolite data from two children who had received liver transplantation were not significantly different from the comparator group. Conclusions The metabolite alterations seen in propionic acidaemia in the basal ganglia during acute encephalopathy reflect loss of viable neurons, and a switch to anaerobic respiration. The decrease in glutamine + glutamate supports the hypothesis that they are consumed to

  15. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI.

    Science.gov (United States)

    Zheng, Y; Wang, X-M

    2017-04-01

    As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content ( r = -0.79, P < .05). This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis. © 2017 by American Journal of Neuroradiology.

  16. TGF-β1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse.

    Directory of Open Access Journals (Sweden)

    David A Barron

    2010-10-01

    Full Text Available TGF-β1 is overexpressed in wound repair and in most proliferative disorders including benign prostatic hyperplasia and prostate cancer. The stromal microenvironment at these sites is reactive and typified by altered phenotype, matrix deposition, inflammatory responses, and alterations in nerve density and biology. TGF-β1 is known to modulate several stromal responses; however there are few transgenic models to study its integrated biology. To address the actions of TGF-β1 in prostate disorders, we targeted expression of an epitope tagged and constitutively active TGF-β1 via the enhanced probasin promoter to the murine prostate gland epithelium. Transgenic mice developed age-dependent lesions leading to severe, yet focal attenuation of epithelium, and a discontinuous basal lamina. These changes were associated with elevated fibroplasia and frequency of collagenous micronodules in collapsed acini, along with an induced inflammation in nerve ganglia and small vessels. Elevated recruitment of CD115+ myeloid cells but not mature macrophages was observed in nerve ganglia, also in an age-dependent manner. Similar phenotypic changes were observed using a human prostate epithelium tissue recombination xenograft model, where epithelial cells engineered to overexpress TGF-β1 induced fibrosis and altered matrix deposition concurrent with inflammation in the stromal compartment. Together, these data suggest that elevated TGF-β1 expression induces a fibroplasia stromal response associated with breach of epithelial wall structure and inflammatory involvement of nerve ganglia and vessels. The novel findings of ganglia and vessel inflammation associated with formation of collagenous micronodules in collapsed acini is important as each of these are observed in human prostate carcinoma and may play a role in disease progression.

  17. Bilateral symmetrical low density areas in the basal ganglia

    International Nuclear Information System (INIS)

    Ugawa, Yoshikazu; Ihara, Yasuo

    1984-01-01

    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

  18. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  19. OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.

    Science.gov (United States)

    Zike, Isaac D; Chohan, Muhammad O; Kopelman, Jared M; Krasnow, Emily N; Flicker, Daniel; Nautiyal, Katherine M; Bubser, Michael; Kellendonk, Christoph; Jones, Carrie K; Stanwood, Gregg; Tanaka, Kenji Fransis; Moore, Holly; Ahmari, Susanne E; Veenstra-VanderWeele, Jeremy

    2017-05-30

    Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to SLC1A1 , which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of Slc1a1 loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in ( i ) locomotor activity, ( ii ) stereotypy, and ( iii ) immediate early gene induction in the dorsal striatum following amphetamine administration. Further, Slc1a1 -STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D 1 receptor binding in the dorsal striatum of Slc1a1 -STOP mice. Slc1a1 -STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of Slc1a1 /EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in Slc1a1 -STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.

  20. Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia

    Science.gov (United States)

    Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

    2011-01-01

    Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

  1. Basal ganglia calcification as a putative cause for cognitive decline

    Directory of Open Access Journals (Sweden)

    João Ricardo Mendes de Oliveira

    Full Text Available ABSTRACT Basal ganglia calcifications (BGC may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients

  2. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    Science.gov (United States)

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  3. Role of Estrogens in the Size of Neuronal Somata of Paravaginal Ganglia in Ovariectomized Rabbits

    Directory of Open Access Journals (Sweden)

    Laura G. Hernández-Aragón

    2017-01-01

    Full Text Available We aimed to determine the role of estrogens in modulating the size of neuronal somata of paravaginal ganglia. Rabbits were allocated into control (C, ovariectomized (OVX, and OVX treated with estradiol benzoate (OVX + EB groups to evaluate the neuronal soma area; total serum estradiol (E2 and testosterone (T levels; the percentage of immunoreactive (ir neurons anti-aromatase, anti-estrogen receptor (ERα, ERβ and anti-androgen receptor (AR; the intensity of the immunostaining anti-glial cell line-derived neurotrophic factor (GDNF and the GDNF family receptor alpha type 1 (GFRα1; and the number of satellite glial cells (SGCs per neuron. There was a decrease in the neuronal soma size for the OVX group, which was associated with low T, high percentages of aromatase-ir and neuritic AR-ir neurons, and a strong immunostaining anti-GDNF and anti-GFRα1. The decrease in the neuronal soma size was prevented by the EB treatment that increased the E2 without affecting the T levels. Moreover, there was a high percentage of neuritic AR-ir neurons, a strong GDNF immunostaining in the SGC, and an increase in the SGCs per neuron. Present findings show that estrogens modulate the soma size of neurons of the paravaginal ganglia, likely involving the participation of the SGC.

  4. Immunohistochemical characteristics of neurons in nodose ganglia projecting to the different chambers of the rat heart.

    Science.gov (United States)

    Kosta, Vana; Guić, Maja Marinović; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-06-24

    Despite the contribution of nodose ganglia neurons to the innervation of the heart being the subject of several studies, specific neuronal subpopulations innervating the four different chambers of the heart have not been distinguished. In our study, the application of Fast Blue-loaded patch to the epicardial surface of different chambers of the rat heart (the right or left atrium or the right or left ventricle) resulted in labeling of discrete populations of immunohistochemically diverse neurons. About one half (55%) of these neurons showed immunoreactivity for the 200-kDa neurofilament protein (marker of myelinated neurons), with a higher proportion of positive staining among neurons projecting to the left than to the right ventricle. Isolectin B4 immunoreactivity (characteristic for a subset of nonmyelinated non-peptidergic neurons) was more abundant among neurons projecting to the right side of the heart (right atria and right ventricles) compared to the left side (23% vs. 16%). Calretinin immunoreactivity (possible marker of mechanosensitive neurons) was significantly higher among neurons projecting to the ventricles than among those projecting to atria (36% vs. 11%). These findings reveal that chambers of the rat heart are innervated with immunohistochemically different subpopulations of neurons from the nodose ganglia.

  5. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  6. Novel signal-dependent filter bank method for identification of multiple basal ganglia nuclei in Parkinsonian patients

    Science.gov (United States)

    Pinzon-Morales, R. D.; Orozco-Gutierrez, A. A.; Castellanos-Dominguez, G.

    2011-06-01

    Microelectrode recordings are a valuable tool for assisting localization targets during deep brain stimulation procedures in Parkinson's disease neurosurgery. Attempts to automate and standardize this process have been limited by variability in patient neurophysiology and strong dynamics of microelectrode recordings. In this paper, a methodology for the identification of basal ganglia nuclei is presented that is based on a signal-dependent filter bank method using microelectrode recordings. The method is a customized realization of the discrete wavelet transform via the lifting scheme that is optimally tuned by genetic algorithms. Using this method, unique mother wavelet functions that exhibit an adaptable spectrum to the microelectrode recording dynamic are generated. Additionally, by extracting morphological features from the space-transformed microelectrode recording, it is possible to integrate them into three-dimensional (3D) feature spaces with maximum class separability. Finally, high discriminant feature spaces are fed into basic classifiers to recognize up to four basal nuclei. Comparison with several existing wavelets highlights the characteristics of new mother wavelets. Additionally, classification results show that identification of addressed nuclei in the basal ganglia can be performed with 95% confidence.

  7. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  8. Massive calcification in basal ganglia, thalamus and cerebellum caused by postoperative hypoparathyroidism

    International Nuclear Information System (INIS)

    Toneva, T.; Mlachkova, D.; Kaitazki, L.; Boneva, J.; Yordanova, S.

    2015-01-01

    The depicted case is of a 65 year old woman, who was admitted to hospital with complaints of excess sweating, dizziness and loss of consciousness. Symptomatic epilepsy was established after examination from a neurologist. A CT scan showed hyperdense symmetrical striation of the hemisphere of the small brain (parasagittal); symmetrical double-sided calcifications in the caudate nucleus, globus pallidus, thalamus and medial to the capsula interna; snake-like calcifications of the sulcus (occipital, parasagittai). Paraclinical tests have found hypocalcemia and hypoparathyroidism. Past illnesses: resection of the thyroid due to a nodose struma 20 years before. Key words: Calcifications in Basal Ganglia. Calcifications in the Cerebrum. Hypoparathyroidism

  9. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational...... and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role...... in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We...

  10. Anatomy of the intercostal nerve: its importance during thoracic surgery.

    Science.gov (United States)

    Moore, D C

    1982-09-01

    Complications from attempts to block the intercostal nerves intraneurally before closure of a thoracotomy have resulted in hypotension with or without spinal block. Placement of a chest tube has resulted in transection of the intercostal nerve. The first of these complications can be avoided by not attempting intraneural block of the nerves intrathoracically. Avoidance of the latter requires careful dissection of the intercostal spaces and identification of the intercostal nerve, as opposed to stab insertion of a chest tube.

  11. Basal Ganglia, Dopamine and Temporal Processing: Performance on Three Timing Tasks on and off Medication in Parkinson's Disease

    Science.gov (United States)

    Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan

    2008-01-01

    A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…

  12. Influence of nerve growth factor on developing dorso-medial and ventro-lateral neurons of chick and mouse trigeminal ganglia.

    Science.gov (United States)

    Davies, A; Lumsden, A

    1983-01-01

    Trigeminal ganglia have been removed from five, six, seven and eight day chick embryos and explants of the dorso-medial (DM) and ventro-lateral (VL) parts of the maxillomandibular lobe were grown in tissue culture. Quantitative methods were used to assess the influence of nerve growth factor (NGF) on fiber outgrowth from these explants. At all ages outgrowth from DM explants was significantly greater than from VL explants, the difference being most pronounced between the extreme DM and VL poles of the maxillomandibular lobe. These observations are interpreted as indicating the existence of two distinct populations of neurons in terms of their response to NGF rather than the consequence of the asynchronous differentiation and maturation of the VL and DM neurons. A similar study of 10, 11 and 12 day embryonic mouse trigeminal ganglia revealed no significant difference in neurite outgrowth between DM and VL regions grown in the presence or absence of NGF. Copyright © 1983. Published by Elsevier Ltd.

  13. United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia Circuitry

    OpenAIRE

    Viereckel, Thomas

    2017-01-01

    The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this ...

  14. Endoscopic surgery versus conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage (ECMOH: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zan Xin

    2012-06-01

    Full Text Available Abstract Background Spontaneous intracerebral hemorrhage is a disease with high morbidity, high disability rate, high mortality, and high economic burden. Whether patients can benefit from surgical evacuation of hematomas is still controversial, especially for those with moderate-volume hematomas in the basal ganglia. This study is designed to compare the efficacy of endoscopic surgery and conservative treatment for the moderate-volume hematoma in spontaneous basal ganglia hemorrhage. Methods Patients meet the criteria will be randomized into the endoscopic surgery group (endoscopic surgery for hematoma evacuation and the best medical treatment or the conservative treatment group (the best medical treatment. Patients will be followed up at 1, 3, and 6 months after initial treatment. The primary outcomes include the Extended Glasgow Outcome Scale and the Modified Rankin Scale. The secondary outcomes consist of the National Institutes of Health Stroke Scale and the mortality. The Barthel Index(BI will also be evaluated. The sample size is 100 patients. Discussion The ECMOH trial is a randomized controlled trial designed to evaluate if endoscopic surgery is better than conservative treatment for patients with moderate-volume hematomas in the basal ganglia. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-11001614 (http://www.chictr.org/en/proj/show.aspx?proj=1618

  15. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    Science.gov (United States)

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E. [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel); Procacci, P.; Conte, V.; Sartori, P. [Dipartimento di Scienze Biomediche per la Salute, University of Milan, via Mangiagalli 14, I-20133 Milano (Italy); Hanani, M., E-mail: hananim@cc.huji.ac.il [Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240 (Israel)

    2017-01-01

    Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24 h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia. - Highlights: • A single lipopolysaccharides injection activated glia in mouse dorsal root ganglia for 30 days. • This was accompanied by increased communications by gap junctions among glia and by hyperalgesia. • Glial activation and coupling may contribute to chronic pain.

  17. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  18. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease.

    Science.gov (United States)

    Miguelez, Cristina; Morera-Herreras, Teresa; Torrecilla, Maria; Ruiz-Ortega, Jose A; Ugedo, Luisa

    2014-01-01

    The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

  19. Localization of Molecular Correlates of Memory Consolidation to Buccal Ganglia Mechanoafferent Neurons after Learning that Food Is Inedible in "Aplysia"

    Science.gov (United States)

    Levitan, David; Saada-Madar, Ravit; Teplinsky, Anastasiya; Susswein, Abraham J.

    2012-01-01

    Training paradigms affecting "Aplysia" withdrawal reflexes cause changes in gene expression leading to long-term memory formation in primary mechanoafferents that initiate withdrawal. Similar mechanoafferents are also found in the buccal ganglia that control feeding behavior, raising the possibility that these mechanoafferents are a locus of…

  20. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  1. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  2. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    International Nuclear Information System (INIS)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Chun, K. A.; Lee, J. D.; Zee, D. Y.; Choi, T. H.

    2003-01-01

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system

  3. A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models

    Science.gov (United States)

    Stocco, Andrea

    2018-01-01

    Several attempts have been made previously to provide a biological grounding for cognitive architectures by relating their components to the computations of specific brain circuits. Often, the architecture's action selection system is identified with the basal ganglia. However, this identification overlooks one of the most important features of…

  4. CT differential diagnosis between hypertensive putaminal hemorrhage and hemorrhagic infarction localized in basal ganglia

    International Nuclear Information System (INIS)

    Tazawa, Toshiaki; Mizukami, Masahiro; Kawase, Takeshi.

    1984-01-01

    The symptoms of hypertensive putaminal hemorrhage and of middle cerebral artery occlusion are sometimes similar to each other. Hemorrhage sometimes occurs following cerebral infarction. We experienced 7 patients with hemorrhages localized in the basal ganglia following cerebral infarction. The CT findings of 55 patients with putaminal hemorrhage and 7 patients with hemorrhagic infarction localized at the basal ganglia were investigated retrospectively in order to discuss their characteristics. The high-density area (HD) of a putaminal hemorrhage was homogeneous on a plain CT within a week of the onset. There was a close correlation between the size of the HD and the timing of its disappearance. The HD with a maximum diameter of A cm generally disappeared A weeks after. On the other hand, the HD of a hemorrhagic infarction was lower in density than that of the putaminal hemorrhage. The HD of a hemorrhagic infarction generally disappeared earlier than that of a putaminal hemorrhage. Ring enhancement was visualized on contrast-enhanced CT (CECT) from 2 or 3 weeks after the onset in patients with putaminal hemorrhages except in the case of small hemorrhages (less than 1 cm diameter). Ring enhancement was also visualized in 6 out of 7 patients with hemorrhagic infarction; one of them was recognized within a week of the onset. Contrast enhancement of the cortex in the territory of the middle cerebral artery was visualized in 4 out of 7 patients with hemorrhagic infarction. This finding seems to indicate one characteristic of hemorrhagic infarction. (author)

  5. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia.

    Science.gov (United States)

    Levitan, David; Saada-Madar, Ravit; Teplinsky, Anastasiya; Susswein, Abraham J

    2012-10-15

    Training paradigms affecting Aplysia withdrawal reflexes cause changes in gene expression leading to long-term memory formation in primary mechanoafferents that initiate withdrawal. Similar mechanoafferents are also found in the buccal ganglia that control feeding behavior, raising the possibility that these mechanoafferents are a locus of memory formation after a training paradigm affecting feeding. Buccal ganglia mechanoafferent neurons expressed increases in mRNA expression for the transcription factor ApC/EBP, and for the growth factor sensorin-A, within the first 2 h after training with an inedible food. No increases in expression were detected in the rest of the buccal ganglia. Increased ApC/EBP expression was not elicited by food and feeding responses not causing long-term memory. Increased ApC/EBP expression was directly related to a measure of the efficacy of training in causing long-term memory, suggesting that ApC/EBP expression is necessary for the expression of aspects of long-term memory. In behaving animals, memory is expressed as a decrease in the likelihood to respond to food, and a decrease in the amplitude of protraction, the first phase of consummatory feeding behaviors. To determine how changes in the properties of mechanoafferents could cause learned changes in feeding behavior, synaptic contacts were mapped from the mechanoafferents to the B31/B32 neurons, which have a key role in initiating consummatory behaviors and also control protractions. Many mechanoafferents monosynaptically and polysynaptically connect with B31/B32. Monosynaptic connections were complex combinations of fast and slow excitation and/or inhibition. Changes in the response of B31/B32 to stimuli sensed by the mechanoafferent could underlie aspects of long-term memory expression.

  7. Interaction between the 5-HT system and the basal ganglia: Functional implication and therapeutic perspective in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Cristina eMiguelez

    2014-03-01

    Full Text Available The neurotransmitter serotonin (5-HT has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7 and ligand-gated ion channels (5-HT3. The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN share common projecting areas, in the basal ganglia (BG nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen, subthalamic nucleus (STN, internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe and substantia nigra (pars compacta, SNc, and pars reticulata, SNr. The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson’s disease. This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating Parkinson’s disease and the motor complications induced by chronic treatment with L-DOPA.

  8. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since

  9. Infiltration of the basal ganglia by brain tumors is associated with the development of co-dominant language function on fMRI.

    Science.gov (United States)

    Shaw, Katharina; Brennan, Nicole; Woo, Kaitlin; Zhang, Zhigang; Young, Robert; Peck, Kyung K; Holodny, Andrei

    2016-01-01

    Studies have shown that some patients with left-hemispheric brain tumors have an increased propensity for developing right-sided language support. However, the precise trigger for establishing co-dominant language function in brain tumor patients remains unknown. We analyzed the MR scans of patients with left-hemispheric tumors and either co-dominant (n=35) or left-hemisphere dominant (n=35) language function on fMRI to investigate anatomical factors influencing hemispheric language dominance. Of eleven neuroanatomical areas evaluated for tumor involvement, the basal ganglia was significantly correlated with co-dominant language function (pdominance performed significantly better on the Boston Naming Test, a clinical measure of aphasia, compared to their left-lateralized counterparts (56.5 versus 36.5, p=0.025). While further studies are needed to elucidate the role of the basal ganglia in establishing co-dominance, our results suggest that reactive co-dominance may afford a behavioral advantage to patients with left-hemispheric tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Toward a functional analysis of the basal ganglia.

    Science.gov (United States)

    Hayes, A E; Davidson, M C; Keele, S W; Rafal, R D

    1998-03-01

    Parkinson patients were tested in two paradigms to test the hypothesis that the basal ganglia are involved in the shifting of attentional set. Set shifting means a respecification of the conditions that regulate responding, a process sometimes referred to as an executive process. In one paradigm, upon the appearance of each stimulus, subjects were instructed to respond either to its color or to its shape. In a second paradigm, subjects learned to produce short sequences of three keypresses in response to two arbitrary stimuli. Reaction times were compared for the cases where set either remained the same or changed for two successive stimuli. Parkinson patients were slow to change set compared to controls. Parkinson patients were also less able to filter the competing but irrelevant set than were control subjects. The switching deficit appears to be dopamine based; the magnitude of the shifting deficit was related to the degree to which 1-dopa-based medication ameliorated patients' motor symptoms. Moreover, temporary withholding of medication, a so-called off manipulation, increased the time to switch. Using the framework of equilibrium point theory of movement, we discuss how a set switching deficit may also underlie clinical motor disturbances seen in Parkinson's disease.

  11. Analysis of delay-induced basal ganglia oscillations: the role of external excitatory nuclei

    Science.gov (United States)

    Haidar, Ihab; Pasillas-Lépine, William; Panteley, Elena; Chaillet, Antoine; Palfi, Stéphane; Senova, Suhan

    2014-09-01

    Basal ganglia are interconnected deep brain structures involved in movement generation. Their persistent beta-band oscillations (13-30 Hz) are known to be linked to Parkinson's disease motor symptoms. In this paper, we provide conditions under which these oscillations may occur, by explicitly considering the role of the pedunculopontine nucleus (PPN). We analyse the existence of equilibria in the associated firing-rate dynamics and study their stability by relying on a delayed multiple-input/multiple-output (MIMO) frequency analysis. Our analysis suggests that the PPN has an influence on the generation of pathological beta-band oscillations. These results are illustrated by simulations that confirm numerically the analytic predictions of our two main theorems.

  12. Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Kerkerian-Le Goff, Lydia; Bacci, Jean-Jacques; Jouve, Loreline; Melon, Christophe; Salin, Pascal

    2009-02-16

    There is accumulating evidence that the centre median-parafascicular (CM/Pf) complex of the thalamus is implicated in basal ganglia-related movement disorders and notably in Parkinson's disease. However, the impact of the changes affecting CM/Pf on the pathophysiological functioning of basal ganglia in parkinsonian state remains poorly understood. To address this issue, we have examined the effects of excitotoxic lesion of CM/Pf and of 6-hydroxydopamine-induced lesion of nigral dopamine neurons, separately or in association, on gene expression of markers of neuronal activity in the rat basal ganglia (striatal neuropeptide precursors, GAD67, cytochrome oxidase subunit I) by quantitative in situ hybridization histochemistry. CM/Pf lesion prevented the changes produced by the dopamine denervation in the components of the indirect pathway connecting the striatum to the output structures (striatopallidal neurons, globus pallidus, subthalamic nucleus), and among the output structures, in the entopeduncular nucleus. Preliminary data on the effects of deep brain stimulation of CM/Pf in rats with nigral dopamine lesion show that this surgical approach produces efficient anti-akinetic effect associated with partial reversal of the dopamine lesion-induced increase in striatal preproenkephalin A mRNA levels, a marker of the striatopallidal neurons. These data, which provide substrates for the potential of CM/Pf surgery in the treatment of movement disorders, are discussed in comparison with the effects of lesion or deep brain stimulation of the subthalamic nucleus, the currently preferred target for the surgical treatment of PD.

  13. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    Science.gov (United States)

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete

  14. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  15. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone.

    Science.gov (United States)

    Tabarki, Brahim; Alfadhel, Majid; AlShahwan, Saad; Hundallah, Khaled; AlShafi, Shatha; AlHashem, Amel

    2015-09-01

    To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. Basal ganglia perfusion using dynamic color Doppler sonography in infants with hypoxic ischemic encephalopathy receiving therapeutic hypothermia: a pilot study.

    Science.gov (United States)

    Faingold, Ricardo; Cassia, Guilherme; Morneault, Linda; Saint-Martin, Christine; Sant'Anna, Guilherme

    2016-10-01

    The objective of this study was to evaluate the cerebral perfusion of the basal ganglia in infants with hypoxic-ischemic encephalopathy (HIE) receiving hypothermia using dynamic color Doppler sonography (CDS) and investigate for any correlation between these measurements and survival. Head ultrasound (HUS) was performed with a 9S4 MHz sector transducer in HIE infants submitted to hypothermia as part of their routine care. Measurements of cerebral perfusion intensity (CPI) with an 11LW4 MHz linear array transducer were performed to obtain static images and DICOM color Doppler videos of the blood flow in the basal ganglia area. Clinical and radiological data were evaluated retrospectively. The video images were analyzed by two radiologists using dedicated software, which allows automatic quantification of color Doppler data from a region of interest (ROI) by dynamically assessing color pixels and flow velocity during the heart cycle. CPI is expressed in cm/sec and is calculated by multiplying the mean velocity of all pixels divided by the area of the ROI. Three videos of 3 seconds each were obtained of the ROI, in the coronal plane, and used to calculate the CPI. Data are presented as mean ± SEM or median (quartiles). A total of 28 infants were included in this study: 16 male, 12 female. HUS was performed within the first 48 hours of therapeutic hypothermia treatment. CPI values were significantly higher in the seven non-survivors when compared to survivors (0.226±0.221 vs . 0.111±0.082 cm/sec; P=0.02). Increased perfusion intensity of the basal ganglia area within the first 48 of therapeutic hypothermia treatment was associated with poor outcome in neonates with HIE.

  17. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    Science.gov (United States)

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  18. The study of automatic brain extraction of basal ganglia based on atlas of Talairach in 18F-FDG PET images

    International Nuclear Information System (INIS)

    Zuo Chantao; Guan Yihui; Zhao Jun; Lin Xiangtong; Wang Jian; Zhang Jiange; Zhang Lu

    2005-01-01

    Objective: To establish a method which can extract functional areas of the brain basal ganglia automatically. Methods: 18 F-fluorodeoxyglucose (FDG) PET images were spatial normalized to Talairach atlas space through two steps, image registration and image deformation. The functional areas were extracted from three dimension PET images based on the coordinate obtained from atlas; caudate and putamen were extracted and rendered, the grey value of the area was normalized by whole brain. Results: The normal ratio of left caudate head, body and tail were 1.02 ± 0.04, 0.92 ± 0.07 and 0.71 ± 0.03, the right were 0.98 ± 0.03, 0.87 ± 0.04 and 0.71 ± 0.01 respectively. The normal ratio of left and right putamen were 1.20 ± 0.06 and 1.20 ± 0.04. The mean grey value between left and right basal ganglia had no significant difference (P>0.05). Conclusion: The automatic functional area extracting method based on atlas of Talairach is feasible. (authors)

  19. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  20. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate.

    OpenAIRE

    Coen, D M; Kosz-Vnenchak, M; Jacobson, J G; Leib, D A; Bogard, C L; Schaffer, P A; Tyler, K L; Knipe, D M

    1989-01-01

    Herpes simplex virus infection of mammalian hosts involves lytic replication at a primary site, such as the cornea, translocation by axonal transport to sensory ganglia and replication, and latent infection at a secondary site, ganglionic neurons. The virus-encoded thymidine kinase, which is a target for antiviral drugs such as acyclovir, is not essential for lytic replication yet evidently is required at the secondary site for replication and some phase of latent infection. To determine the ...

  1. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Science.gov (United States)

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; Quintáns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; García-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; Jaumà, Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, Agnès; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, João R. M.; Sobrido, María-Jesús

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  2. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease.

    Science.gov (United States)

    Husárová, Ivica; Lungu, Ovidiu V; Mareček, Radek; Mikl, Michal; Gescheidt, Tomáš; Krupa, Petr; Bareš, Martin

    2014-01-01

    The basal ganglia and the cerebellum have both emerged as important structures involved in the processing of temporal information. We examined the roles of the cerebellum and striatum in predictive motor timing during a target interception task in healthy individuals (HC group; n = 21) and in patients with early Parkinson's disease (early stage PD group; n = 20) using functional magnetic resonance imaging. Despite having similar hit ratios, the PD failed more often than the HC to postpone their actions until the right moment and to adapt their behavior from one trial to the next. We found more activation in the right cerebellar lobule VI in HC than in early stage PD during successful trials. Successful trial-by-trial adjustments were associated with higher activity in the right putamen and lobule VI of the cerebellum in HC. We conclude that both the cerebellum and striatum are involved in predictive motor timing tasks. The cerebellar activity is associated exclusively with the postponement of action until the right moment, whereas both the cerebellum and striatum are needed for successful adaptation of motor actions from one trial to the next. We found a general ''hypoactivation'' of basal ganglia and cerebellum in early stage PD relative to HC, indicating that even in early stages of the PD there could be functional perturbations in the motor system beyond striatum. Copyright © 2011 by the American Society of Neuroimaging.

  3. Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders.

    Science.gov (United States)

    Pierucci, Massimo; Galati, Salvatore; Valentino, Mario; Di Matteo, Vincenzo; Benigno, Arcangelo; Pitruzzella, Alessandro; Muscat, Richard; Di Giovanni, Giuseppe

    2011-11-01

    Several recent studies have emphasized a crucial role for the nitrergic system in movement control and the pathophysiology of the basal ganglia (BG). These observations are supported by anatomical evidence demonstrating the presence of nitric oxide synthase (NOS) in all the basal ganglia nuclei. In fact, nitrergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high expression of nitric oxide (NO)-producing neurons, with the striatum having the greatest number, together with important NO afferent input. In this paper, the distribution of NO in the BG nuclei will be described. Furthermore, evidence demonstrating the nitrergic control of BG activity will be reviewed. The new avenues that the increasing knowledge of NO in motor control has opened for exploring the pathophysiology and pharmacology of Parkinson's disease and other movement disorders will be discussed. For example, inhibition of striatal NO/guanosine monophosphate signal pathway by phosphodiesterases seems to be effective in levodopa-induced dyskinesia. However, the results of experimental studies have to be interpreted with caution given the complexities of nitrergic signalling and the limitations of animal models. Nevertheless, the NO system represents a promising pharmacological intervention for treating Parkinson's disease and related disorders.

  4. High frequency stimulation of the entopeduncular nucleus sets the cortico-basal ganglia network to a new functional state in the dystonic hamster.

    Science.gov (United States)

    Reese, René; Charron, Giselle; Nadjar, Agnès; Aubert, Incarnation; Thiolat, Marie-Laure; Hamann, Melanie; Richter, Angelika; Bezard, Erwan; Meissner, Wassilios G

    2009-09-01

    High frequency stimulation (HFS) of the internal pallidum is effective for the treatment of dystonia. Only few studies have investigated the effects of stimulation on the activity of the cortex-basal ganglia network. We here assess within this network the effect of entopeduncular nucleus (EP) HFS on the expression of c-Fos and cytochrome oxidase subunit I (COI) in the dt(sz)-hamster, a well-characterized model of paroxysmal dystonia. In dt(sz)-hamsters, we identified abnormal activity in motor cortex, basal ganglia and thalamus. These structures have already been linked to the pathophysiology of human dystonia. EP-HFS (i) increased striatal c-Fos expression in controls and dystonic hamsters and (ii) reduced thalamic c-Fos expression in dt(sz)-hamsters. EP-HFS had no effect on COI expression. The present results suggest that EP-HFS induces a new network activity state which may improve information processing and finally reduces the severity of dystonic attacks in dt(sz)-hamsters.

  5. Clinical, endocrinological, and computerized tomography scans for symmetrical calcification of the basal ganglia

    International Nuclear Information System (INIS)

    Goldscheider, H.G.; Lischewski, R.; Claus, D.; Streibl, W.; Waiblinger, G.; Ulm Univ., Schwendi/Dietenbronn; Ulm Univ.

    1980-01-01

    Symmetrical calcification of the basal ganglia was found in 2 promille of 8000 computerized tomography (CT) scans. Of 19 cases, only 2 were detectable on conventional skull films. The less prominent calcifications were most often found in the region of the pallidum, the knee of the internal capsule. Also, the lesions were generally symmetrical. Thus these factors must be considered basic morphological characteristics of the pathophysiological process. Additional neurological disorders were present in 6 patients. Neurological symptoms in the remaining 13, when present, depended on the extent of the lesion. The most common finding was tremor, although disturbances of fine motor control, transient lateralizing signs, and seizures were also noted. No particular constellation of symptoms or signs permitted accurate clinical localization of the lesions. (orig./AJ) [de

  6. Hyperintense basal ganglia lesions on T1-weighted MR images in asymptomatic patients with hepatic dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Saatci, I. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Cila, A. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey); Dincer, F.F. [Dept. of Radiology, Hacettepe Univ. Hospital, Ankara (Turkey)

    1995-12-31

    Cranial MRI findings in four patients who had hepatic dysfunction, including one with sole hepatic form of Wilson`s disease, were reported. The MR examinations revealed bilateral, symmetric hyperintensity in the globus pallidus, subthalamic nuclei and mesencephalon on T1-weighted images with no corresponding abnormality on T2-weighted sequences. The basal ganglia were normal on CT examinations in all patients. None of the patients had the clinical findings of hepatic encephalopathy. The MR findings in our patients did not correlate with the degree or duration of hepatic dysfunction. (orig.)

  7. No change of dopamine transporter density in basal ganglia after risperidone treatment in drug-naive children with Tourette's disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, W. K.; Ryu, Y. H.; Yoon, M. J.; Chun, K. A.; Lee, J. D. [College of Medicine, Univ. of Yonsei, Seoul (Korea, Republic of); Zee, D. Y. [Univ. of Inhwa, Incheon (Korea, Republic of); Choi, T. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2003-07-01

    Tourette's disorder (TD), which is characterized by multiple waxing and waning motor tics and one or more vocal tics, is known to be associated with abnormalities in the dopaminergic system. To testify our hypothesis that risperidone would improve tic symptoms of TD patients through the change of the dopaminergic system, we measured the DAT densities between drug-naive children with TD and normal children investigated the DAT density before and after treatment with risperidone in drug-naive children with TD, using lodine-123 labelled N-(3-iodopropen-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane(I-123 IPT) single photon emission computed tomography (SPECT). I-123 IPT SPECT imaging and Yale Global Tic Severity Scale-Korean version (YGTSS-K) for assessing the tic symptom severity were carried out before and after treatment with risperidone for 8 weeks in eight drug-naive children with TD. Eight normal children also underwent SPECT imaging 2 hours after an intravenous administration of I-123 IPT and carried out both quantitative and qualitative analyses using the obtained SPECT data, which were reconstructed for the assessment of the specific/non-specific DAT binding ratio in the basal ganglia. The drug-naive children with TD had a significantly greater increase in the specific/nonspecific DAT binding ratio of both basal ganglia compared with the normal children. However, no significant difference in the specific/nonspecific DAT binding ratio of the basal ganglia before and after treatment with riperidone in children with TD was not found, although tic symptoms were significantly improved with risperidone. These findings suggest that DAT densities are directly associated with the pathophysiology of TD, however, that the effect of risperidone on tic symptoms in children with TD is not attributed to the change of dopaminergic system.

  8. Impaired Frontal-Basal Ganglia Connectivity in Male Adolescents with Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Jibiao Zhang

    Full Text Available Alack of inhibition control has been found in subjects with conduct disorder (CD, but the underlying neuropathophysiology remains poorly understood. The current study investigated the different mechanism of inhibition control in adolescent-onset CD males (n = 29 and well-matched healthy controls (HCs (n = 40 when performing a GoStop task by functional magnetic resonance images. Effective connectivity (EC within the inhibition control network was analyzed using a stochastic dynamic causality model. We found that EC within the inhibition control network was significantly different in the CD group when compared to the HCs. Exploratory relationship analysis revealed significant negative associations between EC between the IFG and striatum and behavioral scale scores in the CD group. These results suggest for the first time that the failure of inhibition control in subjects with CD might be associated with aberrant connectivity of the frontal-basal ganglia pathways, especially between the IFG and striatum.

  9. Primary hypoparathyroidism presenting as basal ganglia calcification secondary to extreme hypocalcemia

    Directory of Open Access Journals (Sweden)

    Edite Marques Mendes

    2018-01-01

    Full Text Available Hypoparathyroidism is a rare endocrine disorder characterized by low serum calcium and parathyroid hormone levels. The most common cause is parathyroid iatrogenic surgical removal. However, innumerous and rarer conditions can cause hypoparathyroidism. The authors describe a 27-year-old man that presented in emergency department with confusion, amnesia and decreased attention span. A cerebral computed tomography revealed bilateral extensive calcification in the basal ganglia. A complete work-up revealed low serum calcium, high serum phosphorus and low parathyroid hormone, leading to the diagnosis of idiopathic primary hypoparathyroidism. Initial intravenous therapy with calcium gluconate and calcitriol was administered, with clinical and analytical improvement. The authors describe a rare condition, with an exuberant cerebral presentation and extreme hypocalcemia, which did not directly correlate to the severity of symptoms. Not only this is a treatable disorder that may have catastrophic results if overlooked but also its symptoms may be completely reversed with prompt treatment.

  10. Distinct neurogenomic states in basal ganglia subregions relate differently to singing behavior in songbirds.

    Directory of Open Access Journals (Sweden)

    Austin T Hilliard

    Full Text Available Both avian and mammalian basal ganglia are involved in voluntary motor control. In birds, such movements include hopping, perching and flying. Two organizational features that distinguish the songbird basal ganglia are that striatal and pallidal neurons are intermingled, and that neurons dedicated to vocal-motor function are clustered together in a dense cell group known as area X that sits within the surrounding striato-pallidum. This specification allowed us to perform molecular profiling of two striato-pallidal subregions, comparing transcriptional patterns in tissue dedicated to vocal-motor function (area X to those in tissue that contains similar cell types but supports non-vocal behaviors: the striato-pallidum ventral to area X (VSP, our focus here. Since any behavior is likely underpinned by the coordinated actions of many molecules, we constructed gene co-expression networks from microarray data to study large-scale transcriptional patterns in both subregions. Our goal was to investigate any relationship between VSP network structure and singing and identify gene co-expression groups, or modules, found in the VSP but not area X. We observed mild, but surprising, relationships between VSP modules and song spectral features, and found a group of four VSP modules that were highly specific to the region. These modules were unrelated to singing, but were composed of genes involved in many of the same biological processes as those we previously observed in area X-specific singing-related modules. The VSP-specific modules were also enriched for processes disrupted in Parkinson's and Huntington's Diseases. Our results suggest that the activation/inhibition of a single pathway is not sufficient to functionally specify area X versus the VSP and support the notion that molecular processes are not in and of themselves specialized for behavior. Instead, unique interactions between molecular pathways create functional specificity in particular brain

  11. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo (Nippon Medical School, Tokyo)

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  12. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo [Nippon Medical School, Tokyo

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  13. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo

    1983-01-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm. (J.P.N.)

  14. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition

    NARCIS (Netherlands)

    Jahfari, S.; Waldorp, L.; van den Wildenberg, W.P.M.; Scholte, H.S.; Ridderinkhof, K.R.; Forstmann, B.U.

    2011-01-01

    Fronto-basal ganglia pathways play a crucial role in voluntary action control, including the ability to inhibit motor responses. Response inhibition might be mediated via a fast hyperdirect pathway connecting the right inferior frontal gyrus (rIFG) and the presupplementary motor area (preSMA) with

  15. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia Relação entre transtorno obsessivo-compulsivo e doenças neurológicas dos gânglios da base

    Directory of Open Access Journals (Sweden)

    Alex S. S. Freire Maia

    1999-12-01

    Full Text Available Obsessive-compulsive disorder (OCD has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the role of the basal ganglia in the pathophysiology of OCD, and analyze the mechanisms probably involved in this pathophysiology.O transtorno obsessivo-compulsivo (TOC tem sido reportado em associação com algumas doenças neurológicas que afetam primariamente os gânglios da base como a síndrome de Tourette , a coréia de Sydenham, a doença de Parkinson e a doença de Huntington. Da mesma forma, estudos de neuroimagem sugerem a participação dos gânglios da base na fisiopatologia do TOC. O objetivo deste estudo é rever a coexistência de TOC e várias doenças que afetam os gânglios da base, as evidências da participação dessas estruturas na fisiopatologia do TOC e os mecanismos neurais subjacentes a esse distúrbio psiquiátrico.

  16. The immunoreactivity of satellite glia of the spinal ganglia of rats treated with monosodium glutamate

    Directory of Open Access Journals (Sweden)

    Aleksandra Ewa Krawczyk

    2016-01-01

    Full Text Available Satellite glia of the peripheral nervous system ganglia provide metabolic protection to the neurons. The aim of this study was to determine the effects of monosodium glutamate administered parenterally to rats on the expression of glial fibrillary acidic protein, S-100β protein and Ki-67 antigen in the satellite glial cells. Adult, 60-day-old male rats received monosodium glutamate at two doses of 2 g/kg b.w. (group 1 and 4 g/kg b.w. (group 2 subcutaneously for 3 consecutive days. Animals in the control group (group C were treated with corresponding doses of 0.9% sodium chloride. Immediately after euthanasia, spinal ganglia of the lumbar region were dissected. Immunohistochemical peroxidase anti-peroxidase reactions were performed on the sections containing the examined material using antibodies against glial fibrillary acidic protein, S-100β and Ki-67. Next, morphological and morphometric analyses of immunopositive and immunonegative glia were conducted. The data were presented as the mean number of cells with standard deviation. Significant differences were analysed using ANOVA (P < 0.05. In all 63-day-old rats, immunopositivity for the examined proteins glia was observed. Increased number of cells expressing glial fibrillary acidic protein was demonstrated in group 2, whereas the number of S-100β-positive glia grew in the groups with the increasing doses of monosodium glutamate. The results indicate the early stage reactivity of glia in response to increased levels of glutamate in the extracellular space. These changes may be of a neuroprotective nature under the conditions of excitotoxicity induced by the action of this excitatory neurotransmitter.

  17. [Magnetotherapy designed to affect cervical sympathetic ganglia for the treatment of patients with primary open-angle glaucoma].

    Science.gov (United States)

    Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S

    2010-01-01

    The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).

  18. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Directory of Open Access Journals (Sweden)

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  19. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson's disease.

    Science.gov (United States)

    Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma

    2016-05-04

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by hyposmia in the preclinical stages. We investigated the relationships of olfactory bulb (OB) volume and olfactory sulcus (OS) depth with basal ganglia and hippocampal volumes. The study included 25 patients with PD and 40 age- and sex-matched control subjects. Idiopathic PD was diagnosed according to published diagnostic criteria. The Hoehn and Yahr (HY) scale, the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS III), and the Mini-Mental State Examination (MMSE) were administered to participants. Volumetric measurements of olfactory structures, the basal ganglia, and hippocampus were performed using magnetic resonance imaging (MRI). OB volume and OS depth were significantly reduced in PD patients compared to healthy control subjects (p<0.001 and p<0.001, respectively). The OB and left putamen volumes were significantly correlated (p=0.048), and the depth of the right OS was significantly correlated with right hippocampal volume (p=0.018). We found significant correlations between OB and putamen volumes and OS depth and hippocampal volume. Our study is the first to demonstrate associations of olfactory structures with the putamen and hippocampus using MRI volumetric measurements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Bilateral Functional Connectivity of the Basal Ganglia in Patients with Parkinson’s Disease and Its Modulation by Dopaminergic Treatment

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, psynchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei. PMID:24376574

  1. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  2. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  3. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    OpenAIRE

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hyper...

  4. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  5. Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.

    2015-01-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  6. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    Basal Ganglia (BG) are implied in many motor and cognitive tasks, such as action selection, and have a central role in many pathologies, primarily Parkinson Disease. In the present work, we use a recently developed biologically inspired BG model to analyze how the dopamine (DA) level can affect the temporal response during action selection, and the capacity to learn new actions following rewards and punishments. The model incorporates the 3 main pathways (direct, indirect and hyperdirect) working in BG functioning. The behavior of 2 alternative networks (the first with normal DA levels, the second with reduced DA) is analyzed both in untrained conditions, and during training performed in different epochs. The results show that reduced DA causes delayed temporal responses in the untrained network, and difficult of learning during training, characterized by the necessity of much more epochs. The results provide interesting hints to understand the behavior of healthy and dopamine depleted subjects, such as parkinsonian patients.

  7. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    International Nuclear Information System (INIS)

    O'Connor, William T.

    1998-01-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D 1 and D 2 receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D 1 receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D 2 receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia

  8. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William T. E-mail: woconn@iveagh.ucd.ie

    1998-11-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D{sub 1} and D{sub 2} receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D{sub 1} receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D{sub 2} receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia.

  9. Epicardial distribution of ST segment and T wave changes produced by stimulation of intrathoracic ganglia or cardiopulmonary nerves in dogs.

    Science.gov (United States)

    Savard, P; Cardinal, R; Nadeau, R A; Armour, J A

    1991-06-01

    Sixty-three ventricular epicardial electrograms were recorded simultaneously in 8 atropinized dogs during stimulation of acutely decentralized intrathoracic autonomic ganglia or cardiopulmonary nerves. Three variables were measured: (1) isochronal maps representing the epicardial activation sequence, (2) maps depicting changes in areas under the QRS complex and T wave (regional inhomogeneity of repolarization), and (3) local and total QT intervals. Neural stimulations did not alter the activation sequence but induced changes in the magnitude and polarity of the ST segments and T waves as well as in QRST areas. Stimulation of the same neural structure in different dogs induced electrical changes with different amplitudes and in different regions of the ventricles, except for the ventral lateral cardiopulmonary nerve which usually affected the dorsal wall of the left ventricle. Greatest changes occurred when the right recurrent, left intermediate medial, left caudal pole, left ventral lateral cardiopulmonary nerves and stellate ganglia were stimulated. Local QT durations either decreased or did not change, whereas total QT duration as measured using a root-mean-square signal did not change, indicating the regional nature of repolarization changes. Taken together, these data indicate that intrathoracic efferent sympathetic neurons can induce regional inhomogeneity of repolarization without prolonging the total QT interval.

  10. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  11. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni

    OpenAIRE

    Partata,W.A.; Krepsky,A.M.R.; Marques,M.; Achaval,M.

    1999-01-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spina...

  12. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10

    DEFF Research Database (Denmark)

    Sonnenberg-Riethmacher, Eva; Miehe, Michaela; Stolt, Claus C.

    2001-01-01

    neurogenesis seemed initially normal. A degeneration of motoneurons and sensory neurons occurred later in development. The mechanism that leads to the dramatic effects on the neural crest derived cell lineages in the dorsal root ganglia (DRG), however, has not been examined up to now. Here, we provide...... a detailed analysis of proliferation and apoptosis in the DRG during the time of their generation and lineage segregation (between E 9.5 and E 11.5). We show that both increased apoptosis as well as decreased proliferation of neural crest cells contribute to the observed hypomorphism....

  13. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    Science.gov (United States)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  14. Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve

    Czech Academy of Sciences Publication Activity Database

    Dubový, P.; Brázda, Václav; Klusáková, I.; Hradilová-Svíženská, I.

    2013-01-01

    Roč. 10, č. 55 (2013) E-ISSN 1742-2094 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : Unilateral nerve injury * Contralateral reaction * Remote ganglia Subject RIV: BO - Biophysics Impact factor: 4.902, year: 2013

  15. Quantitation of the human basal ganglia with positron emission tomography

    International Nuclear Information System (INIS)

    Bendrien, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) the authors have built a unilateral model of the BG that the authors have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for the BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity 2.00 when the contrast was -0.7 (BG 2 ). This paper also demonstrates that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide the authors' with some information about the variability of PET measurements in small structure like the BG and the authors have proposed some strategies to improve the reproducibility

  16. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson's Disease.

    Science.gov (United States)

    Gao, Lin-Lin; Zhang, Jia-Rong; Chan, Piu; Wu, Tao

    2017-01-01

    To investigate the effects of levodopa on the basal ganglia motor circuit (BGMC) in Parkinson's disease (PD). Thirty PD patients with asymmetrical bradykinesia and 30 control subjects were scanned using resting-state functional MRI. Functional connectivity of the BGMC was measured and compared before and after levodopa administration in patients with PD. The correlation between improvements in bradykinesia and changes in BGMC connectivity was examined. In the PD-off state (before medication), the posterior putamen and internal globus pallidus (GPi) had decreased connectivity while the subthalamic nucleus (STN) had enhanced connectivity within the BGMC relative to control subjects. Levodopa administration increased the connectivity of posterior putamen- and GPi-related networks but decreased the connectivity of STN-related networks. Improvements in bradykinesia were correlated with enhanced connectivity of the posterior putamen-cortical motor pathway and with decreased connectivity of the STN-thalamo-cortical motor pathway. In PD patients with asymmetrical bradykinesia, levodopa can partially normalize the connectivity of the BGMC with a larger effect on the more severely affected side. Moreover, the beneficial effect of levodopa on bradykinesia is associated with normalization of the striato-thalamo-cortical motor and STN-cortical motor pathways. Our findings inform the neural mechanism of levodopa treatment in PD. © 2016 John Wiley & Sons Ltd.

  17. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Science.gov (United States)

    Berthet, Pierre; Lansner, Anders

    2014-01-01

    Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.

  18. Synovial cysts: clinical and neuroradiological aspects

    International Nuclear Information System (INIS)

    Artico, M.; Cervoni, L.; Carloia, S.; Stevanato, G.; Mastantuono, M.; Nucci, F.

    1997-01-01

    Lumbar and intraneural synovial cysts are uncommon lesions. although their incidence has increased since the introduction of MRI. The authors describe the results of a study comprising 23 patients with synovial cyst (5 lumbar, 19 intraneural). Neuroradiological investigations included CT scan and MRI; however, it was not always possible to diagnose the nature of the lesion. In 18 cases the lesion was removed totally including its capsule; in the other 5 cases it was removed subtotally. Seven of the 23 patients presented a total remission of symptoms/signs, 11 improved and 5 remained unchanged. The importance of treating synovial cysts as radically as possible is discussed together with their most significant clinical and neuroradiological aspects. (author)

  19. Relationship between Contrast Enhancement of the Perivascular Space in the Basal Ganglia and Endolymphatic Volume Ratio.

    Science.gov (United States)

    Ohashi, Toshio; Naganawa, Shinji; Katagiri, Toshio; Kuno, Kayao

    2018-01-10

    We routinely obtain the endolymphatic hydrops (EH) image using heavily T 2 -weighted three dimensional-fluid attenuated inversion recovery (hT 2 w-3D-FLAIR) imaging at 4 hours after intravenous administration of a single-dose of gadolinium-based contrast media (IV-SD-GBCM). While repeating the examination, we speculated that the contrast enhancement of the perivascular space (PVS) in the basal ganglia might be related to the degree of EH. Therefore, the purpose of this study was to investigate the relationship between the endolymphatic volume ratio (%EL volume ) and the signal intensity of the PVS (SI-PVS). In 20 patients with a suspicion of EH, a heavily T 2 -weighted 3D-turbo spin echo sequence for MR cisternography (MRC) and an hT 2 w-3D-FLAIR as a positive perilymph image (PPI) were obtained at 4 hours after IV-SD-GBCM. The %EL volume of the cochlea and the vestibule were measured on the previously reported HYDROPS2-Mi2 image. The PVS in the basal ganglia was segmented on MRC using a region-growing method. The PVS regions were copied and pasted onto the PPI, and the SI-PVS was measured. The larger value of the right and the left ears was employed as the %EL volume , and the weighted average of both sides was employed as the SI-PVS. The correlation between the %EL volume and the SI-PVS was evaluated. There was a strong negative linear correlation between the %EL volume of the cochlea and the SI-PVS (r = -0.743, P < 0.001); however, there was no significant correlation between the %EL volume of the vestibule and the SI-PVS (r = -0.267, P = 0.256). There was a strong negative correlation between the cochlear %EL volume and the SI-PVS. Contrast enhancement of PVS might be a biomarker of EH.

  20. Rehabilitation program based on sensorimotor recovery improves the static and dynamic balance and modifies the basal ganglia neurochemistry: A pilot 1H-MRS study on Parkinson's disease patients.

    Science.gov (United States)

    Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul

    2017-12-01

    Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as "Glx" by means of proton magnetic resonance spectroscopy (H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  1. Quetiapine responsive catatonia in an autistic patient with comorbid bipolar disorder and idiopathic basal ganglia calcification.

    Science.gov (United States)

    Ishitobi, Makoto; Kawatani, Masao; Asano, Mizuki; Kosaka, Hirotaka; Goto, Takashi; Hiratani, Michio; Wada, Yuji

    2014-10-01

    Bipolar disorder (BD) has been linked with the manifestation of catatonia in subjects with autism spectrum disorders (ASD). Idiopathic basal ganglia calcification (IBGC) is characterized by movement disorders and various neuropsychiatric disturbances including mood disorder. We present a patient with ASD and IBGC who developed catatonia presenting with prominent dystonic feature caused by comorbid BD, which was treated effectively with quetiapine. In addition to considering the possibility of neurodegenerative disease, careful psychiatric interventions are important to avoid overlooking treatable catatonia associated with BD in cases of ASD presenting with both prominent dystonic features and apparent fluctuation of the mood state. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    Science.gov (United States)

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    Science.gov (United States)

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  4. Calcification of the bilateral basal ganglia after radiation therapy for childhood brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Osami; Tajika, Yasuhiko; Sakairi, Mitsuhiko; Katahira, Masako; Shimizu, Takashi; Kitamura, Koichi

    1987-12-01

    Calcification of the basal ganglia subsequent to radiation therapy for childhood brain tumors has rarely been reported. Three cases of this calcification subsequent to radiation are presented here. Case 1 is a 7 year-old boy who underwent irradiation of 5000 rads locally for craniopharyngioma at the age of 4 years. Case 2 is a 4 year-old boy who was treated with irradiation of 4500 rads locally for cerebellar medulloblastoma at the age of 1 year. Case 3 is a 15 year-old girl who was treated with irradiation of 5000 rads to the brain and 3000 rads locally for suprasellar germinoma at the age of 11 years. In all these cases, the interval between radiation and evidence of calcification as detected only by CT scan, was more than 3 years and 2 cases are experiencing mild mental retardation. These findings suggest the possibility of long-term complications due to radiation therapy.

  5. A Mathematical Model of Levodopa Medication Effect on Basal Ganglia in Parkinson's Disease: An Application to the Alternate Finger Tapping Task.

    Science.gov (United States)

    Baston, Chiara; Contin, Manuela; Calandra Buonaura, Giovanna; Cortelli, Pietro; Ursino, Mauro

    2016-01-01

    Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations in the dopaminergic system, are responsible for an array of motor disorders and milder cognitive issues in Parkinson's disease (PD). Recently Baston and Ursino (2015a) presented a new neuroscience mathematical model aimed at exploring the role of basal ganglia in action selection. The model is biologically inspired and reproduces the main BG structures and pathways, modeling explicitly both the dopaminergic and the cholinergic system. The present work aims at interfacing this neurocomputational model with a compartmental model of levodopa, to propose a general model of medicated Parkinson's disease. Levodopa effect on the striatum was simulated with a two-compartment model of pharmacokinetics in plasma joined with a motor effect compartment. The latter is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill law) between concentration and effect. The main parameters of this relationship are saturation, steepness, and the half-maximum concentration. The effect of levodopa is then summed to a term representing the endogenous dopamine effect, and is used as an external input for the neurocomputation model; this allows both the temporal aspects of medication and the individual patient characteristics to be simulated. The frequency of alternate tapping is then used as the outcome of the whole model, to simulate effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary performed on data of six patients with Parkinson's disease (both "stable" and "wearing-off" responders) after levodopa standardized oral dosing over 4 h. Results show that the model is able to reproduce the temporal profiles of levodopa in plasma and the finger tapping frequency in all patients, discriminating between different patterns of levodopa motor response. The more influential parameters are the Hill coefficient, related with the slope of the effect sigmoidal

  6. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    Science.gov (United States)

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long

  7. MRI and MR spectroscopy study on basal ganglia alterations in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Wu Haibo; Ma Lin; Cai Youquan; Li Tao; Li Dejun; Liang Li

    2007-01-01

    Objective: To study the signal changes and metabolic alterations in the basal ganglia (BG) by using magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) in patients with hepatic encephalopathy with and without parkinsonism. Methods: MRI and MRS in the basal ganglia were performed in 27 patients (22 males, 5 females, age ranging from 29 to 62 years) with liver cirrhosis and hepatic encephalopathy. 14 of the 27 patients were classified as having parkinsonian signs evaluated by Unified Parkinson's Disease Rating Scale (UPDRS) test. 18 age-matched healthy volunteers (13 males, 5 females, age ranging from 24 to 51 years) underwent MRI and MRS as a control group. Results: NAA/Cr levels (average numbers are 1.40±0.03, 1.35±0.03 respectively) showed no statistical difference between cirrhotic patients with hepatic encephalopathy and the control group (t=1.16, t=0.87, P>0.05). Values of signal hyperintensities (average numbers are 1.03±0.002, 1.04± 0.003 respectively) in globus pallidus and ratios of mI/Cr(average numbers are 0.63±0.01, 0.61± 0.02 respectively) and Cho/Cr (average numbers are 0.82±0.03, 0.80±0.02 respectively) showed no statistically significant differences between the control group and the 13 patients without parkinsonism (t=0.63, t=-0.52, t=-0.54, P>0.05), whereas values of signal hyperintensities (average numbers are 1.18±0.001, 1.04±0.003 respectively) in globus pallidus and ratios of mI/Cr (average numbers are 0.39±0.02, 0.63±0.01 respectively) and Cho/Cr(average numbers are 0.68±0.01, 0.82±0.03 respectively) shows statistically significant difference in patients without and with parkinsonism (t=-5.16, t=7.61, t=4.12, P<0.05). In patients with cirrhosis, the values of signal hyperintensities in globus pallidus were inversely correlated with the ratio for mI/Cr(r=-0.764, P<0.05) and Cho/Cr (r=-0.553, P<0.05), respectively. Conclusion: MRI and MRS may be useful tools in the evaluation of extrapyramidal

  8. Basal ganglia - thalamus and the crowning enigma

    Directory of Open Access Journals (Sweden)

    Marianela eGarcia-Munoz

    2015-11-01

    Full Text Available When Hubel (1982 referred to layer 1 of primary visual cortex as …a ‘crowning mystery’ to keep area-17 physiologists busy for years to come... he could have been talking about any cortical area. In the 80’s and 90’s there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1, the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory cortex before focusing on motor cortex.

  9. Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high frequency stimulation in the parkinsonian primate

    Directory of Open Access Journals (Sweden)

    Anan eMoran

    2011-04-01

    Full Text Available Deep brain stimulation in the subthalamic nucleus (STN is a well-established therapy for patients with severe Parkinson‟s disease (PD; however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia during high frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, basal ganglia output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial

  10. Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2016-08-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects more than six million people in the world. While current available pharmacological therapies for PD in the early stages of the disease usually improve motor symptoms, they cause side effects, such as fluctuations and dyskinesias in the later stages. In this later stage, high frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option which is most successful to treat drug resistant advanced PD. It has previously been demonstrated that activation of Rho/Rho-kinase pathway is involved in the dopaminergic cell degeneration which is one of the main characteristics of PD pathology. In addition, the involvement of this pathway has been suggested in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However, up to date, to our knowledge there are no previous reports showing the beneficial effects of the potent Rho-kinase inhibitor Y-27632 in the 6-hydroxydopamine (6-OHDA) rat model of PD. Therefore, in the present study, we investigated the behavioural effects of basal ganglia Y-27632 microinjections in this PD model. Our results indicated that basal ganglia Y-27632 microinjections significantly decreased the number of contralateral rotations-induced by apomorphine, significantly increased line crossings in the open-field test, contralateral forelimb use in the limb-use asymmetry test and contralateral tape playing time in the somatosensory asymmetry test, which may suggest that Y-27632 could be a potentially active antiparkinsonian agent.

  11. Multiple Frequencies in the Basal Ganglia in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Clare M. Davidson

    2015-01-01

    Full Text Available In recent years, the authors have developed what appears to be a very successful phenomenological model for analyzing the role of deep brain stimulation (DBS in alleviating the symptoms of Parkinson's disease. In this paper, we extend the scope of the model by using it to predict the generation of new frequencies from networks tuned to a specific frequency, or indeed not self-oscillatory at all. We have discussed two principal cases: firstly where the constituent systems are coupled in an excitatory-excitatory fashion, which we designate by ``+/+''; and secondly where the constituent systems are coupled in an excitatory-inhibitory fashion, which we designate ``+/-''. The model predicts that from a basic system tuned to tremor frequency we can generate an unlimited range of frequencies. We illustrate in particular, starting from systems which are initially non-oscillatory, that when the coupling coefficient exceeds a certain value, the system begins to oscillate at an amplitude which increases with the coupling strength. Another very interesting feature, which has been shown by colleagues of ours to arise through the coupling of complicated networks based on the physiology of the basal ganglia, can be illustrated by the root locus method which shows that increasing and decreasing frequencies of oscillation, existing simultaneously, have the property that their geometric mean remains substantially constant as the coupling strength is varied. We feel that with the present approach, we have provided another tool for understanding the existence and interaction of pathological oscillations which underlie, not only Parkinson's disease, but other conditions such as Tourette's syndrome, depression and epilepsy.

  12. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  13. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    Directory of Open Access Journals (Sweden)

    Chiara Baston

    2015-01-01

    Full Text Available The basal ganglia (BG are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go, indirect (NoGo, and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges, synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication. Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  14. Influence of Nerve Flossing Technique on acute sciatica and hip ...

    African Journals Online (AJOL)

    MJP

    2015-08-21

    Aug 21, 2015 ... experimental design, involving 32 participants from two hospitals in Lagos state. Nigeria, with ... excursion occurs during nerve flossing exercise initiated from ... Assessment ..... evacuation of intraneural edema which might be.

  15. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning.

    Science.gov (United States)

    Grossberg, Stephen; Kishnan, Devika

    2018-01-01

    This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model's explanatory range by, first, explaining recent data about Fragile X syndrome (FXS), mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.

  16. Refractory epilepsy and basal ganglia: the role of seizure frequency

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleret, V.; Trebossen, R.; Mantzerides, M.; Semah, F.; Ribeiro, M.J. [Service Hospitalier Frederic Joliot, I2BM/DSV, CEA, 91 - Orsay (France); Bouilleret, V. [CHU Bicetre, Unite de Neurophysiologie et d' Epileptologie, AP-HP, 75 - Paris (France); Chassoux, F. [Hopital Saint Anne, Service de Neurochirurgie, 75 - Paris (France); Biraben, A. [CHU, Service de Neurologie, Hopital Pontchaillou, 35 - Rennes (France)

    2008-02-15

    Objectives. - A decrease of [{sup 18}F]Fluoro-L-DOPA uptake in basal ganglia (B.G.) was recently reported in medically refractory epilepsy. The purpose of this study was to assess the involvement of dopaminergic neurotransmission in refractory Temporal Lobe Epilepsy (T.L.E.) and its relationship to glucose metabolism and morphological changes. Methods. - Twelve T.L.E. patients were studied using [{sup 18}F]FDG PET, [{sup 18}F]Fluoro-L-DOPA PET and MRI and compared with healthy control volunteers. Morphological cerebral changes were assessed using Voxel-Based Morphometry (V.B.M.). Student t test statistical maps of functional and morphological differences between patients and controls were obtained using a general linear model. Results. - In T.L.E. patients, [{sup 18}F]Fluoro-L-DOPA uptake was reduced to the same extent in caudate and putamen in both cerebral hemispheres as well as in the substantia nigra (S.N.). These dopaminergic functional alterations occurred without any glucose metabolism changes in these areas. The only mild morphological abnormality was found in striatal regions without any changes in the S.N.. Conclusion. - The present study provides support for dopaminergic neurotransmission involvement in T.L.E.. The discrepancies between G.M.V. atrophy and the pattern of [{sup 18}F]Fluoro-L-DOPA suggest that B.G. involvement is not related to structural subcortical abnormalities. A functional decrease can be ruled out as there was no change of the glycolytic pathway metabolism in these areas. (authors)

  17. Quantitation of the human basal ganglia with Positron Emission Tomography

    International Nuclear Information System (INIS)

    Bendriem, B.; Dewey, S.L.; Schlyer, D.J.; Wolf, A.P.; Volkow, N.D.

    1990-01-01

    The accurate measurement of the concentration of a radioisotope in small structures with PET requires a correction for quantitation loss due to the partial volume effect and the effect of scattered radiation. To evaluate errors associated with measures in the human basal ganglia (BG) we have built a unilateral model of the BG that we have inserted in a 20 cm cylinder. The recovery coefficient (RC = measured activity/true activity) for our BG phantom has been measured on a CTI tomograph (model 931-08/12) with different background concentrations (contrast) and at different axial locations in the gantry. The BG was visualized on 4 or 5 slices depending on its position in the gantry and on the contrast used. The RC was 0.75 with no background (contrast equal to 1.0). Increasing the relative radioactivity concentration in the background increased the RC from 0.75 to 2.00 when the contrast was -0.7 (BG 2 ). These results show that accurate RC correction depends not only on the volume of the structure but also on its contrast with its surroundings as well as on the selection of the ROI. They also demonstrate that the higher the contrast the more sensitive to axial positioning PET measurements in the BG are. These data provide us with some information about the variability of PET measurements in small structure like the BG and we have proposed some strategies to improve the reproducibility. 18 refs., 3 figs., 5 tabs

  18. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni

    Directory of Open Access Journals (Sweden)

    Partata W.A.

    1999-01-01

    Full Text Available Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  19. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    Science.gov (United States)

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  20. Correlation of iron deposition and change of gliocyte metabolism in the basal ganglia region evaluated using magnetic resonance imaging techniques: an in vivo study

    OpenAIRE

    Liu, Haodi; Wang, Xiaoming

    2016-01-01

    Introduction We assessed the correlation between iron deposition and the change of gliocyte metabolism in healthy subjects? basal ganglia region, by using 3D-enhanced susceptibility weighted angiography (ESWAN) and proton magnetic resonance spectroscopy (1H-MRS). Material and methods Seventy-seven healthy volunteers (39 female and 38 male subjects; age range: 24?82 years old) were enrolled in the experiment including ESWAN and proton MRS sequences, consent for which was provided by themselves...

  1. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    Science.gov (United States)

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  2. Calcificação nos núcleos da base na tomografia computadorizada: correlação clínica em 25 pacientes consecutivos Basal ganglia calcification on computed tomography: clinical characteristics in 25 patients

    Directory of Open Access Journals (Sweden)

    Glória Maria A.S. Tedrus

    2006-03-01

    Full Text Available Analisamos os aspectos clínicos de 25 pacientes consecutivos que apresentaram calcificação nos núcleos da base na tomografia computadorizada (TC de crânio. Esta ocorreu em 0,68% de todos os exames realizados no período. Vinte e três pacientes apresentavam condições clínicas diversas, a saber: cefaléia em 7 casos, acidente vascular cerebral em 5, síndrome extrapiramidal em 2, processo expansivo cerebral em 2, epilepsia, retardo do desenvolvimento neuropsicomotor, demência e trauma de crânio em um caso cada ou outras condições neurológicas em 3. Não havia sintomas neurológicos em 2 casos. Em 15 pacientes (60,0% havia, além da calcificação dos núcleos da base, outras alterações na TC. Correlação clínica foi observada apenas com as outras alterações da TC e não com a calcificação dos núcleos da base, corroborando a hipótese de que esta possa ser um achado incidental.Twenty-five patients presenting basal ganglia calcification were assessed. This finding comprised 0.68% of all skull CT scan carried out during the period. Two patients were neurologically asymptomatic and 23 presented a variety neurological disorders - headache (7 patients, stroke (5 patients, extrapyramidal syndromes (2 patients, tumor (2 patients, epilepsy (1 patient, mental retardation (1 patient, dementia (1 patient, cranial trauma (1 patient, other neurological conditions (3 patients - or were asymptomatic from the neurological point of view (2 patients. Findings in the CT scan other than the basal ganglia calcification were observed in 15 (60% patients. There was a clinical-CT scan correlation in these cases but not in those in which the basal ganglia calcification was an isolated finding. This study highlights the fact that basal ganglia calcification is often a nonspecific finding on CT scan and that it may not be possible to establish a clinical-pathological correlation between them.

  3. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    Science.gov (United States)

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  4. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    Science.gov (United States)

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  5. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity.

    Science.gov (United States)

    Logan, C; Wingate, R J; McKay, I J; Lumsden, A

    1998-07-15

    Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.

  6. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning

    Directory of Open Access Journals (Sweden)

    Stephen Grossberg

    2018-03-01

    Full Text Available This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model’s explanatory range by, first, explaining recent data about Fragile X syndrome (FXS, mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.

  7. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits.

    Science.gov (United States)

    Renteria, Rafael; Baltz, Emily T; Gremel, Christina M

    2018-01-15

    Addiction involves a predominance of habitual control mediated through action selection processes in dorsal striatum. Research has largely focused on neural mechanisms mediating a proposed progression from ventral to dorsal lateral striatal control in addiction. However, over reliance on habit striatal processes may also arise from reduced cortical input to striatum, thereby disrupting executive control over action selection. Here, we identify novel mechanisms through which chronic intermittent ethanol exposure and withdrawal (CIE) disrupts top-down control over goal-directed action selection processes to produce habits. We find CIE results in decreased excitability of orbital frontal cortex (OFC) excitatory circuits supporting goal-directed control, and, strikingly, selectively reduces OFC output to the direct output pathway in dorsal medial striatum. Increasing the activity of OFC circuits restores goal-directed control in CIE-exposed mice. Our findings show habitual control in alcohol dependence can arise through disrupted communication between top-down, goal-directed processes onto basal ganglia pathways controlling action selection.

  8. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

    Science.gov (United States)

    Floares, Alexandru George

    2008-01-01

    Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

  9. Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia.

    Directory of Open Access Journals (Sweden)

    Choongseok Park

    Full Text Available Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN neuron. We show how external globus pallidus (GPe neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson's disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson's disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties may be one of the potential mechanisms responsible for the generation of the intermittent synchronization

  10. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Prevalence of Salmonella spp., in mesenteric pig’s ganglia at Colombian benefit plants

    Directory of Open Access Journals (Sweden)

    Carlos Ayala-Romero

    2018-01-01

    Full Text Available Objective. To determine the prevalence of Salmonella spp., in pigs mesenteric ganglion, from different regions of Colombia. Materials and Methods. A stratified sampling by proportional fixation was carried out at benefit plants of each of the 13 participating departments, whose pork production volume is representative at national level. Sampling was performed during five months, for a total of 457 samples analyzed. Salmonella spp., identification was performed by the MDS Molecular System, later isolates were confirmed in Maldi-TOF MS. Antimicrobial susceptibility of the isolates was determined using the B1016-180 panel and statistical analysis was performed in Whonet 2016, some of the multi-resistant isolates were them serotyped by Kauffman-White method. Results. National prevalence was 28.2%, with the presence of S. Typhimurium, S. Agama, S. London, S. Agona, S. Haifa and S. 1,4,12: i: -. Resistance to antibiotics frequently used in human (23.6% Trimethoprim/Sulfamethoxazole, 2.7% Cefotaxime (CTX, 11.8% Ampicillin (AMP and 1.8% Ciprofloxacin was found. Conclusion. The prevalence of Salmonella in mesenteric ganglia was 28.2%, being the Huila region the one with the highest prevalence, recovering atypical serotypes such as S. London and S. Haifa.

  12. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  13. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping.

    Science.gov (United States)

    Johnson, Casey P; Christensen, Gary E; Fiedorowicz, Jess G; Mani, Merry; Shaffer, Joseph J; Magnotta, Vincent A; Wemmie, John A

    2018-01-07

    Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. From basic concepts to emerging technologies in regional anesthesia.

    Science.gov (United States)

    Dillane, Derek; Tsui, Ban C H

    2010-10-01

    The present article details how our understanding of the basic concepts of regional anesthesia has recently evolved. We will appraise current technological advances and question the commensurate nature of the relationship between tradition and innovation. Ultrasound localization has enhanced our understanding of the needle-nerve relationship. Intraneural injection of local anesthetic may occur with greater frequency than previously thought without inevitably leading to neurological complications. The ratio of neural to non-neural tissue varies both between and within nerves and may be an important determinant of neural injury. Ultrasonographic evidence of intraneural injection is subject to observer expertise and the resolution of the ultrasound image. Current ultrasound resolution capability does not reliably permit differentiation between intrafascicular and extrafascicular drug injection. Perineural electrical impedance may be a determinant of current threshold and conceivably distinguish between intraneural and extraneural tissue. Technology that enhances the sonographic image of both procedure needle and target nerve is the focus of current endeavors in ultrasound innovation.There is inconclusive evidence that the use of ultrasound technology has reduced the incidence of local anesthetic toxicity. Lipid emulsion therapy is now an accepted treatment for systemic local anesthetic toxicity. There are new reports on the development of an ultra long-acting local anesthetic agent that would permit lower doses and superannuate catheter-based continuous regional anesthesia techniques. Over the past decade, our understanding of the fundamental concepts of regional anesthesia continues to be challenged by emerging experimental and clinical evidence.

  15. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia.

    Science.gov (United States)

    Shine, James M; Matar, Elie; Ward, Philip B; Frank, Michael J; Moustafa, Ahmed A; Pearson, Mark; Naismith, Sharon L; Lewis, Simon J G

    2013-12-01

    Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks.

  16. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  17. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation.

    Science.gov (United States)

    Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P

    2014-04-01

    Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.

  18. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu eLi

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  19. Unusual progression of herpes simplex encephalitis with basal ganglia and extensive white matter involvement

    Directory of Open Access Journals (Sweden)

    Yasuhiro Manabe

    2009-08-01

    Full Text Available We report a 51-year old male with herpes simplex encephalitis (HSE showing unusual progression and magnetic resonance (MR findings. The initial neurological manifestation of intractable focal seizure with low-grade fever persisted for three days, and rapidly coma, myoclonic status, and respiratory failure with high-grade fever emerged thereafter. The polymerase chain reaction (PCR result of cerebrospinal fluid (CSF was positive for HSV-1 DNA. In the early stage, MR images (MRI were normal. On subsequent MR diffusion-weighted (DW and fluid-attenuated inversion recovery (FLAIR images, high-intensity areas first appeared in the left frontal cortex, which was purely extra-temporal involvement, and extended into the basal ganglia, then the white matter, which are relatively spared in HSE. Antiviral therapy and immunosuppressive therapy did not suppress the progression of HSE, and finally severe cerebral edema developed into cerebral herniation, which required emergency decompressive craniectomy. Histological examination of a biopsy specimen of the white matter detected perivascular infiltration and destruction of basic structure, which confirmed non specific inflammatory change without obvious edema or demyelination. The present case shows both MR and pathological findings in the white matter in the acute stage of HSE.

  20. An infant who had chorea-athetotic movement and psychomotor deterioration associated with the low density area in the bilateral cerebral basal ganglia on CT

    International Nuclear Information System (INIS)

    Tojo, Megumu; Matsui, Akira; Sakuragawa, Norio; Hirayama, Yoshito; Arima, Masataka

    1984-01-01

    A 6-year-old girl with convulsive tetraplegia and chorea-athetotic movement was reported. Since the age of one year, psychomotor retardation had begun to occur and CT showed a low density area in the putamen. At the age of 3 years and 6 months, psychomotor deterioration occurred subsequently to varicella. An abnormality in carbohydrate metabolism was suspected because of a slightly increased lactic acid and pyruvic acid. Because CT showed a low density area in the cerebral basal ganglia, juvenile Lee's encephalopathy and striatal necrosis remained to be ruled out. (Namekawa, K.)

  1. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    Science.gov (United States)

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  2. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and Parkinsonian states

    Science.gov (United States)

    Liu, Jianbo; Khalil, Hassan K.; Oweiss, Karim G.

    2011-08-01

    Controlling the spatiotemporal firing pattern of an intricately connected network of neurons through microstimulation is highly desirable in many applications. We investigated in this paper the feasibility of using a model-based approach to the analysis and control of a basal ganglia (BG) network model of Hodgkin-Huxley (HH) spiking neurons through microstimulation. Detailed analysis of this network model suggests that it can reproduce the experimentally observed characteristics of BG neurons under a normal and a pathological Parkinsonian state. A simplified neuronal firing rate model, identified from the detailed HH network model, is shown to capture the essential network dynamics. Mathematical analysis of the simplified model reveals the presence of a systematic relationship between the network's structure and its dynamic response to spatiotemporally patterned microstimulation. We show that both the network synaptic organization and the local mechanism of microstimulation can impose tight constraints on the possible spatiotemporal firing patterns that can be generated by the microstimulated network, which may hinder the effectiveness of microstimulation to achieve a desired objective under certain conditions. Finally, we demonstrate that the feedback control design aided by the mathematical analysis of the simplified model is indeed effective in driving the BG network in the normal and Parskinsonian states to follow a prescribed spatiotemporal firing pattern. We further show that the rhythmic/oscillatory patterns that characterize a dopamine-depleted BG network can be suppressed as a direct consequence of controlling the spatiotemporal pattern of a subpopulation of the output Globus Pallidus internalis (GPi) neurons in the network. This work may provide plausible explanations for the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's disease and pave the way towards a model-based, network level analysis and closed

  3. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson's disease.

    Science.gov (United States)

    Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M

    2008-12-01

    Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.

  4. Clinical significance of the position of dorsal root ganglia in degenerative lumbar diseases. Correlation between anatomic study and imaging study with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masahiro; Kikuchi, Tomiichi [Fukushima Medical Coll., Matsuoka (Japan)

    1995-06-01

    In order to estimate the ralationship between the position of dorsal root ganglia (DRG) and radicular symptoms, anatomical study was done on 81 cadavers, and a clinical study with MRI was done on 20 cases of lumbar disc herniation and 20 of lumbar spondylosis with L{sub 5} radiculopathy. The position of DRG is not related to the occurrence of radicular symptoms in disc herniation, while in lumbar spondylosis proximally placed DRG are related to both of unilateral and bilateral occurrence of redicular symptoms. Unilateral occurrence of radicular symptoms is influenced by surrounding tissues of the nerve root, rather than the position of DRG. (author).

  5. Clinical significance of the position of dorsal root ganglia in degenerative lumbar diseases. Correlation between anatomic study and imaging study with MRI

    International Nuclear Information System (INIS)

    Seki, Masahiro; Kikuchi, Tomiichi

    1995-01-01

    In order to estimate the ralationship between the position of dorsal root ganglia (DRG) and radicular symptoms, anatomical study was done on 81 cadavers, and a clinical study with MRI was done on 20 cases of lumbar disc herniation and 20 of lumbar spondylosis with L 5 radiculopathy. The position of DRG is not related to the occurrence of radicular symptoms in disc herniation, while in lumbar spondylosis proximally placed DRG are related to both of unilateral and bilateral occurrence of redicular symptoms. Unilateral occurrence of radicular symptoms is influenced by surrounding tissues of the nerve root, rather than the position of DRG. (author)

  6. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2.

    Science.gov (United States)

    Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.

  7. Three-dimensional neuroelectronic interface for peripheral nerve stimulation and recording: realization steps and contacting technology

    NARCIS (Netherlands)

    Frieswijk, T.A.; Frieswijk, T.A.; Rutten, Wim

    1994-01-01

    A three-dimensional array of microelectrodes for use in intraneural stimulation and recording is presented. The 128 electrodes are at the tips of silicon needles, which are electrically insulated from each other. The needles in the array have differing heights, resulting in a true three-dimensional

  8. A review of brain circuitries involved in stuttering

    Directory of Open Access Journals (Sweden)

    Anna eCraig-Mcquaide

    2014-11-01

    Full Text Available Stuttering has been the subject of much research, nevertheless its aetiology remains incompletely understood. This article presents a critical review of the literature on stuttering, with particular reference to the role of the basal ganglia. Neuroimaging and lesion studies of developmental and acquired stuttering, as well as pharmacological and genetic studies are discussed. Evidence that stuttering of structural and functional changes in the basal ganglia in those who stutter indicates that this motor speech disorder is due, at least in part, to abnormal basal ganglia cues for the initiation and termination of articulatory movements. Studies discussed provide evidence of a dysfunctional hyperdopaminergic state of the thalamocortical pathways underlying speech motor control in stuttering. Evidence that stuttering can improve, worsen or recur following deep brain stimulation (DBS for other indications is presented in order to emphasise the role of basal ganglia in stuttering. Further research is needed to fully elucidate the pathophysiology of this speech disorder, which is associated with significant social isolation.

  9. Synaptic dimorphism in Onychophoran cephalic ganglia

    Directory of Open Access Journals (Sweden)

    Z Peña-Contreras

    2007-03-01

    Full Text Available The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory and symmetric (inhibitory synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. Rev. Biol . Trop. 55 (1: 261-267. Epub 2007 March. 31.Estudiamos la ultraestructura de las neuronas y sus sinapsis del ganglio cefálico de un invertebrado poco conocido del phylum Onychophora: Peripatus sedgwicki de los Andes Venezolanos, utilizando para ello la microscopía electrónica de transmisión. La localización taxonómica de los onicóforos ha sido controversial debido a sus características fenotípicas y genotípicas que los relacionan tanto con los anélidos como con los artrópodos. Para este trabajo se estudió el ganglio cefálico de P. sedgwicki de la zona montañosa de El Valle, Mérida, Venezuela. El ganglio cefálico se localiza en la región anterior del animal y fue diseccionado

  10. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface

    Science.gov (United States)

    Khurram, Abeer; Ross, Shani E.; Sperry, Zachariah J.; Ouyang, Aileen; Stephan, Christopher; Jiman, Ahmad A.; Bruns, Tim M.

    2017-06-01

    Objective. Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. Approach. Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. Main results. LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. Significance. This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.

  11. A de novo nonsense PDGFB mutation causing idiopathic basal ganglia calcification with laryngeal dystonia.

    Science.gov (United States)

    Nicolas, Gaël; Jacquin, Agnès; Thauvin-Robinet, Christel; Rovelet-Lecrux, Anne; Rouaud, Olivier; Pottier, Cyril; Aubriot-Lorton, Marie-Hélène; Rousseau, Stéphane; Wallon, David; Duvillard, Christian; Béjot, Yannick; Frébourg, Thierry; Giroud, Maurice; Campion, Dominique; Hannequin, Didier

    2014-10-01

    Idiopathic basal ganglia calcification (IBGC) is characterized by brain calcification and a wide variety of neurologic and psychiatric symptoms. In families with autosomal dominant inheritance, three causative genes have been identified: SLC20A2, PDGFRB, and, very recently, PDGFB. Whereas in clinical practice sporadic presentation of IBGC is frequent, well-documented reports of true sporadic occurrence are rare. We report the case of a 20-year-old woman who presented laryngeal dystonia revealing IBGC. Her healthy parents' CT scans were both normal. We identified in the proband a new nonsense mutation in exon 4 of PDGFB, c.439C>T (p.Gln147*), which was absent from the parents' DNA. This mutation may result in a loss-of-function of PDGF-B, which has been shown to cause IBGC in humans and to disrupt the blood-brain barrier in mice, resulting in brain calcification. The c.439C>T mutation is located between two previously reported nonsense mutations, c.433C>T (p.Gln145*) and c.445C>T (p.Arg149*), on a region that could be a hot spot for de novo mutations. We present the first full demonstration of the de novo occurrence of an IBGC-causative mutation in a sporadic case.

  12. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children.

    Science.gov (United States)

    Mortamais, Marion; Pujol, Jesus; van Drooge, Barend L; Macià, Didac; Martínez-Vilavella, Gerard; Reynes, Christelle; Sabatier, Robert; Rivas, Ioar; Grimalt, Joan; Forns, Joan; Alvarez-Pedrerol, Mar; Querol, Xavier; Sunyer, Jordi

    2017-08-01

    Polycyclic aromatic hydrocarbons (PAHs) have been proposed as environmental risk factors for attention deficit hyperactivity disorder (ADHD). The effects of these pollutants on brain structures potentially involved in the pathophysiology of ADHD are unknown. The aim of this study was to investigate the effects of PAHs on basal ganglia volumes and ADHD symptoms in school children. We conducted an imaging study in 242 children aged 8-12years, recruited through a set of representative schools of the city of Barcelona, Spain. Indoor and outdoor PAHs and benzo[a]pyrene (BPA) levels were assessed in the school environment, one year before the MRI assessment. Whole-brain volumes and basal ganglia volumes (caudate nucleus, globus pallidus, putamen) were derived from structural MRI scans using automated tissue segmentation. ADHD symptoms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by teachers, and inattentiveness was evaluated with standard error of hit reaction time in the attention network computer-based test. Total PAHs and BPA were associated with caudate nucleus volume (CNV) (i.e., an interquartile range increase in BPA outdoor level (67pg/m 3 ) and indoor level (76pg/m 3 ) was significantly linked to a decrease in CNV (mm 3 ) (β=-150.6, 95% CI [-259.1, -42.1], p=0.007, and β=-122.4, 95% CI [-232.9, -11.8], p=0.030 respectively) independently of intracranial volume, age, sex, maternal education and socioeconomic vulnerability index at home). ADHD symptoms and inattentiveness increased in children with higher exposure to BPA, but these associations were not statistically significant. Exposure to PAHs, and in particular to BPA, is associated with subclinical changes on the caudate nucleus, even below the legislated annual target levels established in the European Union. The behavioral consequences of this induced brain change were not identified in this study, but given the caudate nucleus involvement in many crucial cognitive and behavior

  13. Anti-basal ganglia antibodies and Tourette's syndrome: a voxel-based morphometry and diffusion tensor imaging study in an adult population.

    Science.gov (United States)

    Martino, D; Draganski, B; Cavanna, A; Church, A; Defazio, G; Robertson, M M; Frackowiak, R S J; Giovannoni, G; Critchley, H D

    2008-07-01

    Anti-basal ganglia antibodies (ABGAs) have been suggested to be a hallmark of autoimmunity in Gilles de la Tourette's syndrome (GTS), possibly related to prior exposure to streptococcal infection. In order to detect whether the presence of ABGAs was associated with subtle structural changes in GTS, whole-brain analysis using independent sets of T(1) and diffusion tensor imaging MRI-based methods were performed on 22 adults with GTS with (n = 9) and without (n = 13) detectable ABGAs in the serum. Voxel-based morphometry analysis failed to detect any significant difference in grey matter density between ABGA-positive and ABGA-negative groups in caudate nuclei, putamina, thalami and frontal lobes. These results suggest that ABGA synthesis is not related to structural changes in grey and white matter (detectable with these methods) within frontostriatal circuits.

  14. Cell-stage-specific enhancement by caffeine of the frequency of chromatid aberrations induced by X-rays in neutral ganglia of Drosophila melanogaster

    International Nuclear Information System (INIS)

    De Marco, A.; Polani, S.

    1981-01-01

    Caffeine (10 -2 M) induced a high level of chromatid aberrations in neural ganglia of third-instar larvae of Drosophila melanogaster only when it was added to cells in late G 2 and mitotic prophase. No aberrations were observed after treatment in late S-middle G 2 or C-mitosis. We observed that, in these stages, caffeine strongly increased X-ray-induced damage (500 R). This potentiation was quantitatively similar. But it involved all types of aberration after treatment in C-mitosis, and essentially isochromatid deletions and chromatid exhanges after treatment in S-G 2 . Some hypotheses are put forth to explain the possible mechanism of action of caffeine in the potentiation of X-ray-induced damage. (orig.)

  15. Gd-based Contrast Enhancement of the Perivascular Spaces in the Basal Ganglia.

    Science.gov (United States)

    Naganawa, Shinji; Nakane, Toshiki; Kawai, Hisashi; Taoka, Toshiaki

    2017-01-10

    In textbooks, the perivascular space (PVS) is described as non-enhancing after the intravenous administration of gadolinium-based contrast agent (IV-GBCA). We noticed that the PVS sometimes has high signal intensity (SI) on heavily T 2 -weighted 3D-FLAIR (hT 2 -FL) images obtained 4 h after IV-GBCA. The purpose of this study was to retrospectively evaluate the contrast enhancement of the PVS. In 8 healthy subjects and 19 patients with suspected endolymphatic hydrops, magnetic resonance cisternography (MRC) and hT 2 -FL images were obtained before and 4 h after a single dose of IV-GBCA. No subjects had renal insufficiency. On axial MRC at the level of the anterior commissure (AC)-posterior commissure (PC) line, 1 cm circular regions of interest (ROIs) were drawn centering on the PVS in the bilateral basal ganglia and thalami. Three-millimeter diameter ROIs were set in the cerebrospinal fluid (CSF) of the bilateral ambient cistern. The ROIs on MRC were copied onto the hT 2 -FL images and the SI was measured. The SI ratio (SIR) was defined as SIR PVS = SI of PVS/SI of the thalami, and SIR CSF = SI of CSF/SI of the thalami. The average of the bilateral values was used for the calculation. The SIR CSF , SIR PVS , and SI of the thalami were compared between before and 4 h after IV-GBCA. The SIR was increased significantly from 1.02 ± 0.37 to 2.65 ± 0.82 in the CSF (P glymphatic system (waste clearance system) of the brain.

  16. Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes.

    Science.gov (United States)

    Wei, Wei; Wang, Xiao-Jing

    2016-12-07

    We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2▿

    Science.gov (United States)

    Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786

  18. Sex differences in pain-related behavior and expression of calcium/calmodulin-dependent protein kinase II in dorsal root ganglia of rats with diabetes type 1 and type 2.

    Science.gov (United States)

    Ferhatovic, Lejla; Banozic, Adriana; Kostic, Sandra; Sapunar, Damir; Puljak, Livia

    2013-06-01

    Sex differences in pain-related behavior and expression of calcium/calmodulin dependent protein kinase II (CaMKII) in dorsal root ganglia were studied in rat models of Diabetes mellitus type 1 (DM1) and type 2 (DM2). DM1 was induced with 55mg/kg streptozotocin, and DM2 with a combination of high-fat diet and 35mg/kg of streptozotocin. Pain-related behavior was analyzed using thermal and mechanical stimuli. The expression of CaMKII was analyzed with immunofluorescence. Sexual dimorphism in glycemia, and expression of CaMKII was observed in the rat model of DM1, but not in DM2 animals. Increased expression of total CaMKII (tCaMKII) in small-diameter dorsal root ganglia neurons, which are associated with nociception, was found only in male DM1 rats. None of the animals showed increased expression of the phosphorylated alpha CaMKII isoform in small-diameter neurons. The expression of gamma and delta isoforms of CaMKII remained unchanged in all analyzed animal groups. Different patterns of glycemia and tCaMKII expression in male and female model of DM1 were not associated with sexual dimorphism in pain-related behavior. The present findings do not suggest sex-related differences in diabetic painful peripheral neuropathy in male and female diabetic rats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder held in Brno, Czech Republic, October 17th, 2013.

    Science.gov (United States)

    Bareš, Martin; Apps, Richard; Kikinis, Zora; Timmann, Dagmar; Oz, Gulin; Ashe, James J; Loft, Michaela; Koutsikou, Stella; Cerminara, Nadia; Bushara, Khalaf O; Kašpárek, Tomáš

    2015-04-01

    The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.

  20. CriticalEd

    DEFF Research Database (Denmark)

    Kjellberg, Caspar Mølholt; Meredith, David

    2014-01-01

    . Since the comments are not input sequentially, with regard to position, but in arbitrary order, this list must be sorted by copy/pasting the rows into place—an error-prone and time-consuming process. Scholars who produce critical editions typically use off-the-shelf music notation software......The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made......, consisting of a Sibelius plug-in, a cross-platform application, called CriticalEd, and a REST-based solution, which handles data storage/retrieval. A prototype has been tested at the Danish Centre for Music Publication, and the results suggest that the system could greatly improve the efficiency...

  1. Elevated Expression of Fractalkine (CX3CL1 and Fractalkine Receptor (CX3CR1 in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2013-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP. Molecular signaling through fractalkine (CX3CL1, a nociceptive chemokine, via its receptor (CX3CR1 is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG and spinal cord (SC 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.

  2. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Alcázar

    2018-05-01

    Full Text Available Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions.Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM was used to compare the cannabis users against 28 matched controls (HC1 group. Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group obtained from a local database of healthy volunteers.Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001 of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001 and pallidum (p = 0.0015. Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05 and nucleus accumbens (p = 0.047.Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It

  3. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  4. EFFECTS OF THALLIUM SALTS ON NEURONAL MITOCHONDRIA IN ORGANOTYPIC CORD-GANGLIA-MUSCLE COMBINATION CULTURES

    Science.gov (United States)

    Spencer, Peter S.; Peterson, Edith R.; Madrid A., Ricardo; Raine, Cedric S.

    1973-01-01

    A functionally coupled organotypic complex of cultured dorsal root ganglia, spinal cord peripheral nerve, and muscle has been employed in an experimental approach to the investigation of the neurotoxic effects of thallium. Selected cultures, grown for up to 12 wk in vitro, were exposed to thallous salts for periods ranging up to 4 days. Cytopathic effects were first detected after 2 h of exposure with the appearance of considerably enlarged mitochondria in axons of peripheral nerve fibers. With time, the matrix space of these mitochondria became progressively swollen, transforming the organelle into an axonal vacuole bounded by the original outer mitochondrial membrane. Coalescence of adjacent axonal vacuoles produced massive internal axon compartments, the membranes of which were shown by electron microprobe mass spectrometry to have an affinity for thallium. Other axoplasmic components were displaced within a distended but intact axolemma. The resultant fiber swelling caused myelin retraction from nodes of Ranvier but no degeneration. Impulses could still propagate along the nerve fibers throughout the time course of the experiment. Comparable, but less severe changes were seen in dorsal root ganglion neurons and in central nerve fibers. Other cell types showed no mitochondrial change. It is uncertain how these findings relate to the neurotoxic effects of thallium in vivo, but a sensitivity of the nerve cell and especially its axon to thallous salts is indicated. PMID:4125375

  5. Distribution and chemical coding of neurons in intramural ganglia of the porcine urinary bladder trigone.

    Directory of Open Access Journals (Sweden)

    Zenon Pidsudko

    2004-03-01

    Full Text Available This study presents the distribution and chemical coding of neurons in the porcine intramural ganglia of the urinary bladder trigone (IG-UBT demonstrated using combined retrograde tracing and double-labelling immunohistochemistry. Retrograde fluorescent tracer Fast Blue (FB was injected into the wall of both the left and right side of the bladder trigone during laparotomy performed under pentobarbital anaesthesia. Ten-microm-thick cryostat sections were processed for double-labelling immunofluorescence with antibodies against tyrosine hydroxylase (TH, dopamine beta-hydroxylase (DBH, neuropeptide Y (NPY, somatostatin (SOM, galanin (GAL, vasoactive intestinal polypeptide (VIP, nitric oxide synthase (NOS, calcitonin gene-related peptide (CGRP, substance P (SP, Leu5-enkephalin (LENK and choline acetyltransferase (ChAT. IG-UBT neurons formed characteristic clusters (from a few to tens neuronal cells found under visceral peritoneum or in the outer muscular layer. Immunohistochemistry revealed four main populations of IG-UBT neurons: SOM- (ca. 35%, SP- (ca. 32%, ChAT- and NPY- immunoreactive (-IR (ca. 23% as well as non-adrenergic non-cholinergic nerve cells (ca. 6%. This study has demonstrated a relatively large population of differently coded IG-UBT neurons, which constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.

  6. Functional connectivity in the basal ganglia network differentiates PD patients from controls

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.L.; Rolinski, Michal; Duff, Eugene; Salimi-Khorshidi, Gholamreza; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T.M.

    2014-01-01

    Objective: To examine functional connectivity within the basal ganglia network (BGN) in a group of cognitively normal patients with early Parkinson disease (PD) on and off medication compared to age- and sex-matched healthy controls (HC), and to validate the findings in a separate cohort of participants with PD. Methods: Participants were scanned with resting-state fMRI (RS-fMRI) at 3T field strength. Resting-state networks were isolated using independent component analysis. A BGN template was derived from 80 elderly HC participants. BGN maps were compared between 19 patients with PD on and off medication in the discovery group and 19 age- and sex-matched controls to identify a threshold for optimal group separation. The threshold was applied to 13 patients with PD (including 5 drug-naive) in the validation group to establish reproducibility of findings. Results: Participants with PD showed reduced functional connectivity with the BGN in a wide range of areas. Administration of medication significantly improved connectivity. Average BGN connectivity differentiated participants with PD from controls with 100% sensitivity and 89.5% specificity. The connectivity threshold was tested on the validation cohort and achieved 85% accuracy. Conclusions: We demonstrate that resting functional connectivity, measured with MRI using an observer-independent method, is reproducibly reduced in the BGN in cognitively intact patients with PD, and increases upon administration of dopaminergic medication. Our results hold promise for RS-fMRI connectivity as a biomarker in early PD. Classification of evidence: This study provides Class III evidence that average connectivity in the BGN as measured by RS-fMRI distinguishes patients with PD from age- and sex-matched controls. PMID:24920856

  7. Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio).

    Science.gov (United States)

    Langenau, D M; Palomero, T; Kanki, J P; Ferrando, A A; Zhou, Y; Zon, L I; Look, A T

    2002-09-01

    Tlx (Hox11) genes are orphan homeobox genes that play critical roles in the regulation of early developmental processes in vertebrates. Here, we report the identification and expression patterns of three members of the zebrafish Tlx family. These genes share similar, but not identical, expression patterns with other vertebrate Tlx-1 and Tlx-3 genes. Tlx-1 is expressed early in the developing hindbrain and pharyngeal arches, and later in the putative splenic primordium. However, unlike its orthologues, zebrafish Tlx-1 is not expressed in the cranial sensory ganglia or spinal cord. Two homologues of Tlx-3 were identified: Tlx-3a and Tlx-3b, which are both expressed in discrete regions of the developing nervous system, including the cranial sensory ganglia and Rohon-Beard neurons. However, only Tlx-3a is expressed in the statoacoustic cranial ganglia, enteric neurons and non-neural tissues such as the fin bud and pharyngeal arches and Tlx-3b is only expressed in the dorsal root ganglia. Copyright 2002 Elsevier Science Ireland Ltd.

  8. Giant neurofibrolipoma of the tip of the tongue: Case report and ...

    African Journals Online (AJOL)

    Neurofibrolipoma is a very rare benign oral tumor with other synonyms such as neural fibrolipoma, perineural lipoma and intraneural lipoma. A 50 years old female presented with a massive swelling of the tongue of 6 years duration. The tumor was attached to the mucosa of the tip of the tongue, disturbing mastication and ...

  9. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia

    Science.gov (United States)

    Rugiero, François; Gola, Maurice; Kunze, Wolf A A; Reynaud, Jean-Claude; Furness, John B; Clerc, Nadine

    2002-01-01

    Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e-fold change. Ih has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω-conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω-agatoxin IVA (0.2 μm). There was no

  10. Limbic and Basal Ganglia Neuroanatomical Correlates of Gait and Executive Function: Older Adults With Mild Cognitive Impairment and Intact Cognition.

    Science.gov (United States)

    McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda

    2018-04-01

    This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older

  11. Thinking Critically about Critical Thinking

    Science.gov (United States)

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  12. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy.

    Directory of Open Access Journals (Sweden)

    Leonidas Apostolidis

    Full Text Available To investigate in vivo morphological and functional correlates of oxaliplatin-induced peripheral neuropathy (OXA-PNP by magnetic resonance neurography (MRN.Twenty patients (7 female, 13 male, 58.9±10.0 years with mild to moderate OXA-PNP and 20 matched controls (8 female, 12 male, 55.7±15.6 years were prospectively enrolled. All patients underwent a detailed neurophysiological examination prior to neuroimaging. A standardized imaging protocol at 3.0 Tesla included the lumbosacral plexus and both sciatic nerves and their branches using T2-weighted fat-saturated sequences and diffusion tensor imaging. Quantitative assessment included volumetry of the dorsal root ganglia (DRG, sciatic nerve normalized T2 (nT2 signal and caliber, and fractional anisotropy (FA, mean diffusivity (MD, axial (AD and radial diffusivity (RD. Additional qualitative evaluation of sciatic, peroneal, and tibial nerves evaluated the presence, degree, and distribution of nerve lesions.DRG hypertrophy in OXA-PNP patients (207.3±47.7mm3 vs. 153.0±47.1mm3 in controls, p = 0.001 was found as significant morphological correlate of the sensory neuronopathy. In contrast, peripheral nerves only exhibited minor morphological alterations qualitatively. Quantitatively, sciatic nerve caliber (27.3±6.7mm2 vs. 27.4±7.4mm2, p = 0.80 and nT2 signal were not significantly changed in patients (1.32±0.22 vs. 1.22±0.26, p = 0.16. AD, RD, and MD showed a non-significant decrease in patients, while FA was unchanged.OXA-PNP manifests with morphological and functional correlates that can be detected in vivo by MRN. We report hypertrophy of the DRG that stands in contrast to experimental and postmortem studies. DRG volume should be further investigated as a biomarker in other sensory peripheral neuropathies and ganglionopathies.

  13. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  14. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  15. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction.

    Science.gov (United States)

    Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J

    2009-04-12

    In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.

  16. Large germinoma in basal ganglia treated by intraarterial chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi; Kobayashi, Makio.

    1988-10-01

    A rare case of large germinoma in the basal ganglia is reported which was effectively treated by intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption using 20 % mannitol and radiation therapy. A 19-year-old man displayed slowly progressive right hemiparesis, motor aphasia and predementia on admission. Plain CT demonstrated a tumor which had a slightly high density with intratumoral calcification and a small cyst, and slight to moderate enhancement was observed following intravenous injection of contrast medium, but there was no unilateral ventricular enlargement. Cerebral angiography revealed hypervascular tumor staining with early draining veins. After biopsy, and as a result of intracarotid chemotherapy with ACNU following osmotic blood-brain barrier disruption and radiation therapy, the tumor decreased rapidly to about 20 % of its original mass. After discharge, tumor progression was observed. However, the enlarged tumor mass almost disappeared (except for calcification) on CT with clinical improvement in response to intracarotid chemotherapy with ACNU following 20 % mannitol.

  17. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation

    Science.gov (United States)

    Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.

    2013-01-01

    A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands, and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable’s motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286

  18. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    Science.gov (United States)

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. In vivo basal ganglia volumetry through application of NURBS models to MR images

    International Nuclear Information System (INIS)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Vitetta, Anton Giulio; Tomasello, Francesco; Lucerna, Sebastiano; Bramanti, Placido; Bella, Paolo di; Parenti, Anna; Porzionato, Andrea; Caro, Raffaele de; Macchi, Veronica

    2006-01-01

    Volumetry of basal ganglia (BG) based on magnetic resonance imaging (MRI) provides a sensitive marker in differential diagnosis of BG disorders. The non-uniform rational B-spline (NURBS) surfaces are mathematical representations of three-dimensional structures which have recently been applied in volumetric studies. In this study, a volumetric evaluation of BG based on NURBS was performed in 35 right-handed volunteers. We aimed to compare and validate this technique with respect to manual MRI volumetry and evaluate possible side differences between these structures. Intra- and interobserver biases less than 1.5% demonstrated the method's stability. The mean percentage differences between NURBS and manual methods were less than 1% for all the structures considered; however, the internal segments of the globus pallidus showed a mean percentage difference of about 1.7%. Rightward asymmetry was found for the caudate nucleus (mean±SD 3.20±0.20 cm 3 vs. 3.10±0.19 cm 3 , P 3 vs. 1.41±0.09 cm 3 , P 3 and 1.68±0.12 cm 3 , P 3 and 1.18±0.09 cm 3 , P 3 vs. 0.31±0.05 cm 3 , P 3 vs. 0.86±0.05 cm 3 , P 3 vs. 3.39±0.17 cm 3 , P>0.05). The rightward asymmetry of the BG may be ascribed to the predominant use of the right hand. In conclusion, NURBS is an accurate and reliable method for quantitative volumetry of nervous structures. It offers the advantage of giving a three-dimensional representation of the structures examined. (orig.)

  20. Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.

    Science.gov (United States)

    Mitchell, Jonathan; Lyons, Kyle; Howe, Andrew M; Clarke, Andrew

    2016-01-14

    Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery.

  1. How Critical Is Critical Thinking?

    Science.gov (United States)

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  2. Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage

    Directory of Open Access Journals (Sweden)

    Leah A. Garcia

    2014-09-01

    Full Text Available Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG. Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1 β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1, and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH oxidase, Myeloperoxidase (MPO, inducible nitric oxide synthase (iNOS, TNF receptor superfamily member 5 (CD40 that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.

  3. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    Full Text Available Writer's cramp (WC is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1, supplementary motor area (SMA, globus pallidus (GP, putamen (PU and ipsilateral cerebellum (CB was investigated using dynamic causal modeling (DCM for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis

  4. Tang-Luo-Ning Improves Mitochondrial Antioxidase Activity in Dorsal Root Ganglia of Diabetic Rats: A Proteomics Study

    Directory of Open Access Journals (Sweden)

    Taojing Zhang

    2017-01-01

    Full Text Available Tang-luo-ning (TLN is a traditional Chinese herbal recipe for treating diabetic peripheral neuropathy (DPN. In this study, we investigated mitochondrial protein profiles in a diabetic rat model and explored the potential protective effect of TLN. Diabetic rats were established by injection of streptozocin (STZ and divided into model, alpha lipoic acid (ALA, and TLN groups. Mitochondrial proteins were isolated from dorsal root ganglia and proteomic analysis was used to quantify the differentially expressed proteins. Tang-luo-ning mitigated STZ-induced diabetic symptoms and blood glucose level, including response time to cold or hot stimulation and nerve conductive velocity. As compared to the normal, there were 388 differentially expressed proteins in the TLN group, 445 in ALA group, and 451 in model group. As compared to the model group, there were 275 differential proteins in TLN group and 251 in ALA group. As compared to model group, mitochondrial complex III was significantly decreased, while glutathione peroxidase and peroxidase were increased in TLN group. When compared with ALA group, the mitochondrial complex III was increased, and mitochondrial complex IV was decreased in TLN group. Together, TLN should have a strong antioxidative activity, which appears to be modulated through regulation of respiratory complexes and antioxidases.

  5. FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

    Science.gov (United States)

    Satoh, Akira; Makanae, Aki; Nishimoto, Yurie; Mitogawa, Kazumasa

    2016-09-01

    Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  7. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments

    Directory of Open Access Journals (Sweden)

    Jill R. Crittenden

    2011-09-01

    Full Text Available The striatum is composed principally of GABAergic, medium spiny projection neurons (MSNs that can be categorized based on their gene expression, electrophysiological profiles and input-output circuits. Major subdivisions of MSN populations include 1 those in ventromedial and dorsolateral striatal regions, 2 those giving rise to the direct and indirect pathways, and 3 those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input-output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in

  8. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.

    Science.gov (United States)

    Nielsen, Thomas N; Sevcencu, Cristian; Struijk, Johannes J

    2014-01-01

    Previous studies have indicated that electrodes placed between fascicles can provide nerve recruitment with high topological selectivity if the areas of interest in the nerve are separated with passive elements. In this study, we investigated if this separation of fascicles also can provide topologically selective nerve recordings and compared the performance of mono-, bi-, and tripolar configurations for stimulation and recording with an intra-neural interface. The interface was implanted in the sciatic nerve of 10 rabbits and achieved a median selectivity of Ŝ=0.98-0.99 for all stimulation configurations, while recording selectivity configurations was in the range of Ŝ=0.70-0.80 with the monopolar configuration providing the lowest and the average reference configuration the highest recording selectivity. Interfascicular electrodes could provide an interesting addition to the bulk of peripheral nerve interfaces available for neural prosthetic devices. The separation of the nerve into chambers by the passive elements of the electrode could ensure a higher selectivity than comparable cuff electrodes and the intra-neural location could provide an option of targeting mainly central fascicles. Further studies are, however, still required to develop biocompatible electrodes and test their stability and safety in chronic experiments.

  9. Critical reading and critical thinking Critical reading and critical thinking

    Directory of Open Access Journals (Sweden)

    Loni Kreis Taglieber

    2008-04-01

    Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it. The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of

  10. Criticism and Counter-Criticism of Public Management: Strategy Models

    OpenAIRE

    Luis C. Ortigueira

    2007-01-01

    Critical control is very important in scientific management. This paper presents models of critical and counter-critical public-management strategies, focusing on the types of criticism and counter-criticism manifested in parliamentary political debates. The paper includes: (i) a normative model showing how rational criticism can be carried out; (ii) a normative model for oral critical intervention; and (iii) a general motivational strategy model for criticisms and counter-criticisms. The pap...

  11. MR measurement of the basal ganglia volume in the tourette syndrome

    International Nuclear Information System (INIS)

    Liao Kaibing; Li Guiping; Yang Bo; Feng Gansheng

    2014-01-01

    Objective: To compare the volume of the basal ganglia in patients with Tourette syndrome (TS) and the normal volunteers and to explore the underlying anatomical basis of TS. Methods: Thirty-one cases of TS (TS subjects), 31 gender and age-matched subjects (the control subjects) were examined on a 3.0 T MRI system. The volume of the caudate nucleus, globus pallidus, putamen of the two sides and the brain volume were measured with volume analysis software, and the data were normalized according to the individual brain volume. Statistical analysis was performed using t test to compare between the TS subjects and the controls. Results: The volume of the both sides of the caudate nucleus, putamen and globus pallidus of TS subjects were (4.11 ±0.12) and (3.76 ±0.11), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 , while they were (4.88 ±0.19) and (4.30 ±0.12), (2.28 ±0.12) and (2.35 ±0.28), (4.98 ±0.20) and (4.89 ±0.31) cm 3 in the controls, respectively. There were significant differences in the bilateral caudate nucleus and globus pallidus between the TS subjects and control subjects (t=2.97, 1.74, 3.72, 3.93, P<0.05), but there were no significant differences of the volume in the bilateral putamen between the TS and control subjects (t=0.47, 1.31, P>0.05). The volume was not significantly different between the left and right caudate nucleus in the TS subjects (t=1.81, P>0.05), but the left volume of the caudate nucleus was bigger in the control subjects compared with the right volume, however, there was significant difference between the bilateral caudate nucleus in the control subjects (t=2.34, P<0.05). There were no differences of volume between the bilateral globus pallidus and putamen in both the TS and control subjects (t=1.12, 1.44, 1.68, 0.38, P>0.05). Conclusion: The abnormal volume of caudate nucleus, putamen, and the globus pallidus may be involved in the pathogenesis of TS. (authors)

  12. Thinking Critically about Critical Thinking: Integrating Online Tools to Promote Critical Thinking

    Directory of Open Access Journals (Sweden)

    B. Jean Mandernach

    2006-01-01

    Full Text Available The value and importance of critical thinking is clearly established; the challenge for instructors lies in successfully promoting students’ critical thinking skills within the confines of a traditional classroom experience. Since instructors are faced with limited student contact time to meet their instructional objectives and facilitate learning, they are often forced to make instructional decisions between content coverage, depth of understanding, and critical analysis of course material. To address this dilemma, it is essential to integrate instructional strategies and techniques that can efficiently and effectively maximize student learning and critical thinking. Modern advances in educational technology have produced a range of online tools to assist instructors in meeting this instructional goal. This review will examine the theoretical foundations of critical thinking in higher education, discuss empirically-based strategies for integrating online instructional supplements to enhance critical thinking, offer techniques for expanding instructional opportunities outside the limitations of traditional class time, and provide practical suggestions for the innovative use of critical thinking strategies via online resources.

  13. Differentiation of sCJD and vCJD forms by automated analysis of basal ganglia intensity distribution in multisequence MRI of the brain--definition and evaluation of new MRI-based ratios.

    Science.gov (United States)

    Linguraru, Marius George; Ayache, Nicholas; Bardinet, Eric; Ballester, Miguel Angel González; Galanaud, Damien; Haïk, Stéphane; Faucheux, Baptiste; Hauw, Jean-Jacques; Cozzone, Patrick; Dormont, Didier; Brandel, Jean-Philippe

    2006-08-01

    We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies.

  14. Motor cortex stimulation does not improve dystonia secondary to a focal basal ganglia lesion.

    Science.gov (United States)

    Rieu, Isabelle; Aya Kombo, Magaly; Thobois, Stéphane; Derost, Philippe; Pollak, Pierre; Xie, Jing; Pereira, Bruno; Vidailhet, Marie; Burbaud, Pierre; Lefaucheur, Jean Pascal; Lemaire, Jean Jacques; Mertens, Patrick; Chabardes, Stephan; Broussolle, Emmanuel; Durif, Franck

    2014-01-14

    To assess the efficacy of epidural motor cortex stimulation (MCS) on dystonia, spasticity, pain, and quality of life in patients with dystonia secondary to a focal basal ganglia (BG) lesion. In this double-blind, crossover, multicenter study, 5 patients with dystonia secondary to a focal BG lesion were included. Two quadripolar leads were implanted epidurally over the primary motor (M1) and premotor cortices, contralateral to the most dystonic side. The leads were placed parallel to the central sulcus. Only the posterior lead over M1 was activated in this study. The most lateral or medial contact of the lead (depending on whether the dystonia predominated in the upper or lower limb) was selected as the anode, and the other 3 as cathodes. One month postoperatively, patients were randomly assigned to on- or off-stimulation for 3 months each, with a 1-month washout between the 2 conditions. Voltage, frequency, and pulse width were fixed at 3.8 V, 40 Hz, and 60 μs, respectively. Evaluations of dystonia (Burke-Fahn-Marsden Scale), spasticity (Ashworth score), pain intensity (visual analog scale), and quality of life (36-Item Short Form Health Survey) were performed before surgery and after each period of stimulation. Burke-Fahn-Marsden Scale, Ashworth score, pain intensity, and quality of life were not statistically significantly modified by MCS. Bipolar epidural MCS failed to improve any clinical feature in dystonia secondary to a focal BG lesion. This study provides Class I evidence that bipolar epidural MCS with the anode placed over the motor representation of the most affected limb failed to improve any clinical feature in dystonia secondary to a focal BG lesion.

  15. Higher ambulatory systolic blood pressure independently associated with enlarged perivascular spaces in basal ganglia.

    Science.gov (United States)

    Yang, Shuna; Yuan, Junliang; Zhang, Xiaoyu; Fan, Huimin; Li, Yue; Yin, Jiangmei; Hu, Wenli

    2017-09-01

    Enlarged perivascular spaces (EPVS) have been identified as a marker of cerebral small vessel diseases (CSVD). Ambulatory blood pressure (ABP) is the strongest predictor of hypertension-related brain damage. However, the relationship between ABP levels and EPVS is unclear. This study aimed to investigate the association between ABP levels and EPVS by 24-hour ambulatory blood pressure monitoring (ABPM). We prospectively recruited inpatients for physical examinations in our hospital from May 2013 to Jun 2016. 24-hour ABPM data and cranial magnetic resonance imaging information were collected. EPVS in basal ganglia (BG) and centrum semiovale (CSO) were identified and classified into three categories by the severity. White matter hyperintensities were scored by Fazekas scale. Spearman correlation analysis and multiple logistic regression analysis were used to determine the relationship between ABP levels and EPVS. A total of 573 subjects were enrolled in this study. 24-hour, day and night systolic blood pressure (SBP) levels were positively related to higher numbers of EPVS in BG (24-hour SBP: r = 0.23, p blood pressure (DBP) levels increased with an increasing degree of EPVS in CSO (p = 0.04 and 0.049, respectively). But the association disappeared after adjusting for confounders. Spearman correlation analysis indicated that ABP levels were not associated with higher numbers of EPVS in CSO (p > 0.05). DBP levels were not independently associated with the severity of EPVS in BG and CSO. Higher SBP levels were independently associated with EPVS in BG, but not in CSO, which supported EPVS in BG to be a marker of CSVD. Pathogenesis of EPVS in BG and CSO might be different.

  16. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation

    International Nuclear Information System (INIS)

    Calvini, Piero; Rodriguez, Guido; Nobili, Flavio; Inguglia, Fabrizio; Mignone, Alessandro; Guerra, Ugo P.

    2007-01-01

    To design a novel algorithm (BasGan) for automatic segmentation of striatal 123 I-FP-CIT SPECT. The BasGan algorithm is based on a high-definition, three-dimensional (3D) striatal template, derived from Talairach's atlas. A blurred template, obtained by convolving the former with a 3D Gaussian kernel (FWHM = 10 mm), approximates striatal activity distribution. The algorithm performs translations and scale transformation on the bicommissural aligned image to set the striatal templates with standard size in an appropriate initial position. An optimization protocol automatically performs fine adjustments in the positioning of blurred templates to best match the radioactive counts, and locates an occipital ROI for background evaluation. Partial volume effect correction is included in the process of uptake computation of caudate, putamen and background. Experimental validation was carried out by means of six acquisitions of an anthropomorphic striatal phantom. The BasGan software was applied to a first set of patients with Parkinson's disease (PD) versus patients affected by essential tremor. A highly significant correlation was achieved between true binding potential and measured 123 I activity from the phantom. 123 I-FP-CIT uptake was significantly lower in all basal ganglia in the PD group versus controls with both BasGan and a conventional ROI method used for comparison, but particularly with the former. Correlations with the motor UPDRS score were far more significant with the BasGan. The novel BasGan algorithm automatically performs the 3D segmentation of striata. Because co-registered MRI is not needed, it can be used by all nuclear medicine departments, since it is freely available on the Web. (orig.)

  17. Critical/non-critical system methodology report

    International Nuclear Information System (INIS)

    1989-01-01

    The method used to determine how the waste Isolation Pilot Plant (WIPP) facilities/systems were classified as critical or non-critical to the receipt of CH waste is described within this report. All WIPP critical facilities/systems are listed in the Operational Readiness Review Dictionary. Using the Final Safety Analysis Report (FSAR) as a guide to define the boundaries of the facilities/systems, a direct correlation of the ORR Dictionary to the FSAR can be obtained. The critical facilities/systems are those which are directly related to or have a critical support role in the receipt of CH waste. The facility/systems must meet one of the following requirements to be considered critical: (a) confinement or measure of the release of radioactive materials; (b) continued receipt and/or storage of transuranic waste (TRU) without an interruption greater than one month according to the shipping plan schedule; (c) the environmental and occupational safety of personnel meets the established site programs; and (d) the physical security of the WIPP facilities

  18. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  19. Critical enrichment and critical density of infinite systems for nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Koyama, Takashi; Komuro, Yuichi

    1986-03-01

    Critical enrichment and critical density of homogenous infinite systems, such as U-H 2 O, UO 2 -H 2 O, UO 2 F 2 aqueous solution, UO 2 (NO 3 ) 2 aqueous solution, Pu-H 2 O, PuO 2 -H 2 O, Pu(NO 3 ) 4 aqueous solution and PuO 2 ·UO 2 -H 2 O, were calculated with the criticality safety evaluation computer code system JACS for nuclear criticality safety evaluation on fuel facilities. The computed results were compared with the data described in European and American criticality handbooks and showed good agreement with each other. (author)

  20. The allocation of attention to learning of goal-directed actions: A cognitive neuroscience framework focusing on the basal ganglia

    Directory of Open Access Journals (Sweden)

    Liz eFranz

    2012-12-01

    Full Text Available The present paper builds on the idea that attention is largely in service of our actions. A framework and model which captures the allocation of attention for learning of goal-directed actions is proposed and developed. This framework highlights an evolutionary model based on the notion that rudimentary brain functions have become embedded into increasingly higher levels of networks which all contribute to adaptive learning. Background literature is presented alongside key evidence based on experimental studies in the so-called ‘split-brain’ (surgically divided cerebral hemispheres with a key focus on bimanual actions. The proposed multilevel cognitive-neural system of attention is built upon key processes of a highly-adaptive basal-ganglia-thalamic-cortical system. Although overlap with other existing findings and models is acknowledged where appropriate, the proposed framework is an original synthesis of cognitive experimental findings with supporting evidence of a neural system and a carefully formulated model of attention. It is the hope that this new synthesis will be informative in fields of cognition and other fields of brain sciences and will lead to new avenues for experimentation across domains.

  1. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  2. Advanced type 1 diabetes is associated with ASIC alterations in mouse lower thoracic dorsal root ganglia neurons.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Dumitrescu, Diana Ionela; Marin, Adela; Banciu, Daniel Dumitru; Iancu, Adina Daniela; Selescu, Tudor; Radu, Mihai

    2014-01-01

    Acid-sensing ion channels (ASICs) from dorsal root ganglia (DRG) neurons are proton sensors during ischemia and inflammation. Little is known about their role in type 1 diabetes (T1D). Our study was focused on ASICs alterations determined by advanced T1D status. Primary neuronal cultures were obtained from lower (T9-T12) thoracic DRG neurons from Balb/c and TCR-HA(+/-)/Ins-HA(+/-) diabetic male mice (16 weeks of age). Patch-clamp recordings indicate a change in the number of small DRG neurons presenting different ASIC-type currents. Multiple molecular sites of ASICs are distinctly affected in T1D, probably due to particular steric constraints for glycans accessibility to the active site: (i) ASIC1 current inactivates faster, while ASIC2 is slower; (ii) PcTx1 partly reverts diabetes effects against ASIC1- and ASIC2-inactivations; (iii) APETx2 maintains unaltered potency against ASIC3 current amplitude, but slows ASIC3 inactivation. Immunofluorescence indicates opposite regulation of different ASIC transcripts while qRT-PCR shows that ASIC mRNA ranking (ASIC2 > ASIC1 > ASIC3) remains unaltered. In conclusion, our study has identified biochemical and biophysical ASIC changes in lower thoracic DRG neurons due to advanced T1D. As hypoalgesia is present in advanced T1D, ASICs alterations might be the cause or the consequence of diabetic insensate neuropathy.

  3. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Irene Flønes

    Full Text Available Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.In two siblings with early-onset encephalopathy dystonia and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC19A3 mutation (c.337T>C. Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC19A3 mutations were found. He improved substantially on thiamine and biotin therapy.We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-genome sequencing as a diagnostic tool for rare genetic disorders across a wide spectrum of mutations including non-coding large genomic rearrangements.

  4. Brain Imaging and Urodynamic Correlation in Patients with ...

    African Journals Online (AJOL)

    The most determining factor was the site of the lesion followed by the size. Small lesions were frequently silent unless located in critical sites. It was found that frontal, frontoparietal, parietal, basal ganglia and internal capsular ischemic lesions were associated in most cases with detrusor hyperreflexia, whereas thalamic, ...

  5. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  6. Social modulation of learned behavior by dopamine in the basal ganglia: insights from songbirds.

    Science.gov (United States)

    Leblois, Arthur

    2013-06-01

    Dysfunction of the dopaminergic system leads to motor, cognitive, and motivational symptoms in brain disorders such as Parkinson's disease. The basal ganglia (BG) are involved in sensorimotor learning and receive a strong dopaminergic signal, shown to play an important role in social interactions. The function of the dopaminergic input to the BG in the integration of social cues during sensorimotor learning remains however largely unexplored. Songbirds use learned vocalizations to communicate during courtship and aggressive behaviors. Like language learning in humans, song learning strongly depends on social interactions. In songbirds, a specialized BG-thalamo-cortical loop devoted to song is particularly tractable for elucidating the signals carried by dopamine in the BG, and the function of dopamine signaling in mediating social cues during skill learning and execution. Here, I review experimental findings uncovering the physiological effects and function of the dopaminergic signal in the songbird BG, in light of our knowledge of the BG-dopamine interactions in mammals. Interestingly, the compact nature of the striato-pallidal circuits in birds led to new insight on the physiological effects of the dopaminergic input on the BG network as a whole. In singing birds, D1-like receptor agonist and antagonist can modulate the spectral variability of syllables bi-directionally, suggesting that social context-dependent changes in spectral variability are triggered by dopaminergic input through D1-like receptors. As variability is crucial for exploration during motor learning, but must be reduced after learning to optimize performance, I propose that, the dopaminergic input to the BG could be responsible for the social-dependent regulation of the exploration/exploitation balance in birdsong, and possibly in learned skills in other vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    Science.gov (United States)

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance

  8. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats.

    Science.gov (United States)

    Aravamuthan, Bhooma R; Shoykhet, Michael

    2015-10-01

    The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders.

  9. Thinking Critically about Critical Thinking: Integrating Online Tools to Promote Critical Thinking

    OpenAIRE

    B. Jean Mandernach, PhD

    2006-01-01

    The value and importance of critical thinking is clearly established; the challenge for instructors lies in successfully promoting students’ critical thinking skills within the confines of a traditional classroom experience. Since instructors are faced with limited student contact time to meet their instructional objectives and facilitate learning, they are often forced to make instructional decisions between content coverage, depth of understanding, and critical analysis of course material. ...

  10. The reconstruction algorithm used for ["6"8Ga]PSMA-HBED-CC PET/CT reconstruction significantly influences the number of detected lymph node metastases and coeliac ganglia

    International Nuclear Information System (INIS)

    Krohn, Thomas; Birmes, Anita; Winz, Oliver H.; Drude, Natascha I.; Mottaghy, Felix M.; Behrendt, Florian F.; Verburg, Frederik A.

    2017-01-01

    To investigate whether the numbers of lymph node metastases and coeliac ganglia delineated on ["6"8Ga]PSMA-HBED-CC PET/CT scans differ among datasets generated using different reconstruction algorithms. Data were constructed using the BLOB-OS-TF, BLOB-OS and 3D-RAMLA algorithms. All reconstructions were assessed by two nuclear medicine physicians for the number of pelvic/paraaortal lymph node metastases as well the number of coeliac ganglia. Standardized uptake values (SUV) were also calculated in different regions. At least one ["6"8Ga]PSMA-HBED-CC PET/CT-positive pelvic or paraaortal lymph node metastasis was found in 49 and 35 patients using the BLOB-OS-TF algorithm, in 42 and 33 patients using the BLOB-OS algorithm, and in 41 and 31 patients using the 3D-RAMLA algorithm, respectively, and a positive ganglion was found in 92, 59 and 24 of 100 patients using the three algorithms, respectively. Quantitatively, the SUVmean and SUVmax were significantly higher with the BLOB-OS algorithm than with either the BLOB-OS-TF or the 3D-RAMLA algorithm in all measured regions (p < 0.001 for all comparisons). The differences between the SUVs with the BLOB-OS-TF- and 3D-RAMLA algorithms were not significant in the aorta (SUVmean, p = 0.93; SUVmax, p = 0.97) but were significant in all other regions (p < 0.001 in all cases). The SUVmean ganglion/gluteus ratio was significantly higher with the BLOB-OS-TF algorithm than with either the BLOB-OS or the 3D-RAMLA algorithm and was significantly higher with the BLOB-OS than with the 3D-RAMLA algorithm (p < 0.001 in all cases). The results of ["6"8Ga]PSMA-HBED-CC PET/CT are affected by the reconstruction algorithm used. The highest number of lesions and physiological structures will be visualized using a modern algorithm employing time-of-flight information. (orig.)

  11. The reconstruction algorithm used for [{sup 68}Ga]PSMA-HBED-CC PET/CT reconstruction significantly influences the number of detected lymph node metastases and coeliac ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Thomas [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Ulm University, Department of Nuclear Medicine, Ulm (Germany); Birmes, Anita; Winz, Oliver H.; Drude, Natascha I. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Mottaghy, Felix M. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Maastricht UMC+, Department of Nuclear Medicine, Maastricht (Netherlands); Behrendt, Florian F. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Radiology Institute ' ' Aachen Land' ' , Wuerselen (Germany); Verburg, Frederik A. [RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); University Hospital Giessen and Marburg, Department of Nuclear Medicine, Marburg (Germany)

    2017-04-15

    To investigate whether the numbers of lymph node metastases and coeliac ganglia delineated on [{sup 68}Ga]PSMA-HBED-CC PET/CT scans differ among datasets generated using different reconstruction algorithms. Data were constructed using the BLOB-OS-TF, BLOB-OS and 3D-RAMLA algorithms. All reconstructions were assessed by two nuclear medicine physicians for the number of pelvic/paraaortal lymph node metastases as well the number of coeliac ganglia. Standardized uptake values (SUV) were also calculated in different regions. At least one [{sup 68}Ga]PSMA-HBED-CC PET/CT-positive pelvic or paraaortal lymph node metastasis was found in 49 and 35 patients using the BLOB-OS-TF algorithm, in 42 and 33 patients using the BLOB-OS algorithm, and in 41 and 31 patients using the 3D-RAMLA algorithm, respectively, and a positive ganglion was found in 92, 59 and 24 of 100 patients using the three algorithms, respectively. Quantitatively, the SUVmean and SUVmax were significantly higher with the BLOB-OS algorithm than with either the BLOB-OS-TF or the 3D-RAMLA algorithm in all measured regions (p < 0.001 for all comparisons). The differences between the SUVs with the BLOB-OS-TF- and 3D-RAMLA algorithms were not significant in the aorta (SUVmean, p = 0.93; SUVmax, p = 0.97) but were significant in all other regions (p < 0.001 in all cases). The SUVmean ganglion/gluteus ratio was significantly higher with the BLOB-OS-TF algorithm than with either the BLOB-OS or the 3D-RAMLA algorithm and was significantly higher with the BLOB-OS than with the 3D-RAMLA algorithm (p < 0.001 in all cases). The results of [{sup 68}Ga]PSMA-HBED-CC PET/CT are affected by the reconstruction algorithm used. The highest number of lesions and physiological structures will be visualized using a modern algorithm employing time-of-flight information. (orig.)

  12. Critical thinking: Not all that critical

    Directory of Open Access Journals (Sweden)

    Bruce Dietrick Price

    2016-09-01

    Full Text Available Critical Thinking basically says to be suspicious of everything, except the fad known as Critical Thinking. It is perhaps best understood as a new and watered-down version of an earlier fad called Deconstruction. That was just a fancy word for debunking. After you strip away all the high-minded rhetoric, Critical Thinking is typically used to tell students that they should not trust conventional wisdom, tradition, religion, parents, and all that irrelevant, old-fashioned stuff. Critical Thinking, somewhat surprisingly, also turns out to be highly contemptuous of facts and knowledge. The formulation in public schools goes like this: children must learn how to think, not what to think. WHAT is, of course, all the academic content and scholarly knowledge that schools used to teach.

  13. A Neurocomputational Model of Dopamine and Prefrontal-Striatal Interactions during Multicue Category Learning by Parkinson Patients

    Science.gov (United States)

    Moustafa, Ahmed A.; Gluck, Mark A.

    2011-01-01

    Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates…

  14. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36.

    Science.gov (United States)

    Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza

    2018-04-01

    Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study.

    Science.gov (United States)

    Sundt, Danielle; Gamper, Nikita; Jaffe, David B

    2015-12-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na(+) channels. A model containing only fast voltage-gated Na(+) and delayed-rectifier K(+) channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca(2+)-dependent K(+) current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na(+)-K(+) pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca(2+)-dependent K(+) current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. Copyright © 2015 the American Physiological Society.

  16. Dopamine transporter density in the basal ganglia assessed with 123I-IPT SPECT in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Yoo, Y. H.; Cheon, K. A.; Yoon, M. J.; Kim, C. H.; Lee, J. D.; Kim, H. H.; Choi, T. H.

    2002-01-01

    Attention deficit hyperactivity disorder (ADHD) is known as a psychiatric disorder in childhood associated with dopamine dysregulation. We investigated dopamine transporter (DAT) density in children with ADHD in the present study using 123 I-IPT SPECT and postulated that an alteration in DAT density in the basal ganglia (BG) is responsible for dopaminergic dysfunction in children with ADHD. 9 durg-naive children with ADHD and 6 normal children were included in the study. We performed brain SPECT 2 hours after administration of 123 I-IPT and made both quantitative and qualitative analyses for assessment of specific/nonspecific DAT binding ratio in the BG. We investigated the correlation between the severity scores of ADHD symptoms in children with ADHD assessed with ADHD rating scale and specific/nonspecific DAT binding ratio in the BG. Drug-naive children with ADHD showed a significantly incresed specific/nonspecific DAT binding ratio in the BG compared with normal children. Whereas, no significant correlation was found between severity scores of symptoms in children with ADHD and specific/nonspecific DAT binding ratio n the BG. Our findings support complex dysregulation of the dopaminergic neurotransmitter system in children with ADHD

  17. Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II.

    Science.gov (United States)

    Hartlehnert, Maike; Derksen, Angelika; Hagenacker, Tim; Kindermann, David; Schäfers, Maria; Pawlak, Mathias; Kieseier, Bernd C; Meyer Zu Horste, Gerd

    2017-10-02

    The activation of T helper cells requires antigens to be exposed on the surface of antigen presenting cells (APCs) via MHC class II (MHC-II) molecules. Expression of MHC-II is generally limited to professional APCs, but other cell types can express MHC-II under inflammatory conditions. However, the importance of these conditional APCs is unknown. We and others have previously shown that Schwann cells are potentially conditional APCs, but the functional relevance of MHC-II expression by Schwann cells has not been studied in vivo. Here, we conditionally deleted the MHC-II β-chain from myelinating Schwann cells in mice and investigated how this influenced post-traumatic intraneural inflammation and neuropathic pain using the chronic constriction injury (CCI) model. We demonstrate that deletion of MHC-II in myelinating Schwann cells reduces thermal hyperalgesia and, to a lesser extent, also diminishes mechanical allodynia in CCI in female mice. This was accompanied by a reduction of intraneural CD4+ T cells and greater preservation of preferentially large-caliber axons. Activation of T helper cells by MHC-II on Schwann cells thus promotes post-traumatic axonal loss and neuropathic pain. Hence, we provide experimental evidence that Schwann cells gain antigen-presenting function in vivo and modulate local immune responses and diseases in the peripheral nerves.

  18. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    Directory of Open Access Journals (Sweden)

    Nataliya V Kostereva

    Full Text Available Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA. Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1 and chondroitinase ABC (CH have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections. Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  19. Neurobrucellosis with transient ischemic attack, vasculopathic changes, intracerebral granulomas and basal ganglia infarction: a case report

    Directory of Open Access Journals (Sweden)

    Ozyurek Seyfi C

    2010-10-01

    Full Text Available Abstract Introduction Central nervous system involvement is a rare but serious manifestation of brucellosis. We present an unusual case of neurobrucellosis with transient ischemic attack, intracerebral vasculopathy granulomas, seizures, and paralysis of sixth and seventh cranial nerves. Case presentation A 17-year-old Caucasian man presented with nausea and vomiting, headache, double vision and he gave a history of weakness in the left arm, speech disturbance and imbalance. Physical examination revealed fever, doubtful neck stiffness and left abducens nerve paralysis. An analysis of his cerebrospinal fluid showed a pleocytosis (lymphocytes, 90%, high protein and low glucose levels. He developed generalized tonic-clonic seizures, facial paralysis and left hemiparesis. Cranial magnetic resonance imaging demonstrated intracerebral vasculitis, basal ganglia infarction and granulomas, mimicking the central nervous system involvement of tuberculosis. On the 31st day of his admission, neurobrucellosis was diagnosed with immunoglobulin M and immunoglobulin G positivity by standard tube agglutination test and enzyme-linked immunosorbent assay in both serum and cerebrospinal fluid samples (the tests had been negative until that day. He was treated successfully with trimethoprim and sulfamethoxazole, doxycyline and rifampicin for six months. Conclusions Our patient illustrates the importance of suspecting brucellosis as a cause of meningoencephalitis, even if cultures and serological tests are negative at the beginning of the disease. As a result, in patients who have a history of residence or travel to endemic areas, neurobrucellosis should be considered in the differential diagnosis of any neurologic symptoms. If initial tests fail, repetition of these tests at appropriate intervals along with complementary investigations are indicated.

  20. A patient with Moyamoya-like vessels after radiation therapy for a tumor in the basal ganglia

    International Nuclear Information System (INIS)

    Ishiyama, Koichi; Tomura, Noriaki; Kato, Koki; Takahashi, Satoshi; Watarai, Jiro; Sasajima, Toshio; Mizoi, Kazuo

    2001-01-01

    A patient with Moyamoya-like vessels after radiation therapy for treatment of a tumor in the basal ganglia is reported. He was diagnosed as Down syndrome at birth. He had a tumor in the left basal ganglionic region at 12 years of the age. The tumor increased in size at age 14. He underwent cerebral angiography, which did not show a stenosis nor occlusion of the internal carotid artery, anterior cerebral artery, nor the middle cerebral artery. He received radiation therapy with a total dose of 56 Gy. He presented a dressing apraxia at age 19. MRI showed cerebral infarction in the left temporo-occipital region. Right internal carotid angiography revealed a severe stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the right side. Moyamoya-like vessels were seen in the basal ganglionic region. Left internal carotid angiography also showed a stenosis of the internal carotid artery and anterior cerebral artery as well as a severe stenosis of the middle cerebral artery on the left side. Moyamoya-like vessels were seen in the basal ganglionic region. Leptomeningeal anastomose and transdural anastomose were bilaterally seen. These arterial occlusion and stenotic phenomenon corresponded to a previous radiation field. These Moyamoya-like vessels with arterial stenosis and occlusion were thought to be due to radiation-induced vasculopathy, because a previous cerebral angiography showed a normal caliber of cerebral arteries. This patient showed that patients with radiation therapy in their early childhood should be carefully observed considering the possibility of the phenomenon. (author)