Sample records for intranasal mouse model

  1. Long-term exposure to intranasal oxytocin in a mouse autism model. (United States)

    Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P


    Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8  IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT.

  2. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD induced by a combination of toxic amyloid-β peptide (Aβ and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret, an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1 mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU, doublecortin (DCX, and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.

  3. The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. (United States)

    González-González, Edith; García-Hernández, Ana Lilia; Flores-Mejía, Raúl; López-Santiago, Rubén; Moreno-Fierros, Leticia


    Brucellosis is a zoonotic disease affecting many people and animals worldwide. Preventing this infection requires improving vaccination strategies. The protoxin Cry1Ac of Bacillus thuringiensis is an adjuvant that, in addition to increasing the immunogenicity of different antigens, has shown to be protective in different models of parasitic infections. The objective of the present study was to test whether the intranasal co-administration of pCry1Ac with the RB51 vaccine strain of Brucella abortus confers protection against an intranasal challenge with the virulent strain B. abortus 2308 in BALB/c mice. The results showed that co-administration of pCry1Ac and RB51, increased the immunoprotection conferred by the vaccine as evidenced by the following: (1) decrease of the splenic bacterial load when challenged intranasally with the virulent strain; (2) greater in vivo cytotoxic activity in response to the transference of previously infected cells; (3) further proliferation of cytotoxic TCD8+ cells in response to stimulation with heat-inactivated bacteria; (4) increased production of TNF-α and IFN-γ; and (5) significant IgG2a response. These results indicate that the use of the Cry1Ac protein as a mucosal adjuvant via the intranasal route can be a promising alternative for improving current RB51 vaccine against brucellosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modulation of anxiety behavior by intranasally administered vaccinia virus complement control protein and curcumin in a mouse model of Alzheimer's disease. (United States)

    Kulkarni, A P; Govender, D A; Kotwal, G J; Kellaway, L A


    Widespread neuroinflammation in the central nervous system (CNS) of Alzheimer's disease (AD) patients, involving pro-inflammatory mediators such as complement components, might be responsible for AD associated behavioral symptoms such as anxiety. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are the bioactive compounds of natural origin shown to inhibit the in-vitro complement activation. In order to develop complement regulatory compounds which could be delivered to the CNS by a non-invasive route, VCP, its truncated version (tVCP), and Cur were administered to Wistar rats intranasally. The distribution of these compounds in cerebrospinal fluid (CSF) was studied using an enzyme linked immunosorbent assay (ELISA), using VCP and tVCP as antigens and a modified fluorimetric method (Cur). VCP and tVCP were also detected in the olfactory lobes of the rat brain using immunohistochemical analysis. These compounds were then compared for their ability to attenuate the anxiety levels in APPswePS1δE9 mice using an elevated plus maze (EPM) apparatus. VCP treatment significantly improved the exploratory behavior and reduced the anxiety behavior in APPswePS1δE9 mice. tVCP however showed an opposite effect to VCP, whereas Cur showed no effect on the anxiety behavior of these mice. When these mice were subsequently tested for their cognitive performance in the Morris water maze (MWM), they showed tendencies to collide with the periphery of the walls of MWM. This unusual activity was termed "kissperi" behavior. This newly defined index of anxiety was comparable to the anxiety profile of the VCP and tVCP treated groups on EPM. VCP can thus be delivered to the CNS effectively via intranasal route of administration to attenuate anxiety associated with AD.

  5. In vivo Brain Delivery of v-myc Overproduced Human Neural Stem Cells via the Intranasal Pathway: Tumor Characteristics in the Lung of a Nude Mouse

    Directory of Open Access Journals (Sweden)

    Eun Seong Lee


    Full Text Available We aimed to monitor the successful brain delivery of stem cells via the intranasal route and to observe the long-term consequence of the immortalized human neural stem cells in the lungs of a nude mouse model. Stably immortalized HB1.F3 human neural stem cells with firefly luciferase gene (F3-effluc were intranasally delivered to BALB/c nude mice. Bioluminescence images were serially acquired until 41 days in vivo and at 4 hours and 41 days ex vivo after intranasal delivery. Lungs were evaluated by histopathology. After intranasal delivery of F3-effluc cells, the intense in vivo signals were detected in the nasal area, migrated toward the brain areas at 4 hours (4 of 13, 30.8%, and gradually decreased for 2 days. The brain signals were confirmed by ex vivo imaging (2 of 4, 50%. In the mice with initial lung signals (4 of 9, 44.4%, the lung signals disappeared for 5 days but reappeared 2 weeks later. The intense lung signals were confirmed to originate from the tumors in the lungs formed by F3-effluc cells by ex vivo imaging and histopathology. We propose that intranasal delivery of immortalized stem cells should be monitored for their successful delivery to the brain and their tumorigenicity longitudinally.

  6. Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion

    Directory of Open Access Journals (Sweden)

    B Mikesh Patel


    Full Text Available It is a challenge to develop the optimum dosage form of poorly water-soluble drugs and to target them due to limited bioavailability, intra and inter subject variability. In this investigation, mucoadhesive microemulsion of curcumin was developed by water titration method taking biocompatible components for intranasal delivery and was characterized. Nasal ciliotoxicity studies were carried out using excised sheep nasal mucosa. in vitro release studies of formulations and PDS were performed. Labrafil M 1944 CS based microemulsion was transparent, stable and nasal non-ciliotoxic having particle size 12.32±0.81nm (PdI=0.223 and from kinetic modeling, the release was found to be Fickian diffusion for mucoadhesive microemulsion.

  7. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine (United States)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.


    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  8. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  9. Validation of a Best-Fit Pharmacokinetic Model for Scopolamine Disposition after Intranasal Administration (United States)

    Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.


    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.

  10. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus


    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  11. A humanized mouse model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Veronica E Calderon

    Full Text Available Mycobacterium tuberculosis (M.tb is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB, but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT humanized mouse. NOD-SCID/γc(null mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+ fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8, as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+ population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.

  12. Effects of sublingual immunotherapy in a murine asthma model sensitized by intranasal administration of house dust mite extracts


    Kenjiro Shima; Toshiyuki Koya; Keisuke Tsukioka; Takuro Sakagami; Takashi Hasegawa; Chiharu Fukano; Katsuyo Ohashi-Doi; Satoshi Watanabe; Eiichi Suzuki; Toshiaki Kikuchi


    Background: Sublingual immunotherapy (SLIT) has received attention as a method for allergen immunotherapy. However, the mechanism of SLIT has not yet been fully investigated. Therefore, we evaluated the effects of SLIT in a murine asthma model, sensitized by intranasal administration of house dust mite (HDM) extracts. Methods: Female BALB/c mice were intranasally exposed to HDM for either 3 or 5 weeks (5 consecutive days per week). Mice were administered either low-dose (0.5 mg/day) or hig...

  13. Intranasal co-administration with the mouse zona pellucida 3 expressing construct and its coding protein induces contraception in mice. (United States)

    Zhang, Ailian; Li, Jinyao; Zhao, Gan; Geng, Shuang; Zhuang, Shuzhen; Wang, Bin; Zhang, Fuchun


    The zona pellucida 3 (ZP3), an autoantigen, once used to develop contraceptive vaccine has been faced a safety issue. Avoiding its pathogenic T cell activation, we intranasally co-delivered the mZP3 DNA- and protein-based vaccines in mice and observed that a higher level of sIgA and IgG antibodies in vaginal washes, bronchoalveolar lavages and serum and yielded a lower level of fertility and mean litter size. Importantly, histological analysis showed that normal follicular developments of the infertile mice were not disrupted in the co-delivered group. Thus, the intranasal co-delivery may present a safe strategy for the development of contraceptive vaccine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Radiation Mitigating Properties of Intranasally Administered KL4Surfactant in a Murine Model of Radiation-Induced Lung Damage. (United States)

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Koumenis, Constantinos; Segal, Robert


    The threat of exposure to ionizing radiation from a nuclear reactor accident or deliberate terrorist actions is a significant public health concern. The lung is particularly susceptible to radiation-induced injury from external sources or inhalation of radioactive particles from radioactive fallout. Radiation-induced lung disease can manifest with an acute radiation pneumonitis and/or delayed effects leading to pulmonary fibrosis. As prior warning of radiation exposure is unlikely, medical countermeasures (MCMs) to mitigate radiation-induced lung disease that can be given in mass-casualty situations many hours or days postirradiation are needed to prevent both early and late lung damage. In this study, KL 4 surfactant (lucinactant) was evaluated as a radiation mitigator in a well-characterized mouse model of targeted thoracic radiation exposure, for its effect on both early (several weeks) and late (18 weeks) lung damage. Here, 120 mg/kg total phospholipid of KL 4 surfactant was administered twice daily intranasally, (enabling intrapulmonary inhalation of drug) to C57BL/6 mice 24 h after a single 13.5 Gy dose of thoracic irradiation (LD 50 dose). Both early and chronic phase (2 and 4 weeks and 18 weeks postirradiation, respectively) assessments were performed. Mice were evaluated for evidence of reduced arterial blood oxygenation and early and chronic lung and systemic inflammation, lung fibrosis and oxidative stress. Analysis was done by performing lung function/respiration dynamics and measuring cellular protein content of bronchoalveolar lavage fluid (BALF), and levels of cytokines, 8-iso-prostaglandin F2α, hydroxyproline in lung and plasma, along with evaluating lung histology. The results of this study showed that intranasal delivery of KL 4 surfactant was able to preserve lung function as evidenced by adequate arterial oxygen saturation and reduced lung inflammation and oxidative stress; total white count and absolute neutrophil count was decreased in BALF

  15. Mouse models of cataract

    Indian Academy of Sciences (India)


    Dec 31, 2009 ... Mutations affecting the mouse lens can be identified easily by visual inspection, and a remarkable number of mutant lines ..... out mutants do not show an ocular phenotype, the two Bfsp genes are important for lens ... The more severe mutants have in addition to the ocular symptoms some more clinical ...

  16. A new model for Hendra virus encephalitis in the mouse.

    Directory of Open Access Journals (Sweden)

    Johanna Dups

    Full Text Available Hendra virus (HeV infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients.

  17. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  18. Imaging Mouse Models of Cancer. (United States)

    Lyons, Scott Keith


    Mouse models of cancer have proven to be an indispensable resource in furthering both our basic knowledge of cancer biology and the translation of new cancer treatments and imaging approaches into the clinic. As mouse models have developed and improved in their ability to model many diverse aspects of the human disease, so too has the need for robust imaging approaches to measure key biological parameters noninvasively. The aim of this review is to provide a brief overview of the various imaging approaches available to researchers today for imaging preclinical cancer models, highlighting their relative strengths and weaknesses. The very nature of modeling cancer in the mouse is also changing, and brief mention will be made on how imaging can maximize the utility of these new, accurate, and genetically versatile models.

  19. Mouse Models of Rheumatoid Arthritis. (United States)

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L


    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. © The Author(s) 2015.

  20. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.


    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  1. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. (United States)

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R


    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  2. Cellular and humoral immune responses to chimeric EGFP-pseudocapsids derived from the mouse polyomavirus after their intranasal administration

    Czech Academy of Sciences Publication Activity Database

    Frič, Jan; Marek, M.; Hrušková, V.; Holáň, Vladimír; Forstová, J.


    Roč. 26, č. 26 (2008), s. 3242-3251 ISSN 0264-410X R&D Projects: GA MŠk 1M0506; GA MŠk LC545 Grant - others:GA Mšk(CZ) 1M0508 Program:1M Institutional research plan: CEZ:AV0Z50520514 Keywords : mouse polyomavirus pseudocapsids * chimeric VLPs * antigen carrier and adjuvant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.298, year: 2008

  3. Effects of sublingual immunotherapy in a murine asthma model sensitized by intranasal administration of house dust mite extracts. (United States)

    Shima, Kenjiro; Koya, Toshiyuki; Tsukioka, Keisuke; Sakagami, Takuro; Hasegawa, Takashi; Fukano, Chiharu; Ohashi-Doi, Katsuyo; Watanabe, Satoshi; Suzuki, Eiichi; Kikuchi, Toshiaki


    Sublingual immunotherapy (SLIT) has received attention as a method for allergen immunotherapy. However, the mechanism of SLIT has not yet been fully investigated. Therefore, we evaluated the effects of SLIT in a murine asthma model, sensitized by intranasal administration of house dust mite (HDM) extracts. Female BALB/c mice were intranasally exposed to HDM for either 3 or 5 weeks (5 consecutive days per week). Mice were administered either low-dose (0.5 mg/day) or high-dose (5 mg/day) sublingual HDM extracts for 2 weeks, followed by an additional week of intranasal exposure. Airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF) cell count, cytokine levels in the BALF and lymph node cell culture supernatants, and allergen-specific antibodies were measured. Lung histology was also investigated. In mice sensitized for 5 weeks, high-dose SLIT ameliorated AHR, airway eosinophilia and goblet cell metaplasia. In mice sensitized for 3 weeks, even low dose SLIT ameliorated AHR and airway eosinophilia. Th2 cytokine levels in culture supernatants of submandibular lymph node cells in high-dose SLIT mice decreased, whereas IL-10 levels increased. Total IgA in BALF increased in mice sensitized for 3 or 5 weeks, and high-dose SLIT also increased allergen-specific IgG2a in mice sensitized for 5 weeks. These data suggest that earlier induction of SLIT in HDM-sensitized mice provides superior suppression of AHR and goblet cell metaplasia. The modulation of allergen specific IgG2a and local IgA might play a role in the amelioration of AHR and airway inflammation. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  4. Mouse models for cone degeneration. (United States)

    Samardzija, Marijana; Grimm, Christian


    Loss of cone vision has devastating effects on everyday life. Even though much effort has been made to understand cone physiology and pathophysiology, no successful therapies are available for patients suffering from cone disorders. As complex retinal interactions cannot be studied in vitro, utilization of different animal models is inevitable. Due to recent advances in transgenesis, mice became the most popular animal model to study human diseases, also in ophthalmology. While there are similarities in retinal anatomy and pathophysiology between mice and humans, there are also differences, most importantly the lack of a cone-rich macula in mice. Instead, cones in mice are rare and distributed over the whole retina, which makes the analysis of cone pathophysiology very difficult in these animals. This hindrance is one of the reasons why our understanding of rod pathophysiological processes is much more advanced. Recently, however, the sparseness of cones was overcome by the generation of the Nrl (- / -) mouse that expresses only cone photoreceptors in the retina. This paper will give a brief overview of some of the known mouse models to study cone degeneration and discuss the current knowledge gained from the analysis of these models.

  5. The origin of Pasteurella multocida impacts pathology and inflammation when assessed in a mouse model

    DEFF Research Database (Denmark)

    Pors, Susanne E.; Chadfield, Mark S.; Sorensen, Dorte B.


    Host-pathogen interactions of Pasteurella multocida isolates of different origin were studied in a mouse model, focusing on pathology, bacterial load and expression of the metalloproteinase MMP9 and its inhibitor TIMP1. Intranasal inoculation with one of three doses (10(6), 10(4), 10(2) CFU...... dose dependent and consisted of exudative bronchopneumonia, abscess formation in liver and a lower bacterial load in lung and liver. Both isolates caused increased expression of MMP9 and TIMP1. In conclusion, evaluation and comparison of pathogenicity and host-pathogen interaction of P. multocida...

  6. Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis. (United States)

    Olivares, Nesty; Puig, Alina; Aguilar, Diana; Moya, Aniel; Cádiz, Armando; Otero, Oscar; Izquierdo, Luis; Falero, Gustavo; Solis, Rosa L; Orozco, Hector; Sarmiento, Maria E; Norazmi, Mohd Nor; Hernández-Pando, Rogelio; Acosta, Armando


    The protective effect of human gamma globulins on Mycobacterium tuberculosis infection was evaluated in a mouse model of intratracheal infection. Animals receiving human gamma globulins intranasally, 2h before intratracheal challenge showed a significant decrease in lung bacilli load compared to non-treated animals in different time intervals of up to 2 months after challenge. The same effect was obtained when M. tuberculosis was pre-incubated with the gamma globulin before challenge. The protective effect of the gamma-globulin formulation was abolished after pre-incubation with M. tuberculosis. These results suggest a potential role of specific antibodies in the defence against mycobacterial infections.

  7. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy (United States)

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory


    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  8. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas


    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  9. Optimizing mouse models for precision cancer prevention. (United States)

    Le Magnen, Clémentine; Dutta, Aditya; Abate-Shen, Cory


    As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.

  10. Melatonin receptors: latest insights from mouse models (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf


    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  11. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects (United States)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.


    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  12. Pathology of Mouse Models of Accelerated Aging. (United States)

    Harkema, L; Youssef, S A; de Bruin, A


    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. © The Author(s) 2016.

  13. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. (United States)

    Quintana, Daniel S; Alvares, Gail A; Hickie, Ian B; Guastella, Adam J


    Accumulating evidence demonstrates the important role of oxytocin (OT) in the modulation of social cognition and behavior. This has led many to suggest that the intranasal administration of OT may benefit psychiatric disorders characterized by social dysfunction, such as autism spectrum disorders and schizophrenia. Here, we review nasal anatomy and OT pathways to central and peripheral destinations, along with the impact of OT delivery to these destinations on social behavior and cognition. The primary goal of this review is to describe how these identified pathways may contribute to mechanisms of OT action on social cognition and behavior (that is, modulation of social information processing, anxiolytic effects, increases in approach-behaviors). We propose a two-level model involving three pathways to account for responses observed in both social cognition and behavior after intranasal OT administration and suggest avenues for future research to advance this research field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The origin of Pasteurella multocida impacts pathology and inflammation when assessed in a mouse model. (United States)

    Pors, Susanne E; Chadfield, Mark S; Sørensen, Dorte B; Offenberg, Hanne; Bisgaard, Magne; Jensen, Henrik E


    Host-pathogen interactions of Pasteurella multocida isolates of different origin were studied in a mouse model, focusing on pathology, bacterial load and expression of the metalloproteinase MMP9 and its inhibitor TIMP1. Intranasal inoculation with one of three doses (10(6), 10(4), 10(2)CFU) of an isolate from porcine pneumonia or fowl cholera showed marked differences between the two isolates. The avian isolate was highly pathogenic with severe signs of necrotizing pneumonia, liver necrosis and high bacterial load in lung and liver. Clinical signs and pathology related to the porcine isolate were dose dependent and consisted of exudative bronchopneumonia, abscess formation in liver and a lower bacterial load in lung and liver. Both isolates caused increased expression of MMP9 and TIMP1. In conclusion, evaluation and comparison of pathogenicity and host-pathogen interaction of P. multocida isolates from different hosts is possible in the intranasal murine model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Preclinical Mouse Models of Neurofibromatosis (United States)


    and merlin, together function upstream of the Hippo/ Salvador /Warts/Yki pathway(35). The McClatchey lab identified and cloned the putative mammalian...skeletal development and growth.” Human Mol Genet 2007; 16: 874-886. Romero , M.I., Lin, L, Lush, M.E., Lei, L., Parada, L.F. and Zhu, Y. Deletion of...mouse. Nat Genet. 1994;7:353-61. 3. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, et al. Ablation of NF1 function in neurons induces

  16. Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. (United States)

    Brimnes, J; Kildsgaard, J; Jacobi, H; Lund, K


    Sublingual immunotherapy (SLIT) is a clinically effective treatment in both pollen and house dust mite-induced rhinitis and asthma. However, the mechanisms by which this is accomplished are not clear. The objective of the current study was to establish a mouse model of rhinitis in order to study the effect and mechanisms of SLIT. Mice were sensitized by intraperitoneal injections of alum-adsorbed Phleum pratense extract. Sensitized mice were SLIT-treated and subsequently challenged intranasally and analysed for clinical symptoms, antibody levels, eosinophilia and T cell response. Intranasal challenge of sensitized mice led to the development of rhinitis characterized by significantly increased sneezing and influx of eosinophils into the nose. Levels of specific IgE were fivefold increased in nasopharyngeal lavage (NAL) fluid and more than doubled in serum. Furthermore, a T-helper type 2 (Th2) like T cell response was observed in local draining lymph nodes. SLIT treatment of sensitized mice reduced sneezing, eosinophilia and IgE levels in the NAL by more than 50%. Moreover, serum levels of IgE and IgG1 as well as T cell response in the draining lymph nodes were also significantly reduced. Treatment for a shorter time or with a lower dose only led to minor reductions of the clinical and immunological parameters, indicating that the effect of SLIT is time and dose dependent. In the present study, we have established a mouse model displaying the hallmarks of allergic rhinitis using a clinically relevant allergen. Using this model, we have demonstrated that SLIT treatment is able to reduce allergic symptoms in a time- and dose-dependent manner.

  17. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model

    Directory of Open Access Journals (Sweden)

    Sharareh Eskandari


    Full Text Available Sharareh Eskandari1, Jaleh Varshosaz1, Mohsen Minaiyan2, Majid Tabbakhian11Department of Pharmaceutics, 2Department of Pharmacology, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IranAbstract: The treatment of brain disorders is one of the greatest challenges in drug delivery because of a variety of main barriers in effective drug transport and maintaining therapeutic concentrations in the brain for a prolonged period. The objective of this study was delivery of valproic acid (VPA to the brain by intranasal route. For this purpose, nanostructured lipid carriers (NLCs were prepared by solvent diffusion method followed by ultrasonication and characterized for size, zeta potential, drug-loading percentage, and release. Six groups of rats each containing six animals received drug-loaded NLCs intraperitoneally (IP or intranasally. Brain responses were then examined by using maximal electroshock (MES. The hind limb tonic extension:flexion inhibition ratio was measured at 15-, 30-, 60-, 90-, and 120-minute intervals. The drug concentration was also measured in plasma and brain at the most protective point using gas chromatography method. The particle size of NLCs was 154 ± 16 nm with drug-loading percentage of 47% ± 0.8% and drug release of 75% ± 1.9% after 21 days. In vivo results showed that there was a significant difference between protective effects of NLCs of VPA and control group 15, 30, 60, and 90 minutes after treatment via intranasal route (P < 0.05. Similar protective effect was observed in rats treated with NLCs of VPA in intranasal route and positive control in IP route (P > 0.05. Results of drug determination in brain and plasma showed that brain:plasma concentration ratio was much higher after intranasal administration of NLCs of VPA than the positive control group (IP route. In conclusion, intranasal administration of NLCs of VPA provided a better protection

  18. Efficacy of vaccination strategies against intranasal challenge with Brucella abortus in BALB/c mice. (United States)

    Surendran, Naveen; Sriranganathan, Nammalwar; Lawler, Heather; Boyle, Stephen M; Hiltbold, Elizabeth M; Heid, Bettina; Zimmerman, Kurt; Witonsky, Sharon G


    Brucellosis is a zoonotic disease affecting 500,000 people worldwide annually. Inhalation of aerosol containing a pathogen is one of the major routes of disease transmission in humans. Currently there are no licensed human vaccines available. Brucella abortus strain RB51 is a USDA approved live attenuated vaccine against cattle brucellosis. In a mouse model, strain RB51 over-expressing superoxide dismutase (SOD) administered intraperitoneally (IP) has been shown to be more protective than strain RB51 against an IP challenge with B. abortus pathogenic strain 2308. However, there is lack of information on the ability of these vaccine strains to protect against intranasal challenge. With the long-term goal of developing a protective vaccine for animals and people against respiratory challenge of Brucella spp., we tested a number of different vaccination strategies against intranasal infection with strain 2308. We employed strains RB51 and RB51SOD to assess the efficacy of route, dose, and prime-boost strategies against strain 2308 challenge. Despite using multiple protocols to enhance mucosal and systemic protection, neither rough RB51 vaccine strains provided respiratory protection against intranasal pathogenic Brucella infection. However, intranasal (IN) administration of B. abortus vaccine strain 19 induced significant (p≤0.05) pulmonary clearance of strain 2308 upon IN challenge infection compared to saline. Further studies are necessary to address host-pathogen interaction in the lung microenvironment and elucidate immune mechanisms to enhance protection against aerosol infection. Published by Elsevier Ltd.

  19. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  20. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  1. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A


    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  2. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia. (United States)

    Wang, Yong; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Li, Puyuan; Liu, Yannan; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Tong, Yigang; Bai, Changqing


    With the emergence of drug-resistant bacteria, finding alternative agents to treat antibiotic-resistant bacterial infections is imperative. A mouse pneumonia model was developed by combining cyclophosphamide pretreatment and Acinetobacter baumannii challenge, and a lytic bacteriophage was evaluated for its therapeutic efficacy in this model by examining the survival rate, bacterial load in the lung and lung pathology. Intranasal instillation with bacteriophage rescued 100% of mice following lethal challenge with A. baumannii. Phage treatment reduced bacterial load in the lung. Microcomputed tomography indicated a reduction in lung inflammation in mice given phage. This research demonstrates that intranasal application of bacteriophage is viable, and could provide complete protection from pneumonia caused by A. baumannii.

  3. Engineering a new mouse model for vitiligo. (United States)

    Manga, Prashiela; Orlow, Seth J


    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  4. Mouse models for core binding factor leukemia. (United States)

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M


    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.

  5. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. (United States)

    Stano, Armando; van der Vlies, André J; Martino, Mikael M; Swartz, Melody A; Hubbell, Jeffrey A; Simeoni, Eleonora


    Degradable polymer nanoparticles (NPs, 50 nm) based on polypropylene sulfide (PPS) were conjugated to thiolated antigen and adjuvant proteins by reversible disulfide bonds and evaluated in mucosal vaccination. Ovalbumin was used as a model antigen, and antigen-conjugated NPs were administered intranasally in the mouse. We show penetration of nasal mucosae, transit via M cells, and uptake by antigen-presenting cells in the nasal-associated lymphoid tissue. Ovalbumin-conjugated NPs induced cytotoxic T lymphocytic responses in lung and spleen tissues, as well as humoral response in mucosal airways. Co-conjugation of the TLR5 ligand flagellin further enhanced humoral responses in the airways as well as in the distant vaginal and rectal mucosal compartments and induced cellular immune responses with a Th1 bias, in contrast with free flagellin. The PPS NP platform thus appears interesting as a platform for intranasally-administered mucosal vaccination for inducing broad mucosal immunity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Digenic Inheritance in Cystinuria Mouse Model (United States)

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia


    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  7. Digenic Inheritance in Cystinuria Mouse Model.

    Directory of Open Access Journals (Sweden)

    Meritxell Espino

    Full Text Available Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months and late stage (8-months of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/- present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/- and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.

  8. Pathogenesis of infection with 2009 pandemic H1N1 influenza virus in isogenic guinea pigs after intranasal or intratracheal inoculation. (United States)

    Wiersma, Lidewij C M; Vogelzang-van Trierum, Stella E; van Amerongen, Geert; van Run, Peter; Nieuwkoop, Nella J; Ladwig, Mechtild; Banneke, Stefanie; Schaefer, Hubert; Kuiken, Thijs; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F


    To elucidate the pathogenesis and transmission of influenza virus, the ferret model is typically used. To investigate protective immune responses, the use of inbred mouse strains has proven invaluable. Here, we describe a study with isogenic guinea pigs, which would uniquely combine the advantages of the mouse and ferret models for influenza virus infection. Strain 2 isogenic guinea pigs were inoculated with H1N1pdm09 influenza virus A/Netherlands/602/09 by the intranasal or intratracheal route. Viral replication kinetics were assessed by determining virus titers in nasal swabs and respiratory tissues, which were also used to assess histopathologic changes and the number of infected cells. In all guinea pigs, virus titers peaked in nasal secretions at day 2 after inoculation. Intranasal inoculation resulted in higher virus excretion via the nose and higher virus titers in the nasal turbinates than intratracheal inoculation. After intranasal inoculation, infectious virus was recovered only from nasal epithelium; after intratracheal inoculation, it was recovered also from trachea, lung, and cerebrum. Histopathologic changes corresponded with virus antigen distribution, being largely limited to nasal epithelium for intranasally infected guinea pigs and more widespread in the respiratory tract for intratracheally infected guinea pigs. In summary, isogenic guinea pigs show promise as a model to investigate the role of humoral and cell-mediated immunities to influenza and their effect on virus transmission. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Mouse models of metastasis: progress and prospects

    Directory of Open Access Journals (Sweden)

    Laura Gómez-Cuadrado


    Full Text Available Metastasis is the spread of cancer cells from a primary tumor to distant sites within the body to establish secondary tumors. Although this is an inefficient process, the consequences are devastating as metastatic disease accounts for >90% of cancer-related deaths. The formation of metastases is the result of a series of events that allow cancer cells to escape from the primary site, survive in the lymphatic system or blood vessels, extravasate and grow at distant sites. The metastatic capacity of a tumor is determined by genetic and epigenetic changes within the cancer cells as well as contributions from cells in the tumor microenvironment. Mouse models have proven to be an important tool for unraveling the complex interactions involved in the metastatic cascade and delineating its many stages. Here, we critically appraise the strengths and weaknesses of the current mouse models and highlight the recent advances that have been made using these models in our understanding of metastasis. We also discuss the use of these models for testing potential therapies and the challenges associated with the translation of these findings into the provision of new and effective treatments for cancer patients.

  10. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus


    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr......) a depression of leukocytes in the peripheral blood was found of the burned mice. This depression was due to a reduction in the polymorphonuclear cells. The burned mice were not able to clear a Pseudomonas aeruginosa wound infection, since the infection spread to the blood as compared to mice only infected...... with P. aeruginosa subcutaneously. The burn model offers an opportunity to study infections under these conditions. The present model can also be used to examine new antibiotics and immune therapy. Our animal model resembling the clinical situation is useful in developing new treatments of burn wound...

  11. Mouse models for dengue vaccines and antivirals. (United States)

    Plummer, Emily M; Shresta, Sujan


    Dengue virus (DENV) has substantial global impact, with an estimated 390million people infected each year. In spite of this, there is currently no approved DENV-specific vaccine or antiviral. One reason for this is the difficulty involved with development of an adequate animal model. While non-human primates support viral replication, they do not exhibit signs of clinical disease. A mouse model is an ideal alternative; however, wild-type mice are resistant to DENV-induced disease. Infection of interferon receptor-deficient mice results in disease that recapitulates key features of severe dengue disease in humans. For the development of vaccines, interferon receptor-deficient mice provide a stringent model for testing vaccine-induced immune components from vaccinated wild-type mice. Copyright © 2014 Elsevier B.V. All rights reserved.


    Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Shishkina, L N; Zamedyanskaya, A S; Nesterov, A E; Glotov, A G; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N


    Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/ head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 μg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs.

  13. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E


    The Mouse Genome Database (MGD, serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  15. Shorter dosing intervals of sublingual immunotherapy lead to more efficacious treatment in a mouse model of allergic inflammation. (United States)

    Rask, C; Brimnes, J; Lund, K


    Current day practice of sublingual immunotherapy (SLIT) includes varying modalities of treatment that differ with regard to formulation, dosing and administration regimens. The aim of this study was to explore the importance of the dosing intervals in SLIT. The immunological effect of increased SLIT dosing frequency was tested in a mouse model of allergic inflammation. Mice sensitized to Phleum pratense (Phl p) were SLIT-treated with the same weekly cumulative dose administered with different administration frequencies. A SLIT sham-treated group was also included. All mice were challenged intra-nasally with Phl p extract following SLIT. Local and systemic cytokine production, eosinophil infiltration into airways and the development of Phl p-specific antibody responses were determined. Higher frequency of sublingual administration of allergen extract has a profound positive impact on the effect of SLIT, measured as induction of IgG and IgA antibodies. The once daily SLIT was the only treatment regimen being able to reduce all systemic Th2 cytokines and systemic IgE antibody responses when compared to sham-treated mice after the intra-nasal challenge period. The group receiving SLIT with the highest frequency of administration had the most pronounced effect of the treatment. In the same group, there was also a higher degree of protection against increase in IgE antibody levels after intra-nasal challenge with the allergen, our data demonstrate that a once daily regimen is more efficacious than regimens where SLIT, with the same weekly cumulative allergen dose, is administered with longer intervals but higher doses.

  16. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis (United States)

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.


    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  17. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan


    The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.

  18. A Transgenic Mouse Model of Poliomyelitis. (United States)

    Koike, Satoshi; Nagata, Noriyo


    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  19. Transgenic Mouse Models of SV40-Induced Cancer. (United States)

    Hudson, Amanda L; Colvin, Emily K


    The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email:

  20. Mouse models of colorectal cancer as preclinical models (United States)

    Buczacki, Simon J.A.; Arends, Mark J.; Adams, David J.


    In this review, we discuss the application of mouse models to the identification and pre‐clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large‐scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross‐species comparative ‘omics‐based approaches to this problem. We highlight recent progress in modelling late‐stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection. PMID:26115037

  1. Mouse Models of Rare Craniofacial Disorders. (United States)

    Achilleos, Annita; Trainor, Paul A


    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. © 2015 Elsevier Inc. All rights reserved.

  2. Transgenic Mouse Model of Chronic Beryllium Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry


    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  3. Modeling Phenotypes of Tuberous Scerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M


    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis, specifically in an attempt to model the lung phenotype seen in a subset of TS...

  4. Modeling Phenotypes of Tuberous Sclerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M


    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis specifically in an attempt to model the lung phenotype seen in a subset of TS...

  5. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin


    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor...... behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons...

  6. Enabled interferon signaling evasion in an immune-competent transgenic mouse model of parainfluenza virus 5 infection. (United States)

    Kraus, Thomas A; Garza, Lily; Horvath, Curt M


    Parainfluenza virus 5 (PIV5 or SV5) infects several mammalian species but is restricted from efficient replication in mice. In humans, PIV5 evades IFN signaling by targeting STAT1 for proteasomal degradation in a STAT2-dependent reaction. In contrast, cell culture experiments have demonstrated that the divergent murine STAT2 protein fails to support STAT1 targeting. Expression of human STAT2 in mouse cells can overcome the species restriction to enable PIV5-induced STAT1 degradation and subsequent IFN antagonism. Here, we describe a transgenic mouse that ubiquitously expresses human STAT2. PIV5 infection induces STAT1 degradation leading to enhanced virus replication and protein expression in the cells from the transgenic mouse but not from the non-transgenic littermates. Importantly, intranasal inoculation with PIV5 results in increased viral load in the lungs of the transgenic mice compared to wild-type littermates. These transgenic mice provide a small animal model to study the role of innate immune evasion in paramyxovirus pathogenesis.

  7. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer. (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J


    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Development of a novel mouse constipation model. (United States)

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin


    To establish a novel mouse constipation model. Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not.

  9. Immune responses to different patterns of exposure to ovalbumin in a mouse model of allergic rhinitis. (United States)

    Liang, Mei-Jun; Fu, Qing-Ling; Jiang, Hong-Yan; Chen, Feng-Hong; Chen, Dong; Chen, De-Hua; Lin, Zhi-Bin; Xu, Rui


    Allergic rhinitis (AR) has been a significant healthcare burden on individuals and society. However, the detailed effect of different patterns of allergen exposure on the development of AR remains controversial. A mouse model of AR was established to address the complex relationships between allergen exposure and the development of AR. Allergic symptom, OVA-specific IgE in serum and nasal lavage fluid, allergic inflammation in nasal tissues were evaluated after intranasal sensitization and challenge of ovalbumin (OVA) in mice treated with two different doses of allergen for different sensitized durations. Exposure to different doses and sensitized durations of OVA were capable of inducing allergic nasal response. Repetitive OVA exposure in the sensitization phase induced the recruitment of eosinophils and goblet cell hyperplasia. The level of OVA-specific IgE in serum depended on OVA exposure and was mediated in a duration-related manner. In addition, mice treated with low-dose OVA for prolonged duration manifested the major features of human local allergic rhinitis. There were dose- and duration-related effects of allergen exposure on the development of AR. LAR was associated with repetitive exposure to low-dose allergen. Thus, allergen avoidance should be an important aim of AR management.

  10. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. (United States)

    Esquela-Kerscher, Aurora; Trang, Phong; Wiggins, Jason F; Patrawala, Lubna; Cheng, Angie; Ford, Lance; Weidhaas, Joanne B; Brown, David; Bader, Andreas G; Slack, Frank J


    MicroRNAs have been increasingly implicated in human cancer and interest has grown about the potential to use microRNAs to combat cancer. Lung cancer is the most prevalent form of cancer worldwide and lacks effective therapies. Here we have used both in vitro and in vivo approaches to show that the let-7 microRNA directly represses cancer growth in the lung. We find that let-7 inhibits the growth of multiple human lung cancer cell lines in culture, as well as the growth of lung cancer cell xenografts in immunodeficient mice. Using an established orthotopic mouse lung cancer model, we show that intranasal let-7 administration reduces tumor formation in vivo in the lungs of animals expressing a G12D activating mutation for the K-ras oncogene. These findings provide direct evidence that let-7 acts as a tumor suppressor gene in the lung and indicate that this miRNA may be useful as a novel therapeutic agent in lung cancer.

  11. Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. (United States)

    Lee, Hwan Hee; Park, Heejin; Sung, Gi-Ho; Lee, Kanghyo; Lee, Taeho; Lee, Ilseob; Park, Man-seong; Jung, Yong Woo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun


    The immune-modulatory as well as anti-influenza effects of Cordyceps extract were investigated using a DBA/2 mouse model. Three different concentrations of Cordyceps extract, red ginseng extract, or drinking water were orally administered to mice for seven days, and then the mice were intranasally infected with 2009 pandemic influenza H1N1 virus. Body weight changes and survival rate were measured daily post-infection. Plasma IL-12, TNF-α, and the frequency of natural killer (NK) cells were measured on day 4 post-infection. The DBA/2 strain was highly susceptible to H1N1 virus infection. We also found that Cordyceps extract had an anti-influenza effect that was associated with stable body weight and reduced mortality. The anti-viral effect of Cordyceps extract on influenza infection was mediated presumably by increased IL-12 expression and greater number of NK cells. However, high TNF-α expression after infection of H1N1 virus in mice not receiving treatment with Cordyceps extract suggested a two-sided effect of the extract on host immune regulation.

  12. CT of intranasal pleomorphic adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M.; Fatterpekar, G.M.; Mukherji, S.K.; Buenting, J. [Department of Radiology, 3324 Infirmary CB F 7510, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7510 (United States)


    Intranasal pleomorphic adenoma is rare. We report the CT features this tumor in a 41-year-old woman who presented to us with right nasal obstruction and a 2-day history of epistaxis. (orig.) With 3 figs., 9 refs.

  13. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry


    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  14. Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes

    Directory of Open Access Journals (Sweden)

    Yanxing Chen


    Full Text Available General anesthesia increases the risk for cognitive impairment post operation, especially in the elderly and vulnerable individuals. Recent animal studies on the impact of anesthesia on postoperative cognitive impairment have provided some valuable insights, but much remains to be understood. Here, by using mice of various ages and conditions, we found that anesthesia with propofol and sevoflurane caused significant deficits in spatial learning and memory, as tested using Morris Water Maze (MWM 2–6 days after anesthesia exposure, in aged (17–18 months old wild-type (WT mice and in adult (7–8 months old 3xTg-AD mice (a triple transgenic mouse model of Alzheimer’s disease (AD, but not in adult WT mice. Anesthesia resulted in long-term neurobehavioral changes in the fear conditioning task carried out 65 days after exposure to anesthesia in 3xTg-AD mice. Importantly, daily intranasal administration of insulin (1.75 U/mouse/day for only 3 days prior to anesthesia completely prevented the anesthesia-induced deficits in spatial learning and memory and the long-term neurobehavioral changes tested 65 days after exposure to anesthesia in 3xTg-AD mice. These results indicate that aging and AD-like brain pathology increase the vulnerability to cognitive impairment after anesthesia and that intranasal treatment with insulin can prevent anesthesia-induced cognitive impairment.

  15. Intranasal delivery of antipsychotic drugs. (United States)

    Katare, Yogesh K; Piazza, Justin E; Bhandari, Jayant; Daya, Ritesh P; Akilan, Kosalan; Simpson, Madeline J; Hoare, Todd; Mishra, Ram K


    Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Laurence


    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  17. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Lawrence


    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  18. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    Directory of Open Access Journals (Sweden)

    Derek Hood


    Full Text Available Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi. The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+ bears a mutation in a gene (Evi1, also known as Mecom that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90% of middle ear infection and bacterial titres (104-105 colony-forming units/µl in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.

  19. Mouse models to study dengue virus immunology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Raphaël M. Zellweger


    Full Text Available The development of a compelling murine model of dengue virus (DENV infection has been challenging, because dengue virus clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows to investigate questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of antiviral drug or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.

  20. Population Pharmacokinetics of Intranasal Scopolamine (United States)

    Wu, L.; Chow, D. S. L.; Putcha, L.


    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  1. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations. (United States)

    Kirma, Nameer B; Tekmal, Rajeshwar R


    Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mouse models for gastric cancer: Matching models to biological questions. (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias; Putoczki, Tracy L


    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics. © 2016 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. Mouse Model of Human Hereditary Pancreatitis (United States)


    trypsin-dependent pathway in pancreatitis and to begin testing therapeutic and preventive approaches. Mutations in the digestive enzyme trypsinogen...expression of mutant trypsinogens at the protein level, we will perform chromatographic analysis of the total trypsinogen fraction isolated from mouse...pancreata (Subtask 4a). This subtask has been delayed until homozygous animals could be generated. Homozygous animals are now available and chromatographic

  4. Novel Transgenic Mouse Model of Polycystic Kidney Disease. (United States)

    Kito, Yusuke; Saigo, Chiemi; Takeuchi, Tamotsu


    Transmembrane protein 207 (TMEM207) is characterized as an important molecule for invasiveness of gastric signet-ring cell carcinoma cells. To clarify the pathobiological effects of TMEM207, we generated 13 transgenic mouse strains, designated C57BL/6-transgenic (Tg) (ITF-TMEM207), where the mouse Tmem207 is ectopically expressed under the proximal promoter of the murine intestinal trefoil factor gene. A C57BL/6-Tg (ITF-TMEM207) mouse strain unexpectedly exhibited a high incidence of spontaneous kidney cysts with histopathological features resembling human polycystic kidney disease, which were found in approximately all mice within 1 year. TMEM207 immunoreactivity was found in noncystic kidney tubules and in renal cysts of the transgenic mice. The ITF-TMEM207 construct was inserted into Mitf at chromosome 6. Cystic kidney was not observed in other C57BL/6-Tg (ITF-TMEM207) transgenic mouse strains. Although several genetically manipulated animal models exist, this mouse strain harboring a genetic mutation in Mitf and overexpression of Tmem207 protein was not reported as a model of polycystic kidney disease until now. This study demonstrates that the C57BL/6-Tg (ITF-TMEM207) mouse may be a suitable model for understanding human polycystic kidney disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Airway remodeling in a mouse asthma model assessed by in-vivo respiratory-gated micro-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lederlin, Mathieu; Montaudon, Michel [Universite Bordeaux 2, Laboratoire de Physiologie Cellulaire Respiratoire, Bordeaux (France); Institut National de la Sante et de la Recherche Medicale (INSERM), U885, Bordeaux (France); CHU Bordeaux, Unite d' Imagerie Thoracique, Pessac (France); Ozier, Annaig; Begueret, Hugues; Ousova, Olga; Marthan, Roger; Berger, Patrick [Universite Bordeaux 2, Laboratoire de Physiologie Cellulaire Respiratoire, Bordeaux (France); Institut National de la Sante et de la Recherche Medicale (INSERM), U885, Bordeaux (France); Laurent, Francois [Universite Bordeaux 2, Laboratoire de Physiologie Cellulaire Respiratoire, Bordeaux (France); Institut National de la Sante et de la Recherche Medicale (INSERM), U885, Bordeaux (France); CHU Bordeaux, Unite d' Imagerie Thoracique, Pessac (France); CHU de Bordeaux, Hopital du Haut-Leveque, Hopital Cardiologique, Unite d' Imagerie Thoracique et Cardiovasculaire, Pessac (France)


    The aim of our study was to evaluate the feasibility of non-invasive respiratory-gated micro-computed tomography (micro-CT) for assessment of airway remodelling in a mouse asthma model. Six female BALB/c mice were challenged intranasally with ovalbumin. A control group of six mice received saline inhalation. All mice underwent plethysmographic study and micro-CT. For each mouse, peribronchial attenuation values of 12 bronchi were measured, from which a peribronchial density index (PBDI) was computed. Mice were then sacrificed and lungs examined histologically. Final analysis involved 10 out of 12 mice. Agreement of measurements across observers and over time was very good (intraclass correlation coefficients: 0.94-0.98). There was a significant difference in PBDI between asthmatic and control mice (-210 vs. -338.9 HU, P=0.008). PBDI values were correlated to bronchial muscle area (r=0.72, P=0.018). This study shows that respiratory-gated micro-CT may allow non-invasive monitoring of bronchial remodelling in asthmatic mice and evaluation of innovative treatment effects. (orig.)

  6. Mouse models for understanding human developmental anomalies

    International Nuclear Information System (INIS)

    Generoso, W.M.


    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals

  7. Mouse models for understanding human developmental anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.


    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  8. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.


    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  9. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  10. Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma. (United States)

    Hesse, Laura; Nawijn, Martijn C


    Allergic asthma, caused by inhaled allergens such as house dust mite or grass pollen, is characterized by reversible airway obstruction, associated with an eosinophilic inflammation of the airways, as well as airway hyper responsiveness and remodeling. The inhaled allergens trigger a type-2 inflammatory response with involvement of innate lymphoid cells (ILC2) and Th2 cells, resulting in high production of immunoglobulin E (IgE) antibodies. Consequently, renewed allergen exposure results in a classic allergic response with a distinct early and late phase, both resulting in bronchoconstriction and shortness of breath. Allergen specific immunotherapy (AIT) is the only treatment that is capable of modifying the immunological process underlying allergic responses including allergic asthma and both subcutaneous AIT (SCIT) as well as sublingual AIT (SLIT) have proven clinical efficacy in long term suppression of the allergic response. Although these treatments are very successful for rhinitis, application of AIT in asthma is hampered by variable efficacy, long duration of treatment, and the risk of severe side-effects. A more profound understanding of the mechanisms by which AIT achieves tolerance to allergens in sensitized individuals is needed to improve its efficacy. Mouse models have been very valuable as a preclinical model to characterize the mechanisms of desensitization in AIT and to evaluate novel approaches for improved efficacy. Here, we present a rapid and reproducible mouse model for allergen-specific immunotherapy. In this model, mice are sensitized with two injections of allergen absorbed to aluminum hydroxide to induce allergic sensitization, followed by subcutaneous injections (SCIT) or sublingual administrations (SLIT) of the allergen as immunotherapy treatment. Finally, mice are challenged by three intranasal allergen administrations. We will describe the protocols as well as the most important read-out parameters including measurement of invasive lung

  11. Intranasal epidermal growth factor treatment rescues neonatal brain injury (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio


    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  12. Intranasal sedatives in pediatric dentistry. (United States)

    AlSarheed, Maha A


    To identify the intranasal (IN) sedatives used to achieve conscious sedation during dental procedures amongst children. A literature review was conducted by identifying relevant studies through searches on Medline. Search included IN of midazolam, ketamine, sufentanil, dexmedetomidine, clonidine, haloperidol, and loranzepam. Studies included were conducted amongst individuals below 18 years, published in English, and were not restricted by year. Exclusion criteria were articles that did not focus on pediatric dentistry.  Twenty studies were included. The most commonly used sedatives were midazolam, followed by ketamine and sufentanil. Onset of action for IN midazolam was 5-15 minutes (min), however, IN ketamine was faster (mean 5.74 min), while both IN sufentanil (mean 20 min) and IN dexmedetomidine (mean 25 min) were slow in comparison. Midazolam was effective for modifying behavior in mild to moderately anxious children, however, for more invasive or prolonged procedures, stronger sedatives, such as IN ketamine, IN sufentanil were recommended. In addition, ketamine fared better in overall success rate (89%) when compared with IN midazolam (69%). Intranasal dexmedetomidine was only used as pre-medication amongst children. While its' onset of action is longer when compared with IN midazolam, it produced deeper sedation at the time of separation from the parent and at the time of anesthesia induction. Intranasal midazolam, ketamine, and sufentanil are effective and safe for conscious sedation, while intranasal midazolam, dexmedetomidine, and sufentanil have proven to be effective premedications.

  13. Intranasal sedatives in pediatric dentistry (United States)

    AlSarheed, Maha A.


    Objectives: To identify the intranasal (IN) sedatives used to achieve conscious sedation during dental procedures amongst children. Methods: A literature review was conducted by identifying relevant studies through searches on Medline. Search included IN of midazolam, ketamine, sufentanil, dexmedetomidine, clonidine, haloperidol and loranzepam. Studies included were conducted amongst individuals below 18 years, published in English, and were not restricted by year. Exclusion criteria were articles that did not focus on pediatric dentistry. Results: Twenty studies were included. The most commonly used sedatives were midazolam, followed by ketamine and sufentanil. Onset of action for IN midazolam was 5-15 minutes (min), however, IN ketamine was faster (mean 5.74 min), while both IN sufentanil (mean 20 min) and IN dexmedetomidine (mean 25 min) were slow in comparison. Midazolam was effective for modifying behavior in mild to moderately anxious children, however, for more invasive or prolonged procedures, stronger sedatives, such as IN ketamine, IN sufentanil were recommended. In addition, ketamine fared better in overall success rate (89%) when compared with IN midazolam (69%). Intranasal dexmedetomidine was only used as pre-medication amongst children. While its’ onset of action is longer when compared with IN midazolam, it produced deeper sedation at the time of separation from the parent and at the time of anesthesia induction. Conclusion: Intranasal midazolam, ketamine and sufentanil are effective and safe for conscious sedation, while intranasal midazolam, dexmedetomidine and sufentanil have proven to be effective premedications. PMID:27570849

  14. Assessment of Public Health and Economic Impact of Intranasal Live-Attenuated Influenza Vaccination of Children in France Using a Dynamic Transmission Model. (United States)

    Gerlier, L; Lamotte, M; Grenèche, S; Lenne, X; Carrat, F; Weil-Olivier, C; Damm, O; Schwehm, M; Eichner, M


    We estimated the epidemiological and economic impact of extending the French influenza vaccination programme from at-risk/elderly (≥65 years) only to healthy children (2-17 years). A deterministic, age-structured, dynamic transmission model was used to simulate the transmission of influenza in the French population, using the current vaccination coverage with trivalent inactivated vaccine (TIV) in at-risk/elderly individuals (current strategy) or gradually extending the vaccination to healthy children (aged 2-17 years) with intranasal, quadrivalent live-attenuated influenza vaccine (QLAIV) from current uptake up to 50% (evaluated strategy). Epidemiological, medical resource use and cost data were taken from international literature and country-specific information. The model was calibrated to the observed numbers of influenza-like illness visits/year. The 10-year number of symptomatic cases of confirmed influenza and direct medical costs ('all-payer') were calculated for the 0-17- (direct and indirect effects) and ≥18-year-old (indirect effect). The incremental cost-effectiveness ratio (ICER) was calculated for the total population, using a 4% discount rate/year. Assuming 2.3 million visits/year and 1960 deaths/year, the model calibration yielded an all-year average basic reproduction number (R 0 ) of 1.27. In the population aged 0-17 years, QLAIV prevented 865,000 influenza cases/year (58.4%), preventing 10-year direct medical expenses of €374 million. In those aged ≥18 years with unchanged TIV coverage, 1.2 million cases/year were averted (27.6%) via indirect effects (additionally prevented expenses, €457 million). On average, 613 influenza-related deaths were averted annually overall. The ICER was €18,001/life-year gained. The evaluated strategy had a 98% probability of being cost-effective at a €31,000/life-year gained threshold. The model demonstrated strong direct and indirect benefits of protecting healthy children against influenza with

  15. A Mouse Model for Laser-induced Choroidal Neovascularization. (United States)

    Shah, Ronil S; Soetikno, Brian T; Lajko, Michelle; Fawzi, Amani A


    The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.

  16. Transgenic mouse models--a seminal breakthrough in oncogene research. (United States)

    Smith, Harvey W; Muller, William J


    Transgenic mouse models are an integral part of modern cancer research, providing a versatile and powerful means of studying tumor initiation and progression, metastasis, and therapy. The present repertoire of these models is very diverse, with a wide range of strategies used to induce tumorigenesis by expressing dominant-acting oncogenes or disrupting the function of tumor-suppressor genes, often in a highly tissue-specific manner. Much of the current technology used in the creation and characterization of transgenic mouse models of cancer will be discussed in depth elsewhere. However, to gain a complete appreciation and understanding of these complex models, it is important to review the history of the field. Transgenic mouse models of cancer evolved as a new and, compared with the early cell-culture-based techniques, more physiologically relevant approach for studying the properties and transforming capacities of oncogenes. Here, we will describe early transgenic mouse models of cancer based on tissue-specific expression of oncogenes and discuss their impact on the development of this still rapidly growing field.

  17. Mouse Models of Fragile X-Associated Tremor Ataxia (United States)

    Berman, Robert F.; Willemsen, Rob


    Objective To describe the development of mouse models of Fragile X-associated Tremor/Ataxia (FXTAS) and the behavioral, histological and molecular characteristics of these mice. Method This paper compares the pathophysiology and neuropsychological features of FXTAS in humans to the major mouse models of FXTAS. Specifically, the development of a transgenic mouse line carrying an expanded CGG trinucleotide repeat in the 5′untranslated regions of the Fmr1 gene is described along with a description of the characteristic intranuclear ubiquitin positive inclusions and the behavioral sequella observed in these mice. Results CGG KI mice model many of the important features of FXTAS, although some aspects are not well modeled in mice. Aspects of FXTAS that are modeled well include elevated levels of Fmr1 mRNA, reduced levels of Fmrp, the presence of intranuclear inclusions that develop with age and show similar distributions within neurons, and neuropsychological and cognitive deficits, including poor motor function, impaired memory and evidence of increased anxiety. Features of FXTAS that are not well modeled in these mice include intentional tremors that are observed in some FXTAS patients but have not been reported in CGG KI mice. In addition, while intranuclear inclusions in astrocytes are very prominent in FXTAS, there are relatively few observed in CGG KI mice. A number of additional features of FXTAS have not been systematically examined in mouse models yet, including white matter disease, hyperintensities in T2-weighted MRI, and brain atrophy, although these are currently under investigation in our laboratories. Conclusion The available mouse model has provided valuable insights into the molecular biology and pathophysiology of FXTAS, and will be particularly useful for developing and testing new therapeutic treatments in the future. PMID:19574928

  18. Inhalational Gentamicin Treatment Is Effective Against Pneumonic Plague in a Mouse Model

    Directory of Open Access Journals (Sweden)

    David Gur


    Full Text Available Pneumonic plague is an infectious disease characterized by rapid and fulminant development of acute pneumonia and septicemia that results in death within days of exposure. The causative agent of pneumonic plague, Yersinia pestis (Y. pestis, is a Tier-1 bio-threat agent. Parenteral antibiotic treatment is effective when given within a narrow therapeutic window after symptom onset. However, the non-specific “flu-like” symptoms often lead to delayed diagnosis and therapy. In this study, we evaluated inhalational gentamicin therapy in an infected mouse model as a means to improve antibiotic treatment efficacy. Inhalation is an attractive route for treating lung infections. The advantages include directly dosing the main infection site, the relative accessibility for administration and the lack of extensive enzymatic drug degradation machinery. In this study, we show that inhalational gentamicin treatment administered 24 h post-infection, prior to the appearance of symptoms, protected against lethal intranasal challenge with the fully virulent Y. pestis Kimberley53 strain (Kim53. Similarly, a high survival rate was demonstrated in mice treated by inhalation with another aminoglycoside, tobramycin, for which an FDA-approved inhaled formulation is clinically available for cystic fibrosis patients. Inhalational treatment with gentamicin 48 h post-infection (to symptomatic mice was also successful against a Y. pestis challenge dose of 10 i.n.LD50. Whole-body imaging using IVIS technology demonstrated that adding inhalational gentamicin to parenteral therapy accelerated the clearance of Y. pestis from the lungs of infected animals. This may reduce disease severity and the risk of secondary infections. In conclusion, our data suggest that inhalational therapy with aerosolized gentamicin may be an effective prophylactic treatment against pneumonic plague. We also demonstrate the benefit of combining this treatment with a conventional parenteral

  19. The clinical implications of mouse models of enhanced anxiety (United States)

    Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas


    Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’ animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs. PMID:21901080

  20. Reconstruction of human mammary tissues in a mouse model. (United States)

    Proia, David A; Kuperwasser, Charlotte


    Establishing a model system that more accurately recapitulates both normal and neoplastic breast epithelial development in rodents is central to studying human breast carcinogenesis. However, the inability of human breast epithelial cells to colonize mouse mammary fat pads is problematic. Considering that the human breast is a more fibrous tissue than is the adipose-rich stroma of the murine mammary gland, our group sought to bypass the effects of the rodent microenvironment through incorporation of human stromal fibroblasts. We have been successful in reproducibly recreating functionally normal breast tissues from reduction mammoplasty tissues, in what we term the human-in-mouse (HIM) model. Here we describe our relatively simple and inexpensive techniques for generating this orthotopic xenograft model. Whether the model is to be applied for understanding normal human breast development or tumorigenesis, investigators with minimal animal surgery skills, basic cell culture techniques and access to human breast tissue will be able to generate humanized mouse glands within 3 months. Clearing the mouse of its endogenous epithelium with subsequent stromal humanization takes 1 month. The subsequent implantation of co-mixed human epithelial cells and stromal cells occurs 2 weeks after humanization, so investigators should expect to observe the desired outgrowths 2 months afterward. As a whole, this model system has the potential to improve the understanding of crosstalk between tissue stroma and the epithelium as well as factors involved in breast stem cell biology tumor initiation and progression.

  1. Deposition of intranasal glucocorticoids--preliminary study. (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz


    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  2. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  3. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu


    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  4. Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model. (United States)

    Norris, Francesca C; Siow, Bernard M; Cleary, Jon O; Wells, Jack A; De Castro, Sandra C P; Ordidge, Roger J; Greene, Nicholas D E; Copp, Andrew J; Scambler, Peter J; Alexander, Daniel C; Lythgoe, Mark F


    Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three-dimensional fast spin-echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. © 2014 Wiley Periodicals, Inc.

  5. Beneficial effects of Galectin-9 on allergen-specific sublingual immunotherapy in a Dermatophagoides farinae-induced mouse model of chronic asthma. (United States)

    Ikeda, Masaki; Katoh, Shigeki; Shimizu, Hiroki; Hasegawa, Akira; Ohashi-Doi, Katsuyo; Oka, Mikio


    Allergen-specific sublingual immunotherapy is a potential disease-modifying treatment for allergic asthma. Galectin-9 (Gal-9), a β-galactoside-binding protein with various biologic effects, acts as an immunomodulator in excessive immunologic reactions by expanding regulatory T cells (Treg) and enhancing transforming growth factor (TGF)-β signaling. We investigated the efficacy of sublingually administered Gal-9 as an adjuvant to a specific allergen in a Dermatophagoides farinae (Df)-induced mouse model of chronic asthma. BALB/c mice were intranasally sensitized with Df extract 5 days/week for 5 weeks, and then sublingual Df-allergen extract for 2 weeks (5 days/week). Three days after the final sublingual treatment, mice were intranasally challenged with Df extract. The early asthmatic response (EAR) was evaluated 5 min after the last Df challenge. Airway hyperresponsiveness (AHR) was assayed and bronchoalveolar lavage (BAL) was performed 24 h after the last allergen challenge. Serum IgE and cytokine levels, and number of inflammatory cells in the BAL fluid (BALF) were analyzed. Sublingual Df treatment in the presence of Gal-9, but not alone, significantly reduced AHR; EAR; number of eosinophils and interleukin-13 in the BALF; and serum IgE levels. BALF TGF-β1 levels were significantly increased in the presence of Gal-9 compared with Df alone. Treg depletion blocked the inhibitory effects of Gal-9 on the EAR, AHR, eosinophilic airway inflammation, and Df-specific serum IgE levels, and suppressed BALF TGF-β1 levels. Gal-9 exhibited beneficial effects of sublingual Df allergen-specific immunotherapy in a Df-induced mouse model of chronic asthma, possibly by Gal-9-induced TGF-β1 production in the lung. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  6. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot


    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  7. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy


    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  8. Modeling fragile X syndrome in the Fmr1 knockout mouse (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.


    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  9. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S


    Full Text Available Abstract Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in

  10. Current State of Animal (Mouse Modeling in Melanoma Research

    Directory of Open Access Journals (Sweden)

    Omer F. Kuzu


    Full Text Available Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  11. Uterine disorders and pregnancy complications: insights from mouse models


    Lim, Hyunjung Jade; Wang, Haibin


    Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction be...

  12. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  13. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    Full Text Available Cholera toxin (CT is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN, IP, and subcutaneously (SC. Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64-100% survival. Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.

  14. Mouse-based genetic modeling and analysis of Down syndrome (United States)

    Xing, Zhuo; Li, Yichen; Pao, Annie; Bennett, Abigail S.; Tycko, Benjamin; Mobley, William C.; Yu, Y. Eugene


    Introduction Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. Sources of data A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. Areas of agreement Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. Areas of controversy Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. Growing points Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers. PMID:27789459

  15. Coccyx fractures treated with intranasal calcitonin. (United States)

    Foye, Patrick M; Shupper, Peter; Wendel, Ian


    Treating pain associated with acute coccyx fractures can be challenging. Intranasal calcitonin has been used to treat acute pain after vertebral fracture, and may even accelerate fracture healing. However, intranasal calcitonin has never previously been published as part of the treatment of acute coccyx fractures. To examine a series of cases in which intranasal calcitonin was used to treat coccydynia related to coccyx fractures. Case series and literature review. Outpatient university-based coccyx pain center. After use of intranasal calcitonin, pain levels decreased, adverse events were minimal, and the medication was generally well tolerated. As this is not a randomized control trial, the patients treated with intranasal calcitonin were not compared to a control group. Additionally, the sample size of 8 patients is relatively small. We propose that clinicians consider use of intranasal calcitonin for the treatment of pain due to acute coccyx fractures.

  16. Mouse models of myeloproliferative neoplasms: JAK of all grades

    Directory of Open Access Journals (Sweden)

    Juan Li


    Full Text Available In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs. Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in, which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.

  17. Transgenic mouse models of metabolic bone disease. (United States)

    McCauley, L K


    The approach of gene-targeted animal models is likely the most important experimental tool contributing to recent advances in skeletal biology. Modifying the expression of a gene in vivo, and the analysis of the consequences of the mutation, are central to the understanding of gene function during development and physiology, and therefore to our understanding of the gene's role in disease states. Researchers had been limited to animal models primarily involving pharmaceutical manipulations and spontaneous mutations. With the advent of gene targeting, however, animal models that impact our understanding of metabolic bone disease have evolved dramatically. Interestingly, some genes that were expected to yield dramatic phenotypes in bone, such as estrogen receptor-alpha or osteopontin, proved to have subtle phenotypes, whereas other genes, such as interleukin-5 or osteoprotegerin, were initially identified as having a role in bone metabolism via the analysis of their phenotype after gene ablation or overexpression. Particularly important has been the advance in knowledge of osteoblast and osteoclast independent and dependent roles via the selective targeting of genes and the consequent disruption of bone formation, bone resorption, or both. Our understanding of interactions of the skeletal system with other systems, ie, the vascular system and homeostatic controls of adipogenesis, has evolved via animal models such as the matrix gla protein, knock-out, and the targeted overexpression of Delta FosB. Challenging transgenic models such as the osteopontin-deficient mice with mediators of bone remodeling like parathyroid hormone and mechanical stimuli and extending phenotype characterization to mechanistic in vitro studies of primary bone cells is providing additional insight into the mechanisms involved in pathologic states and their potentials for therapeutic strategies. This review segregates characterization of transgenic models based on the category of gene altered

  18. Intranasal insulin therapy: the clinical realities

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, Sten; Hvidberg, A


    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... was low, since intranasal insulin doses were approximately 20 times higher than subcutaneous doses. The frequency of hypoglycaemia was similar during intranasal and subcutaneous insulin therapy, and nasal mucosa physiology was unaffected after intranasal insulin. We conclude that due to low...

  19. Update on Intranasal Medications in Rhinosinusitis. (United States)

    Snidvongs, Kornkiat; Thanaviratananich, Sanguansak


    This review describes beneficial effects and adverse events of various intranasal medications in treating rhinosinusitis. Application of intranasal steroids has been described in treating all subtypes of adult rhinosinusitis, but reports are limited in pediatrics and mostly in acute pediatric subgroups resulted in benefits While saline irrigation is effective for patients with chronic rhinosinusitis without polyps and in pediatric acute rhinosinusitis, there is no evidence yet for saline drips and sprays. Application of intranasal antifungals and nasal irrigation with surfactant brings more harm than benefits. There is no evidence supporting the use of intranasal antibiotics. We also review influence of devices, methods, and patient head position on nasal and paranasal sinus drug delivery.

  20. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.


    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  1. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart


    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  2. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi


    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  3. A consensus definition of cataplexy in mouse models of narcolepsy. (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M


    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  4. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis. (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David


    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia


    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  6. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.


    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  7. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Elena Sasarman


    Full Text Available The discovery of communication systems regulating bacterial virulence hasafforded a novel opportunity to control infectious bacteria without interfering withgrowth. In this paper we describe the effect of subinhibitory concentrations of phenyl-lactic acid (PLA on the pathogenicity of Pseudomonas aeruginosa in mice. The animalswere inoculated by oral (p.o., intranasal (i.n., intravenous (i.v. and intraperitoneal (i.p.routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed upduring 16 days after infection and the body weight, mortality and morbidity rate weremeasured every day. The microbial charge was studied by viable cell counts in lungs,spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosabacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route and veryhigh cell counts in blood, lungs, intestine and spleen. In contrast, the animal batchesinfected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA can act as a potent antagonist of Pseudomonas (P. aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  8. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang


    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  9. Mouse Models of Allergic Diseases: TSLP and Its Functional Roles

    Directory of Open Access Journals (Sweden)

    Miyuki Omori-Miyake


    Full Text Available The cytokine TSLP was originally identified in a murine thymic stromal cell line as a lymphoid growth factor. After the discovery of TSLP, extensive molecular genetic analyses and gene targeting experiments have demonstrated that TSLP plays an essential role in allergic diseases. In this review, we discuss the current status of TSLP and its functional role in allergic diseases particularly by focusing on effects of TSLP on haematopoietic cells in mouse models. It is our conclusion that a number of research areas, i.e., a new source of TSLP, effects of TSLP on non-haematopoietic and haematopoietic cells, synergistic interactions of cytokines including IL-25 and IL-33 and a regulation of TSLP expression and its function, are critically needed to understand the whole picture of TSLP involvement in allergic diseases. The mouse models will thus contribute further to our understanding of TSLP involvement in allergic diseases and development of therapeutic measures for human allergic diseases.

  10. A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer. (United States)

    Hollern, Daniel P; Andrechek, Eran R


    Genomic variability limits the efficacy of breast cancer therapy. To simplify the study of the molecular complexity of breast cancer, researchers have used mouse mammary tumor models. However, the degree to which mouse models model human breast cancer and are reflective of the human heterogeneity has yet to be demonstrated with gene expression studies on a large scale. To this end, we have built a database consisting of 1,172 mouse mammary tumor samples from 26 different major oncogenic mouse mammary tumor models. In this dataset we identified heterogeneity within mouse models and noted a surprising amount of interrelatedness between models, despite differences in the tumor initiating oncogene. Making comparisons between models, we identified differentially expressed genes with alteration correlating with initiating events in each model. Using annotation tools, we identified transcription factors with a high likelihood of activity within these models. Gene signatures predicted activation of major cell signaling pathways in each model, predictions that correlated with previous genetic studies. Finally, we noted relationships between mouse models and human breast cancer at both the level of gene expression and predicted signal pathway activity. Importantly, we identified individual mouse models that recapitulate human breast cancer heterogeneity at the level of gene expression. This work underscores the importance of fully characterizing mouse tumor biology at molecular, histological and genomic levels before a valid comparison to human breast cancer may be drawn and provides an important bioinformatic resource.

  11. Mouse models of DNA mismatch repair in cancer research. (United States)

    Lee, Kyeryoung; Tosti, Elena; Edelmann, Winfried


    Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Genetically engineered mucin mouse models for inflammation and cancer. (United States)

    Joshi, Suhasini; Kumar, Sushil; Bafna, Sangeeta; Rachagani, Satyanarayana; Wagner, Kay-Uwe; Jain, Maneesh; Batra, Surinder K


    Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer.

  13. Bronchus-associated lymphoid tissue (BALT and survival in a vaccine mouse model of tularemia.

    Directory of Open Access Journals (Sweden)

    Damiana Chiavolini


    Full Text Available Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal adjuvant.Mice were immunized via the nasal route with lipopolysaccharide isolated from F. tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with the F. tularensis attenuated live vaccine strain (LVS. Mouse survival and analysis of a number of immune parameters were conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of bronchus-associated lymphoid tissue (BALT. BALT areas contained proliferating B and T cells, germinal centers, T cell infiltrates, dendritic cells (DCs. We also observed local production of antibody generating cells and homeostatic chemokines in BALT areas.These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F. tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its formation.

  14. Hypersociability in the Angelman syndrome mouse model. (United States)

    Stoppel, David C; Anderson, Matthew P


    Deletions and reciprocal triplications of the human chromosomal 15q11-13 region cause two distinct neurodevelopmental disorders. Maternally-derived deletions or inactivating mutations of UBE3A, a 15q11-13 gene expressed exclusively from the maternal allele in neurons, cause Angelman syndrome, characterized by intellectual disability, motor deficits, seizures, and a characteristic increased social smiling, laughing, and eye contact. Conversely, maternally-derived triplications of 15q11-13 cause a behavioral disorder on the autism spectrum with clinical features that include decreased sociability that we recently reconstituted in mice with Ube3a alone. Based on the unique sociability features reported in Angelman syndrome and the repressed sociability observed when Ube3a gene dosage is increased, we hypothesized that mice with neuronal UBE3A loss that models Angelman syndrome would display evidence of hypersocial behavior. We report that mice with maternally-inherited Ube3a gene deletion (Ube3a mKO ) have a prolonged preference for, and interaction with, social stimuli in the three chamber social approach task. By contrast, interactions with a novel object are reduced. Further, ultrasonic vocalizations and physical contacts are increased in male and female Ube3a mKO mice paired with an unfamiliar genotype-matched female. Single housing wild type mice increased these same social behavior parameters to levels observed in Ube3a mKO mice where this effect was partially occluded. These results indicate sociability is repressed by social experience and the endogenous levels of UBE3A protein and suggest some social behavioral features observed in Angelman syndrome may reflect an increased social motivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Brain gene expression of a sporadic (icv-STZ Mouse and a familial mouse model (3xTg-AD mouse of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yanxing Chen

    Full Text Available Alzheimer's disease (AD can be divided into sporadic AD (SAD and familial AD (FAD. Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ precursor protein (APP. A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv administration of streptozocin (STZ, icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.

  16. A mouse model of antepartum stillbirth. (United States)

    Rahman, Anum; Cahill, Lindsay S; Zhou, Yu-Qing; Hoggarth, Johnathan; Rennie, Monique Y; Seed, Mike; Macgowan, Christopher K; Kingdom, John C; Adamson, S Lee; Sled, John G


    Many stillbirths of normally formed fetuses in the third trimester could be prevented via delivery if reliable means to anticipate this outcome existed. However, because the etiology of these stillbirths is often unexplained and although the underlying mechanism is presumed to be hypoxia from placental insufficiency, the placentas often appear normal on histopathological examination. Gestational age is a risk factor for antepartum stillbirth, with a rapid rise in stillbirth rates after 40 weeks' gestation. We speculate that a common mechanism may explain antepartum stillbirth in both the late-term and postterm periods. Mice also show increasing rates of stillbirth when pregnancy is artificially prolonged. The model therefore affords an opportunity to characterize events that precede stillbirth. The objective of the study was to prolong gestation in mice and monitor fetal and placental growth and cardiovascular changes. From embryonic day 15.5 to embryonic day 18.5, pregnant CD-1 mice received daily progesterone injections to prolong pregnancy by an additional 24 hour period (to embryonic day 19.5). To characterize fetal and placental development, experimental assays were performed throughout late gestation (embryonic day 15.5 to embryonic day 19.5), including postnatal day 1 pups as controls. In addition to collecting fetal and placental weights, we monitored fetal blood flow using Doppler ultrasound and examined the fetoplacental arterial vascular geometry using microcomputed tomography. Evidence of hypoxic organ injury in the fetus was assessed using magnetic resonance imaging and pimonidazole immunohistochemistry. At embryonic day 19.5, mean fetal weights were reduced by 14% compared with control postnatal day 1 pups. Ultrasound biomicroscopy showed that fetal heart rate and umbilical artery flow continued to increase at embryonic day 19.5. Despite this, the embryonic day 19.5 fetuses had significant pimonidazole staining in both brain and liver tissue

  17. Comparison of dexmedetomidine versus midazolam for intranasal ...

    African Journals Online (AJOL)

    not cause mucosal stimulation, making it suitable for intranasal administration in paediatric patients.9,10. Objective. The aim of this study was to compare the effect of dexmedetomidine versus midazolam for intranasal premedication in children posted for elective surgery on preoperative anxiety, sedation, heart rate.

  18. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges (United States)

    Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry


    Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370

  19. Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. (United States)

    Albanese, Sandra; Greco, Adelaide; Auletta, Luigi; Mancini, Marcello


    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.

  20. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  1. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia

    Directory of Open Access Journals (Sweden)

    Ueda Hiroshi


    Full Text Available Abstract In a new mouse model for generalized pain syndrome, including fibromyalgia, which used intermittent cold stress (ICS, bilateral allodynia in the hindpaw was observed that lasted more than 12 days; thermal hyperalgesia lasted 15 days. During constant cold stress (CCS, mice showed only a transient allodynia. A female prevalence in ICS-induced allodynia was observed in gonadectomized but not in gonad intact mice. Systemic gabapentin showed complete anti-allodynic effects in the ICS model at the one-tenth dose for injury-induced neuropathic pain model, and central gabapentin showed long-lasting analgesia for 4 days in ICS, but not the injury model. These results suggest that the ICS model is useful for the study of generalized pain syndrome.

  2. Glyburide reduces bacterial dissemination in a mouse model of melioidosis.

    Directory of Open Access Journals (Sweden)

    Gavin C K W Koh

    Full Text Available Burkholderia pseudomallei infection (melioidosis is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ~40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis.Mice (C57BL/6 with streptozocin-induced diabetes were inoculated with ~6 × 10(2 cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation in order to mimic the clinical scenario. Glyburide (50 mg/kg or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL 1β by bone-marrow-derived macrophages (BMDM.Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1β production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1β by BMDMs in a dose-dependent fashion.Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by reducing IL1β secretion accompanied by diminished

  3. The TNF-alpha transgenic mouse model of inflammatory arthritis. (United States)

    Li, Ping; Schwarz, Edward M


    Rheumatoid arthritis is a chronic inflammatory disorder that affects multiple peripheral joints. It is the most common form of inflammatory arthritis and is characterized by synovial hyperplasia, immune cell infiltration, cartilage destruction, and bone erosion. To gain insight into the etiology of the disease, a variety of animal models have been established. Twelve years ago George Kollias' laboratory generated a transgenic (Tg) mouse that over-expresses human TNF-alpha, and develops an erosive polyarthritis with many characteristics observed in rheumatoid arthritis patients. The phenotype of this mouse model validated the theory that TNF-alpha is at the apex of the pro-inflammatory cascade in rheumatoid arthritis, and foreshadowed the remarkable success of anti-TNF-alpha therapy that has transformed the effective management of this disease. As such, the TNF-Tg mice are very useful tools for dissecting the molecular mechanisms of the pathogenic process and evaluating the efficacy of novel therapeutic strategies for rheumatoid arthritis. In this review we (1) provide a brief summary of TNF-alpha biology and the role of this dominant cytokine in rheumatoid arthritis, (2) describe the various TNF-Tg models and their phenotypes, and (3) give examples of how this model has been used experimentally.

  4. A new mouse model of metabolic syndrome and associated complications (United States)

    Wang, Yun; Zheng, Yue; Nishina, Patsy M; Naggert, Jürgen K.


    Metabolic Syndrome (MS) encompasses a clustering of risk factors for cardiovascular disease, including obesity, insulin resistance, and dyslipidemia. We characterized a new mouse model carrying a dominant mutation, C57BL/6J-Nmf15/+ (B6-Nmf15/+), which develops additional complications of MS such as adipose tissue inflammation and cardiomyopathy. A backcross was used to genetically map the Nmf15 locus. Mice were examined in the CLAMS™ animal monitoring system, and dual energy X-ray absorptiometry and blood chemistry analyses were performed. Hypothalamic LepR, SOCS1 and STAT3 phosphorylation were examined. Cardiac function was assessed by Echo- and Electro Cardiography. Adipose tissue inflammation was characterized by in situ hybridization and measurement of Jun kinase activity. The Nmf15 locus mapped to distal mouse chromosome 5 with a LOD score of 13.8. Nmf15 mice developed obesity by 12 weeks of age. Plasma leptin levels were significantly elevated in pre-obese Nmf15 mice at 8 weeks of age and an attenuated STAT3 phosphorylation in the hypothalamus suggests a primary leptin resistance. Adipose tissue from Nmf15 mice showed a remarkable degree of inflammation and macrophage infiltration as indicated by expression of the F4/80 marker and increased phosphorylation of JNK1/2. Lipidosis was observed in tubular epithelial cells and glomeruli of the kidney. Nmf15 mice demonstrate both histological and pathophysiological evidence of cardiomyopathy. The Nmf15 mouse model provides a new entry point into pathways mediating leptin resistance and obesity. It is one of few models that combine many aspects of metabolic syndrome and can be useful for testing new therapeutic approaches for combating obesity complications, particularly cardiomyopathy. PMID:19398498

  5. Recent female mouse models displaying advanced reproductive aging. (United States)

    Danilovich, Natalia; Ram Sairam, M


    Reproductive senescence occurs in all female mammals with resultant changes in numerous body functional systems and several important features may be species-specific. Those features that appear to parallel human menopause and aging include general similarity of hormone profiles across the menopausal transition, progression to cycle termination through irregular cycles, declining fertility with age, disturbances in thermogenesis, age-related gains in body weight, fat distribution and disposition towards metabolic syndrome. Structural and hormonal changes in the brain and ovary play a critical role in determining the onset of reproductive senescence. The short life span of rodents such as mice (compared to humans) and the ability to generate specific and timed gene deletions, provide powerful experimental paradigms to understand the molecular and functional changes that precede and follow the loss of reproductive capacity. In theory, any manipulation that compromises ovarian function either partly or totally would impact reproductive events at various levels followed by other dysfunctions. In this article, we provide an overview of three mouse models for the study of female reproductive aging. They are derived from different strategies and their age related phenotypes have been characterized to varying degrees. The follitropin receptor knockout (FORKO) mouse, in its null and haploinsufficient state as well as the dioxin/aryl hydrocarbon receptor (AhR) knockout mouse, serve as two examples of single gene deletions. A third model, using administration of a chemical toxicant such as 4-vinylcyclohexene diepoxide (VCD) in the adult state, produces ovarian deficiencies accompanied by aging changes. These will serve as useful alternatives to previously used radical ovariectomy in young adults. It is anticipated that these new models and more that will be forthcoming will extend opportunities to understand reproductive aging and resolve controversies that abound on issues

  6. Venous Thrombosis and Cancer: from Mouse Models to Clinical Trials (United States)

    Hisada, Y.; Geddings, J. E.; Ay, C.; Mackman, N.


    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer from mouse models to clinical studies. Notably, risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin has been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low molecular weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. PMID:25988873

  7. Venous thrombosis and cancer: from mouse models to clinical trials. (United States)

    Hisada, Y; Geddings, J E; Ay, C; Mackman, N


    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer, from mouse models to clinical studies. Notably, the risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin have been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low-molecular-weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. © 2015 International Society on Thrombosis and Haemostasis.

  8. Imaging mouse cancer models in vivo using reporter transgenes. (United States)

    Lyons, Scott K; Patrick, P Stephen; Brindle, Kevin M


    Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.

  9. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi


    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  10. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.


    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  11. A Mouse Model of Hypospadias Induced by Estradiol Benzoate. (United States)

    He, Hou-Guang; Han, Cong-Hui; Zhang, Wei


    We wished to establish a mouse model of hypospadias using injections of estradiol benzoate for investigating the molecular mechanisms of hypospadias. Fifty timed pregnant mice were randomly divided into five study groups: A, B, C, D, and E. These groups were injected subcutaneously with estradiol benzoate mixed with sesame oil at, respectively, the doses of 0, 0.1, 0.5, 2.5, or 12.5 mg kg(-1) days(-1) from gestation day (GD) 12 to GD 16. The pups' mortality was recorded on the day of delivery. Urethras and positions of testes were examined on postnatal day 28. The numbers of live pups were significantly lower in the study groups D and E compared to study group A (p Hypospadias was seen in groups C (3.3 %; 1/30), D (18.2 %; 4/22), and E (21.4 %; 3/14), while cryptorchidism was observed in groups C (10 %; 3/30), D (31.8 %; 7/22), and E (57.1 %; 8/14) on postnatal day 28. The experimental model of hypospadias induced by estradiol benzoate in the group D (2.5 mg kg(-1) days(-1)) was more reliable considering high mortality of the study group E. The dose of estradiol benzoate used in the group D is suitable for establishing mouse model of hypospadias.

  12. Considerations for skin carcinogenesis experiments using inducible transgenic mouse models. (United States)

    Popis, Martyna C; Wagner, Rebecca E; Constantino-Casas, Fernando; Blanco, Sandra; Frye, Michaela


    This study was designed to estimate the percentage of non-malignant skin tumours (papillomas) progressing to malignant squamous cell carcinomas (SCCs) in a carcinogenesis study using established transgenic mouse models. In our skin cancer model, we conditionally induced oncogenic point mutant alleles of p53 and k-ras in undifferentiated, basal cells of the epidermis. Upon activation of the transgenes through administration of tamoxifen, the vast majority of mice (> 80%) developed skin papillomas, yet primarily around the mouth. Since these tumours hindered the mice eating, they rapidly lost weight and needed to be culled before the papillomas progressed to SCCs. The mouth papillomas formed regardless of the route of application, including intraperitoneal injections, local application to the back skin, or subcutaneous insertion of a tamoxifen pellet. Implantation of a slow releasing tamoxifen pellet into 18 mice consistently led to papilloma formation, of which only one progressed to a malignant SCC. Thus, the challenges for skin carcinogenesis studies using this particular cancer mouse model are low conversion rates of papillomas to SCCs and high frequencies of mouth papilloma formation.

  13. Motavizumab, A Neutralizing Anti-Respiratory Syncytial Virus (Rsv Monoclonal Antibody Significantly Modifies The Local And Systemic Cytokine Responses Induced By Rsv In The Mouse Model

    Directory of Open Access Journals (Sweden)

    Jafri Hasan S


    Full Text Available Abstract Motavizumab (MEDI-524 is a monoclonal antibody with enhanced neutralizing activity against RSV. In mice, motavizumab suppressed RSV replication which resulted in significant reduction of clinical parameters of disease severity. We evaluated the effect of motavizumab on the local and systemic immune response induced by RSV in the mouse model. Balb/c mice were intranasally inoculated with 106.5 PFU RSV A2 or medium. Motavizumab was given once intraperitoneally (1.25 mg/mouse as prophylaxis, 24 h before virus inoculation. Bronchoalveolar lavage (BAL and serum samples were obtained at days 1, 5 (acute and 28 (long-term post inoculation and analyzed with a multiplex assay (Beadlyte Upstate, NY for simultaneous quantitation of 18 cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, KC (similar to human IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, TNF-α, MCP-1, RANTES, IFN-γ and GM-CSF. Overall, cytokine concentrations were lower in serum than in BAL samples. By day 28, only KC was detected in BAL specimens at low concentrations in all groups. Administration of motavizumab significantly reduced (p

  14. Mouse models of dengue virus infection for vaccine testing. (United States)

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T


    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  15. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy. (United States)

    Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji


    Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.

  16. Nebivolol Desensitizes Myofilaments of a Hypertrophic Cardiomyopathy Mouse Model

    Directory of Open Access Journals (Sweden)

    Sabrina Stücker


    Full Text Available Background: Hypertrophic cardiomyopathy (HCM patients often present with diastolic dysfunction and a normal to supranormal systolic function. To counteract this hypercontractility, guideline therapies advocate treatment with beta-adrenoceptor and Ca2+ channel blockers. One well established pathomechanism for the hypercontractile phenotype frequently observed in HCM patients and several HCM mouse models is an increased myofilament Ca2+ sensitivity. Nebivolol, a commonly used beta-adrenoceptor antagonist, has been reported to lower maximal force development and myofilament Ca2+ sensitivity in rabbit and human heart tissues. The aim of this study was to evaluate the effect of nebivolol in cardiac muscle strips of an established HCM Mybpc3 mouse model. Furthermore, we investigated actions of nebivolol and epigallocatechin-gallate, which has been shown to desensitize myofilaments for Ca2+ in mouse and human HCM models, in cardiac strips of HCM patients with a mutation in the most frequently mutated HCM gene MYBPC3.Methods and Results: Nebivolol effects were tested on contractile parameters and force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI, wild-type (WT mice and cardiac strips of three HCM patients with MYBPC3 mutations. At baseline, KI strips showed no difference in maximal force development compared to WT mouse heart strips. Neither 1 nor 10 μM nebivolol had an effect on maximal force development in both genotypes. 10 μM nebivolol induced myofilament Ca2+ desensitization in WT strips and to a greater extent in KI strips. Neither 1 nor 10 μM nebivolol had an effect on Ca2+ sensitivity in cardiac muscle strips of three HCM patients with MYBPC3 mutations, whereas epigallocatechin-gallate induced a right shift in the force-Ca2+ curve.Conclusion: Nebivolol induced a myofilament Ca2+ desensitization in both WT and KI strips, which was more pronounced in KI muscle strips. In human cardiac muscle

  17. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB


    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  18. Patched Knockout Mouse Models of Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Frauke Nitzki


    Full Text Available Basal cell carcinoma (BCC is the most common human tumor. Mutations in the hedgehog (HH receptor Patched (PTCH are the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background and should allow for (i BCC induction at a defined time point, (ii analysis of defined BCC stages, and (iii induction of BCC in 100% of animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional Ptchflox/flox mice and the K5-Cre-ERT+/− driver.

  19. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie


    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  20. A new mouse model to explore therapies for preeclampsia.

    Directory of Open Access Journals (Sweden)

    Abdulwahab Ahmed

    Full Text Available BACKGROUND: Pre-eclampsia, a pregnancy-specific multisystemic disorder is a leading cause of maternal and perinatal mortality and morbidity. This syndrome has been known to medical science since ancient times. However, despite considerable research, the cause/s of preeclampsia remain unclear, and there is no effective treatment. Development of an animal model that recapitulates this complex pregnancy-related disorder may help to expand our understanding and may hold great potential for the design and implementation of effective treatment. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the CBA/J x DBA/2 mouse model of recurrent miscarriage is also a model of immunologically-mediated preeclampsia (PE. DBA/J mated CBA/J females spontaneously develop many features of human PE (primigravidity, albuminuria, endotheliosis, increased sensitivity to angiotensin II and increased plasma leptin levels that correlates with bad pregnancy outcomes. We previously reported that antagonism of vascular endothelial growth factor (VEGF signaling by soluble VEGF receptor 1 (sFlt-1 is involved in placental and fetal injury in CBA/J x DBA/2 mice. Using this animal model that recapitulates many of the features of preeclampsia in women, we found that pravastatin restores angiogenic balance, ameliorates glomerular injury, diminishes hypersensitivity to angiotensin II and protects pregnancies. CONCLUSIONS/SIGNIFICANCE: We described a new mouse model of PE, were the relevant key features of human preeclampsia develop spontaneously. The CBA/J x DBA/2 model, that recapitulates this complex disorder, helped us identify pravastatin as a candidate therapy to prevent preeclampsia and its related complications. We recognize that these studies were conducted in mice and that clinical trials are needed to confirm its application to humans.

  1. Cerebellar associative sensory learning defects in five mouse autism models (United States)

    Kloth, Alexander D; Badura, Aleksandra; Li, Amy; Cherskov, Adriana; Connolly, Sara G; Giovannucci, Andrea; Bangash, M Ali; Grasselli, Giorgio; Peñagarikano, Olga; Piochon, Claire; Tsai, Peter T; Geschwind, Daniel H; Hansel, Christian; Sahin, Mustafa; Takumi, Toru; Worley, Paul F; Wang, Samuel S-H


    Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models. DOI: PMID:26158416

  2. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure. (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W


    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  3. Ghrelin modulates testicular damage in a cryptorchid mouse model (United States)

    Boekelheide, Kim; Sigman, Mark; Hall, Susan J.; Hwang, Kathleen


    Cryptorchidism or undescended testis (UDT) is a common congenital abnormality associated with increased risk for developing male infertility and testicular cancer. This study elucidated the effects of endogenous ghrelin or growth hormone secretagogue receptor (GHSR) deletion on mouse reproductive performance and evaluated the ability of ghrelin to prevent testicular damage in a surgical cryptorchid mouse model. Reciprocal matings with heterozygous/homozygous ghrelin and GHSR knockout mice were performed. Litter size and germ cell apoptosis were recorded and testicular histological evaluations were performed. Wild type and GHSR knockout adult mice were subjected to creation of unilateral surgical cryptorchidism that is a model of heat-induced germ cell death. All mice were randomly separated into two groups: treatment with ghrelin or with saline. To assess testicular damage, the following endpoints were evaluated: testis weight, seminiferous tubule diameter, percentage of seminiferous tubules with spermatids and with multinucleated giant cells. Our findings indicated that endogenous ghrelin deletion altered male fertility. Moreover, ghrelin treatment ameliorated the testicular weight changes caused by surgically induced cryptorchidism. Testicular histopathology revealed a significant preservation of spermatogenesis and seminiferous tubule diameter in the ghrelin-treated cryptorchid testes of GHSR KO mice, suggesting that this protective effect of ghrelin was mediated by an unknown mechanism. In conclusion, ghrelin therapy could be useful to suppress testicular damage induced by hyperthermia, and future investigations will focus on the underlying mechanisms by which ghrelin mitigates testicular damage. PMID:28542403

  4. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model. (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui


    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  5. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith


    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  6. Gait analysis in a mouse model resembling Leigh disease. (United States)

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A


    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available Central nervous system (CNS diseases are difficult to treat because of the blood-brain barrier (BBB, which prevents most drugs from entering into the brain. Intranasal (i.n. administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n. for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v. drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  8. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection.

    Directory of Open Access Journals (Sweden)

    Bao-Zhong Wang


    Full Text Available We demonstrated previously that the incorporation of a membrane-anchored form of flagellin into influenza virus-like particles (VLPs improved the immunogenicity of VLPs significantly, inducing partially protective heterosubtypic immunity by intramuscular immunization. Because the efficacy of mucosal vaccination is highly dependent on an adjuvant, and is particularly effective for preventing mucosal infections such as influenza, we determined whether the membrane-anchored flagellin is an efficient adjuvant for VLP vaccines by a mucosal immunization route. We compared the adjuvant effect of membrane-anchored and soluble flagellins for immunization with influenza A/PR8 (H1N1 VLPs by the intranasal route in a mouse model. The results demonstrate that membrane-anchored flagellin is an effective adjuvant for intranasal (IN immunization, inducing enhanced systemic and mucosal antibody responses. High cellular responses were also observed as shown by cytokine production in splenocyte cultures when stimulated with viral antigens. All mice immunized with flagellin-containing VLPs survived challenge with a high lethal dose of homologous virus as well as a high dose heterosubtypic virus challenge (40 LD(50 of A/Philippines/82, H3N2. In contrast, no protection was observed with a standard HA/M1 VLP group upon heterosubtypic challenge. Soluble flagellin exhibited a moderate adjuvant effect when co-administered with VLPs by the mucosal route, as indicated by enhanced systemic and mucosal responses and partial heterosubtypic protection. The membrane-anchored form of flagellin incorporated together with antigen into influenza VLPs is effective as an adjuvant by the mucosal route and unlike standard VLPs, immunization with such chimeric VLPs elicits protective immunity to challenge with a distantly related influenza A virus.

  9. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo


    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  10. Analyses of homologous rotavirus infection in the mouse model. (United States)

    Burns, J W; Krishnaney, A A; Vo, P T; Rouse, R V; Anderson, L J; Greenberg, H B


    The group A rotaviruses are significant human and veterinary pathogens in terms of morbidity, mortality, and economic loss. Despite its importance, an effective vaccine remains elusive due at least in part to our incomplete understanding of rotavirus immunity and protection. Both large and small animal model systems have been established to address these issues. One significant drawback of these models is the lack of well-characterized wild-type homologous viruses and their cell culture-adapted variants. We have characterized four strains of murine rotaviruses, EC, EHP, EL, and EW, in the infant and adult mouse model using wild-type isolates and cell culture-adapted variants of each strain. Wild-type murine rotaviruses appear to be equally infectious in infant and adult mice in terms of the intensity and duration of virus shedding following primary infection. Spread of infection to naive cagemates is seen in both age groups. Clearance of shedding following primary infection appears to correlate with the development of virus-specific intestinal IgA. Protective immunity is developed in both infant and adult mice following oral infection as demonstrated by a lack of shedding after subsequent wild-type virus challenge. Cell culture-adapted murine rotaviruses appear to be highly attenuated when administered to naive animals and do not spread efficiently to nonimmune cagemates. The availability of these wild-type and cell culture-adapted virus preparations should allow a more systematic evaluation of rotavirus infection and immunity. Furthermore, future vaccine strategies can be evaluated in the mouse model using several fully virulent homologous viruses for challenge.

  11. The first knockin mouse model of episodic ataxia type 2. (United States)

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J


    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes.

    Directory of Open Access Journals (Sweden)

    Rasmus Mortensen

    Full Text Available Streptococcus pyogenes (group A streptococcus, GAS is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via the intranasal route was able to induce protection against repeated intranasal GAS infections in a murine challenge model. The lack of intranasal protection induced by the parenteral vaccine correlated with a reduced mucosal recall response at the site of infection. Taken together, our results demonstrate that locally primed immunity is important for the defense against intranasal infection with Streptococcus pyogenes.

  13. Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes. (United States)

    Mortensen, Rasmus; Christensen, Dennis; Hansen, Lasse Bøllehuus; Christensen, Jan Pravsgaard; Andersen, Peter; Dietrich, Jes


    Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via the intranasal route was able to induce protection against repeated intranasal GAS infections in a murine challenge model. The lack of intranasal protection induced by the parenteral vaccine correlated with a reduced mucosal recall response at the site of infection. Taken together, our results demonstrate that locally primed immunity is important for the defense against intranasal infection with Streptococcus pyogenes.

  14. Human tissue models in cancer research: looking beyond the mouse. (United States)

    Jackson, Samuel J; Thomas, Gareth J


    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  15. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson


    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  16. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. (United States)

    Vreugde, Sarah; Erven, Alexandra; Kros, Corné J; Marcotti, Walter; Fuchs, Helmut; Kurima, Kiyoto; Wilcox, Edward R; Friedman, Thomas B; Griffith, Andrew J; Balling, Rudi; Hrabé De Angelis, Martin; Avraham, Karen B; Steel, Karen P


    Despite recent progress in identifying genes underlying deafness, there are still relatively few mouse models of specific forms of human deafness. Here we describe the phenotype of the Beethoven (Bth) mouse mutant and a missense mutation in Tmc1 (transmembrane cochlear-expressed gene 1). Progressive hearing loss (DFNA36) and profound congenital deafness (DFNB7/B11) are caused by dominant and recessive mutations of the human ortholog, TMC1 (ref. 1), for which Bth and deafness (dn) are mouse models, respectively.

  17. Mouse model of glycogen storage disease type III. (United States)

    Liu, Kai-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong


    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will

  18. Generation of Humanized Mouse Models with Focus on Antithrombin Deficiency

    DEFF Research Database (Denmark)

    Jensen, Astrid Bøgh


    transgene. The CRISPR/Cas9 system is a relatively new and innovative method for targeted mutagenesis. The Cas9 nuclease introduces a double stranded break in the DNA, which can be repaired through homologous recombination of a targeting vector. A mutated Cas9n (Cas9 nickase) has been designed, which only...... cuts one of the DNA strands. With this enzyme, two target sites have to be located close to each other in order to create double strand break. This will lower the risk for off target mutations, but might reduce the efficiency of targeting. In order to control the expression of the human antithrombin...... found that homozygous knockout embryos have a significantly increased level of systemic inflammation, around their time of death. Furthermore, the embryos show signs of hypertension, already at day 12 of gestation, possible due to kidney failure. A humanized mouse model for antithrombin deficiency can...

  19. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  20. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai


    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  1. Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse (United States)

    Zhang, Yu; Niewiesk, Stefan; Li, Jianrong


    Human metapneumovirus (hMPV) is the second most prevalent causative agent of pediatric respiratory infections worldwide. Currently, there are no vaccines or antiviral drugs against this virus. One of the major hurdles in hMPV research is the difficulty to identify a robust small animal model to accurately evaluate the efficacy and safety of vaccines and therapeutics. In this study, we compared the replication and pathogenesis of hMPV in BALB/c mice, Syrian golden hamsters, and cotton rats. It was found that BALB/c mice are not permissive for hMPV infection despite the use of a high dose (6.5 log10 PFU) of virus for intranasal inoculation. In hamsters, hMPV replicated efficiently in nasal turbinates but demonstrated only limited replication in lungs. In cotton rats, hMPV replicated efficiently in both nasal turbinate and lung when intranasally administered with three different doses (4, 5, and 6 log10 PFU) of hMPV. Lungs of cotton rats infected by hMPV developed interstitial pneumonia with mononuclear cells infiltrates and increased lumen exudation. By immunohistochemistry, viral antigens were detected at the luminal surfaces of the bronchial epithelial cells in lungs. Vaccination of cotton rats with hMPV completely protected upper and lower respiratory tract from wildtype challenge. The immunization also elicited elevated serum neutralizing antibody. Collectively, these results demonstrated that cotton rat is a robust small animal model for hMPV infection. PMID:25438015

  2. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C


    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  3. Genetically engineered mouse models in oncology research and cancer medicine. (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos


    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Improving treatment outcome assessment in a mouse tuberculosis model. (United States)

    Mourik, Bas C; Svensson, Robin J; de Knegt, Gerjo J; Bax, Hannelore I; Verbon, Annelies; Simonsson, Ulrika S H; de Steenwinkel, Jurriaan E M


    Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R p ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E max model in favor over linear or conventional E max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R p ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.

  5. Iodine uptake and prostate cancer in the TRAMP mouse model. (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda


    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  6. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells. (United States)

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min


    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  7. Altered Cortical Ensembles in Mouse Models of Schizophrenia. (United States)

    Hamm, Jordan P; Peterka, Darcy S; Gogos, Joseph A; Yuste, Rafael


    In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A +/- , modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single-neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an "attractor" disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia. Published by Elsevier Inc.

  8. Zmpste24-/- mouse model for senescent wound healing research. (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M


    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  9. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.


    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  10. The mouse gut microbiome revisited: From complex diversity to model ecosystems. (United States)

    Clavel, Thomas; Lagkouvardos, Ilias; Blaut, Michael; Stecher, Bärbel


    Laboratory mice are the most commonly used animal model in translational medical research. In recent years, the impact of the gut microbiota (i.e. communities of microorganisms in the intestine) on host physiology and the onset of diseases, including metabolic and neuronal disorders, cancers, gastrointestinal infections and chronic inflammation, became a focal point of interest. There is abundant evidence that mouse phenotypes in disease models vary greatly between animal facilities or commercial providers, and that this variation is associated with differences in the microbiota. Hence, there is a clear discrepancy between the widespread use of mouse models in research and the patchwork knowledge on the mouse gut microbiome. In the present manuscript, we summarize data pertaining to the diversity and functions of the mouse gut microbiota, review existing work on gnotobiotic mouse models, and discuss challenges and opportunities for current and future research in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice


    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  12. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré


    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  13. Demonstration of analgesic effect of intranasal ketamine and intranasal fentanyl for postoperative pain after pediatric tonsillectomy. (United States)

    Yenigun, Alper; Yilmaz, Sinan; Dogan, Remzi; Goktas, Seda Sezen; Calim, Muhittin; Ozturan, Orhan


    Tonsillectomy is one of the oldest and most commonly performed surgical procedure in otolaryngology. Postoperative pain management is still an unsolved problem. In this study, our aim is to demonstrate the efficacy of intranasal ketamine and intranasal fentanyl for postoperative pain relief after tonsillectomy in children. This randomized-controlled study was conducted to evaluate the effects of intranasal ketamine and intranasal fentanyl in children undergoing tonsillectomy. Tonsillectomy performed in 63 children were randomized into three groups. Group I received: Intravenous paracetamol (10 mg/kg), Group II received intranasal ketamine (1.5 mg/kg ketamine), Group III received intranasal fentanyl (1.5 mcg/kg). The Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) and Wilson sedation scale scores were recorded at 15, 30, 60 min, 2 h, 6hr, 12 h and 24 h postoperatively. Patients were interviewed on the day after surgery to assess the postoperative pain, nightmares, hallucinations, nausea, vomiting and bleeding. Intranasal ketamine and intranasal fentanyl provided significantly stronger analgesic affects compared to intravenous paracetamol administration at postoperative 15, 30, 60 min and at 2, 6, 12 and 24 h in CHEOPS (p fentanyl and intravenous paracetamol in Wilson Sedation Scale (p fentanyl were more effective than paracetamol for postoperative analgesia after pediatric tonsillectomy. Sedative effects were observed in three patients with the group of intranasal ketamine. There was no significant difference in the efficacy of IN Ketamine and IN Fentanyl for post-tonsillectomy pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Surgical treatment of a canine intranasal meningoencephalocele. (United States)

    Martlé, Valentine A; Caemaert, Jacques; Tshamala, Mulenda; Van Soens, Iris; Bhatti, Sofie F M; Gielen, Ingrid; Piron, Koen; Chiers, Koen; Tiemessen, Ilse; Van Ham, Luc M


    To report the clinical signs, diagnosis, and surgical treatment of an intranasal meningoencephalocele in a dog. Case report. Female Border collie, 5 months old. A right intranasal meningoencephalocele was identified by computed tomography and magnetic resonance imaging. The lesion was approached by a modified transfrontal craniotomy. Surgical closure of the defect at the level of the cribriform plate and removal of extruded brain tissue resulted in regression of lacrimation and coincided with absence of seizuring. Treatment with phenobarbital was gradually reduced and stopped at 7 months after surgery. At 28 months the dog remained free of seizures. Meningoencephalocele, although rare, can cause seizures in dogs and can be treated surgically. A transfrontal craniotomy with excision of the meningoencephalocele and closure of the defect can be an effective treatment for an intranasal meningoencephalocele in dogs.

  15. The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit

    NARCIS (Netherlands)

    Kliffen, M.; Lutgens, E.; Daemen, M. J.; de Muinck, E. D.; Mooy, C. M.; de Jong, P. T.


    To investigate the APO(*)E3-Leiden mouse as an animal model for age related maculopathy (ARM) related extracellular deposits. Eyes were obtained from APO(*)E3-Leiden transgenic mice on a high fat/cholesterol (HFC) diet (n=12) or on a normal mouse chow (n=6), for 9 months. As controls, eyes were

  16. The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit

    NARCIS (Netherlands)

    M. Kliffen (Mike); E. Lutgens; M.J. Daemen (Mat); E.D. de Muinck; C.M. Mooy (Cornelia); P.T.V.M. de Jong (Paulus)


    textabstractAIM: To investigate the APO(*)E3-Leiden mouse as an animal model for age related maculopathy (ARM) related extracellular deposits. METHODS: Eyes were obtained from APO(*)E3-Leiden transgenic mice on a high fat/cholesterol (HFC) diet (n=12) or on a normal mouse chow

  17. Concurrent administration of an intranasal vaccine containing feline herpesvirus-1 (FHV-1) with a parenteral vaccine containing FHV-1 is superior to parenteral vaccination alone in an acute FHV-1 challenge model. (United States)

    Reagan, K L; Hawley, J R; Lappin, M R


    The administration of intranasal (IN) or subcutaneous (SC) vaccines containing modified live feline herpesvirus 1 (FHV-1) offers some level of protection against FHV-1 challenge, but relative efficacy is vaccinated concurrently with IN and SC vaccines containing FHV-1 (Group 1, n = 8); (2) kittens vaccinated with a SC FHV-1 vaccine alone (Group 2, n = 8), and (3) unvaccinated control kittens (Group 3, n = 8). All kittens were FHV-1 naïve at enrolment, and challenge with a virulent strain of FHV-1 was performed 1 week after vaccination. Daily clinical signs and pharyngeal FHV-1 shedding were recorded over a 21-day infection period. Overall, kittens in Group 1 had significantly less severe clinical illness than those in Group 2 (P vaccines was superior to administration of the SC FHV-1 vaccine alone in this challenge model of FHV-1 naïve kittens. Copyright © 2014. Published by Elsevier Ltd.

  18. A Reliable Mouse Model of Hind limb Gangrene. (United States)

    Parikh, Punam P; Castilla, Diego; Lassance-Soares, Roberta M; Shao, Hongwei; Regueiro, Manuela; Li, Yan; Vazquez-Padron, Roberto; Webster, Keith A; Liu, Zhao-Jun; Velazquez, Omaida C


    Lack of a reliable hind limb gangrene animal model limits preclinical studies of gangrene, a severe form of critical limb ischemia. We develop a novel mouse hind limb gangrene model to facilitate translational studies. BALB/c, FVB, and C57BL/6 mice underwent femoral artery ligation (FAL) with or without administration of N G -nitro-L-arginine methyl ester (L-NAME), an endothelial nitric oxide synthase inhibitor. Gangrene was assessed using standardized ischemia scores ranging from 0 (no gangrene) to 12 (forefoot gangrene). Laser Doppler imaging (LDI) and DiI perfusion quantified hind limb reperfusion postoperatively. BALB/c develops gangrene with FAL-only (n = 11/11, 100% gangrene incidence), showing mean limb ischemia score of 12 on postoperative days (PODs) 7 and 14 with LDI ranging from 0.08 to 0.12 on respective PODs. Most FVB did not develop gangrene with FAL-only (n = 3/9, 33% gangrene incidence) but with FAL and L-NAME (n = 9/9, 100% gangrene incidence). Mean limb ischemia scores for FVB undergoing FAL with L-NAME were significantly higher than for FVB receiving FAL-only. LDI score and capillary density by POD 28 were significantly lower in FVB undergoing FAL with L-NAME. C57BL/6 did not develop gangrene with FAL-only or FAL and L-NAME. Reproducible murine gangrene models may elucidate molecular mechanisms for gangrene development, facilitating therapeutic intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mouse Models of Type 2 Diabetes Mellitus in Drug Discovery. (United States)

    Baribault, Helene


    Type 2 diabetes is a fast-growing epidemic in industrialized countries, associated with obesity, lack of physical exercise, aging, family history, and ethnic background. Diagnostic criteria are elevated fasting or postprandial blood glucose levels, a consequence of insulin resistance. Early intervention can help patients to revert the progression of the disease together with lifestyle changes or monotherapy. Systemic glucose toxicity can have devastating effects leading to pancreatic beta cell failure, blindness, nephropathy, and neuropathy, progressing to limb ulceration or even amputation. Existing treatments have numerous side effects and demonstrate variability in individual patient responsiveness. However, several emerging areas of discovery research are showing promises with the development of novel classes of antidiabetic drugs.The mouse has proven to be a reliable model for discovering and validating new treatments for type 2 diabetes mellitus. We review here commonly used methods to measure endpoints relevant to glucose metabolism which show good translatability to the diagnostic of type 2 diabetes in humans: baseline fasting glucose and insulin, glucose tolerance test, insulin sensitivity index, and body type composition. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.

  20. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)


    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  1. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego


    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  2. Effects of Corni fructus on ovalbumin-induced airway inflammation and airway hyper-responsiveness in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Kim Seung-Hyung


    Full Text Available Abstract Background Allergic asthma is a chronic inflammatory lung disease that is characterized by airway hyperresponsiveness (AHR to allergens, airway oedema, increased mucus secretion, excess production of T helper-2 (Th2 cytokines, and eosinophil accumulation in the lungs. Corni fructus (CF is a fruit of Cornus officinalis Sieb. Et. Zucc. (Cornaceae and has been used in traditional Korean medicine as an anti-inflammatory, analgesic, and diuretic agent. To investigate the anti-asthmatic effects of CF and their underlying mechanism, we examined the influence of CF on the development of pulmonary eosinophilic inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Methods In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA by intraperitoneal (i.p., intratracheal (i.t. injections and intranasal (i.n. inhalation of OVA. We investigated the effect of CF on airway hyperresponsiveness, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokine production, and OVA-specific immunoglobulin E (IgE production. Results The CF-treated groups showed suppressed eosinophil infiltration, allergic airway inflammation, and AHR via reduced production of interleuin (IL -5, IL-13, and OVA-specific IgE. Conclusions Our data suggest that the therapeutic effects of CF in asthma are mediated by reduced production of Th2 cytokines (IL-5, eotaxin, and OVA-specific IgE and reduced eosinophil infiltration.

  3. Conditioned social preference, but not place preference, produced by intranasal oxytocin in female mice. (United States)

    Kosaki, Yutaka; Watanabe, Shigeru


    Oxytocin (OT) has been implicated in a variety of mammalian reproductive and social behaviors, and the use of intranasal OT for clinical purposes is on the rise. However, basic actions of OT, including the rewarding or reinforcing properties of the drug, are currently not fully understood. In this study, the authors investigated whether intranasally administered OT has different reinforcing properties for social and nonsocial stimuli and whether such effects are variable between male and female subjects. Conditioned social preference (CSP) and conditioned place preference (CPP) paradigms were used to examine social and nonsocial reinforcing properties of OT. In CSP, the presence of a same-sex unfamiliar conspecific was repeatedly paired with intranasal OT, while a different conspecific was associated with saline. The reinforcing effect of OT was assessed in a postconditioning choice test under a drug-free condition. In CPP, the 2 conspecifics were replaced with nonsocial black and white compartments. The authors found that intranasal OT (12 μg) in females supported the formation of CSP (Experiment 1) but not CPP (Experiment 3). Neither CSP (Experiment 2) nor CPP (Experiment 4) was formed in males. Extended conditioning with higher dose OT (36 μg), however, abolished the initial CSP in females and produced an aversion to the OT-paired stimulus mouse. Experiment 5 indicated that it was the repeated administrations rather than the higher dose that produced the abolition of the original preference. Overall, the current results demonstrate for the first time a sex- and stimulus-dependent reinforcing property of intranasal OT in mice. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Methylome repatterning in a mouse model of Maternal PKU Syndrome. (United States)

    Dobrowolski, S F; Lyons-Weiler, J; Biery, A; Spridik, K; Vockley, G; Kranik, E; Skvorak, K; Sultana, T


    Maternal PKU Syndrome (MPKU) is an embryopathy resulting from in utero phenylalanine (PHE) toxicity secondary to maternal phenylalanine hydroxylase deficient phenylketonuria (PKU). Clinical phenotypes in MPKU include mental retardation, microcephaly, in utero growth restriction, and congenital heart defects. Numerous in utero toxic exposures alter DNA methylation in the fetus. The PAH(enu2) mouse is a model of classical PKU while offspring born of hyperphenylalaninemic dams model MPKU. We investigated offspring of PAH(enu2) dams to determine if altered patterns of DNA methylation occurred in response to in utero PHE exposure. As neurologic deficit is the most prominent MPKU phenotype, methylome patterns were assessed in brain tissue using methylated DNA immunoprecipitation and paired-end sequencing. Brain tissues were assessed in E18.5-19 fetuses of PHE unrestricted PAH(enu2) dams, PHE restricted PAH(enu2) dams, and heterozygous(wt/enu2) control dams. Extensive methylome repatterning was observed in offspring of hyperphenylalaninemic dams while the offspring of PHE restricted dams displayed attenuated methylome repatterning. Methylation within coding regions was dominated by noncoding RNA genes. Differential methylation of promoters targeted protein coding genes. To assess the impact of methylome repatterning on gene expression, brain tissue in experimental and control animals were queried with microarrays assessing expression of microRNAs and protein coding genes. Altered expression of methylome-modified microRNAs and protein coding genes was extensive in offspring of hyperphenylalaninemic dams while minimal changes were observed in offspring of PHE restricted dams. Several genes displaying significantly reduced expression have roles in neurological function or genetic disease with neurological phenotypes. These data indicate in utero PHE toxicity alters DNA methylation in the brain which has downstream impact upon gene expression. Altered gene expression may

  5. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert


    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  6. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. (United States)

    Kamei, Noriyasu; Takeda-Morishita, Mariko


    Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Human Adrenal Androgens: Regulation of Biosynthesis and Role in Estrogen-Responsive Breast Cancer in a Mouse Model

    National Research Council Canada - National Science Library

    Hornsby, Peter


    .... An androgen-dependent human breast cancer model was established in the scid mouse. To provide zona reticularis function, essential for adrenal androgen biosynthesis, in human adrenal organoids in the mouse, two approaches are being taken...

  8. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci.


    Noble, W. C.; Lloyd, D. H.; Appiah, S. N.


    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  9. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci. (United States)

    Noble, W C; Lloyd, D H; Appiah, S N


    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  10. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    National Research Council Canada - National Science Library

    Orkin, Stuart H


    In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal translocation that produces the TEL-NTRK3 fusion oncogene, as the initiating mutation in human...

  11. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan


    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  12. Rifalazil and derivative compounds show potent efficacy in a mouse model of H. pylori colonization. (United States)

    Rothstein, David M; Mullin, Steve; Sirokman, Klari; Söndergaard, Karen L; Johnson, Starrla; Gwathmey, Judith K; van Duzer, John; Murphy, Christopher K


    The rifamycin rifalazil (RFZ), and derivatives (NCEs) were efficacious in a mouse model of Helicobacter pylori colonization. Select NCEs were more active in vitro and showed greater efficacy than RFZ. A systemic component contributes to efficacy.

  13. Mouse models of altered gonadotrophin action: insight into male reproductive disorders. (United States)

    Jonas, Kim C; Oduwole, Olayiwola O; Peltoketo, Hellevi; Rulli, Susana B; Huhtaniemi, Ilpo T


    The advent of technologies to genetically manipulate the mouse genome has revolutionised research approaches, providing a unique platform to study the causality of reproductive disorders in vivo. With the relative ease of generating genetically modified (GM) mouse models, the last two decades have yielded multiple loss-of-function and gain-of-function mutation mouse models to explore the role of gonadotrophins and their receptors in reproductive pathologies. This work has provided key insights into the molecular mechanisms underlying reproductive disorders with altered gonadotrophin action, revealing the fundamental roles of these pituitary hormones and their receptors in the hypothalamic-pituitary-gonadal axis. This review will describe GM mouse models of gonadotrophins and their receptors with enhanced or diminished actions, specifically focusing on the male. We will discuss the mechanistic insights gained from these models into male reproductive disorders, and the relationship and understanding provided into male human reproductive disorders originating from altered gonadotrophin action. © 2014 Society for Reproduction and Fertility.

  14. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre


    BACKGROUND & PURPOSE: Crouzon syndrome is characterized by growth disturbances caused by premature craniosynostosis. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels...... to the human counterpart. Quantifying growth in the Crouzon mouse model could test hypotheses of the relationship between craniosynostosis and dysmorphology, leading to better understanding of the causes of Crouzon syndrome as well as providing knowledge relevant for surgery planning. METHODS: Automatic non......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...

  15. A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague. (United States)

    Sha, Jian; Rosenzweig, Jason A; Kirtley, Michelle L; van Lier, Christina J; Fitts, Eric C; Kozlova, Elena V; Erova, Tatiana E; Tiner, Bethany L; Chopra, Ashok K


    The gold standard in microbiology for monitoring bacterial dissemination in infected animals has always been viable plate counts. This method, despite being quantitative, requires sacrificing the infected animals. Recently, however, an alternative method of in vivo imaging of bioluminescent bacteria (IVIBB) for monitoring microbial dissemination within the host has been employed. Yersinia pestis is a Gram-negative bacterium capable of causing bubonic, septicemic, and pneumonic plague. In this study, we compared the conventional counting of bacterial colony forming units (cfu) in the various infected tissues to IVIBB in monitoring Y. pestis dissemination in a mouse model of pneumonic plague. By using a transposon mutagenesis system harboring the luciferase (luc) gene, we screened approximately 4000 clones and obtained a fully virulent, luc-positive Y. pestis CO92 (Y. pestis-luc2) reporter strain in which transposition occurred within the largest pMT1 plasmid which possesses murine toxin and capsular antigen encoding genes. The aforementioned reporter strain and the wild-type CO92 exhibited similar growth curves, formed capsule based on immunofluorescence microscopy and flow cytometry, and had a similar LD(50). Intranasal infection of mice with 15 LD(50) of CO92-luc2 resulted in animal mortality by 72 h, and an increasing number of bioluminescent bacteria were observed in various mouse organs over a 24-72 h period when whole animals were imaged. However, following levofloxacin treatment (10 mg/kg/day) for 6 days 24 h post infection, no luminescence was observed after 72 h of infection, indicating that the tested antimicrobial killed bacteria preventing their detection in host peripheral tissues. Overall, we demonstrated that IVIBB is an effective and non-invasive way of monitoring bacterial dissemination in animals following pneumonic plague having strong correlation with cfu, and our reporter CO92-luc2 strain can be employed as a useful tool to monitor the efficacy

  16. Safety of intranasal human insulin: a review. (United States)

    Schmid, Vera; Kullmann, Stephanie; Gfrörer, Wieland; Hund, Verena; Hallschmid, Manfred; Lipp, Hans-Peter; Häring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas; Heni, Martin


    The nasal application of human insulin is frequently used for investigating brain insulin action. It is utilized in studies on the physiological role of insulin in the human brain as well as in therapeutic interventional trials and its effects have been investigated after both acute and long-term administration. This review aimed to assess the safety of intranasal human insulin in human studies and the temporal stability of nasal insulin sprays. The electronic search was performed using MEDLINE. We selected original research on intranasal human insulin without further additives in humans. The studies included could be of any design as long as they used human intranasal insulin as their study product. All outcomes and adverse side effects were excerpted. Thirty-eight studies on 1092 persons with acute application and 18 studies on 832 persons with treatment lasting between 21 days and 9.7 years were identified. No cases of symptomatic hypoglycemia or severe adverse events were reported. Transient local side effects in the nasal area were frequently experienced after intranasal insulin and placebo spray, while other adverse events were less commonly reported. There are no reports of subjects who were excluded due to adverse events. No instances of temporal stability of nasal insulin were reported in the literature. Tests on insulin that had been repacked into spray flasks revealed that it had a chemical stability of up to 57 days. Our retrospective review of published studies on intranasal insulin did not reveal any safety concerns. There is, however, insufficient data to ensure long-term safety of this modality of chronic insulin administration. Improved insulin preparations that cause less nasal irritation would be desirable for future treatment. This article is protected by copyright. All rights reserved.

  17. Metabolic phenotype in the mouse model of osteogenesis imperfecta. (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V


    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  18. A novel transgenic mouse model of lysosomal storage disorder. (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R


    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  19. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz


    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  20. Mouse model for acute Epstein-Barr virus infection. (United States)

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu


    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  1. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment. (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy


    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  2. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho


    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  3. Intranasally applied neuropeptide S shifts a high-anxiety electrophysiological endophenotype in the ventral hippocampus towards a "normal"-anxiety one.

    Directory of Open Access Journals (Sweden)

    Julien Dine

    Full Text Available The neurobiological basis of pathological anxiety and the improvement of its pharmacological treatment are a matter of intensive investigation. Here, using electrophysiological techniques in brain slices from animals of the high anxiety-related behavior (HAB and normal anxiety-related behavior (NAB mouse model, we show that basal neurotransmission at ventral hippocampal CA3-CA1 synapses is weaker in HAB compared to NAB mice. We further demonstrate that paired-pulse facilitation (PPF and long-term potentiation (LTP at these synapses are more pronounced in slices from HAB animals. Based on previous findings, we also examined whether intranasal delivery of neuropeptide S (NPS, which increasingly emerges as a potential novel treatment option for anxiety symptoms occurring in a variety of diseases like anxiety disorders, posttraumatic stress disorder, and major depression, impacts on the high-anxiety electrophysiological endophenotype in HAB mice. Strikingly, we detected enhanced basal neurotransmission and reduced PPF and LTP in slices from NPS-treated HAB animals. Collectively, our study uncovers a multifaceted high-anxiety neurophysiological endophenotype in the murine ventral hippocampus and provides the first evidence that an intranasally applied neuropeptide can shift such an endophenotype in an anxiety-regulating brain structure towards a "normal"-anxiety one.

  4. Prevention or early cure of type 1 diabetes by intranasal administration of gliadin in NOD mice

    DEFF Research Database (Denmark)

    Funda, David; Fundova, Petra; Hansen, Axel Kornerup


    gluten-free diets prevent T1D in animal models. Herewith we investigated whether intranasal (i.n.) administration of gliadin or gluten may arrest the diabetogenic process. I.n. administration of gliadin to 4-week-old NOD mice significantly reduced the diabetes incidence. Similarly, the insulitis...... was lowered. Intranasal gliadin also rescued a fraction of prediabetic 13-week-old NOD mice from progressing to clinical onset of diabetes compared to OVA-treated controls. Vaccination with i.n. gliadin led to an induction of CD4+Foxp3+ T cells and even more significant induction of γδ T cells in mucosal...

  5. Analyses of tumor-suppressor genes in germline mouse models of cancer. (United States)

    Wang, Jingqiang; Abate-Shen, Cory


    Tumor-suppressor genes are critical regulators of growth and functioning of cells, whose loss of function contributes to tumorigenesis. Accordingly, analyses of the consequences of their loss of function in genetically engineered mouse models have provided important insights into mechanisms of human cancer, as well as resources for preclinical analyses and biomarker discovery. Nowadays, most investigations of genetically engineered mouse models of tumor-suppressor function use conditional or inducible alleles, which enable analyses in specific cancer (tissue) types and overcome the consequences of embryonic lethality of germline loss of function of essential tumor-suppressor genes. However, historically, analyses of genetically engineered mouse models based on germline loss of function of tumor-suppressor genes were very important as these early studies established the principle that loss of function could be studied in mouse cancer models and also enabled analyses of these essential genes in an organismal context. Although the cancer phenotypes of these early germline models did not always recapitulate the expected phenotypes in human cancer, these models provided the essential foundation for the more sophisticated conditional and inducible models that are currently in use. Here, we describe these "first-generation" germline models of loss of function models, focusing on the important lessons learned from their analyses, which helped in the design and analyses of "next-generation" genetically engineered mouse models. © 2014 Cold Spring Harbor Laboratory Press.

  6. Intranasal Delivery of pGDNF Nanoparticles for Parkinson's Disease (United States)

    Harmon, Brendan Trevor

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects the dopaminergic A9 nigrostriatal tract. For dopamine neurons specifically, glial cell-derived neurotrophic factor (GDNF) has been shown to promote their survival and proliferation both in culture and in vivo. GDNF has also proven to be neuroprotective and restorative in various animal models of PD and some human clinical trials. However, its delivery to the brain has required invasive surgical routes which are not clinically practical for many patients. The main objective of this project was to test intranasal delivery to the brain of a nanoparticle vector incorporating an expression plasmid for GDNF (pGDNF). The intranasal route circumvents the blood-brain barrier, allowing larger sized vectors into the central nervous system while avoiding peripheral distribution. This approach would provide a renewable source of GDNF within the target areas of the brain, the striatum and the substantia nigra (SN) without the need for surgical injections or frequent re-dosing. A PEGylated polylysine compacted plasmid nanoparticle vector (PEG-CK30), developed by Copernicus Therapeutics, Inc., has been shown to transfect neurons and glial cells in vivo while lacking the safety issues present with other vectors. The first goal of this work was to determine if these PEG-CK30 compacted plasmid nanoparticles can successfully transfect cells and express the reporter protein, enhanced green fluorescent protein (eGFP) in the rat brain after intranasal administration. Initial in vivo experiments utilized the expression plasmid pCG, expressing eGFP under the fast-acting cytomegalovirus (CMV) promoter. Intranasal administration of pCG nanoparticles resulted in evidence of transfection of brain cells, as shown both qualitatively, by GFP-immunohistochemistry, and quantitatively, by GFP-ELISA. Expression was detected throughout the rat brain two days post-administration. Following the proof

  7. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia.

    Directory of Open Access Journals (Sweden)

    Mark A Miller

    Full Text Available Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane vs. parenteral (ketamine/xylazine anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.

  8. The mouse as a model for human biology: a resource guide for complex trait analysis. (United States)

    Peters, Luanne L; Robledo, Raymond F; Bult, Carol J; Churchill, Gary A; Paigen, Beverly J; Svenson, Karen L


    The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.

  9. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders


    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura


    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  10. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage


    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.


    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positione...

  11. The effect of the administration of human gamma globulins in a model of BCG infection in mice. (United States)

    Olivares, Nesty; León, Annette; López, Yamilé; Puig, Alina; Cádiz, Armando; Falero, Gustavo; Martínez, Máximo; Sarmiento, Marie E; Fariñas, Mildrey; Infante, Juan F; Sierra, Gustavo; Solís, Rosa L; Acosta, Armando


    The effect of the administration of a commercial preparation of human gamma globulins has been evaluated in a mouse model of intranasal infection with BCG. First, we demonstrated the passage of specific antibodies to saliva and lung lavage following the intranasal or intraperitoneal administration to mice of human gamma globulins. This treatment of mice inhibited BCG colonization of the lungs (p < 0.01). A similar inhibitory effect was observed after infection of mice with gamma globulin opsonized BCG organisms (p < 0.01). These results are relevant for the development of new strategies for the control and treatment of tuberculosis.

  12. A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. (United States)

    Sankoorikal, Geena Mary V; Kaercher, Kristin A; Boon, Catherine J; Lee, Jin Kyoung; Brodkin, Edward S


    Impairments in social behaviors are highly disabling symptoms of autism, schizophrenia, and other psychiatric disorders. Mouse model systems are useful for identifying the many genes and environmental factors likely to affect complex behaviors, such as sociability (the tendency to seek social interaction). To progress toward developing such a model system, we tested the hypothesis that C57BL/6J inbred mice show higher levels of sociability than BALB/cJ inbred mice. Mice tested for sociability were 4- and 9-week-old, male and female C57BL/6J and BALB/cJ mice. On 2 consecutive days, the sociability of each test mouse toward an unfamiliar 4-week-old DBA/2J stimulus mouse was assessed with a social choice paradigm conducted in a three-chambered apparatus. Measures of sociability included the time that the test mouse spent near versus far from the stimulus mouse, the time spent directly sniffing the stimulus mouse, and the time spent in contact between test and stimulus mice in a free interaction. C57BL/6J mice showed higher levels of sociability than BALB/cJ mice overall in each of these measures. We propose that C57BL/6J and BALB/cJ mice will be a useful mouse model system for future genetic and neurobiological studies of sociability.

  13. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko


    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  14. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model. (United States)

    Samsonraj, Rebekah M; Dudakovic, Amel; Zan, Pengfei; Pichurin, Oksana; Cool, Simon M; van Wijnen, Andre J


    Animal models are vital tools for the preclinical development and testing of therapies aimed at providing solutions for several musculoskeletal disorders. For bone tissue engineering strategies addressing nonunion conditions, rodent models are particularly useful for studying bone healing in a controlled environment. The mouse calvarial defect model permits evaluation of drug, growth factor, or cell transplantation efficacy, together with offering the benefit of utilizing genetic models to study intramembranous bone formation within defect sites. In this study, we describe a detailed methodology for creating calvarial defects in mouse and present our results on bone morphogenetic protein-2-loaded fibrin scaffolds, thus advocating the utility of this functional orthotopic mouse model for the evaluation of therapeutic interventions (such as growth factors or cells) intended for successful bone regeneration therapies.

  15. Use of intranasal corticosteroids in adenotonsillar hypertrophy. (United States)

    Sakarya, E U; Bayar Muluk, N; Sakalar, E G; Senturk, M; Aricigil, M; Bafaqeeh, S A; Cingi, C


    This review examined the efficacy of intranasal corticosteroids for improving adenotonsillar hypertrophy. The related literature was searched using PubMed and Proquest Central databases. Adenotonsillar hypertrophy causes mouth breathing, nasal congestion, hyponasal speech, snoring, obstructive sleep apnoea, chronic sinusitis and recurrent otitis media. Adenoidal hypertrophy results in the obstruction of nasal passages and Eustachian tubes, and blocks the clearance of nasal mucus. Adenotonsillar hypertrophy and obstructive sleep apnoea are associated with increased expression of various mediators of inflammatory responses in the tonsils, and respond to anti-inflammatory agents such as corticosteroids. Topical nasal steroids most likely affect the anatomical component by decreasing inspiratory upper airway resistance at the nasal, adenoidal or tonsillar levels. Corticosteroids, by their lympholytic or anti-inflammatory effects, might reduce adenotonsillar hypertrophy. Intranasal corticosteroids reduce cellular proliferation and the production of pro-inflammatory cytokines in a tonsil and adenoid mixed-cell culture system. Intranasal corticosteroids have been used in adenoidal hypertrophy and adenotonsillar hypertrophy patients, decreasing rates of surgery for adenotonsillar hypertrophy.

  16. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.


    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  17. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models. (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin


    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  18. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)


    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  19. Transethmoidal intranasal meningoencephalocele in an adult with recurrent meningitis. (United States)

    Hasegawa, Takafumi; Sugeno, Naoto; Shiga, Yusei; Takeda, Atsushi; Karibe, Hiroshi; Tominaga, Teiji; Itoyama, Yasuto


    Intranasal meningoencephalocele is a rarely encountered congenital malformation. We report a case of transethmoidal intranasal meningoencephalocele in a 52-year old man with recurrent purulent meningitis. After treatment of the acute meningitis, frontal craniotomy followed by the removal of the stalk of the meningoencephalocele and repair of the bony defect was successfully performed. He has had no further meningitis or CSF rhinorrhea post-operatively. Detailed neuroradiological examination and appropriate surgical treatment are important to prevent fatal neurological complications of intranasal meningoencephalocele.

  20. Bronchial lesions of mouse model of asthma are preceded by immune complex vasculitis and induced bronchial associated lymphoid tissue (iBALT). (United States)

    Guest, Ian C; Sell, Stewart


    We systematically examined by immune histology the lungs of some widely used mouse models of asthma. These models include sensitization by multiple intraperitoneal injections of soluble ovalbumin (OVA) or of OVA with alum, followed by three intranasal or aerosol challenges 3 days apart. Within 24 h after a single challenge there is fibrinoid necrosis of arterial walls with deposition of immunoglobulin (Ig) and OVA and infiltration of eosinophilic polymorphonuclear cells that lasts for about 3 days followed by peribronchial B-cell infiltration and slight reversible goblet cell hypertrophy (GCHT). After two challenges, severe eosinophilic vasculitis is present at 6 h, increases by 72 h, and then declines; B-cell proliferation and significant GCHT and hyperplasia (GCHTH) and bronchial smooth muscle hypertrophy recur more prominently. After three challenges, there is significantly increased induced bronchus-associated lymphoid tissue (iBALT) formation, GCHTH, and smooth muscle hypertrophy. Elevated levels of Th2 cytokines, IL-4, IL-5, and IL-13, are present in bronchial lavage fluids. Sensitized mice have precipitating antibody and positive Arthus skin reactions but also develop significant levels of IgE antibody to OVA but only 1 week after challenge. We conclude that the asthma like lung lesions induced in these models is preceded by immune complex-mediated eosinophilic vasculitis and iBALT formation. There are elevations of Th2 cytokines that most likely produce bronchial lesions that resemble human asthma. However, it is unlikely that mast cell-activated atopic mechanisms are responsible as we found only a few presumed mast cells by toluidine blue and metachromatic staining limited to the most proximal part of the main stem bronchus, and none in the remaining main stem bronchus or in the lung periphery.

  1. Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings


    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI*** (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  2. Mouse models for disorders of mitochondrial fatty acid beta-oxidation. (United States)

    Schuler, A Michele; Wood, Philip A


    Mitochondrial beta-oxidation of fatty acids is vital for energy production in periods of fasting and other metabolic stress. Human patients have been identified with inherited disorders of mitochondrial beta-oxidation of fatty acids with enzyme deficiencies identified at many of the steps in this pathway. Although these patients exhibit a range of disease processes, Reye-like illness (hypoketotic-hypoglycemia, hyperammonemia and fatty liver) and cardiomyopathy are common findings. There have been several mouse models developed to aid in the study of these disease conditions. The characterized mouse models include inherited deficiencies of very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein-alpha, and medium-/short-chain hydroxyacyl-CoA dehydrogenase. Mouse mutants developed, but presently incompletely characterized as models, include carnitine palmitoyltransferase-1a and medium-chain acyl-CoA dehydrogenase deficiencies. In general, the mouse models of disorders of mitochondrial fatty acid beta-oxidation have shown clinical signs that include Reye-like syndrome and cardiomyopathy, and many are cold intolerant. It is expected that these mouse models will provide vital contributions in understanding the mechanisms of disease pathogenesis of fatty acid oxidation disorders and the development of appropriate treatments and supportive care.

  3. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.


    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  4. Kliniske konsekvenser af intranasal insulinbehandling ved insulinkraevende diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, J C; Madsbad, S; Rasmussen, M H


    Metabolic control, hypoglycaemia frequency and nasal mucosal physiology were evaluated in 31 insulin-dependent diabetics treated with intranasal insulin at mealtimes for one month and with subcutaneous fast-acting insulin for another month in a randomized crossover trial. During both periods...... subcutaneous doses. The frequency of hypoglycemia was similar during intranasal and subcutaneous insulin therapy, and nasal mucosal physiology was unaffected after intranasal insulin. We conclude that due to low bioavailability and to a high rate of therapeutic failure, intranasal insulin treatment...

  5. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske


    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  6. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.


    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  7. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske


    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  8. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health. (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A


    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  9. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès


    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  10. Effects of p21 deletion in mouse models of premature aging (United States)

    Benson, Erica K.; Zhao, Bo; Sassoon, David A.; Lee, Sam W.; Aaronson, Stuart A.


    An approach to investigate the role of cellular senescence in organismal aging has been to abrogate signaling pathways known to induce cellular senescence and to assess the effects in mouse models of premature aging. Recently, we reported the effect of loss of function of p21, a gene implicated in p53-induced cellular senescence, in the background of the Ku80−/− premature aging mouse (Zhao et al., EMBO Rep 2009). Here, we provide an overview of the effects of p21 deletion in different models of premature aging. PMID:19535900

  11. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends


    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  12. Selection of antioxidants against ovarian oxidative stress in mouse model. (United States)

    Li, Bojiang; Weng, Qiannan; Liu, Zequn; Shen, Ming; Zhang, Jiaqing; Wu, Wangjun; Liu, Honglin


    Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro-apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary. © 2017 Wiley Periodicals, Inc.

  13. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure. (United States)

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin


    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans.

  14. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene


    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  15. The STR/ort mouse model of spontaneous osteoarthritis - an update. (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A


    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M


    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p Lactobacillus rhamnosus GG effectively suppresses bone loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Influence of anatomy and head position on intranasal drug deposition

    NARCIS (Netherlands)

    Merkus, Paul; Ebbens, Fenna A.; Muller, Barbara; Fokkens, Wytske J.


    The objective of this study was to determine the influence of individual anatomical differences on intranasal drug deposition. The data of a comparison of seven different administration techniques in ten healthy volunteers was used in this single-blind crossover pilot study. After intranasal

  18. Rift valley Fever virus encephalitis is associated with an ineffective systemic immune response and activated T cell infiltration into the CNS in an immunocompetent mouse model.

    Directory of Open Access Journals (Sweden)

    Kimberly A Dodd


    Full Text Available Rift Valley fever virus (RVFV causes outbreaks of severe disease in livestock and humans throughout Africa and the Arabian Peninsula. In people, RVFV generally causes a self-limiting febrile illness but in a subset of individuals, it progresses to more serious disease. One manifestation is a delayed-onset encephalitis that can be fatal or leave the afflicted with long-term neurologic sequelae. In order to design targeted interventions, the basic pathogenesis of RVFV encephalitis must be better understood.To characterize the host immune responses and viral kinetics associated with fatal and nonfatal infections, mice were infected with an attenuated RVFV lacking NSs (ΔNSs that causes lethal disease only when administered intranasally (IN. Following IN infection, C57BL/6 mice developed severe neurologic disease and succumbed 7-9 days post-infection. In contrast, inoculation of ΔNSs virus subcutaneously in the footpad (FP resulted in a subclinical infection characterized by a robust immune response with rapid antibody production and strong T cell responses. IN-inoculated mice had delayed antibody responses and failed to clear virus from the periphery. Severe neurological signs and obtundation characterized end stage-disease in IN-inoculated mice, and within the CNS, the development of peak virus RNA loads coincided with strong proinflammatory responses and infiltration of activated T cells. Interestingly, depletion of T cells did not significantly alter survival, suggesting that neurologic disease is not a by-product of an aberrant immune response.Comparison of fatal (IN-inoculated and nonfatal (FP-inoculated ΔNSs RVFV infections in the mouse model highlighted the role of the host immune response in controlling viral replication and therefore determining clinical outcome. There was no evidence to suggest that neurologic disease is immune-mediated in RVFV infection. These results provide important insights for the future design of vaccines and

  19. A new transgenic mouse model for conditional overexpression of the Polycomb Group protein EZH2. (United States)

    Koppens, Martijn A J; Tanger, Ellen; Nacerddine, Karim; Westerman, Bart; Song, Ji-Ying; van Lohuizen, Maarten


    The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.

  20. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  1. Iatrogenic Cushing's syndrome following short-term intranasal steroid use. (United States)

    Dutta, Deep; Shivaprasad, K S; Ghosh, Sujoy; Mukhopadhyay, Satinath; Chowdhury, Subhankar


    Cushing's syndrome (CS) is common after oral steroid use and has also been reported following topical or inhaled use, but it is extremely uncommon after intranasal administration. In this paper, we present the case of a child who developed CS after intranasal application of combined moxifloxacin-dexamethasone eye drops for epistaxis for a period of 3 months. CS caused by ocular preparations of steroids has not been reported previously. This case report highlights the fact that even eye drops can contain high doses of steroids and can lead to CS especially in children and especially if used intranasally. Ocular steroid drops should not be used intranasally. To minimize gastrointestinal absorption and therefore the risk of CS, nasal sprays should be preferred over nasal drops for intranasal steroid application.

  2. Evaluation of mammary gland development and function in mouse models. (United States)

    Plante, Isabelle; Stewart, Michael K G; Laird, Dale W


    The human mammary gland is composed of 15-20 lobes that secrete milk into a branching duct system opening at the nipple. Those lobes are themselves composed of a number of terminal duct lobular units made of secretory alveoli and converging ducts. In mice, a similar architecture is observed at pregnancy in which ducts and alveoli are interspersed within the connective tissue stroma. The mouse mammary gland epithelium is a tree like system of ducts composed of two layers of cells, an inner layer of luminal cells surrounded by an outer layer of myoepithelial cells denoted by the confines of a basement membrane. At birth, only a rudimental ductal tree is present, composed of a primary duct and 15-20 branches. Branch elongation and amplification start at the beginning of puberty, around 4 weeks old, under the influence of hormones. At 10 weeks, most of the stroma is invaded by a complex system of ducts that will undergo cycles of branching and regression in each estrous cycle until pregnancy. At the onset of pregnancy, a second phase of development begins, with the proliferation and differentiation of the epithelium to form grape-shaped milk secretory structures called alveoli. Following parturition and throughout lactation, milk is produced by luminal secretory cells and stored within the lumen of alveoli. Oxytocin release, stimulated by a neural reflex induced by suckling of pups, induces synchronized contractions of the myoepithelial cells around the alveoli and along the ducts, allowing milk to be transported through the ducts to the nipple where it becomes available to the pups. Mammary gland development, differentiation and function are tightly orchestrated and require, not only interactions between the stroma and the epithelium, but also between myoepithelial and luminal cells within the epithelium. Thereby, mutations in many genes implicated in these interactions may impair either ductal elongation during puberty or alveoli formation during early pregnancy

  3. Intranasal location and immunohistochemical characterization of the equine olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Alexandra Kupke


    Full Text Available The olfactory epithelium (OE is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system (CNS. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g. Borna disease virus (BoDV, equine herpesvirus 1 (EHV-1, hendra virus, influenza virus, rabies virus, vesicular stomatitis virus (VSV can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g. horses would help to underscore transferability of rodent models. Analysis of the complete noses of 5 adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein (OMP and doublecortin (DCX expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen (PCNA and tropomyosin receptor kinase A (TrkA was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine type a and b were

  4. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model


    Roth, Michael D; Harui, Airi


    BACKGROUND: The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating ...

  5. Hypothalamic food intake regulation in a cancer-cachectic mouse model


    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske


    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  6. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2


    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske


    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  7. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1


    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske


    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...


    Directory of Open Access Journals (Sweden)

    A. Poltorak


    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  9. Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis

    NARCIS (Netherlands)

    Hofker, M.H.; Vlijmen, B.J.M. van; Havekes, L.M.


    Transgenic technologies have provided a series of very useful mouse models to study hyperlipidemia and atherosclerosis. Normally, mice carry cholesterol mainly in the high density lipoprotein (HDL) sized lipoproteins, and have low density lipoprotein (LDL) and very low density lipoprotein (VLDL)

  10. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van


    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  11. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna


    with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...... cognitive decline....

  12. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  13. Comparative mRNA analysis of behavioral and genetic mouse models of aggression

    NARCIS (Netherlands)

    Malki, Karim; Tosto, Maria G.; Pain, Oliver; Sluyter, Frans; Mineur, Yann S.; Crusio, Wim E.; de Boer, Sietse; Sandnabba, Kenneth N.; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C.; Asherson, Philip

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially

  14. Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma as a Preclinical Tool (United States)


    studying this rare incurable tumor. Our approach is unique as we are using genetic engineered mouse modeling techniques to dissect the contribution of...Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge SN, MacDonald TJ, Packer RJ, Nazarian J

  15. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.


    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  16. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.


    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  17. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Athanassios Fragoulis


    Conclusion: In summary, these findings show that methysticin administration activates the Nrf2 pathway and reduces neuroinflammation, hippocampal oxidative damage and memory loss in a mouse model of AD. Therefore, kavalactones might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs.

  18. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M


    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  19. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  20. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation

    NARCIS (Netherlands)

    R.E. von Leden (Ramona); L.C. Curley (Lindsey); G.D. Greenberg (Gian); M.R. Hunsaker (Michael); R. Willemsen (Rob); R.F. Berman (Robert)


    textabstractEnvironmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model

  1. Activity-Dependent Changes in MAPK Activation in the Angelman Syndrome Mouse Model (United States)

    Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J.


    Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…

  2. Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model. (United States)

    Koike, Yuhki; Uchida, Keiichi; Tanaka, Koji; Ide, Shozo; Otake, Kohei; Okita, Yoshiki; Inoue, Mikihiro; Araki, Toshimitsu; Mizoguchi, Akira; Kusunoki, Masato


    In sepsis, circulating free DNA (cf-DNA) is increased, and is a marker of severity and prognosis of septic patients. This study aimed to evaluate cf-DNA in a dextran sodium sulfate-induced colitis mouse model, and its clinical implications. Dynamic pathology of the cecum wall in the DSS-induced colitis mouse model was analyzed using multiphoton microscopy (MPM). Plasma cf-DNA concentrations in colitis mouse were quantified using PicoGreen dsDNA Assay Kit. Plasma cf-DNA was also measured in 123 human ulcerative colitis (UC) patients [mean age: 35.9 years (3-75 years) with 20 pediatric patients] to assess its relationships with clinical severity and Matt's grade. Real-time images of cf-DNA were detected in the colitis model. The amount of labeled cf-DNA in the circulation of the colitis mice group was significantly higher compared with that in the control group (P UC blood samples, plasma cf-DNA concentrations in UC patients were significantly positively correlated with the clinical severity of UC and Matt's grade (P colitis mouse model. Plasma cf-DNA is a potential non-invasive blood marker for reflecting clinical severity and mucosal damage in UC patients.

  3. Fluticasone furoate: A new intranasal corticosteroid

    Directory of Open Access Journals (Sweden)

    R Kumar


    Full Text Available Intranasal corticosteroids are recommended as one of the first-line therapies for the treatment of allergic rhinitis (AR, especially when associated with nasal congestion and recurrent symptoms. Fluticasone furoate is a novel enhanced-affinity glucocorticoid for the treatment of AR approved by the Food and Drug Administration in 2007 and recently introduced in India. Fluticasone furoate nasal spray is indicated for the treatment of the symptoms of seasonal and perennial AR in patients aged two years and older. This review summarizes the clinical data on fluticasone furoate nasal spray and discusses its role in the management of AR. Important attributes of fluticasone furoate include low systemic bioavailability (<0.5%, 24-h symptom relief with once-daily dosing, comprehensive coverage of both nasal and ocular symptoms, safety and tolerability with daily use, and availability in a side-actuated device that makes medication delivery simple and consistent. With these properties, fluticasone furoate nasal spray has the potential to enhance patient satisfaction and compliance, thus making it a good choice amongst available intranasal steroids.

  4. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others


    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  5. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein. (United States)

    Magen, Iddo; Ostritsky, Regina; Richter, Franziska; Zhu, Chunni; Fleming, Sheila M; Lemesre, Vincent; Stewart, Alistair J; Morimoto, Bruce H; Gozes, Illana; Chesselet, Marie-Françoise


    Genome-wide association studies have identified strong associations between the risk of developing Parkinson's disease (PD) and polymorphisms in the genes encoding α-synuclein and the microtubule-associated protein tau. However, the contribution of tau and its phosphorylated form (p-tau) to α-synuclein-induced pathology and neuronal dysfunction remains controversial. We have assessed the effects of NAP (davunetide), an eight-amino acid peptide that decreases tau hyperphosphorylation, in mice overexpressing wild-type human α-synuclein (Thy1-aSyn mice), a model that recapitulates aspects of PD. We found that the p-tau/tau level increased in a subcortical tissue block that includes the striatum and brain stem, and in the cerebellum of the Thy1-aSyn mice compared to nontransgenic controls. Intermittent intranasal NAP administration at 2 μg/mouse per day, 5 days a week, for 24 weeks, starting at 4 weeks of age, significantly decreased the ratio of p-tau/tau levels in the subcortical region while a higher dose of 15 μg/mouse per day induced a decrease in p-tau/tau levels in the cerebellum. Both NAP doses reduced hyperactivity, improved habituation to a novel environment, and reduced olfactory deficits in the Thy1-aSyn mice, but neither dose improved the severe deficits of motor coordination observed on the challenging beam and pole, contrasting with previous data obtained with continuous daily administration of the drug. The data reveal novel effects of NAP on brain p-tau/tau and behavioral outcomes in this model of synucleinopathy and suggest that sustained exposure to NAP may be necessary for maximal benefits.

  6. Intranasal inoculation of white-tailed deer (Odocoileus virginianus with lyophilized chronic wasting disease prion particulate complexed to montmorillonite clay.

    Directory of Open Access Journals (Sweden)

    Tracy A Nichols

    Full Text Available Chronic wasting disease (CWD, the only known prion disease endemic in wildlife, is a persistent problem in both wild and captive North American cervid populations. This disease continues to spread and cases are found in new areas each year. Indirect transmission can occur via the environment and is thought to occur by the oral and/or intranasal route. Oral transmission has been experimentally demonstrated and although intranasal transmission has been postulated, it has not been tested in a natural host until recently. Prions have been shown to adsorb strongly to clay particles and upon oral inoculation the prion/clay combination exhibits increased infectivity in rodent models. Deer and elk undoubtedly and chronically inhale dust particles routinely while living in the landscape while foraging and rutting. We therefore hypothesized that dust represents a viable vehicle for intranasal CWD prion exposure. To test this hypothesis, CWD-positive brain homogenate was mixed with montmorillonite clay (Mte, lyophilized, pulverized and inoculated intranasally into white-tailed deer once a week for 6 weeks. Deer were euthanized at 95, 105, 120 and 175 days post final inoculation and tissues examined for CWD-associated prion proteins by immunohistochemistry. Our results demonstrate that CWD can be efficiently transmitted utilizing Mte particles as a prion carrier and intranasal exposure.

  7. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. (United States)

    Chiu, Weihsueh A; Campbell, Jerry L; Clewell, Harvey J; Zhou, Yi-Hui; Wright, Fred A; Guyton, Kathryn Z; Rusyn, Ivan


    Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Concentration-time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability.

  8. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David


    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A new mouse model of impaired wound healing after irradiation. (United States)

    Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Nishimoto, Soh; Fukuda, Kenji; Fujiwara, Toshihiro; Kakibuchi, Masao


    Radiation has many benefits and is an important treatment for cancer therapy. However, it also has unfavourable side-effects. Among these side-effects, the impairment of wound healing in the skin is a major problem in clinics. Although many attempts have been made to overcome this shortcoming, there are few effective treatments for impaired wound healing after irradiation. One reason for this is that it is hard to obtain good animal models for researching this topic. In this study, two different models were created and investigated. In one model, rectangular flaps were created on the backs of mice and irradiated while the other parts of their bodies were covered with a lead board. In another model, the lower limbs were exposed to radiation. In each model, several doses of irradiation were tested. Skin ulcers were created in the irradiated area, and the wound healing process was observed. In order to verify the usefulness of the model, adipose derived stromal cells were injected into the wound and the healing rate was calculated. In the flap model, the flaps contracted and formed linear scars. On the other hand, in the thigh model, 15 Gy irradiation resulted in slow wound healing but no strong inflammation or necrosis. The transplantation of adipose tissue derived stromal cells into the irradiated thigh wound improved the wound healing. This study suggested that irradiation of the lower limb at ∼ 15 Gy might be an appropriate model for basic research into wound healing in irradiated skin.

  10. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett


    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  11. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model


    Do, Khoa; Laing, Brenton Thomas; Landry, Taylor; Bunner, Wyatt; Mersaud, Naderi; Matsubara, Tomoko; Li, Peixin; Yuan, Yuan; Lu, Qun; Huang, Hu


    Alzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabol...

  12. Estimating Lead (Pb) Bioavailability In A Mouse Model (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  13. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. (United States)

    Rivera-Barahona, Ana; Alonso-Barroso, Esmeralda; Pérez, Belén; Murphy, Michael P; Richard, Eva; Desviat, Lourdes R


    Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A novel experimental mouse model of retinal detachment: complete functional and histologic recovery of the retina. (United States)

    Zeng, Rui; Zhang, Ying; Shi, Fanjun; Kong, Fansheng


    To establish an experimental mouse model of retinal detachment (RD) created by corneal puncture (CP). Mouse corneas were punctured with a 30.5-gauge beveled needle, and the anterior chamber was penetrated. Histologic and functional changes of the retina were examined by light microscopy and electroretinography (ERG). Certain retinal cellular responses were examined by immunofluorescence microscopy. Internucleosomal DNA fragmentation in the retina was determined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick-end labeling (TUNEL). RESULTS. CP caused transient leakage of aqueous humor along the needle shaft and immediate formation of multiple retinal blebs, which shrank and flattened within 24 hours. Bleb formation was associated with detachment of the neuroretina from the retinal pigment epithelium (RPE). After CP, the RPE cells underwent extensive transformation during retinal detachment/reattachment, but they resumed normal morphology on retinal reattachment around 10 to 13 days after CP. Relative to pre-CP ERG amplitudes, the punctured eyes showed decreases of 45% and 24% in scotopic and 7% and 12% in photopic b- and a-wave amplitudes, respectively, within 10 to 20 minutes after CP. The ERG amplitudes recovered fully by 12 hours after CP. No infiltrated cells were observed in the subretinal space, and no proliferating or TUNEL-positive cells were observed in the retina of the punctured eyes. Puncturing the mouse cornea can create transient RD, and the functional and histologic changes in the retina can subsequently recover. This experimental mouse model of RD mimics human traction and serous RD.

  15. Pharmepéna-Psychonautics: Human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. (United States)

    Ott, J


    Summarized are psychonautic bioassays (human self-experiments) of pharmepéna--crystalline 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; O-Me-bufotenine), at times combined with crystalline beta-carbolines (harmaline or harmine). These substances were administered via intranasal, sublingual and oral routes, by way of pharmacological modeling of diverse South American shamanic inebriants (principally the snuffs epéna/nyakwana, prepared from barks of diverse species of Virola.) Intranasal, sublingual and oral psychoactivity of 5-MeO-DMT, and the 1967 Holmstedt-Lindgren hypothesis of the paricá-effect--intranasal potentiation of tryptamines by concomitant administration of monoamine-oxidase-inhibiting (MAOI) beta-carbolines from stems of Banisteriopsis caapi admixed with the snuffs--have been confirmed by some 17 psychonautic bioassays. Salient phytochemical and psychonautic literature is reviewed.

  16. Riluzole does not improve lifespan or motor function in three ALS mouse models. (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M


    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  17. Assessment of Th17/Treg cells and Th cytokines in an improved immune thrombocytopenia mouse model. (United States)

    Zhang, Guoyang; Zhang, Ping; Liu, Hongyun; Liu, Xiaoyan; Xie, Shuangfeng; Wang, Xiuju; Wu, Yudan; Chang, Jianxing; Ma, Liping


    The improved passive immune thrombocytopenia (ITP) mouse model has been extensively utilized for the study of ITP. However, how closely this model matches the human inflammation state and immune background is unclear. Our study aimed to explore the profile of Th cytokines and Th17/Treg cells in the model. We induced the ITP mouse model by dose-escalation injection of MWReg30. The serum levels of cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-17A, and TGF-β1) were measured by enzyme-linked immunosorbent assay and the frequency of Th17 and Treg cells was measured by flow cytometry. The mRNA expression of Foxp3 and RORrt was measured by real-time PCR. The serum levels of cytokines IFN-γ, TGF-β1, IL-4, and IL-10 were significantly lower in ITP mice. The secretion of serum proinflammatory cytokines IL-2 and IL-17A and the percentage of Th17 cells showed no statistically significant increase. In ITP mice the frequency of Treg cells and mRNA expression of Foxp3 was significantly lower in splenocytes. Our data suggest that the improved passive ITP mouse model does not mimic the autoimmune inflammatory process of human ITP. Compared with human ITP, this model has a similar change in frequency of Treg cells, which may directly or indirectly result from antibody-mediated platelet destruction due to attenuated release of TGF-β.

  18. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer's disease mouse model. (United States)

    Nygaard, Haakon B; Kaufman, Adam C; Sekine-Konno, Tomoko; Huh, Linda L; Going, Hilary; Feldman, Samantha J; Kostylev, Mikhail A; Strittmatter, Stephen M


    Recent studies have shown that several strains of transgenic Alzheimer's disease (AD) mice overexpressing the amyloid precursor protein (APP) have cortical hyperexcitability, and their results have suggested that this aberrant network activity may be a mechanism by which amyloid-β (Aβ) causes more widespread neuronal dysfunction. Specific anticonvulsant therapy reverses memory impairments in various transgenic mouse strains, but it is not known whether reduction of epileptiform activity might serve as a surrogate marker of drug efficacy for memory improvement in AD mouse models. Transgenic AD mice (APP/PS1 and 3xTg-AD) were chronically implanted with dural electroencephalography electrodes, and epileptiform activity was correlated with spatial memory function and transgene-specific pathology. The antiepileptic drugs ethosuximide and brivaracetam were tested for their ability to suppress epileptiform activity and to reverse memory impairments and synapse loss in APP/PS1 mice. We report that in two transgenic mouse models of AD (APP/PS1 and 3xTg-AD), the presence of spike-wave discharges (SWDs) correlated with impairments in spatial memory. Both ethosuximide and brivaracetam reduce mouse SWDs, but only brivaracetam reverses memory impairments in APP/PS1 mice. Our data confirm an intriguing therapeutic role of anticonvulsant drugs targeting synaptic vesicle protein 2A across AD mouse models. Chronic ethosuximide dosing did not reverse spatial memory impairments in APP/PS1 mice, despite reduction of SWDs. Our data indicate that SWDs are not a reliable surrogate marker of appropriate target engagement for reversal of memory dysfunction in APP/PS1 mice.

  19. Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer. (United States)

    Fleet, James C


    Colorectal cancer is a heterogeneous disease that is one of the major causes of cancer death in the U.S. There is evidence that lifestyle factors like diet can modulate the course of this disease. Demonstrating the benefit and mechanism of action of dietary interventions against colon cancer will require studies in preclinical models. Many mouse models have been developed to study colon cancer but no single model can reflect all types of colon cancer in terms of molecular etiology. In addition, many models develop only low-grade cancers and are confounded by development of the disease outside of the colon. This review will discuss how mice can be used to model human colon cancer and it will describe a variety of new mouse models that develop colon-restricted cancer as well as more advanced phenotypes for studies of late-state disease. Copyright © 2014 the American Physiological Society.

  20. An improved reprogrammable mouse model harbouring the reverse tetracycline-controlled transcriptional transactivator 3

    Directory of Open Access Journals (Sweden)

    S. Alaei


    Full Text Available Reprogrammable mouse models engineered to conditionally express Oct-4, Klf-4, Sox-2 and c-Myc (OKSM have been instrumental in dissecting molecular events underpinning the generation of induced pluripotent stem cells. However, until now these models have been reported in the context of the m2 reverse tetracycline-controlled transactivator, which results in low reprogramming efficiency and consequently limits the number of reprogramming intermediates that can be isolated for downstream profiling. Here, we describe an improved OKSM mouse model in the context of the reverse tetracycline-controlled transactivator 3 with enhanced reprogramming efficiency (>9-fold and increased numbers of reprogramming intermediate cells albeit with similar kinetics, which we believe will facilitate mechanistic studies of the reprogramming process.

  1. A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta (United States)

    Mirbod, Parisa; Sled, John


    The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.

  2. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection. (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V


    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  4. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W


    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  5. Quantification of Lung Metastases from In Vivo Mouse Models

    DEFF Research Database (Denmark)

    Chang, Joan; Erler, Janine T


    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical...... testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well...

  6. Mouse models of acute and chronic hepacivirus infection

    DEFF Research Database (Denmark)

    Billerbeck, Eva; Wolfisberg, Raphael; Fahnøe, Ulrik


    An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in labora......An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections...... provide mechanistic insights into hepatic antiviral immunity, a prerequisite for the development of HCV vaccines....

  7. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease. (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E


    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  8. FXN Promoter Silencing in the Humanized Mouse Model of Friedreich Ataxia.

    Directory of Open Access Journals (Sweden)

    Yogesh K Chutake

    Full Text Available Friedreich ataxia is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene that results in epigenetic silencing of the FXN promoter. This silencing mechanism is seen in patient-derived lymphoblastoid cells but it remains unknown if it is a widespread phenomenon affecting multiple cell types and tissues.The humanized mouse model of Friedreich ataxia (YG8sR, which carries a single transgenic insert of the human FXN gene with an expanded GAA triplet-repeat in intron 1, is deficient for FXN transcript when compared to an isogenic transgenic mouse lacking the expanded repeat (Y47R. We found that in YG8sR the deficiency of FXN transcript extended both upstream and downstream of the expanded GAA triplet-repeat, suggestive of deficient transcriptional initiation. This pattern of deficiency was seen in all tissues tested, irrespective of whether they are known to be affected or spared in disease pathogenesis, in both neuronal and non-neuronal tissues, and in cultured primary fibroblasts. FXN promoter function was directly measured via metabolic labeling of newly synthesized transcripts in fibroblasts, which revealed that the YG8sR mouse was significantly deficient in transcriptional initiation compared to the Y47R mouse.Deficient transcriptional initiation accounts for FXN transcriptional deficiency in the humanized mouse model of Friedreich ataxia, similar to patient-derived cells, and the mechanism underlying promoter silencing in Friedreich ataxia is widespread across multiple cell types and tissues.

  9. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.


    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ-free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  10. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm


    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  11. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E


    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown me...

  12. Abnormalities in the tricarboxylic Acid cycle in Huntington disease and in a Huntington disease mouse model. (United States)

    Naseri, Nima N; Xu, Hui; Bonica, Joseph; Vonsattel, Jean Paul G; Cortes, Etty P; Park, Larry C; Arjomand, Jamshid; Gibson, Gary E


    Glucose metabolism is reduced in the brains of patients with Huntington disease (HD). The mechanisms underlying this deficit, its link to the pathology of the disease, and the vulnerability of the striatum in HD remain unknown. Abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase complex (PDHC) and the tricarboxylic acid (TCA) cycle, may contribute to these deficits. Here, activities for these enzymes and select protein levels were measured in human postmortem cortex and in striatum and cortex of an HD mouse model (Q175); mRNA levels encoding for these enzymes were also measured in the Q175 mouse cortex. The activities of PDHC and nearly all of the TCA cycle enzymes were dramatically lower (-50% to 90%) in humans than in mice. The activity of succinate dehydrogenase increased with HD in human (35%) and mouse (23%) cortex. No other changes were detected in the human HD cortex or mouse striatum. In Q175 cortex, there were increased activities of PDHC (+12%) and aconitase (+32%). Increased mRNA levels for succinyl thiokinase (+88%) and isocitrate dehydrogenase (+64%) suggested an upregulation of the TCA cycle. These patterns of change differ from those reported in other diseases, which may offer unique metabolic therapeutic opportunities for HD patients.

  13. Progressive Spatial Processing Deficits in a Mouse Model of the Fragile X Premutation (United States)

    Hunsaker, Michael R.; Wenzel, H. Jürgen; Willemsen, Rob; Berman, Robert F.


    Fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that is the result of a CGG trinucleotide repeat expansion in the range of 55-200 in the 5’ UTR of the FMR1 gene. To better understand the progression of this disorder, a knock-in (CGG KI) mouse was developed by substituting the mouse CGG8 trinucleotide repeat with an expanded CGG98 repeat from human origin. It has been shown that this mouse shows deficits on the water maze at 52 weeks of age. In the present study, this CGG KI mouse model of FXTAS was tested on behavioral tasks that emphasize spatial information processing. The results demonstrate that at 12 and 24 weeks of age, CGG KI mice were unable to detect a change in the distance between two objects (metric task), but showed intact detection of a transposition of the objects (topological task). At 48 weeks of age, CGG KI mice were unable to detect either change in object location. These data indicate that hippocampal-dependent impairments in spatial processing may occur prior to parietal cortex-dependent impairments in FXTAS. PMID:20001115

  14. MBT/Pas mouse: a relevant model for the evaluation of Rift Valley fever vaccines. (United States)

    Ayari-Fakhfakh, Emna; do Valle, Tânia Zaverucha; Guillemot, Laurent; Panthier, Jean-Jacques; Bouloy, Michèle; Ghram, Abdeljelil; Albina, Emmanuel; Cêtre-Sossah, Catherine


    Currently, there are no worldwide licensed vaccines for Rift Valley fever (RVF) that are both safe and effective. Development and evaluation of vaccines, diagnostics and treatments depend on the availability of appropriate animal models. Animal models are also necessary to understand the basic pathobiology of infection. Here, we report the use of an inbred MBT/Pas mouse model that consistently reproduces RVF disease and serves our purpose for testing the efficacy of vaccine candidates; an attenuated Rift Valley fever virus (RVFV) and a recombinant RVFV-capripoxvirus. We show that this model is relevant for vaccine testing.

  15. Protective immunization with homologous and heterologous antigens against Helicobacter suis challenge in a mouse model. (United States)

    Flahou, Bram; Hellemans, Ann; Meyns, Tom; Duchateau, Luc; Chiers, Koen; Baele, Margo; Pasmans, Frank; Haesebrouck, Freddy; Ducatelle, Richard


    Helicobacter (H.) suis colonizes the stomach of more than 60% of slaughter pigs and is also of zoonotic importance. Recently, this bacterium was isolated in vitro, enabling the use of pure cultures for research purposes. In this study, mice were immunized intranasally or subcutaneously with whole bacterial cell lysate of H. suis or the closely related species H. bizzozeronii and H. cynogastricus, and subsequently challenged with H. suis. Control groups consisted of non-immunized and non-challenged mice (negative control group), as well as of sham-immunized mice that were inoculated with H. suis (positive control group). Urease tests on stomach tissue samples at 7 weeks after challenge infection were negative in all negative control mice, all intranasally immunized mice except one, and in all and 3 out of 5 animals of the H. cynogastricus and H. suis subcutaneously immunized groups, respectively. H. suis DNA was detected by PCR in the stomach of all positive control animals and all subcutaneously immunized/challenged animals. All negative control animals and some intranasally immunized/challenged mice were PCR-negative. In conclusion, immunization using antigens derived from the same or closely related bacterial species suppressed gastric colonization with H. suis, but complete protection was only achieved in a minority of animals following intranasal immunization.

  16. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles. (United States)

    Wöhr, Markus


    Autism spectrum disorders (ASD) are a class of neurodevelopmental disorders characterized by persistent deficits in social behavior and communication across multiple contexts, together with repetitive patterns of behavior, interests, or activities. The high concordance rate between monozygotic twins supports a strong genetic component. Among the most promising candidate genes for ASD is the SHANK gene family, including SHANK1, SHANK2 (ProSAP1), and SHANK3 (ProSAP2). SHANK genes are therefore important candidates for modeling ASD in mice and various genetic models were generated within the last few years. As the diagnostic criteria for ASD are purely behaviorally defined, the validity of mouse models for ASD strongly depends on their behavioral phenotype. Behavioral phenotyping is therefore a key component of the current translational approach and requires sensitive behavioral test paradigms with high relevance to each diagnostic symptom category. While behavioral phenotyping assays for social deficits and repetitive patterns of behavior, interests, or activities are well-established, the development of sensitive behavioral test paradigms to assess communication deficits in mice is a daunting challenge. Measuring ultrasonic vocalizations (USV) appears to be a promising strategy. In the first part of the review, an overview on the different types of mouse USV and their communicative functions will be provided. The second part is devoted to studies on the emission of USV in Shank mouse models for ASD. Evidence for communication deficits was obtained in Shank1, Shank2, and Shank3 genetic mouse models for ASD, often paralleled by behavioral phenotypes relevant to social deficits seen in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption. (United States)

    Yasoshima, Yasunobu; Shimura, Tsuyoshi


    Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome (United States)

    Hamlett, Eric D.; Boger, Heather A.; Ledreux, Aurélie; Kelley, Christy M.; Mufson, Elliott J.; Falangola, Maria F.; Guilfoyle, David N.; Nixon, Ralph A.; Patterson, David; Duval, Nathan; Granholm, Ann-Charlotte E.


    Down syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer’s disease (AD). Individuals with DS develop cognitive and pathological hallmarks of AD in their fourth or fifth decade, and are currently lacking successful prevention or treatment options for dementia. The profound memory deficits associated with DS-related AD (DS-AD) have been associated with degeneration of several neuronal populations, but mechanisms of neurodegeneration are largely unexplored. The most successful animal model for DS is the Ts65Dn mouse, but several new models have also been developed. In the current review, we discuss recent findings and potential treatment options for the management of memory loss and AD neuropathology in DS mouse models. We also review age-related neuropathology, and recent findings from neuroimaging studies. The validation of appropriate DS mouse models that mimic neurodegeneration and memory loss in humans with DS can be valuable in the study of novel preventative and treatment interventions, and may be helpful in pinpointing gene-gene interactions as well as specific gene segments involved in neurodegeneration. PMID:26391050

  19. Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research. (United States)

    Zhou, Ting; Kinney, Marsha C; Scott, Linda M; Zinkel, Sandra S; Rebel, Vivienne I


    Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease. © 2015 by The American Society of Hematology.

  20. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications. (United States)

    Sportoletti, P; Varasano, E; Rossi, R; Mupo, A; Tiacci, E; Vassiliou, G; Martelli, M P; Falini, B


    Acute myeloid leukemia (AML) carrying nucleophosmin (NPM1) mutations displays distinct biological and clinical features that led to its inclusion as a provisional disease entity in the 2008 World Health Organization (WHO) classification of myeloid neoplasms. Studies of the molecular mechanisms underlying the pathogenesis of NPM1-mutated AML have benefited greatly from several mouse models of this leukemia developed over the past few years. Immunocompromised mice xenografted with NPM1-mutated AML served as the first valuable tool for defining the biology of the disease in vivo. Subsequently, genetically engineered mouse models of the NPM1 mutation, including transgenic and knock-in alleles, allowed the generation of mice with a constant genotype and a reproducible phenotype. These models have been critical for investigating the nature of the molecular effects of these mutations, defining the function of leukemic stem cells in NPM1-mutated AML, identifying chemoresistant preleukemic hemopoietic stem cells and unraveling the key molecular events that cooperate with NPM1 mutations to induce AML in vivo. Moreover, they can serve as a platform for the discovery and validation of new antileukemic drugs in vivo. Advances derived from the analysis of these mouse models promise to greatly accelerate the development of new molecularly targeted therapies for patients with NPM1-mutated AML.

  1. A novel transgenic mouse model of lysosomal storage disorder


    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.


    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  2. Intranasal insulin in Alzheimer's disease: Food for thought. (United States)

    Chapman, Colin D; Schiöth, Helgi B; Grillo, Claudia A; Benedict, Christian


    Accumulating evidence suggests that disrupted brain insulin signaling promotes the development and progression of Alzheimer's disease (AD), driving clinicians to target this circuitry. While both traditional and more modern antidiabetics show promise in combating insulin resistance, intranasal insulin appears to be the most efficient method of boosting brain insulin. Furthermore, intranasal delivery elegantly avoids adverse effects from peripheral insulin administration. However, there remain significant open questions regarding intranasal insulin's efficacy, safety, and potential as an adjunct or mono-therapy. Thus, this review aims to critically evaluate the present evidence and future potential of intranasal insulin as a meaningful treatment for AD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Modelling human myoblasts survival upon xenotransplantation into immunodeficient mouse muscle. (United States)

    Praud, Christophe; Vauchez, Karine; Zongo, Pascal; Vilquin, Jean-Thomas


    Cell transplantation has been challenged in several clinical indications of genetic or acquired muscular diseases, but therapeutic success were mitigated. To understand and improve the yields of tissue regeneration, we aimed at modelling the fate of CD56-positive human myoblasts after transplantation. Using immunodeficient severe combined immunodeficiency (SCID) mice as recipients, we assessed the survival, integration and satellite cell niche occupancy of human myoblasts by a triple immunohistochemical labelling of laminin, dystrophin and human lamin A/C. The counts were integrated into a classical mathematical decline equation. After injection, human cells were essentially located in the endomysium, then they disappeared progressively from D0 to D28. The final number of integrated human nuclei was grossly determined at D2 after injection, suggesting that no more efficient fusion between donor myoblasts and host fibers occurs after the resolution of the local damages created by needle insertion. Almost 1% of implanted human cells occupied a satellite-like cell niche. Our mathematical model validated by histological counting provided a reliable quantitative estimate of human myoblast survival and/or incorporation into SCID muscle fibers. Informations brought by histological labelling and this mathematical model are complementary. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A Susceptible Mouse Model for Zika Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall


    Full Text Available Zika virus (ZIKV is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129 mice and the parent strain (129Sv/Ev after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.

  5. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton


    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  6. MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lore Becker

    Full Text Available Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1 were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.

  7. Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Adelaide Greco


    Full Text Available Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer.

  8. Branched chain amino acids attenuate major pathologies in mouse models of retinal degeneration and glaucoma. (United States)

    Hasegawa, Tomoko; Ikeda, Hanako Ohashi; Iwai, Sachiko; Muraoka, Yuki; Tsuruyama, Tatsuaki; Okamoto-Furuta, Keiko; Kohda, Haruyasu; Kakizuka, Akira; Yoshimura, Nagahisa


    Retinal neuronal cell death underlies many incurable eye diseases such as retinitis pigmentosa (RP) and glaucoma, and causes adult blindness. We have shown that maintenance of ATP levels via inhibiting ATP consumption is a promising strategy for preventing neuronal cell death. Here, we show that branched chain amino acids (BCAAs) are able to increase ATP production by enhancing glycolysis. In cell culture, supplementation of the culture media with BCAAs, but not glucose alone, enhanced cellular ATP levels, which was canceled by a glycolysis inhibitor. Administration of BCAAs to RP mouse models, rd10 and rd12 , significantly attenuated photoreceptor cell death morphologically and functionally, even when administration was started at later stages. Administration of BCAAs in a glaucoma mouse model also showed significant attenuation of retinal ganglion cell death. These results suggest that administration of BCAAs could contribute to a comprehensive therapeutic strategy for retinal neurodegenerative diseases such as RP and glaucoma.

  9. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova


    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  10. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Directory of Open Access Journals (Sweden)

    Scott T Kelley

    Full Text Available Women with polycystic ovary syndrome (PCOS have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet.

  11. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.


    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  12. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia


    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  13. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro? (United States)

    Kugler, Josephine; Luch, Andreas; Oelgeschläger, Michael


    Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Marketing research on intranasal medicines of domestic market

    Directory of Open Access Journals (Sweden)

    B. S. Burlaka


    Full Text Available Modern development of biopharmaceutical research in world science and practice promotes the use of new dosage forms or administration routes of active substances in the human body. Recently, researchers drew attention to the use of non-invasive route of administration that can be used for new drug substances and for existing ones. Non-invasive routes of drugs’ administration have some advantages over invasive one, namely: do not damage the skin, do not require special training and conditions of use, provide the appropriate level of therapeutic efficacy of medicinal products. One of these administration routes of active substances in the human body is the intranasal one. Intranasal formulations have been known for a long time, most of them are widely used for topical treatment of various diseases of the nasal cavity. In recent decades, scientists have positive results on the use of intranasal route for regular use. Nasal medicines for systemic use are also easy to use; they do not cause irritation of the gastrointestinal tract. While intranasal route of administration the active ingredients fall directly into the general circulation and unlike enteral route they escape the first-pass elimination, which prevents the premature destruction of the drug. Objective: marketing research on registered intranasal drugs for local and systemic applications of the domestic market. Materials and Methods: Official data from the Ukrainian State Register of medicines, with details to release forms of the drug, dosage, manufacturer, country of origin and pharmacotherapeutic group has been used as a research material. Results. According to the State Register of medicinal products 226 intranasal drugs of the domestic market are recorded. Conclusions. Marketing research on intranasal drugs for local and systemic applications of the domestic market has been performed. It has been found that vast majority – 94.7% among registered intranasal drugs are the medicines

  15. The role of co-spray-drying procedure in the preformulation of intranasal propranolol hydrochloride. (United States)

    Ambrus, Rita; Gergely, Matild; Zvonar, Alenka; Szabó-Révész, Piroska; Sipos, Emese


    The use of dry powder formulations presents an alternative through which to achieve better deposition and residence time in the nasal cavity, increased stability and possible absorption enhancement. The most important factors involved in the preformulation are particle size and physical stability. Propranolol hydrochloride a model drug was subjected to spray-drying technology to form an intranasal dry powder. Particle size reduction of the drug was carried out by integration (spray-drying) methods, using different excipients. The micrometric properties were characterized by size and morphology. The structure was determined through the use of differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy investigations. It was concluded that the intranasal dry powder formulation of propranolol hydrochloride can be achieved with a suitable particle size without polymorph modification or chemical decomposition.

  16. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues


    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.


    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  17. Age-related spontaneous lumbar intervertebral disc degeneration in a mouse model. (United States)

    Ohnishi, Takashi; Sudo, Hideki; Tsujimoto, Takeru; Iwasaki, Norimasa


    The pathogenesis of intervertebral disc degeneration is unclear, but it is a major cause of several spinal diseases. Animal models have historically provided an appropriate benchmark for understanding the human spine. However, there is little information about when intervertebral disc degeneration begins in the mouse or regarding the relationship between magnetic resonance imaging and histological findings. The aim for this study was to obtain information about age-related spontaneous intervertebral disc degeneration in the mouse lumbar spine using magnetic resonance imaging and a histological score regarding when the intervertebral disc degeneration started and how rapidly it progressed, as well as how our histological score detected the degeneration. The magnetic resonance imaging index yielded a moderate correlation with our Age-related model score. The Pfirrmann grade and magnetic resonance imaging index had moderate correlations with age. However, our Age-related model score had a high correlation with age. Intervertebral disc level was not a significant variable for the severity of disc degeneration. Both Pfirrmann grade and the Age-related model score were higher in the ≥14-month-old group than in the 6-month-old group. The present results indicated that mild but significant intervertebral disc degeneration occurred in 14-month-old mice, and the degree of degeneration progressed slowly, reaching a moderate to severe condition for 22-month-old mice. At least a 14-month follow-up is mandatory for evaluating spontaneous age-related mouse intervertebral disc degeneration. The histological classification score can precisely detect the gradual progression of age-related spontaneous intervertebral disc degeneration in the mouse lumbar spine, and is appropriate for evaluating it. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:224-232, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease


    Morello , Maria; Landel , Véréna; Lacassagne , Emmanuelle; Baranger , Kévin; Annweiler , Cedric; Féron , François; Millet , Pascal


    International audience; The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in fem...

  19. Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis (United States)


    the cancer risk, including the cervical epithelial transformation zone with HPV [41], the esophageal-gastric junction and Barrett’s esophagus [42], and...Sweetwood JP, Cheng Y, Pace JL, et al. (2000) Development of a syngeneic mouse model for events related to ovarian cancer . Carcinogenesis 21: 585–591...endometriosis-associated ovarian cancer (EAOC, endometrial and clear cell). Of these genes, complement pathway genes were consistently present, suggesting

  20. Investigating Ductal Carcinoma in Situ Using Noninvasive Imaging of Genetically Engineered Mouse Models (United States)


    PJ, Gupta PB, Klebba I, Jones AD, et al. (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem...Albertson DG, Simin K. Cooperativity of Rb, Brca1, and p53 in malignant breast cancer evolution. PLoS Genet . 2012;8(11). 16. Behbod F, Kittrell FS...Cre lines for genetic recombination, specifically WAP-Cre and K14Cre, which are widely utilized in mouse models of breast cancer (Liu et al. PNAS

  1. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  2. Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model (United States)

    Schafer, Rachel; Gmitro, Arthur F.


    Phosphorescent lifetime imaging was employed to measure the spatial and temporal distribution of oxygen partial pressure in tissue under the coverslip of a mammary window chamber breast cancer mouse model. A thin platinum-porphyrin coating, whose phosphorescent lifetime varies monotonically with oxygen partial pressure, was applied to the coverslip surface. Dynamic temporal responses to induced modulations in oxygenation levels were measured using this approach. PMID:25780753

  3. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration


    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin


    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  4. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia


    Ihnatko, Robert; Post, Claes; Blomqvist, Anders


    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  5. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene

    Czech Academy of Sciences Publication Activity Database

    Kašpárek, Petr; Ileninová, Zuzana; Hanečková, Radka; Kanchev, Ivan; Jeníčková, Irena; Sedláček, Radislav


    Roč. 397, č. 12 (2016), s. 1287-1292 ISSN 1431-6730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LO1509 Institutional support: RVO:68378050 Keywords : mosaicism * mouse model * netherton syndrome * skin * SPINK5 * TALEN Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.273, year: 2016

  6. Usefulness of running wheel for detection of congestive heart failure in dilated cardiomyopathy mouse model.

    Directory of Open Access Journals (Sweden)

    Masami Sugihara

    Full Text Available BACKGROUND: Inherited dilated cardiomyopathy (DCM is a progressive disease that often results in death from congestive heart failure (CHF or sudden cardiac death (SCD. Mouse models with human DCM mutation are useful to investigate the developmental mechanisms of CHF and SCD, but knowledge of the severity of CHF in live mice is necessary. We aimed to diagnose CHF in live DCM model mice by measuring voluntary exercise using a running wheel and to determine causes of death in these mice. METHODOLOGY/PRINCIPAL FINDINGS: A knock-in mouse with a mutation in cardiac troponin T (ΔK210 (DCM mouse, which results in frequent death with a t(1/2 of 70 to 90 days, was used as a DCM model. Until 2 months of age, average wheel-running activity was similar between wild-type and DCM mice (approximately 7 km/day. At approximately 3 months, some DCM mice demonstrated low running activity (LO: 5 km/day. In the LO group, the lung weight/body weight ratio was much higher than that in the other groups, and the lungs were infiltrated with hemosiderin-loaded alveolar macrophages. Furthermore, echocardiography showed more severe ventricular dilation and a lower ejection fraction, whereas Electrocardiography (ECG revealed QRS widening. There were two patterns in the time courses of running activity before death in DCM mice: deaths with maintained activity and deaths with decreased activity. CONCLUSIONS/SIGNIFICANCE: Our results indicate that DCM mice with low running activity developed severe CHF and that running wheels are useful for detection of CHF in mouse models. We found that approximately half of ΔK210 DCM mice die suddenly before onset of CHF, whereas others develop CHF, deteriorate within 10 to 20 days, and die.

  7. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Directory of Open Access Journals (Sweden)

    T. I. Fortoul


    Full Text Available There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.

  8. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte


    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  9. Autophagy impairment in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Berliocchi Laura


    Full Text Available Abstract Autophagy is an intracellular membrane trafficking pathway controlling the delivery of cytoplasmic material to the lysosomes for degradation. It plays an important role in cell homeostasis in both normal settings and abnormal, stressful conditions. It is now recognised that an imbalance in the autophagic process can impact basal cell functions and this has recently been implicated in several human diseases, including neurodegeneration and cancer. Here, we investigated the consequences of nerve injury on the autophagic process in a commonly used model of neuropathic pain. The expression and modulation of the main autophagic marker, the microtubule-associated protein 1 light chain 3 (LC3, was evaluated in the L4-L5 cord segment seven days after spinal nerve ligation (SNL. Levels of LC3-II, the autophagosome-associated LC3 form, were markedly higher in the spinal cord ipsilateral to the ligation side, appeared to correlate with the upregulation of the calcium channel subunit α2δ-1 and were not present in mice that underwent sham surgery. However, LC3-I and Beclin 1 expression were only slightly increased. On the contrary, SNL promoted the accumulation of the ubiquitin- and LC3-binding protein p62, which inversely correlates with autophagic activity, thus pointing to a block of autophagosome turnover. Our data showed for the first time that basal autophagy is disrupted in a model of neuropathic pain.

  10. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly


    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  11. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model

    Directory of Open Access Journals (Sweden)

    Shane eMassey


    Full Text Available Bioluminescent imaging (BLI technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5x103 bacteria and monitored by BLI at 24, 48 and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria.

  12. The PPCD1 mouse: characterization of a mouse model for posterior polymorphous corneal dystrophy and identification of a candidate gene.

    Directory of Open Access Journals (Sweden)

    Anna L Shen


    Full Text Available The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the "mouse PPCD1" phenotype and mapped the mouse locus for this phenotype, designated "Ppcd1", to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bp(tm1a(KOMPWtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD.

  13. Transgenic Mouse Model for Reducing Oxidative Damage in Bone (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.


    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  14. Absorption of clonazepam after intranasal and buccal administration. (United States)

    Schols-Hendriks, M W; Lohman, J J; Janknegt, R; Korten, J J; Merkus, F W; Hooymans, P M


    Serum concentrations of clonazepam after intranasal, buccal and intravenous administration were compared in a cross-over study in seven healthy male volunteers. Each subject received a 1.0 mg dose of clonazepam intranasally and buccally and 0.5 mg intravenously. A Cmax of 6.3 +/- 1.0 ng ml-1 (mean; +/- s.d.) was measured 17.5 min (median) (range 15-20 min) after intranasal administration. A second peak (4.6 +/- 1.3 ng ml-1) caused by oral absorption was seen after 1.7 h (range 0.7-3.0 h). After buccal administration a Cmax of 6.0 +/- 3.0 ng ml-1 was measured after 50 min (range 30-90 min) with a second peak of 6.5 +/- 2.5 ng ml-1 after 3.0 h (range 2.0-4.0 h). Two minutes after i.v. injection of 0.5 mg clonazepam the serum concentration was 27 +/- 18 ng ml-1. It is concluded that intranasal clonazepam is an alternative to buccal administration. However, the Cmax of clonazepam after intranasal administration is not high enough to recommend the intranasal route as an alternative to intravenous injection. PMID:7640154

  15. Non-clinical safety evaluation of intranasal iota-carrageenan.

    Directory of Open Access Journals (Sweden)

    Alexandra Hebar

    Full Text Available Carrageenan has been widely used as food additive for decades and therefore, an extended oral data set is available in the public domain. Less data are available for other routes of administration, especially intranasal administration. The current publication describes the non-clinical safety and toxicity of native (non-degraded iota-carrageenan when applied intranasally or via inhalation. Intranasally applied iota-carrageenan is a topically applied, locally acting compound with no need of systemic bioavailability for the drug's action. Animal experiments included repeated dose local tolerance and toxicity studies with intranasally applied 0.12% iota-carrageenan for 7 or 28 days in New Zealand White rabbits and nebulized 0.12% iota-carrageenan administered to F344 rats for 7 days. Permeation studies revealed no penetration of iota-carrageenan across nasal mucosa, demonstrating that iota-carrageenan does not reach the blood stream. Consistent with this, no relevant toxic or secondary pharmacological effects due to systemic exposure were observed in the rabbit or rat repeated dose toxicity studies. Data do not provide any evidence for local intolerance or toxicity, when carrageenan is applied intranasally or by inhalation. No signs for immunogenicity or immunotoxicity have been observed in the in vivo studies. This is substantiated by in vitro assays showing no stimulation of a panel of pro-inflammatory cytokines by iota-carrageenan. In conclusion, 0.12% iota-carrageenan is safe for clinical use via intranasal application.

  16. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  17. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease. (United States)

    Petit, Géraldine H; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik


    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  18. The Effects of aging on the BTBR mouse model of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Joan Mary Jasien


    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous neurodevelopmental disorderscharacterized by alterations in social functioning, communicative abilities, and engagement inrepetitive or restrictive behaviors. The process of aging in individuals with autism and relatedneurodevelopmental disorders is not well understood, despite the fact that the number ofindividuals with ASD aged 65 and older is projected to increase by over half a millionindividuals in the next 20 years. To elucidate the effects of aging in the context of a modifiedcentral nervous system, we investigated the effects of age on the BTBR T+tf/j mouse, a wellcharacterized and widely used mouse model that displays an ASD-like phenotype. We found thata reduction in social behavior persists into old age in male BTBR T+tf/j mice. We employedquantitative proteomics to discover potential alterations in signaling systems that could regulateaging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue ofBTBR mice compared to age-matched wild-type controls revealed a significant decrease in brainderived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin,Synapsin I, PSD 95, NeuN, as well as distinct changes in functional pathways related to theseproteins, including Neural synaptic plasticity regulation and Neurotransmitter secretionregulation. Taken together, these results contribute to our understanding of the effects of agingon an ASD-like mouse model in regards to both behavior and protein alterations, thoughadditional studies are needed to fully understand the complex interplay underlying aging inmouse models displaying an ASD-like phenotype.

  19. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model. (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B


    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  20. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule (United States)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  1. Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy. (United States)

    Murray, Lyndsay M; Beauvais, Ariane; Bhanot, Kunal; Kothary, Rashmi


    Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease caused by mutations and deletions within the survival motor neuron 1 (SMN1) gene. Although other tissues may be involved, motor neurons remain primary pathological targets, with loss of neuromuscular junctions (NMJs) representing an early and significant event in pathogenesis. Although defects in axonal outgrowth and pathfinding have been observed in cell culture and in lower organisms upon Smn depletion, developmental defects in mouse models have been less obvious. Here, we have employed the Smn(2B/-) mouse model to investigate NMJ remodelling during SMA pathology, induced reinnervation, and paralysis. We show that whilst NMJs are capable of remodelling during pathogenesis, there is a marked reduction in paralysis-induced remodelling and in the nerve-directed re-organisation of acetylcholine receptors. This reduction in remodelling potential could not be attributed to a decreased rate of axonal growth. Finally, we have identified a loss of terminal Schwann cells which could contribute to the defects in remodelling/maintenance observed. Our work demonstrates that there are specific defects in NMJ remodelling in an intermediate SMA mouse model, which could contribute to or underlie pathogenesis in SMA. The development of strategies that can promote the remodelling potential of NMJs may therefore be of significant benefit to SMA patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Preclinical Testing of Erlotinib in a Transgenic Alveolar Rhabdomyosarcoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Jinu Abraham


    Full Text Available Rhabdomyosarcoma is an aggressive childhood malignancy, accounting for more than 50% of all soft-tissue sarcomas in children. Even with extensive therapy, the survival rate among alveolar rhabdomyosarcoma patients with advanced disease is only 20%. The receptor tyrosine kinase Epidermal Growth Factor Receptor (EGFR has been found to be expressed and activated in human rhabdomyosarcomas. In this study we have used a genetically engineered mouse model for alveolar rhabdomyosarcoma (ARMS which faithfully recapitulates the human disease by activating the pathognomic Pax3:Fkhr fusion gene and inactivating p53 in the maturing myoblasts. We have demonstrated that tumors from our mouse model of alveolar rhabdomyosarcoma express EGFR at both the mRNA and protein levels. We then tested the EGFR inhibitor, Erlotinib, for its efficacy in this mouse model of alveolar rhabdomyosarcoma. Surprisingly, Erlotinib had no effect on tumor progression, yet mice treated with Erlotinib showed 10–20% loss of body weight. These results suggest that EGFR might not be an a priori monotherapy target in alveolar rhabdomyosarcoma.

  3. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease (United States)

    Jacobsen, J. Steven; Wu, Chi-Cheng; Redwine, Jeffrey M.; Comery, Thomas A.; Arias, Robert; Bowlby, Mark; Martone, Robert; Morrison, John H.; Pangalos, Menelas N.; Reinhart, Peter H.; Bloom, Floyd E.


    Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of β-amyloid (Aβ)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the Aβ42/Aβ40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until ≈18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition. PMID:16549764

  4. Biology and therapy of inherited retinal degenerative disease: insights from mouse models (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand


    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  5. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri


    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  6. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model

    Directory of Open Access Journals (Sweden)

    Mihaela Surcel


    Full Text Available We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC. C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL-1-beta, IL-6, IL-10, IL-12 (p70, interferon (IFN-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF, tumor necrosis factor (TNF-alpha, macrophage inflammatory protein (MIP-1alpha, monocyte chemoattractant protein (MCP-1, and keratinocyte-derived chemokine (KC. Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model.

  7. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. (United States)

    DeCant, Brian T; Principe, Daniel R; Guerra, Carmen; Pasca di Magliano, Marina; Grippo, Paul J


    The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.

  8. Utilizing Past and Present Mouse Systems to Engineer More Relevant Pancreatic Cancer Models

    Directory of Open Access Journals (Sweden)

    Brian T DeCant


    Full Text Available The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.

  9. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study (United States)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.


    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  10. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D


    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  11. Proteomic Characterization of a Mouse Model of Familial Danish Dementia

    Directory of Open Access Journals (Sweden)

    Monica Vitale


    Full Text Available A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDDKI mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDDKI mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDDKI mice.

  12. Epithelial morphogenesis: the mouse eye as a model system. (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard


    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  13. Mouse models for preeclampsia: disruption of redox-regulated signaling

    Directory of Open Access Journals (Sweden)

    Chambers Anne E


    Full Text Available Abstract The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-O-methyl transferase (Comt-/- in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2 which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha at late pregnancy. We propose that in wild type (Comt++ pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD. Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/- stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD. We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD.

  14. Altered Erythropoiesis in Mouse Models of Type 3 Hemochromatosis

    Directory of Open Access Journals (Sweden)

    R. M. Pellegrino


    Full Text Available Type 3 haemochromatosis (HFE3 is a rare genetic iron overload disease which ultimately lead to compromised organs functioning. HFE3 is caused by mutations in transferrin receptor 2 (TFR2 gene that codes for two main isoforms (Tfr2α and Tfr2β. Tfr2α is one of the hepatic regulators of iron inhibitor hepcidin. Tfr2β is an intracellular isoform of the protein involved in the regulation of iron levels in reticuloendothelial cells. It has been recently demonstrated that Tfr2 is also involved in erythropoiesis. This study aims to further investigate Tfr2 erythropoietic role by evaluating the erythropoiesis of two Tfr2 murine models wherein either one or both of Tfr2 isoforms have been selectively silenced (Tfr2 KI and Tfr2 KO. The evaluations were performed in bone marrow and spleen, in 14 days’ and 10 weeks’ old mice, to assess erythropoiesis in young versus adult animals. The lack of Tfr2α leads to macrocytosis with low reticulocyte number and increased hemoglobin values, together with an anticipation of adult BM erythropoiesis and an increased splenic erythropoiesis. On the other hand, lack of Tfr2β (Tfr2 KI mice causes an increased and immature splenic erythropoiesis. Taken together, these data confirm the role of Tfr2α in modulation of erythropoiesis and of Tfr2β in favoring iron availability for erythropoiesis.

  15. Therapeutic liver repopulation in a mouse model of hypercholesterolemia. (United States)

    Mitchell, C; Mignon, A; Guidotti, J E; Besnard, S; Fabre, M; Duverger, N; Parlier, D; Tedgui, A; Kahn, A; Gilgenkrantz, H


    Liver repopulation constitutes an attractive approach for the treatment of liver disorders or of diseases requiring abundant secretion of an active protein. We have described previously a model of selective repopulation of a normal liver by Fas/CD95-resistant hepatocytes, in which we achieved up to 16% hepatocyte repopulation. In the present study, we investigated the therapeutic efficacy of this strategy. With this aim, apolipoprotein E (ApoE) knockout mice were transplanted with Fas/CD95-resistant hepatocytes which constitutively express ApoE. Transplanted mice were submitted to weekly injections of non-lethal doses of the Fas agonist antibody Jo2. After 8 weeks of treatment, we obtained up to 30% of the normal level of plasma ApoE. ApoE secretion was accompanied by a drastic and significant decrease in total plasma cholesterol, which even fell to normal levels. Moreover, this secretion was sufficient to markedly reduce the progression of atherosclerosis. These results demonstrate the efficacy of this repopulation approach for correcting a deficiency in a protein secreted by the liver.

  16. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse model (United States)

    Tang, Manshu; Siddiqi, Anwer; Witt, Benjamin; Yuzyuk, Tatiana; Johnson, Britt; Fraser, Nisa; Chen, Wyman; Rascon, Rafael; Yin, Xue; Goli, Harish; Bodamer, Olaf A; Lai, Kent


    The first GalT gene knockout (KO) mouse model for Classic Galactosemia (OMIM 230400) accumulated some galactose and its metabolites upon galactose challenge, but was seemingly fertile and symptom free. Here we constructed a new GalT gene-trapped mouse model by injecting GalT gene-trapped mouse embryonic stem cells into blastocysts, which were later implanted into pseudo-pregnant females. High percentage GalT gene-trapped chimera obtained were used to generate heterozygous and subsequently, homozygous GalT gene-trapped mice. Biochemical assays confirmed total absence of galactose-1 phosphate uridylyltransferase (GALT) activity in the homozygotes. Although the homozygous GalT gene-trapped females could conceive and give birth when fed with normal chow, they had smaller litter size (P=0.02) and longer time-to-pregnancy (P=0.013) than their wild-type littermates. Follicle-stimulating hormone levels of the mutant female mice were not significantly different from the age-matched, wild-type females, but histological examination of the ovaries revealed fewer follicles in the homozygous mutants (P=0.007). Administration of a high-galactose (40% w/w) diet to lactating homozygous GalT gene-trapped females led to lethality in over 70% of the homozygous GalT gene-trapped pups before weaning. Cerebral edema, abnormal changes in the Purkinje and the outer granular cell layers of the cerebellum, as well as lower blood GSH/GSSG ratio were identified in the galactose-intoxicated pups. Finally, reduced growth was observed in GalT gene-trapped pups fed with normal chow and all pups fed with high-galactose (20% w/w) diet. This new mouse model presents several of the complications of Classic Galactosemia and will be useful to investigate pathogenesis and new therapies. PMID:24549051

  17. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo


    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  18. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T


    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  19. Behavioral and neurochemical characterization of new mouse model of hyperphenylalaninemia.

    Directory of Open Access Journals (Sweden)

    Tiziana Pascucci

    Full Text Available Hyperphenylalaninemia (HPA refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU (PHE > 1200 µM/L, mild PKU (PHE 600-1200 µM/L and persistent HPA (PHE 120-600 µM/L (normal blood PHE < 120 µM/L. The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU, developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.

  20. Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia (United States)

    Pascucci, Tiziana; Giacovazzo, Giacomo; Andolina, Diego; Accoto, Alessandra; Fiori, Elena; Ventura, Rossella; Orsini, Cristina; Conversi, David; Carducci, Claudia; Leuzzi, Vincenzo; Puglisi-Allegra, Stefano


    Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE. PMID:24376837

  1. Transgenic Mouse Model for Reducing Oxidative Damage in Bone (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.


    parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.

  2. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. (United States)

    Christia, Panagiota; Bujak, Marcin; Gonzalez-Quesada, Carlos; Chen, Wei; Dobaczewski, Marcin; Reddy, Anilkumar; Frangogiannis, Nikolaos G


    Mouse models of myocardial infarction are essential tools for the study of cardiac injury, repair, and remodeling. Our current investigation establishes a systematic approach for quantitative evaluation of the inflammatory and reparative response, cardiac function, and geometry in a mouse model of reperfused myocardial infarction. Reperfused mouse infarcts exhibited marked induction of inflammatory cytokines that peaked after 6 hr of reperfusion. In the infarcted heart, scar contraction and chamber dilation continued for at least 28 days after reperfusion; infarct maturation was associated with marked thinning of the scar, accompanied by volume loss and rapid clearance of cellular elements. Echocardiographic measurements of end-diastolic dimensions correlated well with morphometric assessment of dilative remodeling in perfusion-fixed hearts. Hemodynamic monitoring was used to quantitatively assess systolic and diastolic function; the severity of diastolic dysfunction following myocardial infarction correlated with cardiomyocyte hypertrophy and infarct collagen content. Expression of molecular mediators of inflammation and cellular infiltration needs to be investigated during the first 72 hr, whereas assessment of dilative remodeling requires measurement of geometric parameters for at least four weeks after the acute event. Rapid initiation and resolution of the inflammatory response, accelerated scar maturation, and extensive infarct volume loss are important characteristics of infarct healing in mice.

  3. Primary amines protect against retinal degeneration in mouse models of retinopathies. (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof


    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  4. Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington’s Disease (United States)

    Kuljis, Dika A.; Gad, Laura; Loh, Dawn H.; MacDowell Kaswan, Zoë; Hitchcock, Olivia N.; Ghiani, Cristina A.; Colwell, Christopher S.


    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder that affects men and women in equal numbers, but some epidemiological studies indicate there may be sex differences in disease progression. One of the early symptoms of HD is disruptions in the circadian timing system, but it is currently unknown whether sex is a factor in these alterations. Since sex differences in HD could provide important insights to understand cellular and molecular mechanism(s) and designing early intervention strategies, we used the bacterial artificial chromosome transgenic mouse model of HD (BACHD) to examine whether sex differences in circadian behavioral rhythms are detectable in an animal model of the disease. Similar to BACHD males, BACHD females display circadian disruptions at both 3 and 6 months of age; however, deficits to BACHD female mouse activity levels, rhythm precision, and behavioral fragmentation are either delayed or less severe relative to males. These sex differences are associated with a smaller suprachiasmatic nucleus (SCN) in BACHD male mice at age of symptom onset (3 months), but are not associated with sex-specific differences in SCN daytime electrical activity deficits, or peptide expression (arginine vasopressin, vasoactive intestinal peptide) within the SCN. Notably, BACHD females exhibited delayed motor coordination deficits, as measured using rotarod and challenge beam. These findings suggest a sex specific factor plays a role both in non-motor and motor symptom progression for the BACHD mouse. PMID:26871695

  5. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  6. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.


    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  7. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert


    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  8. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others


    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  9. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Zhu


    Full Text Available Bone pain is a common and severe symptom in cancer patients. The present study employed a mouse model of leukemia bone pain by injection K562 cells into tibia of mouse to evaluate the analgesic effects of lappacontine. Our results showed that the lappaconitine treatment at day 15, 17 and 19 could effectively reduce the spontaneous pain scoring values, restore reduced degree in the inclined-plate test induced by injection of K562 cells, as well as restore paw mechanical withdrawal threshold and paw withdrawal thermal latency induced by injection of K562 cells to the normal levels. Additionally, the molecular mechanisms of lappaconitine’s analgesic effects may be related to affect the expression levels of endogenous opioid system genes (POMC, PENK and MOR, as well as apoptosis-related genes (Xiap, Smac, Bim, NF-κB and p53. Our present results indicated that lappaconitine may become a new analgesic agent for leukemia bone pain management.

  10. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon


    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  11. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision. (United States)

    Shinomiya, Katsuhiko; Ueta, Mayumi; Kinoshita, Shigeru


    Chronic dry eye is an increasingly prevalent condition worldwide, with resulting loss of visual function and quality of life. Relevant, repeatable, and stable animal models of dry eye are still needed. We have developed an improved surgical mouse model for dry eye based on severe aqueous fluid deficiency, by excising both the exorbital and intraorbital lacrimal glands (ELG and ILG, respectively) of mice. After ELG plus ILG excision, dry eye symptoms were evaluated using fluorescein infiltration observation, tear production measurement, and histological evaluation of ocular surface. Tear production in the model mice was significantly decreased compared with the controls. The corneal fluorescein infiltration score of the model mice was also significantly increased compared with the controls. Histological examination revealed significant severe inflammatory changes in the cornea, conjunctiva or meibomian glands of the model mice after surgery. In the observation of LysM-eGFP (+/-) mice tissues, postsurgical infiltration of green fluorescent neutrophils was observed in the ocular surface tissues. We theorize that the inflammatory changes on the ocular surface of this model were induced secondarily by persistent severe tear reduction. The mouse model will be useful for investigations of both pathophysiology as well as new therapies for tear-volume-reduction type dry eye.

  12. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. (United States)

    Azzam, Sausan; Schlatzer, Daniela; Nethery, David; Saleh, Dania; Li, Xiaolin; Akladious, Afaf; Chance, Mark R; Strohl, Kingman P


    Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reduced experimental autoimmune encephalomyelitis after intranasal and oral administration of recombinant lactobacilli expressing myelin antigens. (United States)

    Maassen, Catharina B M; Laman, Jon D; van Holten-Neelen, Conny; Hoogteijling, Linsy; Groenewegen, Lizet; Visser, Lizette; Schellekens, Marc M; Boersma, Wim J A; Claassen, Eric


    Oral administration of autoantigens is a safe and convenient way to induce peripheral T-cell tolerance in autoimmune diseases like multiple sclerosis (MS). To increase the efficacy of oral tolerance induction and obviate the need for large-scale purification of human myelin proteins, we use genetically modified lactobacilli expressing myelin antigens. A panel of recombinant lactobacilli was constructed producing myelin proteins and peptides, including human and guinea pig myelin basic protein (MBP) and proteolipid protein peptide 139-151 (PLP(139-151)). In this study we examined whether these Lactobacillus recombinants are able to induce oral and intranasal tolerance in an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Lewis rats received soluble cell extracts of Lactobacillus transformants intranasally three times prior to induction of EAE. For the induction of oral tolerance, rats were fed live transformed lactobacilli for 20 days. Ten days after the first oral administration EAE was induced. Intranasal administration of extracts containing guinea pig MBP (gpMBP) or MBP(72-85) significantly inhibited EAE in Lewis rats. Extracts of control transformants did not reduce EAE. Live lactobacilli expressing guinea pig MBP(72-85) fused to the marker enzyme beta-glucuronidase (beta-gluc) were also able to significantly reduce disease when administered orally. In conclusion, these experiments provide proof of principle that lactobacilli expressing myelin antigens reduce EAE after mucosal (intranasal and oral) administration. This novel method of mucosal tolerance induction by mucosal administration of recombinant lactobacilli expressing relevant autoantigens could find applications in autoimmune disease in general, such as multiple sclerosis, rheumatoid arthritis and uveitis.

  14. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction. (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo


    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  15. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  16. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes. (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark


    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  17. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    International Nuclear Information System (INIS)

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.


    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM

  18. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)


    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  19. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz


    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  20. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  1. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  2. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model

    Directory of Open Access Journals (Sweden)

    Huang Jing


    Full Text Available Abstract Background Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs. Results We infected E15 SMG explants with mouse CMV (mCMV. Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. Conclusion mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.

  3. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Directory of Open Access Journals (Sweden)

    Poliana C. M. Martins


    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD, presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs. We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.

  4. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies (United States)

    Martins, Poliana C. M.; Ayub-Guerrieri, Danielle; Martins-Bach, Aurea B.; Onofre-Oliveira, Paula; Malheiros, Jackeline M.; Tannus, Alberto; de Sousa, Paulo L.; Carlier, Pierre G.; Vainzof, Mariz


    SUMMARY Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD), presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs). We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies. PMID:23798567

  5. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan


    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  6. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre


    -rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  7. Humanizing the mdx mouse model of DMD: the long and the short of it. (United States)

    Yucel, Nora; Chang, Alex C; Day, John W; Rosenthal, Nadia; Blau, Helen M


    Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.

  8. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse


    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  9. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data. (United States)

    Perryman, Alexander L; Stratton, Thomas P; Ekins, Sean; Freundlich, Joel S


    Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.

  10. Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models. (United States)

    Mitrofanova, Antonina; Aytes, Alvaro; Zou, Min; Shen, Michael M; Abate-Shen, Cory; Califano, Andrea


    Although genetically engineered mouse (GEM) models are often used to evaluate cancer therapies, extrapolation of such preclinical data to human cancer can be challenging. Here, we introduce an approach that uses drug perturbation data from GEM models to predict drug efficacy in human cancer. Network-based analysis of expression profiles from in vivo treatment of GEM models identified drugs and drug combinations that inhibit the activity of FOXM1 and CENPF, which are master regulators of prostate cancer malignancy. Validation of mouse and human prostate cancer models confirmed the specificity and synergy of a predicted drug combination to abrogate FOXM1/CENPF activity and inhibit tumorigenicity. Network-based analysis of treatment signatures from GEM models identified treatment-responsive genes in human prostate cancer that are potential biomarkers of patient response. More generally, this approach allows systematic identification of drugs that inhibit tumor dependencies, thereby improving the utility of GEM models for prioritizing drugs for clinical evaluation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L


    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Intranasal oxytocin effects on social cognition: a critique. (United States)

    Evans, Simon L; Dal Monte, Olga; Noble, Pamela; Averbeck, Bruno B


    The last decade has seen a large number of published findings supporting the hypothesis that intranasally delivered oxytocin (OT) can enhance the processing of social stimuli and regulate social emotion-related behaviors such as trust, memory, fidelity, and anxiety. The use of nasal spray for administering OT in behavioral research has become a standard method, but many questions still exist regarding its action. OT is a peptide that cannot cross the blood-brain barrier, and it has yet to be shown that it does indeed reach the brain when delivered intranasally. Given the evidence, it seems highly likely that OT does affect behavior when delivered as a nasal spray. These effects may be driven by at least three possible mechanisms. First, the intranasally delivered OT may diffuse directly into the CNS where it directly engages OT receptors. Second, the intranasally delivered OT may trigger increased central release via an indirect peripheral mechanism. And third, the indirect peripheral effects may directly lead to behavioral effects via some mechanism other than increased central release. Although intranasally delivered OT likely affects behavior, there are conflicting reports as to the exact nature of those behavioral changes: some studies suggest that OT effects are not always "pro-social" and others suggest effects on social behaviors are due to a more general anxiolytic effect. In this critique, we draw from work in healthy human populations and the animal literature to review the mechanistic aspects of intranasal OT delivery, and to discuss intranasal OT effects on social cognition and behavior. We conclude that future work should control carefully for anxiolytic and gender effects, which could underlie inconsistencies in the existing literature. This article is part of a Special Issue entitled Oxytocin and Social Behav. © 2013 Published by Elsevier B.V.

  13. Impact of Gender on Pharmocokinetics of Intranasal Scopolamine (United States)

    Putcha, L.; Lei, Wu.; S-L Chow, Diana


    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS), which is commonly experienced by astronauts during space missions. The bioavailability and pharmacokinetics (PK) were evaluated under IND guidelines. Since information is lacking on the effect of gender on the PK of Scopolamine, we examined gender differences in PK parameters of INSCOP at three dose levels of 0.1, 0.2 and 0.4 mg. Methods: Plasma scopolamine concentrations as a function of time data were collected from twelve normal healthy human subjects (6 male/6 female) who participated in a fully randomized double blind crossover study. The PK parameters were derived using WinNonlin. Covariate analysis of PK profiles was performed using NONMEN and statistically compared using a likelihood ratio test on the difference of objective function value (OFV). Statistical significance for covariate analysis was set at Pgender-dependent pharmacokinetics of scopolamine at the high dose level of 0.4 mg. Clearance of the parent compound was significantly faster and the volume of distribution was significantly higher in males than in females, As a result, including gender as a covariate to the pharmacokinetic model of scopolamine offers the best fit for PK modeling of the drug at dose of 0.4 mg or higher.

  14. New mouse model for inducing and evaluating unilateral vestibular deafferentation syndrome. (United States)

    Cassel, R; Bordiga, P; Pericat, D; Hautefort, C; Tighilet, B; Chabbert, C


    Unilateral vestibular deafferentation syndrome (uVDS) holds a particular place in the vestibular pathology domain. Due to its suddenness, the violence of its symptoms that often result in emergency hospitalization, and its associated original neurophysiological properties, this syndrome is a major source of questioning for the otoneurology community. Also, its putative pathogenic causes remain to be determined. There is currently a strong medical need for the development of targeted and effective countermeasures to improve the therapeutic management of uVDS. The present study reports the development of a new mouse model for inducing and evaluating uVDS. Both the method for generating controlled excitotoxic-type peripheral vestibular damages, through transtympanic administration of the glutamate receptors agonist kainate (TTK), and the procedure for evaluating the ensuing clinical signs are detailed. Through extensive analysis of the clinical symptoms characteristics, this new animal model provides the opportunity to better follow the temporal evolution of various uVDS specific symptoms, while better appreciating the different phases that composed this syndrome. The uVDS evoked in the TTK mouse model displays two main phases distinguishable by their kinetics and amplitudes. Several parameters of the altered vestibular behaviour mimic those observed in the human syndrome. This new murine model brings concrete information about how uVDS develops and how it affects global behaviour. In addition, it opens new opportunity to decipher the etiopathological substrate of this pathology by authorizing the use of genetically modified mouse models. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse. (United States)

    Bhhatarai, Barun; Gramatica, Paola


    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  16. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm. (United States)

    Allan, Andrea M; Chynoweth, Julie; Tyler, Lani A; Caldwell, Kevin K


    The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse

  17. Decreased rhinovirus shedding after intranasal oxymetazoline application in adults with induced colds compared with intranasal saline. (United States)

    Winther, Birgit; Buchert, Dagobert; Turner, Ronald B; Hendley, J Owen; Tschaikin, Marion


    Intranasal oxymetazoline (OMZ) is used as a decongestant during common colds. Recently, intracellular adhesion molecule (ICAM) 1 receptor expression in vitro has been shown to be diminished by OMZ. ICAM-1 is the major receptor used by rhinovirus to gain entry to human cells. The objective of this study was to assess the effect of OMZ on geometric mean titer of rhinovirus in nasal lavage fluid after rhinovirus inoculation. Volunteers with antibody titers of ≤1:4 to rhinovirus type 39 were enrolled in a randomized, reference-controlled, double-blind study. Beginning 3 hours after intranasal challenge with 100-300 tissue culture infectious dose (TCID)₅₀ of virus, subjects received active 0.05% OMZ (45 μL containing 22.5 μg of OMZ hydrochloride in citrate buffer) or reference control (physiological saline solution [PSS]) three times daily for 5 days. Rhinovirus was detected in fibroblast cultures. Geometric mean viral titer (log₁₀) in 34 rhinovirus-infected subjects receiving OMZ was 1.49 on day 2 compared with 2.24 in the 38 infected subjects receiving PSS (p = 0.04). On day 3, the mean titers were 1.45 and 2.08, respectively. Median length of viral shedding was 3.3 days (OMZ) and 3.4 (PSS). Duration of clinical illness was 6.1 days in both groups. Topical OMZ decreased viral titer on day 2 during experimental rhinovirus infection in normal volunteers.

  18. Voxel-based morphometry with templates and validation in a mouse model of Huntington's disease. (United States)

    Sawiak, Stephen J; Wood, Nigel I; Williams, Guy B; Morton, A Jennifer; Carpenter, T Adrian


    Despite widespread application to human imaging, voxel-based morphometry (VBM), where images are compared following grey matter (GM) segmentation, is seldom used in mice. Here VBM is performed for the R6/2 model of Huntington's disease, a progressive neurological disorder. This article discusses issues in translating the methods to mice and shows that its statistical basis is sound in mice as it is in human studies. Whole brain images from live transgenic and control mice are segmented into GM maps after processing and compared to produce statistical parametric maps of likely differences. To assess whether false positives were likely to occur, a large cohort of ex vivo magnetic resonance brain images were sampled with permutation testing. Differences were seen particularly in the striatum and cortex, in line with studies performed ex vivo and as seen in human patients. In validation, the rate of false positives is as expected and these have no discernible distribution through the brain. The study shows that VBM successfully detects differences in the Huntington's disease mouse brain. The method is rapid compared to manual delineation and reliable. The templates created here for the mouse brain are freely released for other users in addition to an open-source software toolbox for performing mouse VBM. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Synergistic effect of lidocaine with pingyangmycin for treatment of venous malformation using a mouse spleen model (United States)

    Bai, Nan; Chen, Yuan-Zheng; Mao, Kai-Ping; Fu, Yanjie; Lin, Qiang; Xue, Yan


    Aims: To explore whether lidocaine has the synergistic effect with pingyangmycin (PYM) in the venous malformations (VMs) treatment. Methods: The mouse spleen was chosen as a VM model and injected with different concentration of lidocaine or PYM or jointly treated with lidocaine and PYM. After 2, 5, 8 or 14 days, the mouse spleen tissues were acquired for hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM) analysis, TUNEL assay and quantitative RT-PCR analysis to examine the toxicological effects of lidocaine and PYM on splenic vascular endothelial cells. Results: 0.4% of lidocaine mildly promoted the apoptosis of endothelial cells, while 2 mg/ml PYM significantly elevated the apoptotic ratios. However, the combination of 0.2% lidocaine and 0.5 mg/ml PYM notably elevated the apoptotic ratios of splenic cells and severely destroyed the configuration of spleen, compared to those of treatment with 0.5 mg/ml PYM alone. Conclusion: Lidocaine exerts synergistic effects with PYM in promoting the apoptosis of mouse splenic endothelial cells, indicating that lidocaine possibly promotes the therapeutic effects of PYM in VMs treatment via synergistically enhancing the apoptosis of endothelial cells of malformed venous lesions. PMID:24966943

  20. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    International Nuclear Information System (INIS)

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E.


    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis

  1. Trypsin digest protocol to analyze the retinal vasculature of a mouse model. (United States)

    Chou, Jonathan C; Rollins, Stuart D; Fawzi, Amani A


    Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.

  2. Centralized mouse repositories. (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T


    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  3. Computational multiscale toxicodynamic modeling of silver and carbon nanoparticle effects on mouse lung function.

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    Full Text Available A computational, multiscale toxicodynamic model has been developed to quantify and predict pulmonary effects due to uptake of engineered nanomaterials (ENMs in mice. The model consists of a collection of coupled toxicodynamic modules, that were independently developed and tested using information obtained from the literature. The modules were developed to describe the dynamics of tissue with explicit focus on the cells and the surfactant chemicals that regulate the process of breathing, as well as the response of the pulmonary system to xenobiotics. Alveolar type I and type II cells, and alveolar macrophages were included in the model, along with surfactant phospholipids and surfactant proteins, to account for processes occurring at multiple biological scales, coupling cellular and surfactant dynamics affected by nanoparticle exposure, and linking the effects to tissue-level lung function changes. Nanoparticle properties such as size, surface chemistry, and zeta potential were explicitly considered in modeling the interactions of these particles with biological media. The model predictions were compared with in vivo lung function response measurements in mice and analysis of mice lung lavage fluid following exposures to silver and carbon nanoparticles. The predictions were found to follow the trends of observed changes in mouse surfactant composition over 7 days post dosing, and are in good agreement with the observed changes in mouse lung function over the same period of time.

  4. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Ma Fei


    Full Text Available Abstract Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70. Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2 is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks.

  5. The efficacy of intranasal antihistamines in the treatment of allergic rhinitis. (United States)

    Kaliner, Michael A; Berger, William E; Ratner, Paul H; Siegel, Charles J


    To discuss the new use of intranasal antihistamines as first-line therapies, compare and contrast this class of medication with the traditionally available medications, and discuss the potential for intranasal antihistamines to provide relief superior to second-generation oral antihistamines. Review articles and original research articles were retrieved from MEDLINE, OVID, PubMed (1950 to November 2009), personal files of articles, and bibliographies of located articles that addressed the topic of interest. Articles were selected for their relevance to intranasal antihistamines and their role in allergic rhinitis. Publications included reviews, treatment guidelines, and clinical studies (primarily randomized controlled trials) of both children and adults. This panel was charged with reviewing the place of intranasal antihistamines in the spectrum of treatment for allergic rhinitis. Intranasal antihistamines have been shown in numerous randomized, placebo-controlled trials to be more efficacious than the oral antihistamines. Although intranasal corticosteroids are considered by some to be superior to intranasal antihistamines, multiple studies have shown an equal effect of the 2 classes of medication. Both intranasal corticosteroids and intranasal antihistamines have been shown to reduce all symptoms of allergic rhinitis. In addition, some intranasal antihistamines have a more rapid onset of action than intranasal corticosteroids. The future of allergy treatment will likely involve a combination of both intranasal corticosteroids and intranasal antihistamines because of the benefits of local administration and their additive effect on efficacy. Copyright © 2011 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ya [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Wang, Guang [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Han, Sha-Sha; He, Mei-Yao [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Cheng, Xin; Ma, Zheng-Lai [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Wu, Xia [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Yang, Xuesong, E-mail: [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Liu, Guo-Sheng, E-mail: [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China)


    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but did not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  7. Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function. (United States)

    Jing, Jiaojiao; Pattaro, Cristian; Hoppmann, Anselm; Okada, Yukinori; Fox, Caroline S; Köttgen, Anna


    Genomewide association studies have identified numerous chronic kidney disease-associated genetic variants, but often do not pinpoint causal genes. This limitation was addressed by combining Mouse Genome Informatics with human genomewide association studies of kidney function. Genes for which mouse models showed abnormal renal physiology, morphology, glomerular filtration rate (GFR), or urinary albumin-to-creatinine ratio were identified from Mouse Genome Informatics. The corresponding human orthologs were then evaluated for GFR-associated single-nucleotide polymorphisms in 133,814 individuals and urinary albumin-to-creatinine ratio-associated SNPs in 54,451 individuals in genome-wide association studies meta-analysis of the CKDGen Consortium. After multiple testing corrections, significant associations with estimated GFR in humans were identified for single-nucleotide polymorphisms in 2, 7, and 17 genes causing abnormal GFR, abnormal physiology, and abnormal morphology in mice, respectively. Genes identified for abnormal kidney morphology showed significant enrichment for estimated GFR-associated single-nucleotide polymorphisms. In total, 19 genes contained variants associated with estimated GFR or the urinary albumin-to-creatinine ratio of which 16 mapped into previously reported genomewide significant loci. CYP26A1 and BMP4 emerged as novel signals subsequently validated in a large, independent study. An additional gene, CYP24A1, was discovered after conditioning on a published nearby association signal. Thus, our novel approach to combine comprehensive mouse phenotype information with human genomewide association studies data resulted in the identification of candidate genes for kidney disease pathogenesis. Copyright © 2016 International Society of Nephrology. All rights reserved.

  8. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model. (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan


    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  9. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. (United States)

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank


    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease. (United States)

    Duarte-Neves, Joana; Gonçalves, Nélio; Cunha-Santos, Janete; Simões, Ana Teresa; den Dunnen, Wilfred F A; Hirai, Hirokazu; Kügler, Sebastian; Cavadas, Cláudia; Pereira de Almeida, Luís


    Machado-Joseph disease (MJD) is a fatal, dominantly inherited neurodegenerative disorder associated with an expanded polyglutamine tract within the ataxin-3 protein, and characterized by progressive impairment of motor coordination, associated with neurodegeneration of specific brain regions, including cerebellum and striatum. The currently available therapies do not allow modification of disease progression. Neuropeptide Y (NPY) has been shown to exert potent neuroprotective effects by multiple pathways associated with the MJD mechanisms of disease. Thus, we evaluated NPY levels in MJD and investigated whether raising NPY by gene transfer would alleviate neuropathological and behavioural deficits in cerebellar and striatal mouse models of the disease. For that, a cerebellar transgenic and a striatal lentiviral-based models of MJD were used. NPY overexpression in the affected brain regions in these two mouse models was obtained by stereotaxic injection of adeno-associated viral vectors encoding NPY. Up to 8 weeks after viral injection, balance and motor coordination behaviour and neuropathology were analysed. We observed that NPY levels were decreased in two MJD patients' cerebella and in striata and cerebella of disease mouse models. Furthermore, overexpression of NPY alleviated the motor coordination impairments and attenuated the related neuropathological parameters, preserving cerebellar volume and granular layer thickness, reducing striatal lesion and decreasing mutant ataxin-3 aggregation. Additionally, NPY mediated increase of brain-derived neurotrophic factor levels and decreased neuroinflammation markers. Our data suggest that NPY is a potential therapeutic strategy for MJD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  11. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Directory of Open Access Journals (Sweden)

    Marc Trimborn

    Full Text Available Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC in early G2 phase and delayed decondensation post-mitosis (PCC syndrome. The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608 containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation appears to be largely normal in cell cultures derived from Mcph1(gt/gt mice, the overall survival rates of the Mcph1(gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  12. Neurobehavioral Assessments in a Mouse Model of Neonatal Hypoxic-ischemic Brain Injury. (United States)

    Kim, MinGi; Yu, Ji Hea; Seo, Jung Hwa; Shin, Yoon-Kyum; Wi, Soohyun; Baek, Ahreum; Song, Suk-Young; Cho, Sung-Rae


    We performed unilateral carotid artery occlusion on CD-1 mice to create a neonatal hypoxic-ischemic (HI) model and investigated the effects of neonatal HI brain injury by studying neurobehavioral functions in these mice compared to non-operated (i.e., normal) mice. During the study, Rice-Vannucci's method was used to induce neonatal HI brain damage in postnatal day 7-10 (P7-10) mice. The HI operation was performed on the pups by unilateral carotid artery ligation and exposure to hypoxia (8% O2 and 92% N2 for 90 min). One week after the operation, the damaged brains were evaluated with the naked eye through the semi-transparent skull and were categorized into subgroups based on the absence ("no cortical injury" group) or presence ("cortical injury" group) of cortical injury, such as a lesion in the right hemisphere. On week 6, the following neurobehavioral tests were performed to evaluate the cognitive and motor functions: passive avoidance task (PAT), ladder walking test, and grip strength test. These behavioral tests are helpful in determining the effects of neonatal HI brain injury and are used in other mouse models of neurodegenerative diseases. In this study, neonatal HI brain injury mice showed motor deficits that corresponded to right hemisphere damage. The behavioral test results are relevant to the deficits observed in human neonatal HI patients, such as cerebral palsy or neonatal stroke patients. In this study, a mouse model of neonatal HI brain injury was established and showed different degrees of motor deficits and cognitive impairment compared to non-operated mice. This work provides basic information on the HI mouse model. MRI images demonstrate the different phenotypes, separated according to the severity of brain damage by motor and cognitive tests.

  13. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy (United States)

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.


    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  14. Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. (United States)

    Holley, Sandra M; Wang, Elizabeth A; Cepeda, Carlos; Jentsch, J David; Ross, Christopher A; Pletnikov, Mikhail V; Levine, Michael S


    Mouse models carrying Disc1 mutations may provide insights into how Disc1 genetic variations contribute to schizophrenia (SZ) susceptibility. Disc1 mutant mice show behavioral and cognitive disturbances reminiscent of SZ. To dissect the synaptic mechanisms underlying these phenotypes, we examined electrophysiological properties of cortical neurons from two mouse models, the first expressing a truncated mouse Disc1 (mDisc1) protein throughout the entire brain, and the second expressing a truncated human Disc1 (hDisc1) protein in forebrain regions. We obtained whole-cell patch clamp recordings to examine how altered expression of Disc1 protein changes excitatory and inhibitory synaptic transmissions onto cortical pyramidal neurons in the medial prefrontal cortex in 4-7 month-old mDisc1 and hDisc1 mice. In both mDisc1 and hDisc1 mice, the frequency of spontaneous EPSCs was greater than in wild-type littermate controls. Male mice from both lines were more affected by the Disc1 mutation than were females, exhibiting increases in the ratio of excitatory to inhibitory events. Changes in spontaneous IPSCs were only observed in the mDisc1 model and were sex-specific, with diminished cortical GABAergic neurotransmission, a well-documented characteristic of SZ, occurring only in male mDisc1 mice. In contrast, female mDisc1 mice showed an increase in the frequency of small-amplitude sIPSCs. These findings indicate that truncations of Disc1 alter glutamatergic and GABAergic neurotransmission both commonly and differently in the models and some of the effects are sex-specific, revealing how altered Disc1 expression may contribute to behavioral disruptions and cognitive deficits of SZ. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. (United States)

    De Groef, Lies; Dekeyster, Eline; Geeraerts, Emiel; Lefevere, Evy; Stalmans, Ingeborg; Salinas-Navarro, Manuel; Moons, Lieve


    Mouse disease models have proven indispensable in glaucoma research, yet the complexity of the vast number of models and mouse strains has also led to confusing findings. In this study, we evaluated baseline intraocular pressure, retinal histology, and retinofugal projections in three mouse strains commonly used in glaucoma research, i.e. C57Bl/6, C57Bl/6-Tyr(c), and CD-1 mice. We found that the mouse strains under study do not only display moderate variations in their intraocular pressure, retinal architecture, and retinal ganglion cell density, also the retinofugal projections to the dorsal lateral geniculate nucleus and the superior colliculus revealed striking differences, potentially underlying diverging optokinetic tracking responses and visual acuity. Next, we reviewed the success rate of three models of (glaucomatous) optic neuropathies (intravitreal N-methyl-d-aspartic acid injection, optic nerve crush, and laser photocoagulation-induced ocular hypertension), looking for differences in disease susceptibility between these mouse strains. Different genetic backgrounds and albinism led to differential susceptibility to experimentally induced retinal ganglion cell death among these three mouse strains. Overall, CD-1 mice appeared to have the highest sensitivity to retinal ganglion cell damage, while the C57Bl/6 background was more resistant in the three models used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris


    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  17. Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. (United States)

    Unger, M S; Marschallinger, J; Kaindl, J; Höfling, C; Rossner, S; Heneka, Michael T; Van der Linden, A; Aigner, Ludwig


    Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the Western world and is characterized by a progressive loss of cognitive functions leading to dementia. One major histopathological hallmark of AD is the formation of amyloid-beta plaques, which is reproduced in numerous transgenic animal models overexpressing pathogenic forms of amyloid precursor protein (APP). In human AD and in transgenic amyloid plaque mouse models, several studies report altered rates of adult neurogenesis, i.e. the formation of new neurons from neural stem and progenitor cells, and impaired neurogenesis has also been attributed to contribute to the cognitive decline in AD. So far, changes in neurogenesis have largely been considered to be a consequence of the plaque pathology. Therefore, possible alterations in neurogenesis before plaque formation or in prodromal AD have been largely ignored. Here, we analysed adult hippocampal neurogenesis in amyloidogenic mouse models of AD at different points before and during plaque progression. We found prominent alterations of hippocampal neurogenesis before plaque formation. Survival of newly generated cells and the production of new neurons were already compromised at this stage. Moreover and surprisingly, proliferation of doublecortin (DCX) expressing neuroblasts was significantly and specifically elevated during the pre-plaque stage in the APP-PS1 model, while the Nestin-expressing stem cell population was unaffected. In summary, changes in neurogenesis are evident already before plaque deposition and might contribute to well-known early hippocampal dysfunctions in prodromal AD such as hippocampal overactivity.

  18. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Directory of Open Access Journals (Sweden)

    Daniel Alvarez-Fischer

    Full Text Available Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD. For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  19. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. (United States)

    Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H; Hirsch, Etienne C; Michel, Patrick P; Hartmann, Andreas


    Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  20. Pathway-specific engineered mouse allograft models functionally recapitulate human serous epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Ludmila Szabova

    Full Text Available The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1-deficient tumors and development of relevant biomarkers.

  1. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou


    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  2. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis. (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A


    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  3. The mousetrap: what we can learn when the mouse model does not mimic the human disease. (United States)

    Elsea, Sarah H; Lucas, Rebecca E


    In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.

  4. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy


    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit


    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  5. Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Sara Anjomani Virmouni

    Full Text Available Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats, YG8R (90 and 190 GAA repeats and YG22R (190 GAA repeats.We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R.Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.

  6. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique

    Directory of Open Access Journals (Sweden)

    Jie Ni


    Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  7. PKC theta ablation improves healing in a mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Luca Madaro

    Full Text Available Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/- mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.

  8. Antioxidants Halt Axonal Degeneration in a Mouse Model of X-Adrenoleukodystrophy (United States)

    López-Erauskin, Jone; Fourcade, Stéphane; Galino, Jorge; Ruiz, Montserrat; Schlüter, Agatha; Naudi, Alba; Jove, Mariona; Portero-Otin, Manuel; Pamplona, Reinald; Ferrer, Isidre; Pujol, Aurora


    Objective Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD). Methods X-ALD is a lethal disease caused by loss of function of the ABCD1 peroxisomal transporter of very long chain fatty acids (VLCFA). The mouse model for X-ALD exhibits a late onset neurological phenotype with locomotor disability and axonal degeneration in spinal cord resembling the most common phenotype of the disease, adrenomyeloneuropathy (X-AMN). Recently, we identified oxidative damage as an early event in life, and the excess of VLCFA as a generator of radical oxygen species (ROS) and oxidative damage to proteins in X-ALD. Results Here, we prove the capability of the antioxidants N-acetyl-cysteine, α-lipoic acid, and α-tocopherol to scavenge VLCFA-dependent ROS generation in vitro. Furthermore, in a preclinical setting, the cocktail of the 3 compounds reversed: (1) oxidative stress and lesions to proteins, (2) immunohistological signs of axonal degeneration, and (3) locomotor impairment in bar cross and treadmill tests. Interpretation We have established a direct link between oxidative stress and axonal damage in a mouse model of neurodegenerative disease. This conceptual proof of oxidative stress as a major disease-driving factor in X-AMN warrants translation into clinical trials for X-AMN, and invites assessment of antioxidant strategies in axonopathies in which oxidative damage might be a contributing factor. Ann Neurol 2011; PMID:21786300

  9. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.


    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  10. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    Directory of Open Access Journals (Sweden)

    Jialiang Huang


    Full Text Available Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS control (sham OVX + ligature + PBS (vehicle, and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p. every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT, hematoxylin and eosin (H&E staining, and tartrate-resistant acid phosphatase (TRAP staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis.

  11. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome. (United States)

    Nilsson, Simon Ro; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A; Kent, Brianne A; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W; Saksida, Lisa M; Stensbøl, Tine B; Tricklebank, Mark D; Didriksen, Michael; Bussey, Timothy J


    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression. © The Author 2016. Published by Oxford University Press.

  12. Comparison of intranasal corticosteroids and antihistamines in allergic rhinitis: a review of randomized, controlled trials. (United States)

    Nielsen, Lars P; Dahl, Ronald


    For several years there has been discussion of whether first-line pharmacological treatment of allergic rhinitis should be antihistamines or intranasal corticosteroids. No well documented, clinically relevant differences seem to exist for individual nonsedating antihistamines in the treatment of allergic rhinitis. Likewise, the current body of literature does not seem to favor any specific intranasal corticosteroid. When comparing efficacy of antihistamines and intranasal corticosteroids in allergic rhinitis, present data favor intranasal corticosteroids. Interestingly, data do not support antihistamines as superior in treating conjunctivitis associated with allergic rhinitis. Safety data from comparative studies in allergic rhinitis do not indicate differences between antihistamines and intranasal corticosteroids. Combining antihistamines and intranasal corticosteroids in the treatment of allergic rhinitis does not provide additional beneficial effects to intranasal corticosteroids alone. Considering present data, intranasal corticosteroids seem to offer superior relief in allergic rhinitis, when compared with antihistamines.

  13. Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease (United States)

    Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo


    The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

  14. Modeling Prolactin Actions in Breast Cancer in vivo: Insights from the NRL-PRL Mouse (United States)

    O'Leary, Kathleen A.; Shea, Michael P.; Schuler, Linda A.


    Elevated exposure to prolactin is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to prolactin without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches. PMID:25472540

  15. Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models (United States)

    Zhao, Qun; Wang, Luning; Cheng, Rui; Mao, Leidong; Arnold, Robert D.; Howerth, Elizabeth W.; Chen, Zhuo G.; Platt, Simon


    In this study, magnetic iron oxide nanoparticle induced hyperthermia is applied for treatment of head and neck cancer using a mouse xenograft model of human head and neck cancer (Tu212 cell line). A hyperthermia system for heating iron oxide nanoparticles was developed by using alternating magnetic fields. Both theoretical simulation and experimental studies were performed to verify the thermotherapy effect. Experimental results showed that the temperature of the tumor center has dramatically elevated from around the room temperature to about 40oC within the first 5-10 minutes. Pathological studies demonstrate epithelial tumor cell destruction associated with the hyperthermia treatment. PMID:22287991

  16. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis. (United States)

    Furusawa, Takaaki; Iwano, Hidetomo; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka


    Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad

  17. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease (United States)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.


    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  18. The mouse intradermal test, a well-established and reliable model in skin tolerance testing. (United States)

    Gloxhuber, C; Kästner, W


    The intradermal test in mice is a valuable model for assessing dermal tolerance to chemical substances. The test material is administered intracutaneously to hairless or depilated mice through a fine syringe, the animals are killed after 24 hours and the treated skin is removed, dried and assessed for reaction area, erythema and oedema. The skin fragments can be preserved as a record of the findings. While direct transfer of the findings from mouse to man is likely to be misleading, the test is well suited to comparative studies. Moreover it requires only small numbers of mice.

  19. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism


    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng


    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  20. Tumour-cell killing by X-rays and immunity quantitated in a mouse model system

    International Nuclear Information System (INIS)

    Porteous, D.D.; Porteous, K.M.; Hughes, M.J.


    As part of an investigation of the interaction of X-rays and immune cytotoxicity in tumour control, an experimental mouse model system has been used in which quantitative anti-tumour immunity was raised in prospective recipients of tumour-cell suspensions exposed to varying doses of X-rays in vitro before injection. Findings reported here indicate that, whilst X-rays kill a proportion of cells, induced immunity deals with a fixed number dependent upon the immune status of the host, and that X-rays and anti-tumour immunity do not act synergistically in tumour-cell killing. The tumour used was the ascites sarcoma BP8. (author)

  1. Glucose recovery after intranasal glucagon during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Djurup, R; Hilsted, J


    We compared the hyperglycaemic effect of intranasal and intramuscular (i.m.) administration of glucagon after insulin-induced hypoglycaemia. Twelve healthy subjects were examined twice, receiving on both occasions an intravenous insulin bolus. Somatostatin and propranolol were administered to block...... endogenous glucose counterregulation, and glucose turnover was estimated by a 3-[3H]-glucose infusion. When hypoglycaemia was reached, the subjects received either i.m. glucagon of pancreatic extraction (1 mg) or intranasal genetically engineered glucagon (2 mg). The incremental values for plasma glucose...... concentrations 15 min after intranasal and i.m. administration of glucagon differed marginally. However, after 5 min the glucose appearance rate, as well as the incremental values for plasma glucose, were significantly higher for the i.m. glucagon treatment. The mean time taken for incremental plasma glucose...

  2. A novel mouse model of Schistosoma haematobium egg-induced immunopathology. (United States)

    Fu, Chi-Ling; Odegaard, Justin I; Herbert, De'Broski R; Hsieh, Michael H


    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  3. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    Directory of Open Access Journals (Sweden)

    Chi-Ling Fu

    Full Text Available Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  4. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    Directory of Open Access Journals (Sweden)

    Ahmed S Elshikha

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist and CpG (TLR9 agonist -induced bone-marrow (BM-derived conventional and plasmacytoid DC (cDC and pDC activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans.

  5. Persistent Unresolved Inflammation in the Mecp2-308 Female Mutated Mouse Model of Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo


    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2. Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin, and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1. CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.

  6. Ultrasonographic Characterization of the db/db Mouse: An Animal Model of Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Francesco Faita


    Full Text Available The availability of an animal model able to reliably mirror organ damage occurring in metabolic diseases is an urgent need. These models, mostly rodents, have not been fully characterized in terms of cardiovascular, renal, and hepatic ultrasound parameters, and only sparse values can be found in literature. Aim of this paper is to provide a detailed, noninvasive description of the heart, vessels, liver, and kidneys of the db/db mouse by ultrasound imaging. Sixteen wild type and thirty-four db/db male mice (11-week-old were studied. State-of-the-art ultrasound technology was used to acquire images of cardiovascular, renal, and hepatic districts. A set of parameters describing function of the selected organs was evaluated. db/db mice are characterized by systolic and diastolic dysfunction, confirmed by strain analysis. Abdominal aortic and carotid stiffness do not seem to be increased in diabetic rodents; furthermore, they are characterized by a smaller mean diameter for both vessels. Renal microcirculation is significantly compromised, while liver steatosis is only slightly higher in db/db mice than in controls. We offer here for the first time an in vivo detailed ultrasonographic characterization of the db/db mouse, providing a useful tool for a thoughtful choice of the right rodent model for any experimental design.

  7. An improved intrafemoral injection with minimized leakage as an orthotopic mouse model of osteosarcoma. (United States)

    Sasaki, Hiromi; Iyer, Swathi V; Sasaki, Ken; Tawfik, Ossama W; Iwakuma, Tomoo


    Osteosarcoma, the most common type of primary bone cancer, is the second highest cause of cancer-related death in pediatric patients. To understand the mechanisms behind osteosarcoma progression and to discover novel therapeutic strategies for this disease, a reliable and appropriate mouse model is essential. For this purpose, osteosarcoma cells need to be injected into the bone marrow. Previously, the intratibial and intrafemoral injection methods were reported; however, the major drawback of these methods is the potential leakage of tumor cells from the injection site during or after these procedures. To overcome this, we have established an improved method to minimize leakage in an orthotopic mouse model of osteosarcoma. By taking advantage of the anatomical benefits of the femur with less bowing and larger medullary cavity than those of the tibia, osteosarcoma cells are injected directly into the femoral cavity following reaming of its intramedullary space. To prevent potential leakage of tumor cells during and after the surgery, the injection site is sealed with bone wax. This method requires a minor surgery of approximately 15min under anesthesia. Our established orthotopic osteosarcoma model could serve as a valuable and reliable tool for examining progression of various types of bone tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Oxidative Stress in Genetic Mouse Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Mustafa Varçin


    Full Text Available There is extensive evidence in Parkinson’s disease of a link between oxidative stress and some of the monogenically inherited Parkinson’s disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson’s disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson’s disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson’s disease, gene-environment interactions in genetically engineered mouse models of Parkinson’s disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson’s disease.

  9. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy. (United States)

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean


    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies.

  10. Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Han-yu Dong


    Full Text Available To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single intraperitoneal injection of streptozotocin. Mice defined as diabetic in this model were then treated with 1.80, 5.39 or 8.98 mL/kg of Cerebrolysin via intraperitoneal injections for 10 consecutive days. Our results demonstrated that the number, diameter and area of myelinated nerve fibers increased in the sciatic nerves of these mice after administration of Cerebrolysin. The results of several behavioral tests showed that Cerebrolysin dose-dependently increased the slope angle in the inclined plane test (indicating an improved ability to maintain body position, prolonged tail-flick latency and foot-licking time (indicating enhanced sensitivity to thermal and chemical pain, respectively, and reduced pain thresholds, and increased an index of sciatic nerve function in diabetic mice compared with those behavioral results in untreated diabetic mice. Taken together, the anatomical and functional results suggest that Cerebrolysin ameliorated peripheral neuropathy in a mouse model of type 2 diabetes mellitus.

  11. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  12. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas


    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...... in the PAH gene among which the enu2 (c.364T>C) was found to be the most relevant model. The Pahenu2 mutation predicts a radical phenylalanine to serine substitution within the active site of PAH, and is located in exon 7, a gene region where serious mutations are common in humans. The Pahenu2 mutation...... is therefore widely used model in PKU research. The Pahenu2 mutation has been transferred to the inbred C57BL/6 mouse strain. Breeding colonies on both inbred strains have been established at Aarhus University. Recently an attempt to breed homozygous animals on a Phe-free diet was attempted in order to reduce...

  13. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.

    Directory of Open Access Journals (Sweden)

    Astrid Menning

    Full Text Available Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.

  14. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. (United States)

    Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf


    The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions.

  15. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer's disease. (United States)

    Choi, Sung W; Gerencser, Akos A; Ng, Ryan; Flynn, James M; Melov, Simon; Danielson, Steven R; Gibson, Bradford W; Nicholls, David G; Bredesen, Dale E; Brand, Martin D


    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.

  16. Metabolic effects of bariatric surgery in mouse models of circadian disruption. (United States)

    Arble, D M; Sandoval, D A; Turek, F W; Woods, S C; Seeley, R J


    Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. VSG led to a reduction in body weight and fat mass in both Clock(Δ19) mutant and constant-light mouse models (Pdisruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P>0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (Pdisruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption.

  17. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A


    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  18. A Mouse Model of Anaphylaxis and Atopic Dermatitis to Salt-Soluble Wheat Protein Extract. (United States)

    Jin, Yining; Ebaugh, Sarah; Martens, Anna; Gao, Haoran; Olson, Eric; Ng, Perry K W; Gangur, Venu


    Wheat allergy and other immune-mediated disorders triggered by wheat protei